1
|
Caminero-Saldaña C, Correa-Cuadros JP, Baños-Herrero A, Riquelme C, Pallavicini Y, Fernández-Villán M, Plaza J, Pérez-Sánchez R, Sánchez N, Mougeot F, Luque-Larena JJ, Jaksic FM, García-Ariza MC. Exploring the influence of density-dependence and weather on the spatial and temporal variation in common vole (Microtus arvalis) abundance in Castilla y León, NW Spain. PEST MANAGEMENT SCIENCE 2024; 80:5527-5536. [PMID: 38153883 DOI: 10.1002/ps.7954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND The common vole has invaded the agroecosystems of northwestern Spain, where outbreaks cause important crop damage and management costs. Little is yet known about the factors causing or modulating vole fluctuations. Here, we used 11 years of vole abundance monitoring data in 40 sites to study density-dependence and weather influence on vole dynamics. Our objective was to identify the population dynamics structure and determine whether there is direct or delayed density-dependence. An evaluation of climatic variables followed, to determine whether they influenced vole population peaks. RESULTS First- and second-order outbreak dynamics were detected at 7 and 33 study sites, respectively, together with second-order variability in periodicity (2-3 to 4-5-year cycles). Vole population growth was explained by previous year abundance (mainly numbers in summer and spring) at 21 of the sites (52.5%), by weather variables at 11 sites (27.5%; precipitation or temperature in six and five sites, respectively), and by a combination of previous abundance and weather variables in eight sites (20%). CONCLUSIONS We detected variability in vole spatiotemporal abundance dynamics, which differs in cyclicity and period. We also found regional variation in the relative importance of previous abundances and weather as factors modulating vole fluctuations. Most vole populations were cyclical, with variable periodicity across the region. Our study is a first step towards the development of predictive modeling, by disclosing relevant factors that might trigger vole outbreaks. It improves decision-making processes within integrated management dealing with mitigation of the agricultural impacts caused by voles. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Constantino Caminero-Saldaña
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), Observatorio de Plagas y Enfermedades Agrícolas, Valladolid, Spain
| | - Jennifer Paola Correa-Cuadros
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Ana Baños-Herrero
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), Observatorio de Plagas y Enfermedades Agrícolas, Valladolid, Spain
| | - Carlos Riquelme
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Yesica Pallavicini
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), Observatorio de Plagas y Enfermedades Agrícolas, Valladolid, Spain
| | - Mercedes Fernández-Villán
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), Observatorio de Plagas y Enfermedades Agrícolas, Valladolid, Spain
| | - Javier Plaza
- Facultad de Ciencias Agrarias y Ambientales, Universidad de Salamanca, Salamanca, Spain
| | - Rodrigo Pérez-Sánchez
- Facultad de Ciencias Agrarias y Ambientales, Universidad de Salamanca, Salamanca, Spain
| | - Nilda Sánchez
- Facultad de Ciencias Agrarias y Ambientales, Universidad de Salamanca, Salamanca, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Juan José Luque-Larena
- Departamento de Ciencias Agroforestales (Zoología), ETSIIAA, Universidad de Valladolid, Palencia, Spain
- Instituto Universitario de Investigación en Gestión Forestal Sostenible (iuFOR), Palencia, Spain
| | - Fabián M Jaksic
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - María Carmen García-Ariza
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), Observatorio de Plagas y Enfermedades Agrícolas, Valladolid, Spain
| |
Collapse
|
2
|
Levay E, Nasser H, Zelko M, Penman J, Johns T. Lemming and Vole Cycles: A New Intrinsic Model. Ecol Evol 2024; 14:e70440. [PMID: 39440212 PMCID: PMC11493491 DOI: 10.1002/ece3.70440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
It is 100 years since the first paper described the multiannual cycles in Arctic rodents and lagomorphs. The mechanisms driving population cycles in animals like lemmings and voles are complex, often attributed to extrinsic factors, such as food availability and quality, pathogens, parasites and/or predators. While extrinsic factors provide insights into population cycles, none fully explain the phenomenon. We propose an underlying innate, intrinsic mechanism, based on epigenetic regulation, that drives population cycles under harsh arctic conditions. We propose that epigenetically driven phenotypic changes associated with sexual development, growth and behaviour accumulate over time in offspring, eventually producing a phase change from rising population density to eventual population collapse. Under this hypothesis, and unlike previous hypotheses, extrinsic factors modify population cycles but would not be primary drivers. The interaction between our intrinsic cycle and extrinsic factors explains established phenomena like delayed-density dependence, whereby population growth is controlled by time-dependent negative feedback. We advocate integrating a century of field research with the latest epigenetic analysis to better understand the drivers of population cycles.
Collapse
Affiliation(s)
- Elizabeth A. Levay
- School of Psychology and Public HealthLa Trobe UniversityMelbourneVictoriaAustralia
- Epigenes Australia Pty LtdMelbourneVictoriaAustralia
| | - Helen Nasser
- School of Psychology and Public HealthLa Trobe UniversityMelbourneVictoriaAustralia
- Epigenes Australia Pty LtdMelbourneVictoriaAustralia
| | | | - Jim Penman
- Epigenes Australia Pty LtdMelbourneVictoriaAustralia
| | - Terrance G. Johns
- School of Psychology and Public HealthLa Trobe UniversityMelbourneVictoriaAustralia
- Epigenes Australia Pty LtdMelbourneVictoriaAustralia
| |
Collapse
|
3
|
Boonstra R. Population regulation and limitation-insights from lemming cycles: past, present and future. Proc Biol Sci 2024; 291:20240660. [PMID: 38835279 DOI: 10.1098/rspb.2024.0660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/15/2024] [Indexed: 06/06/2024] Open
Affiliation(s)
- Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough , Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
4
|
Krebs CJ. Lemming population fluctuations around the Arctic. Proc Biol Sci 2024; 291:20240399. [PMID: 38864322 DOI: 10.1098/rspb.2024.0399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/24/2024] [Indexed: 06/13/2024] Open
Affiliation(s)
- Charles J Krebs
- Department of Zoology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
5
|
Olea PP, de Diego N, García JT, Viñuela J. Habitat type modulates sharp body mass oscillations in cyclic common vole populations. Sci Rep 2024; 14:12013. [PMID: 38797736 PMCID: PMC11128438 DOI: 10.1038/s41598-024-62687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
Cyclic rodent populations exhibit pronounced changes in body mass associated with the population cycle phase, long-known as Chitty effect. Although Chitty effect is a common epiphenomenon in both America and Europe, there is still incomplete evidence about the generality of these patterns across the entire range of most species. Moreover, despite decades of research, the underlying factors driving Chitty effect remains poorly understood. Here, we examined the influence of intrinsic and extrinsic factors that may underlie observed patterns in vole size variation in the Iberian common vole Microtus arvalis asturianus. We weighed and measured 2816 adult voles that were captured during 6 trapping periods. Vole numbers and body mass showed strong period- and phase-related variation both in females and males, demonstrating marked Chitty effect in the studied population. Body mass of adult males correlated with body length, evidencing that heavier males are also structurally larger. Statistical models showed that probability of occurrence of large-sized vole (> 37 g) was significantly more likely in reproductive males, during increase and peak phases, and it was modulated by habitat, with crop fields and field margins between crops showing an increased likelihood. We suggest an effect of the habitat on vole body mass mediated by predation.
Collapse
Affiliation(s)
- Pedro P Olea
- Terrestrial Ecology Group (TEG), Departamento de Ecología, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Noelia de Diego
- Game and Wildlife Management Group, Institute for Game and Wildlife Research (IREC, UCLM-CSIC-JCCM), Ciudad Real, Spain
| | - Jesús T García
- Game and Wildlife Management Group, Institute for Game and Wildlife Research (IREC, UCLM-CSIC-JCCM), Ciudad Real, Spain
| | - Javier Viñuela
- Game and Wildlife Management Group, Institute for Game and Wildlife Research (IREC, UCLM-CSIC-JCCM), Ciudad Real, Spain
| |
Collapse
|
6
|
Gauthier G, Ehrich D, Belke-Brea M, Domine F, Alisauskas R, Clark K, Ecke F, Eide NE, Framstad E, Frandsen J, Gilg O, Henttonen H, Hörnfeldt B, Kataev GD, Menyushina IE, Oksanen L, Oksanen T, Olofsson J, Samelius G, Sittler B, Smith PA, Sokolov AA, Sokolova NA, Schmidt NM. Taking the beat of the Arctic: are lemming population cycles changing due to winter climate? Proc Biol Sci 2024; 291:20232361. [PMID: 38351802 PMCID: PMC10865006 DOI: 10.1098/rspb.2023.2361] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Reports of fading vole and lemming population cycles and persisting low populations in some parts of the Arctic have raised concerns about the spread of these fundamental changes to tundra food web dynamics. By compiling 24 unique time series of lemming population fluctuations across the circumpolar region, we show that virtually all populations displayed alternating periods of cyclic/non-cyclic fluctuations over the past four decades. Cyclic patterns were detected 55% of the time (n = 649 years pooled across sites) with a median periodicity of 3.7 years, and non-cyclic periods were not more frequent in recent years. Overall, there was an indication for a negative effect of warm spells occurring during the snow onset period of the preceding year on lemming abundance. However, winter duration or early winter climatic conditions did not differ on average between cyclic and non-cyclic periods. Analysis of the time series shows that there is presently no Arctic-wide collapse of lemming cycles, even though cycles have been sporadic at most sites during the last decades. Although non-stationary dynamics appears a common feature of lemming populations also in the past, continued warming in early winter may decrease the frequency of periodic irruptions with negative consequences for tundra ecosystems.
Collapse
Affiliation(s)
- Gilles Gauthier
- Department of Biology and Centre d’études nordiques, Université Laval, Québec city, Québec, Canada
| | - Dorothée Ehrich
- Department of Arctic and Marine Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Maria Belke-Brea
- Department of Geography, Takuvik Joint International Laboratory and Centre d’études nordiques, Université Laval, Québec city, Québec, Canada
| | - Florent Domine
- Department of Chemistry, Takuvik Joint International Laboratory and Centre d’études nordiques, Université Laval, Québec city, Québec, Canada
- CNRS-INSU, Paris, France
| | - Ray Alisauskas
- Wildlife Research Division, Environment and Climate Change Canada, Saskatoon, Saskatchewan, Canada
| | - Karin Clark
- Environment and Natural Resources, Government of Northwest Territories, Yellowknife, Northwest Territories, Canada
| | - Frauke Ecke
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Nina E. Eide
- Department of Terrestrial Ecology, Norwegian Institute for Nature Research, Trondheim/Oslo, Norway
| | - Erik Framstad
- Department of Terrestrial Ecology, Norwegian Institute for Nature Research, Trondheim/Oslo, Norway
| | - Jay Frandsen
- Western Arctic Field Unit, Parks Canada, Kingmingya, Inuvik, Northwest Territories, Canada
| | - Olivier Gilg
- UMR 6249 Chrono-Environnement, CNRS, Université de Bourgogne Franche-Comté, Francheville, France
- Groupe de recherche en Écologie Arctique, Francheville, France
| | - Heikki Henttonen
- Terrestrial Population Dynamics, Natural Resources Institute Finland, Helsinki, Finland
| | - Birger Hörnfeldt
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | | | - Lauri Oksanen
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Alta, Norway
- Department of Biology, Section of Ecology, University of Turku, Turku, Finland
| | - Tarja Oksanen
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Alta, Norway
- Department of Biology, Section of Ecology, University of Turku, Turku, Finland
| | - Johan Olofsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | | | - Benoit Sittler
- Groupe de recherche en Écologie Arctique, Francheville, France
- Chair for Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
| | - Paul A. Smith
- Wildlife Research Division, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Aleksandr A. Sokolov
- Arctic Research Station of Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Labytnangi, Russia
| | - Natalia A. Sokolova
- Arctic Research Station of Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Labytnangi, Russia
| | - Niels M. Schmidt
- Department of Ecoscience and Arctic Research Centre, Aarhus University, 4000 Roskilde, Denmark
| |
Collapse
|
7
|
Soininen EM, Neby M. Small rodent population cycles and plants - after 70 years, where do we go? Biol Rev Camb Philos Soc 2024; 99:265-294. [PMID: 37827522 DOI: 10.1111/brv.13021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
Small rodent population cycles characterise northern ecosystems, and the cause of these cycles has been a long-lasting central topic in ecology, with trophic interactions currently considered the most plausible cause. While some researchers have rejected plant-herbivore interactions as a cause of rodent cycles, others have continued to research their potential roles. Here, we present an overview of whether plants can cause rodent population cycles, dividing this idea into four different hypotheses with different pathways of plant impacts and related assumptions. Our systematic review of the existing literature identified 238 studies from 150 publications. This evidence base covered studies from the temperate biome to the tundra, but the studies were scattered across study systems and only a few specific topics were addressed in a replicated manner. Quantitative effects of rodents on vegetation was the best studied topic, and our evidence base suggests such that such effects may be most pronounced in winter. However, the regrowth of vegetation appears to take place too rapidly to maintain low rodent population densities over several years. The lack of studies prevented assessment of time lags in the qualitative responses of vegetation to rodent herbivory. We conclude that the literature is currently insufficient to discard with confidence any of the four potential hypotheses for plant-rodent cycles discussed herein. While new methods allow analyses of plant quality across more herbivore-relevant spatial scales than previously possible, we argue that the best way forward to rejecting any of the rodent-plant hypotheses is testing specific predictions of dietary variation. Indeed, all identified hypotheses make explicit assumptions on how rodent diet taxonomic composition and quality will change across the cycle. Passing this bottleneck could help pinpoint where, when, and how plant-herbivore interactions have - or do not have - plausible effects on rodent population dynamics.
Collapse
Affiliation(s)
- Eeva M Soininen
- Department of Arctic and Marine Biology, UiT-The Arctic University of Norway, Postboks 6050 Langnes, Tromsø, 9037, Norway
| | - Magne Neby
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Høyvangvegen 40, Ridabu, 2322, Norway
| |
Collapse
|
8
|
Passoni G, Coulson T, Cagnacci F, Hudson P, Stahler DR, Smith DW, Lachish S. Investigating tritrophic interactions using bioenergetic demographic models. Ecology 2024; 105:e4197. [PMID: 37897692 DOI: 10.1002/ecy.4197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 10/30/2023]
Abstract
A central debate in ecology has been the long-running discussion on the role of apex predators in affecting the abundance and dynamics of their prey. In terrestrial systems, research has primarily relied on correlational approaches, due to the challenge of implementing robust experiments with replication and appropriate controls. A consequence of this is that we largely suffer from a lack of mechanistic understanding of the population dynamics of interacting species, which can be surprisingly complex. Mechanistic models offer an opportunity to examine the causes and consequences of some of this complexity. We present a bioenergetic mechanistic model of a tritrophic system where the primary vegetation resource follows a seasonal growth function, and the herbivore and carnivore species are modeled using two integral projection models (IPMs) with body mass as the phenotypic trait. Within each IPM, the demographic functions are structured according to bioenergetic principles, describing how animals acquire and transform resources into body mass, energy reserves, and breeding potential. We parameterize this model to reproduce the population dynamics of grass, elk, and wolves in northern Yellowstone National Park (USA) and investigate the impact of wolf reintroduction on the system. Our model generated predictions that closely matched the observed population sizes of elk and wolf in Yellowstone prior to and following wolf reintroduction. The introduction of wolves into our basal grass-elk bioenergetic model resulted in a population of 99 wolves and a reduction in elk numbers by 61% (from 14,948 to 5823) at equilibrium. In turn, vegetation biomass increased by approximately 25% in the growing season and more than threefold in the nongrowing season. The addition of wolves to the model caused the elk population to switch from being food-limited to being predator-limited and had a stabilizing effect on elk numbers across different years. Wolf predation also led to a shift in the phenotypic composition of the elk population via a small increase in elk average body mass. Our model represents a novel approach to the study of predator-prey interactions, and demonstrates that explicitly considering and linking bioenergetics, population demography and body mass phenotypes can provide novel insights into the mechanisms behind complex ecosystem processes.
Collapse
Affiliation(s)
- Gioele Passoni
- Department of Biology, University of Oxford, Oxford, UK
- Animal Ecology Unit, Research and Innovation Centre (CRI), Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Tim Coulson
- Department of Biology, University of Oxford, Oxford, UK
| | - Francesca Cagnacci
- Animal Ecology Unit, Research and Innovation Centre (CRI), Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Peter Hudson
- The Huck Institutes, Penn State University, State College, Pennsylvania, USA
| | - Daniel R Stahler
- Yellowstone Center for Resources, Yellowstone National Park, Wyoming, USA
| | - Douglas W Smith
- Yellowstone Center for Resources, Yellowstone National Park, Wyoming, USA
| | - Shelly Lachish
- Commonwealth Scientific Industrial Research Organisation (CSIRO) Environment Unit, Dutton Park, Queensland, Australia
| |
Collapse
|
9
|
Hill P, Dickman CR, Dinnage R, Duncan RP, Edwards SV, Greenville A, Sarre SD, Stringer EJ, Wardle GM, Gruber B. Episodic population fragmentation and gene flow reveal a trade-off between heterozygosity and allelic richness. Mol Ecol 2023; 32:6766-6776. [PMID: 37873908 DOI: 10.1111/mec.17174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
In episodic environments like deserts, populations of some animal species exhibit irregular fluctuations such that populations are alternately large and connected or small and isolated. Such dynamics are typically driven by periodic resource pulses due, for example, to large but infrequent rainfall events. The repeated population bottlenecks resulting from fragmentation should lower genetic diversity over time, yet species undergoing these fluctuations appear to maintain high levels of genetic diversity. To resolve this apparent paradox, we simulated a metapopulation of constant size undergoing repeat episodes of fragmentation and change in gene flow to mimic outcomes experienced by mammals in an Australian desert. We show that episodic fragmentation and gene flow have contrasting effects on two measures of genetic diversity: heterozygosity and allelic richness. Specifically, fragmentation into many, small subpopulations, coupled with periods of infrequent gene flow, preserves allelic richness at the expense of heterozygosity. In contrast, fragmentation into a few, large subpopulations maintains heterozygosity at the expense of allelic richness. The strength of the trade-off between heterozygosity and allelic richness depends on the amount of gene flow and the frequency of gene flow events. Our results imply that the type of genetic diversity maintained among species living in strongly fluctuating environments will depend on the way populations fragment, with our results highlighting different mechanisms for maintaining allelic richness and heterozygosity in small, fragmented populations.
Collapse
Affiliation(s)
- Peta Hill
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Chris R Dickman
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Russell Dinnage
- Department of Biological Sciences, Florida International University, Miami, Florida, USA
| | - Richard P Duncan
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Aaron Greenville
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Stephen D Sarre
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Emily J Stringer
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Glenda M Wardle
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Bernd Gruber
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory, Australia
| |
Collapse
|
10
|
Moloi S, Tari T, Halász T, Gallai B, Nagy G, Csivincsik Á. Global and local drivers of Echinococcus multilocularis infection in the western Balkan region. Sci Rep 2023; 13:21176. [PMID: 38040783 PMCID: PMC10692075 DOI: 10.1038/s41598-023-46632-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023] Open
Abstract
The cestode, Echinococcus multilocularis, is one of the most threatening parasitic challenges in the European Union. Despite the warming climate, the parasite intensively spread in Europe's colder and warmer regions. Little is known about the expansion of E. multilocularis in the Balkan region. Ordinary least squares, geographically weighted and multi-scale geographically weighted regressions were used to detect global and local drivers that influenced the prevalence in red foxes and golden jackals in the southwestern part of Hungary. Based on the study of 391 animals, the overall prevalence exceeded 18% (in fox 15.2%, in jackal 21.1%). The regression models revealed that the wetland had a global effect (β = 0.391, p = 0.006). In contrast, on the local scale, the mean annual precipitation (β = 0.285, p = 0.008) and the precipitation seasonality (β = - 0.211, p = 0.014) had statistically significant effects on the infection level. The geospatial models suggested that microclimatic effects might compensate for the disadvantages of a warmer Mediterranean climate. This study calls attention to fine-scale analysis and locally acting environmental factors, which can delay the expected epidemic fade-out. The findings of our study are suggested to consider in surveillance strategies.
Collapse
Affiliation(s)
- Sibusiso Moloi
- One Health Working Group, Institute of Physiology and Animal Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba S. U. 40., Kaposvár, 7400, Hungary
| | - Tamás Tari
- Institute of Wildlife Biology and Management, Faculty of Forestry, University of Sopron, Sopron, 9400, Hungary
| | - Tibor Halász
- Zselic Wildlife Estate, Somogy County Forest Management and Wood Industry Share Co. Ltd., Kaposvár, 7400, Hungary
| | - Bence Gallai
- Institute of Geomatics and Civil Engineering, Faculty of Forestry, University of Sopron, Sopron, 9400, Hungary
| | - Gábor Nagy
- One Health Working Group, Institute of Physiology and Animal Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba S. U. 40., Kaposvár, 7400, Hungary.
| | - Ágnes Csivincsik
- One Health Working Group, Institute of Physiology and Animal Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba S. U. 40., Kaposvár, 7400, Hungary
| |
Collapse
|
11
|
Leirs H, Kirkpatrick L, Sluydts V, Sabuni C, Borremans B, Katakweba A, Massawe A, Makundi R, Mulungu L, Machang'u R, Mariën J. Twenty-nine years of continuous monthly capture-mark-recapture data of multimammate mice (Mastomys natalensis) in Morogoro, Tanzania. Sci Data 2023; 10:798. [PMID: 37952006 PMCID: PMC10640561 DOI: 10.1038/s41597-023-02700-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
The multimammate mice (Mastomys natalensis) is the most-studied rodent species in sub-Saharan Africa, where it is an important pest species in agriculture and carrier of zoonotic diseases (e.g. Lassa virus). Here, we provide a unique dataset that consists of twenty-nine years of continuous monthly capture-mark-recapture entries on one 3 ha mosaic field (MOSA) in Morogoro, Tanzania. It is one of the most accurate and long-running capture-recapture time series on a small mammal species worldwide and unique to Africa. The database can be used by ecologists to test hypotheses on the population dynamics of small mammals (e.g. to test the effect of climate change), or to validate new algorithms on real long-term field data (e.g. new survival analyses techniques). It is also useful for both scientists and decision-makers who want to optimize rodent control strategies and predict outbreaks of multimammate mice.
Collapse
Affiliation(s)
- Herwig Leirs
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Lucinda Kirkpatrick
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Vincent Sluydts
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Christopher Sabuni
- Institute of Pest Management, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Benny Borremans
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Abdul Katakweba
- Institute of Pest Management, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Apia Massawe
- Institute of Pest Management, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Rhodes Makundi
- Institute of Pest Management, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Loth Mulungu
- Institute of Pest Management, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Robert Machang'u
- Institute of Pest Management, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Joachim Mariën
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium.
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium.
| |
Collapse
|
12
|
Neby M, Andreassen H, Milleret CP, Pedersen S, Peris Tamayo AM, Carriondo Sánchez D, Versluijs E, Zimmermann B. Small rodent monitoring at Birkebeiner Road, Norway. Biodivers Data J 2023; 11:e105914. [PMID: 38327373 PMCID: PMC10848699 DOI: 10.3897/bdj.11.e105914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/12/2023] [Indexed: 02/09/2024] Open
Abstract
Background Northern small mammal populations are renowned for their multi-annual population cycles. Population cycles are multi-faceted and have extensive impacts on the rest of the ecosystem. In 2011, we started a student-based research activity to monitor the variation of small rodent density along an elevation gradient following the Birkebeiner Road, in southeast Norway. Fieldwork was conducted by staff and students at the University campus Evenstad, Inland Norway University of Applied Sciences, which has a long history of researching cyclic population dynamics. The faculty has a strong focus on engaging students in all parts of the research activities, including data collection. Small rodents were monitored using a set of snap trap stations. Trapped animals were measured (e.g. body mass, body length, sex) and dissected to assess their reproductive status. We also characterised the vegetation at trapping sites. New information We provide a dataset of small rodent observations that show fluctuating population dynamics across an elevation gradient (300 m to 1,100 m a.s.l) and in contrasting habitats. This dataset encompasses three peaks of the typical 3-4-year vole population cycles; the number of small rodents and shrews captured show synchrony and peaked in years 2014, 2017 and 2021. The bank vole Myodesglareolus was by far (87%) the most common species trapped, but also other species were observed (including shrews). We provide digital data collection forms and highlight the importance of long-term data collection.
Collapse
Affiliation(s)
- Magne Neby
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Evenstad, Inland Norway University of Applied Sciences, Koppang, NorwayFaculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Evenstad, Inland Norway University of Applied SciencesKoppangNorway
| | - Harry Andreassen
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Evenstad, Inland Norway University of Applied Sciences, Koppang, NorwayFaculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Evenstad, Inland Norway University of Applied SciencesKoppangNorway
| | - Cyril Pierre Milleret
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Evenstad, Inland Norway University of Applied Sciences, Koppang, NorwayFaculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Evenstad, Inland Norway University of Applied SciencesKoppangNorway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, NorwayFaculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life SciencesÅsNorway
| | - Simen Pedersen
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Evenstad, Inland Norway University of Applied Sciences, Koppang, NorwayFaculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Evenstad, Inland Norway University of Applied SciencesKoppangNorway
| | - Ana-Maria Peris Tamayo
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Evenstad, Inland Norway University of Applied Sciences, Koppang, NorwayFaculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Evenstad, Inland Norway University of Applied SciencesKoppangNorway
- Faculty of Biosciences and Aquaculture, Nord University, N-8049 Bodø, NorwayFaculty of Biosciences and Aquaculture, Nord UniversityN-8049 BodøNorway
| | - David Carriondo Sánchez
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Evenstad, Inland Norway University of Applied Sciences, Koppang, NorwayFaculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Evenstad, Inland Norway University of Applied SciencesKoppangNorway
| | - Erik Versluijs
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Evenstad, Inland Norway University of Applied Sciences, Koppang, NorwayFaculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Evenstad, Inland Norway University of Applied SciencesKoppangNorway
| | - Barbara Zimmermann
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Evenstad, Inland Norway University of Applied Sciences, Koppang, NorwayFaculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Evenstad, Inland Norway University of Applied SciencesKoppangNorway
| |
Collapse
|
13
|
Liu R, Zhang Y, Zhang H, Cao L, Yan C. A global evaluation of the associations between long-term dynamics of seed falls and rodents. Integr Zool 2023; 18:831-842. [PMID: 35636774 DOI: 10.1111/1749-4877.12665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
One classic system of pulsed resource and animal population is mast seeding and population dynamics of seed-eating rodents in forests. However, we still lack an understanding of the global patterns regarding the contributions of seed falls to rodent outbreaks or population dynamics. We analyzed a global dataset of coupled long-term time series of seed abundances and rodent populations from published literature, including 66 and 89 time series (156 rodent-seed pairs from 37 studies) for rodent and seed abundances, respectively. We found only half of the examined rodent populations showed statistically significant coincidence between rodent outbreak and mast-seeding years. Over all the coupled time series, seed abundance was found to positively correlate with rodent abundance with a one-year lag, and the relative importance of seed abundance was much lower than that of density dependence in affecting rodent population growth rates. We also found the relative importance of seed abundance decreased, but that of rodent density dependence increased with the latitude of study. For the first time, our work provides a global pattern on the associations between seed falls and rodent population dynamics mostly in mid- and high-latitude forests, and highlights the necessity of more long-term studies on this subject in more forest ecosystems.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yongjun Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hongmao Zhang
- Institute of Evolution and Ecology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Lin Cao
- College of Ecology and Environmental Science, Yunnan University, Kunming, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, Yunnan University, Kunming, China
| | - Chuan Yan
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
14
|
Edwards PD, Palme R, Boonstra R. Is chronic stress a causal mechanism for small mammal population cycles? Reconciling the evidence. Oecologia 2023; 201:609-623. [PMID: 36864247 DOI: 10.1007/s00442-023-05338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 02/17/2023] [Indexed: 03/04/2023]
Abstract
Chronic stress has long been hypothesized to play a role in driving population cycles. Christian (1950) hypothesized that high population density results in chronic stress and mass "die-offs" in small mammal populations. Updated variations of this hypothesis propose that chronic stress at high population density may reduce fitness, reproduction, or program aspects of phenotype, driving population declines. We tested the effect of density on the stress axis in meadow voles (Microtus pennsylvanicus) by manipulating population density in field enclosures over three years. Using fecal corticosterone metabolites as a non-invasive measure of glucocorticoid (GC) concentrations, we found that density alone was not associated with GC differences. However, we found that the seasonal relationship of GC levels differed by density treatment, with high-density populations having elevated GC levels early in the breeding season and decreasing towards late summer. We additionally tested hippocampal glucocorticoid receptor and mineralocorticoid receptor gene expression in juvenile voles born at different densities, with the hypothesis that high density may reduce receptor expression, altering negative feedback of the stress axis. We found that females had marginally higher glucocorticoid receptor expression at high density, no effect in males, and no detectable effect of density on mineralocorticoid receptor expression in either sex. Hence, we found no evidence that high density directly impairs negative feedback in the hippocampus, but rather female offspring may be better equipped for negative feedback. We compare our findings with prior studies to attempt to disentangle the complicated relationship between density, seasonality, sex, reproduction and the stress axis.
Collapse
Affiliation(s)
- Phoebe D Edwards
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada.
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Rudy Boonstra
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada
| |
Collapse
|
15
|
Conquet E, Ozgul A, Blumstein DT, Armitage KB, Oli MK, Martin JGA, Clutton-Brock TH, Paniw M. Demographic consequences of changes in environmental periodicity. Ecology 2023; 104:e3894. [PMID: 36208282 DOI: 10.1002/ecy.3894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 01/24/2023]
Abstract
The fate of natural populations is mediated by complex interactions among vital rates, which can vary within and among years. Although the effects of random, among-year variation in vital rates have been studied extensively, relatively little is known about how periodic, nonrandom variation in vital rates affects populations. This knowledge gap is potentially alarming as global environmental change is projected to alter common periodic variations, such as seasonality. We investigated the effects of changes in vital-rate periodicity on populations of three species representing different forms of adaptation to periodic environments: the yellow-bellied marmot (Marmota flaviventer), adapted to strong seasonality in snowfall; the meerkat (Suricata suricatta), adapted to inter-annual stochasticity as well as seasonal patterns in rainfall; and the dewy pine (Drosophyllum lusitanicum), adapted to fire regimes and periodic post-fire habitat succession. To assess how changes in periodicity affect population growth, we parameterized periodic matrix population models and projected population dynamics under different scenarios of perturbations in the strength of vital-rate periodicity. We assessed the effects of such perturbations on various metrics describing population dynamics, including the stochastic growth rate, log λS . Overall, perturbing the strength of periodicity had strong effects on population dynamics in all three study species. For the marmots, log λS decreased with increased seasonal differences in adult survival. For the meerkats, density dependence buffered the effects of perturbations of periodicity on log λS . Finally, dewy pines were negatively affected by changes in natural post-fire succession under stochastic or periodic fire regimes with fires occurring every 30 years, but were buffered by density dependence from such changes under presumed more frequent fires or large-scale disturbances. We show that changes in the strength of vital-rate periodicity can have diverse but strong effects on population dynamics across different life histories. Populations buffered from inter-annual vital-rate variation can be affected substantially by changes in environmentally driven vital-rate periodic patterns; however, the effects of such changes can be masked in analyses focusing on inter-annual variation. As most ecosystems are affected by periodic variations in the environment such as seasonality, assessing their contributions to population viability for future global-change research is crucial.
Collapse
Affiliation(s)
- Eva Conquet
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Arpat Ozgul
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA.,The Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| | - Kenneth B Armitage
- Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, Kansas, USA
| | - Madan K Oli
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| | - Julien G A Martin
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.,School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Tim H Clutton-Brock
- Department of Zoology, University of Cambridge, Cambridge, UK.,Kalahari Research Trust, Kuruman River Reserve, Northern Cape, South Africa.,Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Maria Paniw
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Department of Conservation and Global Change, Doñana Biological Station (EBD-CSIC), Seville, Spain
| |
Collapse
|
16
|
Núñez-Riboni I, Chelton DB, Marconi V. The spectral color of natural and anthropogenic time series and its impact on the statistical significance of cross correlation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160219. [PMID: 36402340 DOI: 10.1016/j.scitotenv.2022.160219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
The cross-correlation between time series is a common tool to study and quantify the impact of climatic and anthropogenic changes on ecosystems. The traditional method for estimating the statistical significance of correlation relies on the assumption that the data are independent, but time series found in nature are often strongly auto-correlated because of low-frequency environmental variability and ecosystem inertia. Previous authors have used Monte Carlo simulations to study the impact of serial auto-correlation on the significance of cross-correlations. Most studies have used random time series that are often a poor representation of those found in nature, e.g., low-order auto-regressive models with normally distributed noise. Moreover, we are not aware of any tests of the applicability of those methods to anthropogenic time series. Here, we study the effect of serial auto-correlation on the performance of two methods for estimating the significance of cross-correlations determined from Monte Carlo simulations with time series that are generated synthetically based on power-law specification of spectral characteristics. Such time series have an auto-correlation structure defined by a single parameter, their spectral "color", and are generally more convenient representations of natural time series than the autoregressive models. Our results show that one of the two methods considered here accurately reproduces prescribed error rates for the wide range of spectral colors representative of climatic, ecological and anthropogenic time series. For this, we characterized roughly 1800 observational records in different categories of spectral colors, including climate variability, abundance of vertebrate species, and pollution. We specifically focus on time series with annual sampling over data records of at least 40 years, which are particularly relevant for climate studies. The methodology advocated in this study provides a simple and realistic assessment of the significance of sample estimates of cross correlation for time series with any sample interval and record length.
Collapse
Affiliation(s)
- Ismael Núñez-Riboni
- Thünen-Institut für Seefischerei, Herwigstraße 31, 27572 Bremerhaven, Germany.
| | | | - Valentina Marconi
- Institute of Zoology, Zoological Society of London, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
17
|
Edwards PD, Boonstra R, Oli MK. An experimental analysis of density dependence in meadow voles: Within-season and delayed effects. Ecology 2023; 104:e4008. [PMID: 36807294 DOI: 10.1002/ecy.4008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 12/26/2022] [Accepted: 01/26/2023] [Indexed: 02/20/2023]
Abstract
Wild mammal populations exhibit a variety of dynamics, ranging from fairly stable with little change in population size over time to high-amplitude cyclic or erratic fluctuations. A persistent question in population ecology is why populations fluctuate as they do. Answering this seemingly simple question has proven to be challenging. Broadly, density-dependent feedback mechanisms should allow populations to grow at low density and slow or halt growth at high density. However, experimental tests of what demographic processes result in density-dependent feedback and on what timescale have proven elusive. Here, we used replicated density perturbation experiments and capture-mark-recapture analyses to test density-dependent population growth in populations of meadow voles (Microtus pennsylvanicus) during the summer breeding season by manipulating founding population density and observing the pattern of survival, reproduction, and population growth. High population density had no consistent effect on survival rates but generally negatively influenced recruitment and population growth rates. However, these density-dependent effects varied within the breeding season and across years. Our study provides evidence that density-dependent feedback mechanisms operate at finer time scales than previously believed and that process, additively with delayed year effects, is key to understanding multiyear population demography.
Collapse
Affiliation(s)
- Phoebe D Edwards
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Madan K Oli
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA.,School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
18
|
Ecke F, Han BA, Hörnfeldt B, Khalil H, Magnusson M, Singh NJ, Ostfeld RS. Population fluctuations and synanthropy explain transmission risk in rodent-borne zoonoses. Nat Commun 2022; 13:7532. [PMID: 36477188 PMCID: PMC9729607 DOI: 10.1038/s41467-022-35273-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Population fluctuations are widespread across the animal kingdom, especially in the order Rodentia, which includes many globally important reservoir species for zoonotic pathogens. The implications of these fluctuations for zoonotic spillover remain poorly understood. Here, we report a global empirical analysis of data describing the linkages between habitat use, population fluctuations and zoonotic reservoir status in rodents. Our quantitative synthesis is based on data collated from papers and databases. We show that the magnitude of population fluctuations combined with species' synanthropy and degree of human exploitation together distinguish most rodent reservoirs at a global scale, a result that was consistent across all pathogen types and pathogen transmission modes. Our spatial analyses identified hotspots of high transmission risk, including regions where reservoir species dominate the rodent community. Beyond rodents, these generalities inform our understanding of how natural and anthropogenic factors interact to increase the risk of zoonotic spillover in a rapidly changing world.
Collapse
Affiliation(s)
- Frauke Ecke
- grid.6341.00000 0000 8578 2742Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden ,grid.7737.40000 0004 0410 2071Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65, FIN-00014 Helsinki, Finland
| | - Barbara A. Han
- grid.285538.10000 0000 8756 8029Cary Institute of Ecosystem Studies, Millbrook, New York, 12545 USA
| | - Birger Hörnfeldt
- grid.6341.00000 0000 8578 2742Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Hussein Khalil
- grid.6341.00000 0000 8578 2742Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Magnus Magnusson
- grid.6341.00000 0000 8578 2742Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden ,grid.494665.c0000 0001 1534 6096Swedish Forest Agency, Box 284, SE-901 06 Umeå, Sweden
| | - Navinder J. Singh
- grid.6341.00000 0000 8578 2742Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Richard S. Ostfeld
- grid.285538.10000 0000 8756 8029Cary Institute of Ecosystem Studies, Millbrook, New York, 12545 USA
| |
Collapse
|
19
|
Sørensen OJ, Moa PF, Hagen BR, Selås V. Possible impact of winter conditions and summer temperature on bank vole ( Myodes glareolus) population fluctuations in Central Norway. ETHOL ECOL EVOL 2022. [DOI: 10.1080/03949370.2022.2120084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ole J. Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | - Pål F. Moa
- Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | - Bjørn-Roar Hagen
- Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | - Vidar Selås
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
20
|
Rohwäder M, Jeltsch F. Foraging personalities modify effects of habitat fragmentation on biodiversity. OIKOS 2022. [DOI: 10.1111/oik.09056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Florian Jeltsch
- Plant Ecology and Nature Conservation, Univ. of Potsdam Potsdam Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 34, 14195 Berlin Germany
| |
Collapse
|
21
|
Sheftel BI, Yakushov VD. Impacts of Climate Warming on Terrestrial Species in the Middle Yenisei Taiga. CONTEMP PROBL ECOL+ 2022. [DOI: 10.1134/s1995425522010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Majchrzak YN, Peers MJL, Studd EK, Menzies AK, Walker PD, Shiratsuru S, McCaw LK, Boonstra R, Humphries M, Jung TS, Kenney AJ, Krebs CJ, Murray DL, Boutin S. Balancing food acquisition and predation risk drives demographic changes in snowshoe hare population cycles. Ecol Lett 2022; 25:981-991. [PMID: 35148018 DOI: 10.1111/ele.13975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/08/2021] [Accepted: 01/04/2022] [Indexed: 11/28/2022]
Abstract
Snowshoe hare cycles are one of the most prominent phenomena in ecology. Experimental studies point to predation as the dominant driving factor, but previous experiments combining food supplementation and predator removal produced unexplained multiplicative effects on density. We examined the potential interactive effects of food limitation and predation in causing hare cycles using an individual-based food-supplementation experiment over-winter across three cycle phases that naturally varied in predation risk. Supplementation doubled over-winter survival with the largest effects occurring in the late increase phase. Although the proximate cause of mortality was predation, supplemented hares significantly decreased foraging time and selected for conifer habitat, potentially reducing their predation risk. Supplemented hares also lost less body mass which resulted in the production of larger leverets. Our results establish a mechanistic link between how foraging time, mass loss and predation risk affect survival and reproduction, potentially driving demographic changes associated with hare cycles.
Collapse
Affiliation(s)
- Yasmine N Majchrzak
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Michael J L Peers
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Emily K Studd
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
| | - Allyson K Menzies
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
| | - Philip D Walker
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Shotaro Shiratsuru
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Laura K McCaw
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Murray Humphries
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
| | - Thomas S Jung
- Department of Environment, Government of Yukon, Whitehorse, Yukon, Canada.,Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Alice J Kenney
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charles J Krebs
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dennis L Murray
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Velzen E, Gaedke U, Klauschies T. Quantifying the capacity for contemporary trait changes to drive intermittent predator‐prey cycles. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ellen Velzen
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology University of Potsdam, Maulbeerallee 2 Potsdam Germany
| | - Ursula Gaedke
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology University of Potsdam, Maulbeerallee 2 Potsdam Germany
| | - Toni Klauschies
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology University of Potsdam, Maulbeerallee 2 Potsdam Germany
| |
Collapse
|
24
|
Dwyer G, Mihaljevic JR, Dukic V. Can Eco-Evo Theory Explain Population Cycles in the Field? Am Nat 2022; 199:108-125. [DOI: 10.1086/717178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Rastetter EB, Griffin KL, Rowe RJ, Gough L, McLaren JR, Boelman NT. Model responses to CO 2 and warming are underestimated without explicit representation of Arctic small-mammal grazing. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e02478. [PMID: 34657358 PMCID: PMC9285540 DOI: 10.1002/eap.2478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/25/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
We use a simple model of coupled carbon and nitrogen cycles in terrestrial ecosystems to examine how "explicitly representing grazers" vs. "having grazer effects implicitly aggregated in with other biogeochemical processes in the model" alters predicted responses to elevated carbon dioxide and warming. The aggregated approach can affect model predictions because grazer-mediated processes can respond differently to changes in climate compared with the processes with which they are typically aggregated. We use small-mammal grazers in a tundra as an example and find that the typical three-to-four-year cycling frequency is too fast for the effects of cycle peaks and troughs to be fully manifested in the ecosystem biogeochemistry. We conclude that implicitly aggregating the effects of small-mammal grazers with other processes results in an underestimation of ecosystem response to climate change, relative to estimations in which the grazer effects are explicitly represented. The magnitude of this underestimation increases with grazer density. We therefore recommend that grazing effects be incorporated explicitly when applying models of ecosystem response to global change.
Collapse
Affiliation(s)
- Edward B. Rastetter
- The Ecosystems CenterMarine Biological LaboratoryWoods HoleMassachusetts02543USA
| | - Kevin L. Griffin
- Department of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkNew York10027USA
- Department of Earth and Environmental SciencesColumbia UniversityPalisadesNew York10964USA
- Lamont‐Doherty Earth ObservatoryColumbia UniversityPalisadesNew York10964USA
| | - Rebecca J. Rowe
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNew Hampshire03824USA
| | - Laura Gough
- Department of Biological SciencesTowson UniversityTowsonMaryland21252USA
| | - Jennie R. McLaren
- Department of Biological SciencesUniversity of Texas at El PasoEl PasoTexas79968USA
| | - Natalie T. Boelman
- Lamont‐Doherty Earth ObservatoryColumbia UniversityPalisadesNew York10964USA
| |
Collapse
|
26
|
Oli MK, Kenney AJ, Boonstra R, Boutin S, Chaudhary V, Hines JE, Krebs CJ. Estimating abundance, temporary emigration, and the pattern of density dependence in a cyclic snowshoe hare (Lepus americanus) population in Yukon, Canada. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estimates of demographic parameters based on capture–mark–recapture (CMR) methods may be biased when some individuals in the population are temporarily unavailable for capture (temporary emigration). We estimated snowshoe hare abundance, apparent survival, and probability of temporary emigration in a population of snowshoe hares (Lepus americanus Erxleben, 1777) in the Yukon (Canada) using Pollock’s robust design CMR model, and population density using spatially explicit CMR models. Survival rates strongly varied among cyclic phases, seasons, and across five population cycles. We found strong evidence that temporary emigration was Markovian (i.e., nonrandom), suggesting that it varied among individuals that were temporary emigrant in the previous sampling period and those that were present in the sampled area. The probability of temporary emigration for individuals that were in the study area during the previous sampling occasion (γ″) varied among cycles. Probability that individuals that were temporarily absent from the sampled area would remain temporary emigrants (γ′) showed strongly seasonal pattern, low in winter and high during summers. Snowshoe hare population density ranged from 0.017 (0.015–0.05) hares/ha to 4.43 (3.90–5.00) hares/ha and showed large-scale cyclical fluctuations. Autocorrelation functions and autoregressive analyses revealed that our study population exhibited statistically significant cyclic fluctuations, with a periodicity of 9–10 years.
Collapse
Affiliation(s)
- Madan K. Oli
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - Alice J. Kenney
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Vratika Chaudhary
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - James E. Hines
- Eastern Ecological Science Center, U.S. Geological Survey, Laurel, MD 20708, USA
| | - Charles J. Krebs
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
27
|
Myakushko S. Shrinkage of body size in rodents as a strategy of populations under anthropogenic conditions (results of 50 years of study of rodent populations). THERIOLOGIA UKRAINICA 2021. [DOI: 10.15407/tu2214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Based on results of 50 years of continuous observations of populations of the pine vole (Microtus subterraneus de Selys-Longchamps, 1836) and yellow-necked wood mouse (Sylvaemus flavicollis Melchior, 1834), the phenomenon of reducing body size of individuals was revealed, particularly a significant reduction in body dimensions and body mass. The research was conducted at the Kaniv Nature Reserve covering various stages of the local ecosystem's existence under anthropogenic impact. Four cycles of density dynamics of two populations are chosen for comparison of their characteristics. The first three cycles correspond to qualitatively different periods in the existence of the protected ecosystem and populations of the studied species, whereas the last cycle reflects the current situation. It has been established that the tendency to decrease body dimensions is also characteristic for other rodent species, its manifestations are observed for 35 years, and the scale gradually increases. By fatness indexes, individuals of the pine vole on average lose 23.3% and yellow-necked wood mice lose 16.7% of the former values. It was shown that the level of reduce in exterior parameters is always greater in females than in males, and in the group of breeding adults it can reach 32%. It has been found that the phenomenon also applies to juveniles, whose fatness decreases by an average of 21%. The phenomenon occurs against the background of violations of various aspects of population dynamics, which allows it to be associated with anthropogenic changes in the environment. It is suggested that shrinking can be realized by various mechanisms. First, as a result of mortality, the largest individuals and reproductive females with their greatest energy needs fall out of the population, and, second, the growth and weight gain of young animals is slower. As a result, the decrease in external parameters of individuals reduces their specific energy needs and allows them to better survive under adverse conditions. From these points of view, reducing body dimensions can be considered as a specific population strategy to maintain ecological balance.
Collapse
|
28
|
Frafjord K. Population dynamics of an island population of water voles Arvicola amphibius (Linnaeus, 1758) with one major predator, the eagle owl Bubo bubo (Linnaeus, 1758), in northern Norway. Polar Biol 2021. [DOI: 10.1007/s00300-021-02964-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractPredator–prey relationships are of great significance to ecosystems, and their effects on the population dynamics of voles and lemmings (Microtinae) in Boreal and Arctic environments have long been of particular interest. A simple ecosystem with one major prey and one major predator could be an ideal setting for a study of their interactions. This is the situation on several small islands on the coast of northern Norway just below the Arctic Circle, with populations of water voles Arvicola amphibius preyed upon by the eagle owl Bubo bubo. The population dynamics of the water vole was studied by trapping and tagging in 2003–2018, eagle owl pellets were collected for analyses, eagle owl breeding attempts were recorded, and some weather variables collected from official recordings. After having been introduced well into the study period, the number of sheep Ovis aries was also recorded. Water voles were the main prey of the eagle owl, with 89% occurrence in pellets, with an overrepresentation of adults and males. Both predation, sheep grazing and extreme weather events influenced the vole population. Predator exclusion, as happened in three summers due to an intensive radio tracking study, especially increased the number of surviving young (in particular from the early cohorts) and the mass of adults. Extreme weather events, such as flooding in summer and deeply frozen ground in winter, most significantly reduced vole populations. Sheep grazing may exacerbate the effects of predation. A similar multitude of factors may affect populations of other rodent species as well.
Collapse
|
29
|
Borowski Z, Zub K, Sulwiński M, Suska‐Malawska M, Konarzewski M. Plant-herbivore interactions: Combined effect of groundwater level, root vole grazing, and sedge silicification. Ecol Evol 2021; 11:16047-16054. [PMID: 34824810 PMCID: PMC8601873 DOI: 10.1002/ece3.8275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/25/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022] Open
Abstract
Accumulation of silica (Si) by plants can be driven by (1) herbivory pressure (and therefore plant-herbivore interactions), (2) geohydrological cycles, or (3) a combination of (1) and (2), with (1-3) possibly affecting Si concentration with a 1-year delay.To identify the relative significance of (1-3), we analyzed the concentration of Si in fibrous tussock sedge (Carex appropinquata), the population density of the root vole (Microtus oeconomus), and the groundwater level, over 11 years.The largest influence of autumn Si concentration in leaves (Sileaf) was on the level of the current-year groundwater table, which was positive and accounted for 13.3% of its variance. The previous year's vole population density was weakly positively correlated with Sileaf, and it alone explained 9.5% of its variance.The only variable found to have a positive, significant effect on autumn Si concentration in rhizomes (Sirhiz) was the current-year spring water level, explaining as much as 60.9% of its variance.We conclude that the changes in Si concentration in fibrous tussock sedge are predominantly driven by hydrology, with vole population dynamics being secondary.Our results provide only partial support for the existence of plant-herbivore interactions, as we did not detect the significant effects of Si tussock concentration on the vole density dynamics. This was mainly due to the low level of silicification of sedges, which was insufficient to impinge herbivores.Future studies on plant-herbivore interactions should therefore aim at disentangling whether anti-herbivore protection is dependent on threshold values of herbivore population dynamics. Furthermore, studies on Si accumulation should focus on the effect of water-mediated Si availability.
Collapse
Affiliation(s)
| | - Karol Zub
- Mammal Research Institute Polish Academy of SciencesBiałowieżaPoland
| | - Marcin Sulwiński
- Faculty of Biology, Biological and Chemical Research CentreWarsaw UniversityWarsawPoland
| | | | | |
Collapse
|
30
|
Lambert M, Carlisle S, Cain I, Douse A, Watt L. Unexpected involvement of a second rodent species makes impacts of introduced rats more difficult to detect. Sci Rep 2021; 11:19805. [PMID: 34611184 PMCID: PMC8492617 DOI: 10.1038/s41598-021-98956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/06/2021] [Indexed: 11/09/2022] Open
Abstract
Rodent predators are implicated in declines of seabird populations, and removing introduced rats, often, but not always, results in the expected conservation gains. Here we investigated the relationship between small mammal (Norway rat, wood mouse and pygmy shrew) abundance and Manx shearwater breeding success on the island of Rum, Scotland, and tested whether localised rodenticide treatments (to control introduced Norway rats) increased Manx shearwater breeding success. We found that Manx shearwater breeding success was negatively correlated with late summer indices of abundance for rats and mice, but not shrews. On its own, rat activity was a poor predictor of Manx shearwater breeding success. Rat activity increased during the shearwater breeding season in untreated areas but was supressed in areas treated with rodenticides. Levels of mouse (and shrew) activity increased in areas treated with rodenticides (likely in response to lower levels of rat activity) and Manx shearwater breeding success was unchanged in treated areas (p < 0.1). The results suggest that, unexpectedly, negative effects from wood mice can substitute those of Norway rats and that both species contributed to negative impacts on Manx shearwaters. Impacts were intermittent however, and further research is needed to characterise rodent population trends and assess the long-term risks to this seabird colony. The results have implications for conservation practitioners planning rat control programmes on islands where multiple rodent species are present.
Collapse
Affiliation(s)
- M Lambert
- National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton, York, YO41 1LZ, UK. .,Department for Environment, Food, and Rural Affairs, Foss House, 1-2 Peasholme Green, York, YO1 7PX, UK.
| | - S Carlisle
- National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton, York, YO41 1LZ, UK.,Department of Life Sciences, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, UK
| | - I Cain
- NBC Environment, Federation House, 222 Queensferry Rd, Edinburgh, EH4 2BN, UK
| | - A Douse
- NatureScot, Great Glen House, Leachkin Road, Inverness, IV3 8NW, UK
| | - L Watt
- NatureScot, Rum Reserve Office, Isle of Rum, PH43 4RR, UK
| |
Collapse
|
31
|
Abstract
Globalization, tourism, virtuality, climate change, and the explosive growth of cities have generated a wide range of stressors, pollutants, and toxins that have been ravaging populations. This, coupled with viral, bacterial, and other pandemics, is rapidly creating a new reality that requires public health factors to be integrated more thoroughly into the planning and design of city regions. This prompts a questioning of the role and form of city centers as well as the distribution of people and activities in city regions. This goes beyond more outdoor spaces, places, and activities and new criteria for indoor events. Moreover, public transport, mobility, and infrastructure in general need to be retooled to deal with these emergent circumstances.
Collapse
|
32
|
Duckett DJ, Sullivan J, Pirro S, Carstens BC. Genomic Resources for the North American Water Vole ( Microtus richardsoni) and the Montane Vole ( Microtus montanus). GIGABYTE 2021; 2021:gigabyte19. [PMID: 36824326 PMCID: PMC9631978 DOI: 10.46471/gigabyte.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/04/2021] [Indexed: 11/09/2022] Open
Abstract
Voles of the genus Microtus are important research organisms, yet genomic resources are lacking. Such resources would benefit future studies of immunology, phylogeography, cryptic diversity, and more. We sequenced and assembled nuclear genomes from two subspecies of water vole (Microtus richardsoni) and from the montane vole (Microtus montanus). The water vole genomes were sequenced with Illumina and 10× Chromium plus Illumina sequencing, resulting in assemblies with ∼1600,000 and ∼30,000 scaffolds, respectively. The montane vole was also assembled into ∼13,000 scaffolds using Illumina sequencing. Mitochondrial genome assemblies were also performed for both species. Structural and functional annotation for the best water vole nuclear genome resulted in ∼24,500 annotated genes, with 83% of these having functional annotations. Assembly quality statistics for our nuclear assemblies fall within the range of genomes previously published in the genus Microtus, making the water vole and montane vole genomes useful additions to currently available genomic resources.
Collapse
Affiliation(s)
- Drew J. Duckett
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 1315 Kinnear Rd., Columbus, OH 43212, USA
| | - Jack Sullivan
- Department of Biological Sciences, University of Idaho, Box 443051, Moscow, ID 83844-3051, USA
| | - Stacy Pirro
- Iridian Genomes, Inc., 6213 Swords Way, Bethesda, MD 20817, USA
| | - Bryan C. Carstens
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 1315 Kinnear Rd., Columbus, OH 43212, USA
| |
Collapse
|
33
|
Montgomery WI. Molecular mechanisms of self-regulation in multiannual rodent populations: Experimental test of an updated hypothesis. J Anim Ecol 2021; 90:780-783. [PMID: 33821481 DOI: 10.1111/1365-2656.13458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 11/28/2022]
Abstract
IN FOCUS Edwards, P. D., Frenette-Ling, C., Palme, R., & Boonstra, R. (2021). Social density suppresses GnRH expression and reduces reproductivity in voles: A mechanism for population self-regulation. Journal of Animal Ecology, 90, 784-795. Intrinsic population processes are important in the regulation of populations of small rodents, including those which display multiannual cycles. By measuring reproductive parameters, faecal androgen metabolites, and gene expression and DNA methylation in the CNS of juvenile voles, this paper demonstrates that suppression of reproduction occurs in female voles at high density compared to low density in enclosures, and that this maternal, epigenetic effect is also apparent in their offspring. This suggsests that direct density dependence influences reproduction and, hence, immediate rate of population growth, while gene expression mediated by DNA methylation blocking transcription, may have a delayed density-dependent effect in juveniles. Both direct and delayed density dependence are necessary to generate multiannual population cycles. Edwards et al. (2021) break new ground in demonstrating the molecular and physiological basis of variation in population dynamics of small mammals ranging from multiannual cycles to stability that have fascinated researchers for nearly a century.
Collapse
Affiliation(s)
- W Ian Montgomery
- Institute of Global Food Security, School of Biological Sciences, Queen's University of Belfast, Belfast, UK
| |
Collapse
|
34
|
Ishibashi Y, Takahashi K. Role of individual dispersal in genetic resilience in fluctuating populations of the gray-sided vole Myodes rufocanus. Ecol Evol 2021; 11:3407-3421. [PMID: 33841793 PMCID: PMC8019057 DOI: 10.1002/ece3.7300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 11/28/2022] Open
Abstract
Population densities of the gray-sided vole Myodes rufocanus fluctuate greatly within and across years in Japan. Here, to investigate the role of individual dispersal in maintaining population genetic diversity, we examined how genetic diversity varied during fluctuations in density by analyzing eight microsatellite loci in voles sampled three times per year for 5 years, using two fixed trapping grids (approximately 0.5 ha each). At each trapping session, all captured voles at each trapping grid were removed. The STRUCTURE program was used to analyze serially collected samples to examine how population crashes were related to temporal variability, based on local-scale genetic compositions in each population. In total, 461 and 527 voles were captured at each trapping grid during this study. The number of voles captured during each trapping session (i.e., vole density) varied considerably at both grids. Although patterns in fluctuations were not synchronized between grids, the peak densities were similar. At both grids, the mean allele number recorded at each trapping session was strongly, positively, and nonlinearly correlated with density. STRUCTURE analyses revealed that the proportions of cluster compositions among individuals at each grid differed markedly before and after the crash phase, implying the long-distance dispersal of voles from remote areas at periods of low density. The present results suggest that, in gray-sided vole populations, genetic diversity varies with density largely at the local scale; in contrast, genetic variation in a metapopulation is well-preserved at the regional scale due to the density-dependent dispersal behaviors of individuals. By influencing the dispersal patterns of individuals, fluctuations in density affect metapopulation structure spatially and temporally, while the levels of genetic diversity are preserved in a metapopulation.
Collapse
Affiliation(s)
- Yasuyuki Ishibashi
- Hokkaido Research CenterForestry and Forest Products Research InstituteSapporoJapan
| | - Kenichi Takahashi
- Hokkaido Institute of Public HealthSapporoJapan
- Present address:
Hokkaido Pest Control AssociationSapporoJapan
| |
Collapse
|
35
|
Contribution of late-litter juveniles to the population dynamics of snowshoe hares. Oecologia 2021; 195:949-957. [PMID: 33743069 DOI: 10.1007/s00442-021-04895-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Determining the factors driving cyclic dynamics in species has been a primary focus of ecology. For snowshoe hares (Lepus americanus), explanations of their 10-year population cycles most commonly feature direct predation during the peak and decline, in combination with their curtailment in reproduction. Hares are thought to stop producing third and fourth litters during the cyclic decline and do not recover reproductive output for several years. The demographic effects of these reproductive changes depend on the consistency of this pattern across cycles, and the relative contribution to population change of late-litter versus early litter juveniles. We used monitoring data on snowshoe hares in Yukon, Canada, to examine the contribution of late-litter juveniles to the demography of their cycles, by assigning litter group for individuals caught in autumn based on body size and capture date. We found that fourth-litter juveniles occur consistently during the increase phase of each cycle, but are rare and have low over-winter survival (0.05) suggesting that population increase is unlikely to be caused by their occurrence. The proportion of third-litter juveniles captured in the autumn remains relatively constant across cycle phases, while over-winter survival rates varies particularly for earlier-litter juveniles (0.14-0.39). Juvenile survival from all litters is higher during the population increase and peak, relative to the low and decline. Overall, these results suggest that the transition from low phase to population growth may stem in large part from changes in juvenile survival as opposed to increased reproductive output through the presence of a 4th litter.
Collapse
|
36
|
Andreassen HP, Sundell J, Ecke F, Halle S, Haapakoski M, Henttonen H, Huitu O, Jacob J, Johnsen K, Koskela E, Luque-Larena JJ, Lecomte N, Leirs H, Mariën J, Neby M, Rätti O, Sievert T, Singleton GR, van Cann J, Vanden Broecke B, Ylönen H. Population cycles and outbreaks of small rodents: ten essential questions we still need to solve. Oecologia 2021; 195:601-622. [PMID: 33369695 PMCID: PMC7940343 DOI: 10.1007/s00442-020-04810-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/19/2020] [Indexed: 12/25/2022]
Abstract
Most small rodent populations in the world have fascinating population dynamics. In the northern hemisphere, voles and lemmings tend to show population cycles with regular fluctuations in numbers. In the southern hemisphere, small rodents tend to have large amplitude outbreaks with less regular intervals. In the light of vast research and debate over almost a century, we here discuss the driving forces of these different rodent population dynamics. We highlight ten questions directly related to the various characteristics of relevant populations and ecosystems that still need to be answered. This overview is not intended as a complete list of questions but rather focuses on the most important issues that are essential for understanding the generality of small rodent population dynamics.
Collapse
Affiliation(s)
- Harry P Andreassen
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Campus Evenstad, 2480, Koppang, Norway
| | - Janne Sundell
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, 16900, Lammi, Finland
| | - Fraucke Ecke
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, 90183, Umeå, Sweden
| | - Stefan Halle
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Str. 159, 07743, Jena, Germany
| | - Marko Haapakoski
- Department of Biological and Environmental Science, Konnevesi Research Station, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Heikki Henttonen
- Terrestrial Population Dynamics, Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Otso Huitu
- Terrestrial Population Dynamics, Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Jens Jacob
- Federal Research Centre for Cultivated Plants, Vertebrate Research, Julius Kühn-Institut, Toppheideweg 88, 48161, Münster, Germany
| | - Kaja Johnsen
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Campus Evenstad, 2480, Koppang, Norway
| | - Esa Koskela
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Juan Jose Luque-Larena
- Departamento de Ciencias Agroforestales, Escuela Tecnica Superior de Ingenierıas Agrarias, Universidad de Valladolid, Campus La Yutera, Avenida de Madrid 44, 34004, Palencia, Spain
| | - Nicolas Lecomte
- Canada Research Chair in Polar and Boreal Ecology and Centre D'Études Nordiques, Department of Biology, Université de Moncton, 18 Avenue Antonine-Maillet, Moncton, NB, E1A 3E9, Canada
| | - Herwig Leirs
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitslain 1, 2610, Wilrijk, Belgium
| | - Joachim Mariën
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitslain 1, 2610, Wilrijk, Belgium
| | - Magne Neby
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Campus Evenstad, 2480, Koppang, Norway
| | - Osmo Rätti
- Arctic Centre, University of Lapland, P.O. Box 122, 96101, Rovaniemi, Finland
| | - Thorbjörn Sievert
- Department of Biological and Environmental Science, Konnevesi Research Station, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Grant R Singleton
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Natural Resources Institute, University of Greenwich, Chatham Marine, Kent, ME4 4TB, UK
| | - Joannes van Cann
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Bram Vanden Broecke
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitslain 1, 2610, Wilrijk, Belgium
| | - Hannu Ylönen
- Department of Biological and Environmental Science, Konnevesi Research Station, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| |
Collapse
|
37
|
Edwards PD, Frenette-Ling C, Palme R, Boonstra R. A mechanism for population self-regulation: Social density suppresses GnRH expression and reduces reproductivity in voles. J Anim Ecol 2021; 90:784-795. [PMID: 33550586 DOI: 10.1111/1365-2656.13430] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/11/2021] [Indexed: 12/28/2022]
Abstract
Nearly 100 years ago, Charles Elton described lemming and vole population cycles as ecological models for understanding population regulation in nature. Yet, the mechanisms driving these cycles are still not fully understood. These rodent populations can continue to cycle in the absence of predation and with food supplementation, and represent a major unsolved problem in population ecology. It has been hypothesized that the social environment at high population density can drive selection for a low-reproduction phenotype, resulting in population self-regulation as an intrinsic mechanism driving the cycles. However, a physiological mechanism for this self-regulation has not been demonstrated. We manipulated population density in wild meadow voles Microtus pennsylvanicus using large-scale field enclosures over 3 years and examined reproductive performance and physiology. Within the field enclosures, we assessed the proportion of breeding animals, mass at sexual maturation, and faecal androgen and oestrogen metabolites. We then collected brain tissue from juvenile voles born at high or low density, quantified mRNA expression of gonadotropin-releasing hormone (GnRH) and oestrogen receptor alpha (ERα) and measured DNA methylation at six CpG sites in a region that was highly conserved with the mouse GnRH promoter. At high density, there was a lower proportion of reproductive animals. Juvenile voles born at high densities had reduced expression of GnRH in the hypothalamus, accompanied by marginally lower faecal sex hormone metabolites. Female juvenile voles born at high density also had higher methylation levels at two CpG sites while males did not, aligning with prior observations that females (but not males) from high-density environments retain reduced reproduction long term. Our results support a physiological basis for population self-regulation in vole cycles, as altering population density alone induced reproductive downregulation at the hypothalamic level. Our results demonstrate that altering the early-life social environment can fundamentally impact reproductive function in the brain. This, in turn, can drive population demography changes in wild animals.
Collapse
Affiliation(s)
- Phoebe D Edwards
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Coral Frenette-Ling
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
38
|
Sullivan TP, Sullivan DS, Boonstra R, Krebs CJ. Population changes and limitation in the montane vole ( Microtus montanus) in perennial old-field grasslands: insights from a long-term study. J Mammal 2021. [DOI: 10.1093/jmammal/gyaa155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
We livetrapped populations of Microtus montanus from 1982 to 2003 in semiarid perennial old-field grasslands of southern British Columbia. We evaluated two, nonmutually exclusive hypotheses (H) to explain their population dynamics: first (H1), that extended breeding during the summer or winter will drive the increase phase of population fluctuations; and second (H2), that density-dependent depression of juvenile survival will be reflected in poor early juvenile survival during high populations. Populations on 2–3 grids of 1 ha were livetrapped at 3- to 8-week intervals in summer and winter except in 5 years of very low populations. Densities ranged from 10/ha to 250/ha. Peak densities occurred in 6 years and an extended low phase occurred from 1999 to 2003. Fluctuations of 3–4 years appeared in our populations but were not always present. Breeding occurred both in summer and winter, and the best predictor of the population growth rate was the fraction of adult females lactating in summer or winter, thereby supporting H1. Juvenile production (number of juveniles/lactating female) varied greatly among years with the mean being over two times higher in low (2.41) than high (1.08) years, thereby supporting H2. There was no clear correlation between population changes and either seasonal temperatures or rainfall, or any combination of these two variables, and no obvious cause of the prolonged low from 1999 to 2003. Thus, both female reproduction and juvenile production drive montane vole dynamics demographically, similar to what is found in other vole species. However, the ultimate cause of these changes remains to be tackled experimentally.
Collapse
Affiliation(s)
- Thomas P Sullivan
- Food and Environment Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | | | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Charles J Krebs
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
39
|
Selås V, Framstad E, Rolstad J, Sonerud GA, Spidsø TK, Wegge P. Bilberry seed production explains spatiotemporal synchronicity in bank vole population fluctuations in Norway. Ecol Res 2021. [DOI: 10.1111/1440-1703.12204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Vidar Selås
- Faculty of Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences Ås Norway
| | - Erik Framstad
- The Norwegian Institute for Nature Research Oslo Norway
| | - Jørund Rolstad
- Department of Forest Genetics and Biodiversity Norwegian Institute of Bioeconomy Research Ås Norway
| | - Geir A. Sonerud
- Faculty of Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences Ås Norway
| | | | - Per Wegge
- Faculty of Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences Ås Norway
| |
Collapse
|
40
|
Abstract
AbstractUnderstanding biotic interactions and abiotic forces that govern population regulation is crucial for predicting stability from both theoretical and applied perspectives. In recent years, social information has been proposed to profoundly affect the dynamics of populations and facilitate the coexistence of interacting species. However, we have limited knowledge about how social information use influences cyclic and non-cyclic fluctuations of populations and if any population-level effects can be expected in species where individuals do not form social groups. In this study, I built individual-based models in a factorial design to investigate how predator avoidance behaviour and associated inadvertent social information (ISI) use alters the predictions of classical predator–prey population models in non-grouping (e.g., randomly moving) animals. Simulation results showed that ISI use in prey stabilized population dynamics by disrupting high-amplitude cyclic fluctuations in both predator and prey populations. Moreover, it also decreased the strength of the negative feedback of second-order dependence between predator and prey. I propose that if social cues are commonly used sources of information in animals regardless of the level of social organization, then similar social information-mediated effects on trophic interactions and population dynamics may be prevalent in natural communities.
Collapse
|
41
|
Oli MK, Krebs CJ, Kenney AJ, Boonstra R, Boutin S, Hines JE. Demography of snowshoe hare population cycles. Ecology 2020; 101:e02969. [PMID: 31922605 DOI: 10.1002/ecy.2969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/16/2019] [Accepted: 11/12/2019] [Indexed: 01/16/2023]
Abstract
Cyclic fluctuations in abundance exhibited by some mammalian populations in northern habitats ("population cycles") are key processes in the functioning of many boreal and tundra ecosystems. Understanding population cycles, essentially demographic processes, necessitates discerning the demographic mechanisms that underlie numerical changes. Using mark-recapture data spanning five population cycles (1977-2017), we examined demographic mechanisms underlying the 9-10-yr cycles exhibited by snowshoe hares (Lepus americanus Erxleben) in southwestern Yukon, Canada. Snowshoe hare populations always decreased during winter and increased during summer; the balance between winter declines and summer increases characterized the four, multiyear cyclic phases: increase, peak, decline, and low. Little or no recruitment occurred during winter, but summer recruitment varied markedly across the four phases with the highest and lowest recruitment observed during the increase and decline phase, respectively. Population crashes during the decline were triggered by a substantial decline in winter survival and by a lack of subsequent summer recruitment. In contrast, initiation of the increase phase was triggered by a twofold increase in summer recruitment abetted secondarily by improvements in subsequent winter survival. We show that differences in peak density across cycles are explained by differences in overall population growth rate, amount of time available for population growth to occur, and starting population density. Demographic mechanisms underlying snowshoe hare population cycles were consistent across cycles in our study site but we do not yet know if similar demographic processes underlie population cycles in other northern snowshoe hare populations.
Collapse
Affiliation(s)
- Madan K Oli
- Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, 32611, Florida, USA
| | - Charles J Krebs
- Department of Zoology, University of British Columbia, 4200 - 6270 University Blvd., Vancouver, V6T 1Z4, British Columbia, Canada
| | - Alice J Kenney
- Department of Zoology, University of British Columbia, 4200 - 6270 University Blvd., Vancouver, V6T 1Z4, British Columbia, Canada
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, M1C 1A4, Ontario, Canada
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Alberta, Canada
| | - James E Hines
- USGS Patuxent Wildlife Research Center, 12311 Beech Forest Road, Patuxant, 20708, Maryland, USA
| |
Collapse
|
42
|
Fay R, Michler S, Laesser J, Jeanmonod J, Schaub M. Large-Scale Vole Population Synchrony in Central Europe Revealed by Kestrel Breeding Performance. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2019.00512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|