1
|
López ME, Denoyes B, Bucher E. Epigenomic and transcriptomic persistence of heat stress memory in strawberry (Fragaria vesca). BMC PLANT BIOLOGY 2024; 24:405. [PMID: 38750420 PMCID: PMC11096098 DOI: 10.1186/s12870-024-05093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND In plants, epigenetic stress memory has so far been found to be largely transient. Here, we wanted to assess the heritability of heat stress-induced epigenetic and transcriptomic changes following woodland strawberry (Fragaria vesca) reproduction. Strawberry is an ideal model to study epigenetic inheritance because it presents two modes of reproduction: sexual (self-pollinated plants) and asexual (clonally propagated plants named daughter plants). Taking advantage of this model, we investigated whether heat stress-induced DNA methylation changes can be transmitted via asexual reproduction. RESULTS Our genome-wide study provides evidence for stress memory acquisition and maintenance in F. vesca. We found that specific DNA methylation marks or epimutations are stably transmitted over at least three asexual generations. Some of the epimutations were associated with transcriptional changes after heat stress. CONCLUSION Our findings show that the strawberry methylome and transcriptome respond with a high level of flexibility to heat stress. Notably, independent plants acquired the same epimutations and those were inherited by their asexual progenies. Overall, the asexual progenies can retain some information in the genome of past stresses encountered by their progenitors. This molecular memory, also documented at the transcriptional level, might be involved in functional plasticity and stress adaptation. Finally, these findings may contribute to novel breeding approaches for climate-ready plants.
Collapse
Affiliation(s)
- María-Estefanía López
- Crop Genome Dynamics Group, Agroscope, Nyon, 1260, Switzerland
- Department of Botany and Plant Biology, Faculty of Sciences, University of Geneva, Geneva, 1205, Switzerland
| | - Béatrice Denoyes
- INRAE, Biologie du Fruit et Pathologie, Univ. Bordeaux, Villenave d'Ornon, F-33140, France
| | - Etienne Bucher
- Crop Genome Dynamics Group, Agroscope, Nyon, 1260, Switzerland.
| |
Collapse
|
2
|
Gajdošová Z, Svitok M, Cetlová V, Mártonfiová L, Kučera J, Kolarčik V, Hurdu BI, Sîrbu IM, Turisová I, Turis P, Slovák M. Incidence and evolutionary relevance of autotriploid cytotypes in a relict member of the genus Daphne (Thymelaeaceae). AOB PLANTS 2023; 15:plad056. [PMID: 37899980 PMCID: PMC10601019 DOI: 10.1093/aobpla/plad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/09/2023] [Indexed: 10/31/2023]
Abstract
Odd ploidy-level cytotypes in sexually reproducing species are considered a dead end due to absent or reduced fertility. If sterility is only partial, however, their contribution to the population gene pool can be augmented by longevity and clonal growth. To test this, we investigated the cytotype origin and spatial pattern, and pollen viability in three relict shrub species of the genus Daphne (Thymelaeaceae Juss.) in central Europe. Daphne cneorum subsp. cneorum is a widespread European species that has a broad ecological amplitude, whereas D. cneorum subsp. arbusculoides and D. arbuscula are narrow endemics of the western Pannonian Plain and the Western Carpathians, respectively. Our study confirmed that all three taxa are diploid. However, of more than a thousand analysed individuals of D. cneorum subsp. cneorum, five in four different populations were triploid. Our data indicate that these triploids most likely originate from recurrent autopolyploidization events caused by the fusion of reduced and unreduced gametes. High pollen viability was observed in all three taxa and in both diploid and triploid cytotypes, ranging from 65 to 100 %. Our study highlights the significant role of odd ploidy-level cytotypes in interploidy gene flow, calling for more research into their reproduction, genetic variability, and overall fitness. Interestingly, while the endemic D. arbuscula differs from D. cneorum based on genetic and genome size data, D. cneorum subsp. arbusculoides was indistinguishable from D. cneorum subsp. cneorum. However, our study reveals that the subspecies differ in the number of flowers per inflorescence. This is the first comprehensive cytogeographic study of this intriguing genus at a regional scale, and in spite of its karyological stability, it contributes to our understanding of genomic evolution in plant species with a wide ecological amplitude.
Collapse
Affiliation(s)
- Zuzana Gajdošová
- Department of Evolution and Systematics, Institute of Botany, Plant Sciences and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23 Bratislava, Slovak Republic
| | - Marek Svitok
- Department of Biology and General Ecology, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, Ul. T. G. Masaryka 24, SK-960 01 Zvolen, Slovak Republic
- Department of Forest Ecology, Czech University of Life Sciences Prague, CZ-16 521 Suchdol, Praha 6, Czech Republic
| | - Veronika Cetlová
- Department of Evolution and Systematics, Institute of Botany, Plant Sciences and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23 Bratislava, Slovak Republic
| | - Lenka Mártonfiová
- Botanical Garden of Pavol Jozef Šafárik University in Košice, Mánesova 23, SK-043 52 Košice, Slovak Republic
| | - Jaromír Kučera
- Department of Evolution and Systematics, Institute of Botany, Plant Sciences and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23 Bratislava, Slovak Republic
| | - Vladislav Kolarčik
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Mánesova 23, SK-041 54 Košice, Slovak Republic
| | - Bogdan-Iuliu Hurdu
- Department of Taxonomy and Evolution, Institute of Biological Research, 48 Republicii St., R-400015 Cluj-Napoca, Romania
| | - Ioana-Minodora Sîrbu
- Faculty of Biology, University of Bucharest, Splaiul Independenței 91–95, R-050095Bucharest, Romania
| | - Ingrid Turisová
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University in Banská Bystrica, Tajovského 40, SK-974 01 Banská Bystrica, Slovak Republic
| | - Peter Turis
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University in Banská Bystrica, Tajovského 40, SK-974 01 Banská Bystrica, Slovak Republic
| | - Marek Slovák
- Department of Evolution and Systematics, Institute of Botany, Plant Sciences and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23 Bratislava, Slovak Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Praha, Czech Republic
| |
Collapse
|
3
|
Meena RK, Negi N, Shankhwar R, Bhandari MS, Kant R, Pandey S, Kumar N, Sharma R, Ginwal HS. Ecological niche modelling and population genetic analysis of Indian temperate bamboo Drepanostachyum falcatum in the western Himalayas. JOURNAL OF PLANT RESEARCH 2023:10.1007/s10265-023-01465-5. [PMID: 37140755 DOI: 10.1007/s10265-023-01465-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
The present study was conducted to understand the key ecological and biological questions of conservation importance in Drepanostachyum falcatum which aimed to map potential distribution in the western Himalayas and decipher spatial genetic structure. Eco-distribution maps were generated through ecological niche modelling using the Maximum Entropy (MaxEnt) algorithm implemented with 228 geocoordinates of species presence and 12 bioclimatic variables. Concomitantly, 26 natural populations in the western Himalayas were genetically analysed using ten genomic sequence-tagged microsatellite (STMS) markers. Model-derived distribution was adequately supported with appropriate statistical measures, such as area under the 'receiver operating characteristics (ROC)' curve (AUC; 0.917 ± 0.034)", Kappa (K; 0.418), normalized mutual information (NMI; 0.673) and true skill statistic (TSS; 0.715). Further, Jackknife test and response curves showed that the precipitation (pre- and post-monsoon) and temperature (average throughout the year and pre-monsoon) maximize the probabilistic distribution of D. falcatum. We recorded a wide and abundant (4096.86 km2) distribution of D. falcatum in the western Himalayas with maximum occurrence at 1500 to 2500 m asl. Furthermore, marker analysis exemplified high gene diversity with low genetic differentiation in D. falcatum. Relatively, the populations of Uttarakhand are more genetically diverse than Himachal Pradesh, whereas within the Uttarakhand, the Garhwal region captured a higher allelic diversity than Kumaon. Clustering and structure analysis indicated two major gene pools, where genetic admixing appeared to be controlled by long-distance gene flow, horizontal geographical distance, aspect, and precipitation. Both the species distribution map and population genetic structure derived herein may serve as valuable resources for conservation and management of Himalayan hill bamboos.
Collapse
Affiliation(s)
- Rajendra K Meena
- Division of Genetics and Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand, 248 195, India.
| | - Nitika Negi
- Division of Genetics and Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand, 248 195, India
| | - Rajeev Shankhwar
- Division of Genetics and Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand, 248 195, India
| | - Maneesh S Bhandari
- Division of Genetics and Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand, 248 195, India
| | - Rama Kant
- Division of Genetics and Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand, 248 195, India
| | - Shailesh Pandey
- Forest Pathology Discipline, Division of Forest Protection, Forest Research Institute, Dehradun, Uttarakhand, 248 006, India
| | - Narinder Kumar
- Division of Genetics and Tree Improvement, Himalayan Forest Research Institute, Shimla, 171 013, Himachal Pradesh, India
| | - Rajesh Sharma
- Division of Genetics and Tree Improvement, Himalayan Forest Research Institute, Shimla, 171 013, Himachal Pradesh, India
- Division of Biodiversity and Climate Change, Indian Council of Forestry Research and Education, Dehradun, Uttarakhand, 248 006, India
| | - Harish S Ginwal
- Division of Genetics and Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand, 248 195, India
| |
Collapse
|
4
|
Mairal M, García-Verdugo C, Le Roux JJ, Chau JH, van Vuuren BJ, Hui C, Münzbergová Z, Chown SL, Shaw JD. Multiple introductions, polyploidy and mixed reproductive strategies are linked to genetic diversity and structure in the most widespread invasive plant across Southern Ocean archipelagos. Mol Ecol 2023; 32:756-771. [PMID: 36478264 DOI: 10.1111/mec.16809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Biological invasions in remote areas that experience low human activity provide unique opportunities to elucidate processes responsible for invasion success. Here we study the most widespread invasive plant species across the isolated islands of the Southern Ocean, the annual bluegrass, Poa annua. To analyse geographical variation in genome size, genetic diversity and reproductive strategies, we sampled all major sub-Antarctic archipelagos in this region and generated microsatellite data for 470 individual plants representing 31 populations. We also estimated genome sizes for a subset of individuals using flow cytometry. Occasional events of island colonization are expected to result in high genetic structure among islands, overall low genetic diversity and increased self-fertilization, but we show that this is not the case for P. annua. Microsatellite data indicated low population genetic structure and lack of isolation by distance among the sub-Antarctic archipelagos we sampled, but high population structure within each archipelago. We identified high levels of genetic diversity, low clonality and low selfing rates in sub-Antarctic P. annua populations (contrary to rates typical of continental populations). In turn, estimates of selfing declined in populations as genetic diversity increased. Additionally, we found that most P. annua individuals are probably tetraploid and that only slight variation exists in genome size across the Southern Ocean. Our findings suggest multiple independent introductions of P. annua into the sub-Antarctic, which promoted the establishment of genetically diverse populations. Despite multiple introductions, the adoption of convergent reproductive strategies (outcrossing) happened independently in each major archipelago. The combination of polyploidy and a mixed reproductive strategy probably benefited P. annua in the Southern Ocean by increasing genetic diversity and its ability to cope with the novel environmental conditions.
Collapse
Affiliation(s)
- Mario Mairal
- Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, Spain.,Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Carlos García-Verdugo
- Departamento de Botánica, Facultad de Ciencias, Universidad de Granada, Granada, Spain.,Departamento de Biología, Universitat de les Illes Balears - Institut Mediterrani d'Estudis Avançats (CSIC-UIB), Mallorca, Spain
| | - Johannes J Le Roux
- Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, Spain.,School of Natural Sciences, Macquarie University, New South Wales, Sydney, Australia
| | - John H Chau
- Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Auckland Park, South Africa
| | - Bettine Jansen van Vuuren
- Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Auckland Park, South Africa
| | - Cang Hui
- Department of Mathematical Sciences, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa.,Biodiversity Informatics Unit, African Institute for Mathematical Sciences, Cape Town, South Africa
| | - Zuzana Münzbergová
- Faculty of Science, Department of Botany, Charles University, Prague, Czech Republic.,Institute of Botany, Czech Academy of Science, Průhonice, Czech Republic
| | - Steven L Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Justine D Shaw
- Securing Antarctica's Environmental Future, School of Biology and Environmental Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.,Australian Antarctic Division, Tasmania, Kingston, Australia
| |
Collapse
|
5
|
Kitamura K, Namikawa K, Tsuda Y, Kobayashi M, Matsui T. Possible northern persistence of Siebold's beech, Fagus crenata, at its northernmost distribution limit on an island in Japan Sea: Okushiri Island, Hokkaido. FRONTIERS IN PLANT SCIENCE 2022; 13:990927. [PMID: 36589061 PMCID: PMC9797532 DOI: 10.3389/fpls.2022.990927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Siebold's beech, Fagus crenata, is widely distributed across the Japanese Archipelago and islands in Japan Sea. Similar to the northern limit of the geographical distribution of F. crenata on the mainland of Hokkaido, the northern limit of the distribution of F. crenata on islands in the Japan Sea is observed on Okushiri Island (ca 42°N). To understand the genetic relationships of F. crenata on Okushiri Island, we examined chloroplast (cp) DNA haplotypes and 11 nuclear microsatellite (SSR) loci among 1,838 individuals from 44 populations from Okushiri Island, mainland Hokkaido, and the northern part of the Tohoku region on Honshu Island. We identified 2 cpDNA haplotypes, which represent not only populations on the Japan Sea coast but also those on the Pacific coast and this suggested the Okushiri Island populations might not be formed by single colonization. Genetic diversity of the Okushiri Island populations of nuclear SSR was not lower than the mainland and the STRUCTURE analysis revealed the Okushiri Island individuals were admixed between Hokkaido and Tohoku clusters. Approximate Bayesian computation inferred that divergence between Tohoku and Hokkaido, and admixture between two populations which generated Okushiri populations occurred before the last glacial maximum (LGM), that is, 7,890 (95% hyper probability density (HPD): 3,420 - 9,910) and 3,870 (95% HPD: 431- 8,540) generations ago, respectively. These inferences were well supported by a geological history which suggested an isolation of Okushiri Island from Hokkaido started prior to the Middle Pleistocene. We discuss the possible persistence of F. crenata during the last glacial maximum on northern islands in the Japan Sea such as Okushiri Island.
Collapse
Affiliation(s)
- Keiko Kitamura
- Hokkaido Research Centre, Forestry and Forest Products Research Institute, Sapporo, Japan
| | - Kanji Namikawa
- Biological Laboratory, Hokkaido University of Education, Sapporo, Japan
| | - Yoshiaki Tsuda
- Sugadaira Montane Research Center, University of Tsukuba, Ueda, Japan
| | - Makoto Kobayashi
- Department of Education and Culture, Echigo-Matsunoyama Museum of Natural Science, Tokamachi, Japan
| | - Tetsuya Matsui
- Center of Biodiversity and Climate Change, Forestry and Forest Products Research Institute, Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
6
|
Effect of Life-History Traits and Habitat Condition on Genetic Diversity between Invasive and Native Plant Populations. DIVERSITY 2022. [DOI: 10.3390/d14121025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Plant invasions have a huge impact on the health of ecosystems and human well-being. The invasion risk varies with the introduction pathway, the propagule pressure, and the genetic diversity of the founding population. We performed a systematic review and meta-analysis of 30 studies reporting the genetic diversity of 31 plant species in their invasive and native ranges. We evaluated if patterns of genetic diversity differ between ranges and whether these responses are influenced by life-history traits, hybridization, polyploidization, and habitat condition. We found that invasive populations had significantly lower genetic diversity and higher inbreeding than native populations. In fragmented and degraded habitats, the genetic diversity of invaders was lower, but inbreeding was not affected. Polyploid invaders with hybrid capacity also showed lower genetic diversity. Invasive herbs with vegetative propagation were more sensitive to the loss of genetic diversity and had higher levels of inbreeding. Our synthesis showed that the genetic response in the invaded range could result from historical processes, such as founder and bottleneck events. Traits such as selfing are more likely to preserve the signatures of founder events and influence the genetic diversity in invasive populations. Additionally, clonality seems to be the predominant reproduction system in the invaded range.
Collapse
|
7
|
Wang Z, Hu G, Li Z, Zhong C, Yao X. Characterizing Tetraploid Populations of Actinidia chinensis for Kiwifruit Genetic Improvement. PLANTS 2022; 11:plants11091154. [PMID: 35567155 PMCID: PMC9102457 DOI: 10.3390/plants11091154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022]
Abstract
Understanding genetic diversity and structure in natural populations and their suitable habitat response to environmental changes is critical for the protection and utilization of germplasm resources. We evaluated the genetic diversity and structure of 24 A. chinensis populations using simple sequence repeat (SSR) molecular markers. The potential suitable distribution of tetraploid A. chinensis estimated under the current climate and predicted for the future climate was generated with ecological niche modeling (ENM). The results indicated that the polyploid populations of A.chinensis have high levels of genetic diversity and that there are distinct eastern and western genetic clusters. The population structure of A. chinensis can be explained by an isolation-by-distance model. The results also revealed that potentially suitable areas of tetraploids will likely be gradually lost and the habitat will likely be increasingly fragmented in the future. This study provides an extensive overview of tetraploid A. chinensis across its distribution range, contributing to a better understanding of its germplasm resources. These results can also provide the scientific basis for the protection and sustainable utilization of kiwifruit wild resources.
Collapse
Affiliation(s)
- Zhi Wang
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
- CAS Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, China; (G.H.); (Z.L.)
| | - Guangming Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, China; (G.H.); (Z.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuozhou Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, China; (G.H.); (Z.L.)
| | - Caihong Zhong
- CAS Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, China; (G.H.); (Z.L.)
- Correspondence: (C.Z.); (X.Y.); Tel.: +86-27-8770884 (C.Z. & X.Y.); Fax: +86-27-87510567 (C.Z. & X.Y.)
| | - Xiaohong Yao
- CAS Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, China; (G.H.); (Z.L.)
- Correspondence: (C.Z.); (X.Y.); Tel.: +86-27-8770884 (C.Z. & X.Y.); Fax: +86-27-87510567 (C.Z. & X.Y.)
| |
Collapse
|
8
|
Phylogeographical Analyses of a Relict Fern of Palaeotropical Flora (Vandenboschia speciosa): Distribution and Diversity Model in Relation to the Geological and Climate Events of the Late Miocene and Early Pliocene. PLANTS 2022; 11:plants11070839. [PMID: 35406819 PMCID: PMC9002575 DOI: 10.3390/plants11070839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 11/19/2022]
Abstract
Fern phylogeographic studies have mostly focused on the influence of the Pleistocene climate on fern distributions and the prevalence of long-distance dispersal. The effect of pre-Pleistocene events on the distributions of fern species is largely unexplored. Here, we elucidate a hypothetical scenario for the evolutionary history of Vandenboschia speciosa, hypothesised to be of Tertiary palaeotropical flora with a peculiar perennial gametophyte. We sequenced 40 populations across the species range in one plastid region and two variants of the nuclear gapCp gene and conducted time-calibrated phylogenetic, phylogeographical, and species distribution modelling analyses. Vandenboschia speciosa is an allopolyploid and had a Tertiary origin. Late Miocene aridification possibly caused the long persistence in independent refugia on the Eurosiberian Atlantic and Mediterranean coasts, with the independent evolution of gene pools resulting in two evolutionary units. The Cantabrian Cornice, a major refugium, could also be a secondary contact zone during Quaternary glacial cycles. Central European populations resulted from multiple post-glacial, long-distance dispersals. Vandenboschia speciosa reached Macaronesia during the Pliocene–Pleistocene, with a phylogeographical link between the Canary Islands, Madeira, and southern Iberia, and between the Azores and northwestern Europe. Our results support the idea that the geological and climate events of the Late Miocene/Early Pliocene shifted Tertiary fern distribution patterns in Europe.
Collapse
|
9
|
Ben-Menni Schuler S, Picazo-Aragonés J, Rumsey FJ, Romero-García AT, Suárez-Santiago VN. Macaronesia Acts as a Museum of Genetic Diversity of Relict Ferns: The Case of Diplazium caudatum (Athyriaceae). PLANTS 2021; 10:plants10112425. [PMID: 34834788 PMCID: PMC8623695 DOI: 10.3390/plants10112425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/05/2022]
Abstract
Macaronesia has been considered a refuge region of the formerly widespread subtropical lauroid flora that lived in Southern Europe during the Tertiary. The study of relict angiosperms has shown that Macaronesian relict taxa preserve genetic variation and revealed general patterns of colonization and dispersal. However, information on the conservation of genetic diversity and range dynamics rapidly diminishes when referring to pteridophytes, despite their dominance of the herbaceous stratum in the European tropical palaeoflora. Here we aim to elucidate the pattern of genetic diversity and phylogeography of Diplazium caudatum, a hypothesized species of the Tertiary Palaeotropical flora and currently with its populations restricted across Macaronesia and disjunctly in the Sierras de Algeciras (Andalusia, southern Iberian Peninsula). We analysed 12 populations across the species range using eight microsatellite loci, sequences of a region of plastid DNA, and carry out species-distribution modelling analyses. Our dating results confirm the Tertiary origin of this species. The Macaronesian archipelagos served as a refuge during at least the Quaternary glacial cycles, where populations of D. caudatum preserved higher levels of genetic variation than mainland populations. Our data suggest the disappearance of the species in the continent and the subsequent recolonization from Macaronesia. The results of the AMOVA analysis and the indices of clonal diversity and linkage disequilibrium suggest that D. caudatum is a species in which inter-gametophytic outcrossing predominates, and that in the Andalusian populations there was a shift in mating system toward increased inbreeding and/or clonality. The model that best explains the genetic diversity distribution pattern observed in Macaronesia is, the initial and recurrent colonization between islands and archipelagos and the relatively recent diversification of restricted area lineages, probably due to the decrease of favorable habitats and competition with lineages previously established. This study extends to ferns the concept of Macaronesia archipelagos as refugia for genetic variation.
Collapse
Affiliation(s)
- Samira Ben-Menni Schuler
- Department of Botany, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (S.B.-M.S.); (J.P.-A.); (A.T.R.-G.)
| | - Jesús Picazo-Aragonés
- Department of Botany, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (S.B.-M.S.); (J.P.-A.); (A.T.R.-G.)
| | - Fred J. Rumsey
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK;
| | - Ana Teresa Romero-García
- Department of Botany, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (S.B.-M.S.); (J.P.-A.); (A.T.R.-G.)
| | - Víctor N. Suárez-Santiago
- Department of Botany, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (S.B.-M.S.); (J.P.-A.); (A.T.R.-G.)
- Correspondence: ; Tel.: +34-958-248814
| |
Collapse
|
10
|
Abstract
The flora of the Canary Islands has been subject to botanical studies for more than 200 years. Several biodiversity databases are available for the archipelago. However, there are various drivers of change in real biodiversity and the knowledge about it constantly needs to be kept track of. Island floras are both: exposed to species loss and to species introductions, either through natural processes or by anthropogenic drivers. Additionally, the evolution of endemic plant species plays a substantial role. Endemic species are sensitive to population decline due to small population sizes and possible low competitiveness against incoming species. Additionally, there is continuous progress in systematics and taxonomy. Species names or their taxonomic attribution can be modified. Here, we check published plant lists for the Canary Islands and literature, and compile currently accepted taxa into an updated checklist. For this FloCan checklist, several sources were compiled, checked for completeness and quality, and their taxonomy was updated. We illustrate how far plant names are considered in regional or global databases. This work represents the current state of knowledge on Canary Island plant diversity, including introduced and recently described taxa. We provide a comprehensive and updated basis for biogeographical and macroecological studies. Particularly, the number of non-native species is being extended substantially. The adaptation to standard international nomenclature supports integration into large-scale studies.
Collapse
|
11
|
Understanding the genetic diversity of the guayabillo (Psidium galapageium), an endemic plant of the Galapagos Islands. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
12
|
Shi M, Wang Y, Duan T, Qian X, Zeng T, Zhang D. In situ glacial survival maintains high genetic diversity of Mussaenda kwangtungensis on continental islands in subtropical China. Ecol Evol 2020; 10:11304-11321. [PMID: 33144966 PMCID: PMC7593160 DOI: 10.1002/ece3.6768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 07/06/2020] [Accepted: 08/18/2020] [Indexed: 11/23/2022] Open
Abstract
Generally, island populations are predicted to have less genetic variation than their mainland relatives. However, a growing number of studies have nevertheless reported exceptions, indicating that the relationships were impacted by several factors, for example, historical processes. In the present study, we chose a group of subtropical islands located in South China as the study system, which are quite younger and much closer to the mainland than most of the previous studied island systems, to test the hypothesis that in situ glacial survival contributes to high levels of genetic diversity in island populations. We conducted a comparison of genetic variation between 12 island and 11 nearby mainland populations of Mussaenda kwangtungensis using eleven nuclear microsatellite and three chloroplast markers, evaluated effects of the island area and distance to mainland on genetic diversity of island populations, and simulated the potential distribution over the past by ecological niche modeling, together with the genetic data to detect the role of islands during the glacial periods. The island populations displayed comparable levels of genetic diversity and differentiation with mainland populations, overall high levels of unique polymorphisms, and the greatest values of specific within-population genetic diversity. No significant correlation was detected between genetic diversity of island populations and distance to mainland, as well as area of islands, except that allelic richness was significantly positively correlated with the area of islands. Nuclear microsatellites revealed two main clusters, largely corresponding to islands and inland populations, which divergence dated to a time of island formation by ABC analysis. Ecological niche modeling predicted a highly climatic suitability on islands during the last glacial maximum (LGM). Our results suggest that the islands have acted as refugia during the LGM and highlight the role of in situ glacial survival in maintaining high levels of genetic diversity of M. kwangtungensis in continental islands of subtropical China.
Collapse
Affiliation(s)
- Miaomiao Shi
- Key Laboratory of Plant Resources Conservation and Sustainable UtilizationSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
- Center of Conservation BiologyCore Botanical GardensChinese Academy of SciencesGuangzhouChina
| | - Yuyuan Wang
- Key Laboratory of Plant Resources Conservation and Sustainable UtilizationSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Xin Qian
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Tong Zeng
- Key Laboratory of Plant Resources Conservation and Sustainable UtilizationSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable UtilizationSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
| |
Collapse
|
13
|
del Valle JC, Herman JA, Whittall JB. Genome skimming and microsatellite analysis reveal contrasting patterns of genetic diversity in a rare sandhill endemic (Erysimum teretifolium, Brassicaceae). PLoS One 2020; 15:e0227523. [PMID: 32459825 PMCID: PMC7252598 DOI: 10.1371/journal.pone.0227523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/28/2020] [Indexed: 11/19/2022] Open
Abstract
Barriers between islands often inhibit gene flow creating patterns of isolation by distance. In island species, the majority of genetic diversity should be distributed among isolated populations. However, a self-incompatible mating system leads to higher genetic variation within populations and very little between-population subdivision. We examine these two contrasting predictions in Erysimum teretifolium, a rare self-incompatible plant endemic to island-like sandhill habitats in Santa Cruz County, California. We used genome skimming and nuclear microsatellites to assess the distribution of genetic diversity within and among eight of the 13 remaining populations. Phylogenetic analyses of the chloroplast genomes revealed a deep separation of three of the eight populations. The nuclear ribosomal DNA cistron showed no genetic subdivision. Nuclear microsatellites suggest 83% of genetic variation resides within populations. Despite this, 18 of 28 between-population comparisons exhibited significant population structure (mean FST = 0.153). No isolation by distance existed among all populations, however when one outlier population was removed from the analysis due to uncertain provenance, significant isolation by distance emerged (r2 = 0.5611, p = 0.005). Population census size did not correlate with allelic richness as predicted on islands. Bayesian population assignment detected six genetic groupings with substantial admixture. Unique genetic clusters were concentrated at the periphery of the species’ range. Since the overall distribution of nuclear genetic diversity reflects E. tereifolium’s self-incompatible mating system, the vast majority of genetic variation could be sampled within any individual population. Yet, the chloroplast genome results suggest a deep split and some of the nuclear microsatellite analyses indicate some island-like patterns of genetic diversity. Restoration efforts intending to maximize genetic variation should include representatives from both lineages of the chloroplast genome and, for maximum nuclear genetic diversity, should include representatives of the smaller, peripheral populations.
Collapse
Affiliation(s)
- José Carlos del Valle
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| | - Julie A. Herman
- Department of Biology, Santa Clara University, Santa Clara, CA, United States of America
| | - Justen B. Whittall
- Department of Biology, Santa Clara University, Santa Clara, CA, United States of America
- * E-mail:
| |
Collapse
|
14
|
Hu YN, Zhao L, Buggs RJA, Zhang XM, Li J, Wang N. Population structure of Betula albosinensis and Betula platyphylla: evidence for hybridization and a cryptic lineage. ANNALS OF BOTANY 2019; 123:1179-1189. [PMID: 30916314 PMCID: PMC6612935 DOI: 10.1093/aob/mcz024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/15/2019] [Accepted: 02/05/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Differences in local abundance and ploidy level are predicted to impact the direction of introgression between species. Here, we tested these hypotheses on populations of Betula albosinensis (red birch) and Betula platyphylla (white birch) which were thought to differ in ploidy level, the former being tetraploid and the latter diploid. METHODS We sampled 391 birch individuals from nine localities in China, and classified them into species based on leaf morphology. Twelve nuclear microsatellite markers were genotyped in each sample, and analysed using principal coordinates analysis and STRUCTURE software. We compared the effects of two different methods of scoring polyploid genotypes on population genetic analyses. We analysed the effect of ploidy, local species abundance and latitude on levels of introgression between the species. KEY RESULTS Leaf morphology divided our samples into red and white birch, but genetic analyses unexpectedly revealed two groups within red birch, one of which was tetraploid, as expected, but the other of which appeared to have diploid microsatellite genotypes. Five individuals were identified as early-generation hybrids or backcrosses between white birch and red birch and five were identified between red birch and 'diploid' red birch. Cline analysis showed that levels of admixture were not significantly correlated with latitude. Estimated genetic differentiation among species was not significantly different between determined tetraploid and undetermined tetraploid genotypes. CONCLUSIONS Limited hybridization and gene flow have occurred between red birch and white birch. Relative species abundance and ploidy level do not impact the direction of introgression between them, as genetic admixture is roughly symmetrical. We unexpectedly found populations of apparently diploid red birch and this taxon may be a progenitor of allotetraploid red birch populations. Incomplete lineage sorting may explain patterns of genetic admixture between apparently diploid and allotetraploid red birch.
Collapse
Affiliation(s)
- Ya-Nan Hu
- College of Forestry, Shandong Agricultural University, Tai’an city, Shandong province, China
| | - Lei Zhao
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Richard J A Buggs
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Xue-Min Zhang
- Mulan-Weichang National Forestry Administration, Chengde, China
| | - Jun Li
- Mulan-Weichang National Forestry Administration, Chengde, China
| | - Nian Wang
- College of Forestry, Shandong Agricultural University, Tai’an city, Shandong province, China
| |
Collapse
|
15
|
Castilla AR, Godoy JA, Delibes M, Rodriguez-Prieto A, Fedriani JM. Microgeographic variation in recruitment under adult trees: arrival of new genotypes or perpetuation of the existing ones? PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:695-705. [PMID: 30849217 DOI: 10.1111/plb.12982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Investigating spatial variation in the relative importance of sexual reproduction and clonal propagation is critical to obtain more accurate estimates of future effective population sizes and genetic diversity, as well as to identify ecological correlates of clonality. We combined a stratified sampling scheme with microsatellite genetic analyses to estimate variation in the proportion of sexual versus clonal recruits among saplings in five populations of the tree Pyrus bourgaeana. Using a likelihood framework, we identified clones among the genotypes analysed and examined variation among populations regarding the proportion of saplings coming from clonal propagation. We also examined the relationship between the relative abundance of clonal shoots across the studied populations and their herbivory levels. Our results revealed that one third of the saplings examined (N = 225 saplings) had a probability above 0.9 of being clones of nearby (<10 m) trees, with the ratio between clonal propagation and sexual recruitment varying up to eight-fold among populations. A small portion of these putative clonal shoots reached sexual maturity. Relative abundance of clonal shoots did not significantly relate to the herbivory by ungulates. Our results call into question optimistic expectations of previous studies reporting sufficient levels of recruitment under parental trees without animal seed dispersal services. Nevertheless, given that some of these clonal shoots reach sexual maturity, clonal propagation can ultimately facilitate the long-term persistence of populations during adverse periods (e.g. environmental stress, impoverished pollinator communities, seed dispersal limitation).
Collapse
Affiliation(s)
- A R Castilla
- Centre for Applied Ecology "Prof. Baeta Neves"/INBIO, Instituto Superior of Agronomy, University of Lisbon, Lisbon, Portugal
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - J A Godoy
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - M Delibes
- Departamento de Biología de la Conservación, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | | | - J M Fedriani
- Centre for Applied Ecology "Prof. Baeta Neves"/INBIO, Instituto Superior of Agronomy, University of Lisbon, Lisbon, Portugal
- Departamento de Biología de la Conservación, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
- Centro de Investigaciones sobre Desertificación CIDE, CSIC-UVEG-GV, Carretera de Moncada a Náquera, Moncada, Valencia, Spain
| |
Collapse
|
16
|
Baraket G, Abdallah D, Ben Mustapha S, Ben Tamarzizt H, Salhi-Hannachi A. Combination of Simple Sequence Repeat, S-Locus Polymorphism and Phenotypic Data for Identification of Tunisian Plum Species (Prunus spp.). Biochem Genet 2019; 57:673-694. [PMID: 30980219 DOI: 10.1007/s10528-019-09922-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 04/05/2019] [Indexed: 11/28/2022]
Abstract
Plums (Prunus spp.) are among the first fruit tree species that attracted human interest. Artificial crosses between wild and domesticated species of plums are still paving the way for creation of new phenotypic variability. In Tunisia, despite a considerable varietal richness of plum as well as a high economic value, the plum sector is experiencing a significant regression. The main reason of this regression is the absence of a national program of plum conservation. Hence, this work was aimed to phenotypically and genetically characterize 23 Tunisian plum accessions to preserve this patrimony. Closely related Prunus species from the same subgenus may be differing at two characteristics: ploidy level and phenotypic traits. In this study, single sequence repeat (SSR) markers allowed distinguishing between eighteen diploid accessions and five polyploid accessions, but SSR data alone precluded unambiguous ploidy estimation due to homozygosity. In contrast, S-allele markers were useful to identify the ploidy level between polyploid species, but they did not distinguish species with the same ploidy level. Seven out of 12 phenotypic traits were shown to be discriminant traits for plum species identification. Molecular and phenotypic traits were significantly correlated and revealed a powerful tool to draw taxonomic and genotypic keys. The results obtained in this work are of great importance for local Tunisian plum germplasm management.
Collapse
Affiliation(s)
- Ghada Baraket
- Laboratory of Molecular Genetics, Immunology & Biotechnology LR99ES12, Faculty of Sciences of Tunis, University of Tunis El Manar, Campus University, El Manar, 2092, Tunis, Tunisia.
| | - Donia Abdallah
- Laboratory of Molecular Genetics, Immunology & Biotechnology LR99ES12, Faculty of Sciences of Tunis, University of Tunis El Manar, Campus University, El Manar, 2092, Tunis, Tunisia
| | - Sana Ben Mustapha
- Laboratory of Molecular Genetics, Immunology & Biotechnology LR99ES12, Faculty of Sciences of Tunis, University of Tunis El Manar, Campus University, El Manar, 2092, Tunis, Tunisia
| | - Hend Ben Tamarzizt
- Laboratory of Molecular Genetics, Immunology & Biotechnology LR99ES12, Faculty of Sciences of Tunis, University of Tunis El Manar, Campus University, El Manar, 2092, Tunis, Tunisia
| | - Amel Salhi-Hannachi
- Laboratory of Molecular Genetics, Immunology & Biotechnology LR99ES12, Faculty of Sciences of Tunis, University of Tunis El Manar, Campus University, El Manar, 2092, Tunis, Tunisia
| |
Collapse
|
17
|
García-Verdugo C, Caujapé-Castells J, Mairal M, Monroy P. How repeatable is microevolution on islands? Patterns of dispersal and colonization-related plant traits in a phylogeographical context. ANNALS OF BOTANY 2019; 123:557-568. [PMID: 30380011 PMCID: PMC6377097 DOI: 10.1093/aob/mcy191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND AIMS Archipelagos provide a valuable framework for investigating phenotypic evolution under different levels of geographical isolation. Here, we analysed two co-distributed, widespread plant lineages to examine if incipient island differentiation follows parallel patterns of variation in traits related to dispersal and colonization. METHODS Twenty-one populations of two anemochorous Canarian endemics, Kleinia neriifolia and Periploca laevigata, were sampled to represent mainland congeners and two contrasting exposures across all the main islands. Leaf size, seed size and dispersability (estimated as diaspore terminal velocity) were characterized in each population. For comparison, dispersability was also measured in four additional anemochorous island species. Plastid DNA data were used to infer genetic structure and to reconstruct the phylogeographical pattern of our focal species. KEY RESULTS In both lineages, mainland-island phenotypic divergence probably started within a similar time frame (i.e. Plio-Pleistocene). Island colonization implied parallel increases in leaf size and dispersability, but seed size showed opposite patterns of variation between Kleinia and Periploca species pairs. Furthermore, dispersability in our focal species was low when compared with other island plants, mostly due to large diaspore sizes. At the archipelago scale, island exposure explained a significant variation in leaf size across islands, but not in dispersability or seed size. Combined analyses of genetic and phenotypic data revealed two consistent patterns: (1) extensive within-island but very limited among-island dispersal, and (2) recurrent phenotypic differentiation between older (central) and younger (peripheral) island populations. CONCLUSIONS Leaf size follows a more predictable pattern than dispersability, which is affected by stochastic shifts in seed size. Increased dispersability is associated with high population connectivity at the island scale, but does not preclude allopatric divergence among islands. In sum, phenotypic convergent patterns between species suggest a major role of selection, but deviating traits also indicate the potential contribution of random processes, particularly on peripheral islands.
Collapse
Affiliation(s)
- Carlos García-Verdugo
- Departamento de Biodiversidad Molecular y Banco de ADN, Jardín Botánico Canario ‘Viera y Clavijo’ – Unidad Asociada CSIC, Cabildo de Gran Canaria, Camino del Palmeral 15 de Tafira Alta, Las Palmas de Gran Canaria, Spain
- Institut Mediterrani d’Estudis Avançats (CSIC-UIB), C/Miquel Marqués, Esporles, Balearic Islands, Spain
| | - Juli Caujapé-Castells
- Departamento de Biodiversidad Molecular y Banco de ADN, Jardín Botánico Canario ‘Viera y Clavijo’ – Unidad Asociada CSIC, Cabildo de Gran Canaria, Camino del Palmeral 15 de Tafira Alta, Las Palmas de Gran Canaria, Spain
| | - Mario Mairal
- Department of Botany, Charles University Faculty of Science, Albertov, Praha, Czech Republic
| | - Pedro Monroy
- Departamento de Biodiversidad Molecular y Banco de ADN, Jardín Botánico Canario ‘Viera y Clavijo’ – Unidad Asociada CSIC, Cabildo de Gran Canaria, Camino del Palmeral 15 de Tafira Alta, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
18
|
Meena RK, Bhandhari MS, Barhwal S, Ginwal HS. Genetic diversity and structure of Dendrocalamus hamiltonii natural metapopulation: a commercially important bamboo species of northeast Himalayas. 3 Biotech 2019; 9:60. [PMID: 30729084 DOI: 10.1007/s13205-019-1591-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Abstract
Dendrocalamus hamiltonii is a commercially important bamboo species of India, experiencing population depletion due to heavy extraction from natural forests. Nuclear simple sequence repeats (nSSRs) were used to study the genetic diversity and population genetic structure of 19 natural stands of D. hamiltonii distributed across the northeast Himalayas. A total of 68 nSSR primer pairs of D. latiflorus and Bambusa arundinacea have been tested in D. hamiltonii for their transferability, out of which 17 primers showing positive and polymorphic amplification were used for genotyping. A total of 130 alleles were generated in 535 individuals of all the populations using selected primer pairs. The marker analysis indicated that D. hamiltonii populations have maintained a low level of genetic diversity (h = 0.175, I = 0.291) in northeastern region of India. Despite a large proportion of the genetic variation (83.47%) confined within the populations, a moderate level of genetic differentiation (F ST = 0.165) was observed among the populations. The clustering pattern obtained in UPGMA and STRUCTURE analysis revealed that most of the populations were clustered in accordance with their geographical distribution. Two populations (DH03 and DH13) exhibiting significant genetic admixture were identified and recommended for in situ conservation. In addition, six highly diverse populations were also suggested for conservation in different geographical area under study. The study has revealed useful nSSR markers for D. hamiltonii, which were lacking earlier and the information generated herein is of paramount importance in devising programs for species conservation and genetic improvement.
Collapse
|
19
|
Macková L, Vít P, Urfus T. Crop-to-wild hybridization in cherries-Empirical evidence from Prunus fruticosa. Evol Appl 2018; 11:1748-1759. [PMID: 30344640 PMCID: PMC6183504 DOI: 10.1111/eva.12677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 12/25/2022] Open
Abstract
Crop cultivation can lead to genetic swamping of indigenous species and thus pose a serious threat for biodiversity. The rare Eurasian tetraploid shrub Prunus fruticosa (ground cherry) is suspected of hybridizing with cultivated allochthonous tetraploid P. cerasus and autochthonous diploid P. avium. Three Prunus taxa (447 individuals of P. fruticosa, 43 of P. cerasus and 73 of P. avium) and their hybrids (198 individuals) were evaluated using analysis of absolute genome size/ploidy level and multivariate morphometrics. Flow cytometry revealed considerable differentiation in absolute genome size at the tetraploid level (average 2C of P. fruticosa = 1.30 pg, average 2C of P. cerasus = 1.42 pg, i.e., a 9.2% difference). The combination of methods used allowed us to ascertain the frequency of hybrids occurring under natural conditions in Central Europe. The morphological evaluation of leaves was based upon distance-based morphometrics supplemented by elliptic Fourier analysis. The results provided substantial evidence for ongoing hybridization (hybrids occurred in 39.5% of P. fruticosa populations). We detected homoploid introgressive hybridization with alien P. cerasus at the tetraploid level. We also found previously overlooked but frequent triploid hybrids resulting from heteroploid hybridization with indigenous P. avium, which, however, probably represent only the F1 generation. Although both hybrids differ in ploidy, they cannot be distinguished using morphometrics. Hybrids are frequent and may endanger wild populations of genuine P. fruticosa via direct niche competition or, alternatively or in addition, via introgression at the homoploid level (i.e., genetic swamping). The cultivation of cherries thus substantially threatens the existence of genuine P. fruticosa.
Collapse
Affiliation(s)
- Lenka Macková
- Department of BotanyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Petr Vít
- Institute of BotanyThe Czech Academy of SciencesPrůhoniceCzech Republic
- Faculty of Environmental SciencesCzech University of Life Sciences PraguePragueCzech Republic
| | - Tomáš Urfus
- Department of BotanyFaculty of ScienceCharles UniversityPragueCzech Republic
| |
Collapse
|
20
|
López-Villalobos A, Eckert CG. Consequences of multiple mating-system shifts for population and range-wide genetic structure in a coastal dune plant. Mol Ecol 2018; 27:675-693. [PMID: 29319906 DOI: 10.1111/mec.14484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 12/24/2022]
Abstract
Evolutionary transitions from outcrossing to selfing can strongly affect the genetic diversity and structure of species at multiple spatial scales. We investigated the genetic consequences of mating-system shifts in the North American, Pacific coast dune endemic plant Camissoniopsis cheiranthifolia (Onagraceae) by assaying variation at 13 nuclear (n) and six chloroplast (cp) microsatellite (SSR) loci for 38 populations across the species range. As predicted from the expected reduction in effective population size (Ne ) caused by selfing, small-flowered, predominantly selfing (SF) populations had much lower nSSR diversity (but not cpSSR) than large-flowered, predominantly outcrossing (LF) populations. The reduction in nSSR diversity was greater than expected from the effects of selfing on Ne alone, but could not be accounted for by indirect effects of selfing on population density. Although selfing should reduce gene flow, SF populations were not more genetically differentiated than LF populations. We detected five clusters of nSSR genotypes and three groups of cpSSR haplotypes across the species range consisting of parapatric groups of populations that usually (but not always) differed in mating system, suggesting that selfing may often initiate ecogeographic isolation. However, lineage-wide genetic variation was not lower for selfing clusters, failing to support the hypothesis that selection for reproductive assurance spurred the evolution of selfing in this species. Within three populations where LF and SF plants coexist, we detected genetic differentiation among diverged floral phenotypes suggesting that reproductive isolation (probably postzygotic) may help maintain the striking mating-system differentiation observed across the range of this species.
Collapse
Affiliation(s)
| | - C G Eckert
- Department of Biology, Queen's University, Kingston, ON, Canada
| |
Collapse
|
21
|
Rangewide determinants of population performance in Prunus lusitanica : Lessons for the contemporary conservation of a Tertiary relict tree. ACTA OECOLOGICA 2018. [DOI: 10.1016/j.actao.2017.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Dias EF, Moura M, Schaefer H, Silva L. Geographical distance and barriers explain population genetic patterns in an endangered island perennial. AOB PLANTS 2017; 8:plw072. [PMID: 27742648 PMCID: PMC5206333 DOI: 10.1093/aobpla/plw072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/02/2016] [Indexed: 05/14/2023]
Abstract
Island plants are frequently used as model systems in evolutionary biology to understand factors that might explain genetic diversity and population differentiation levels. Theory suggests that island plants should have lower levels of genetic diversity than their continental relatives, but this hypothesis has been rejected in several recent studies. In the Azores, the population level genetic diversity is generally low. However, like in most island systems, there are high levels of genetic differentiation between different islands. The Azores lettuce, Lactuca watsoniana, is an endangered Asteraceae with small population sizes. Therefore, we expect to find a lower level of genetic diversity than in the other more common endemic Asteraceae. The intra- and interpopulation genetic structure and diversity of L. watsoniana was assessed using eight newly developed microsatellite markers. We included 135 individuals, from all 13 known populations in the study. Because our microsatellite results suggested that the species is tetraploid, we analysed the microsatellite data (i) in codominant format using PolySat (Principal Coordinate Analysis, PCoA) and SPAgedi (genetic diversity indexes) and (ii) in dominant format using Arlequin (AMOVA) and STRUCTURE (Bayesian genetic cluster analysis). A total of 129 alleles were found for all L. watsoniana populations. In contrast to our expectations, we found a high level of intrapopulation genetic diversity (total heterozigosity = 0.85; total multilocus average proportion of private alleles per population = 26.5 %, Fis = -0.19). Our results show the existence of five well-defined genetic groups, one for each of the three islands São Miguel, Terceira and Faial, plus two groups for the East and West side of Pico Island (Fst = 0.45). The study revealed the existence of high levels of genetic diversity, which should be interpreted taking into consideration the ploidy level of this rare taxon.
Collapse
Affiliation(s)
- Elisabete F Dias
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Universidade dos Açores, Rua da Mãe de Deus, Apartado 1422, Ponta Delgada, 9501-801 Açores, Portugal
| | - M Moura
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Universidade dos Açores, Rua da Mãe de Deus, Apartado 1422, Ponta Delgada, 9501-801 Açores, Portugal
| | - H Schaefer
- Plant Biodiversity Research, Technische Universität München, 85354 Freising, Germany
| | - Luís Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Universidade dos Açores, Rua da Mãe de Deus, Apartado 1422, Ponta Delgada, 9501-801 Açores, Portugal
| |
Collapse
|
23
|
Shiga T, Yokogawa M, Kaneko S, Isagi Y. Genetic diversity and population structure of Nuphar submersa (Nymphaeaceae), a critically endangered aquatic plant endemic to Japan, and implications for its conservation. JOURNAL OF PLANT RESEARCH 2017; 130:83-93. [PMID: 27878469 DOI: 10.1007/s10265-016-0869-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 07/20/2016] [Indexed: 06/06/2023]
Abstract
Nuphar submersa (Nymphaeaceae) is a critically endangered freshwater macrophyte indigenous to central Japan, with only four small extant populations represented across its entire range. We investigated the genotypic and genetic diversity as well as the genetic structure of all extant individuals of N. submersa based on analysis of 15 microsatellite loci. Among 278 individual ramets, 52 multilocus genotypes were detected: 30 genotypes in Nikko City (NIK), 18 in Nasukarasuyama City (NAS), 3 in Mooka City (MOK), and 1 in Sakura City (SAK). The average number of alleles per locus ranged from 1.20 to 1.93, whereas the observed and expected heterozygosities ranged from 0.11 to 0.33 and from 0.10 to 0.24, respectively. With the exception of SAK, all populations contained multiple clones, but our results indicated low levels of within-population genetic diversity. The populations NIK and NAS comprised few large or middle-sized genets and many small genets. The populations NIK and NAS were suggested to comprise large old, old fragmented, and/or young small genets resulting from seedling establishment. All four populations were differentiated, and gene flow between the populations was restricted (average level of gene flow (Nm) = 0.122, G' ST = 0.639). Of the total genetic diversity, 67.20 and 9.13% were attributable to inter- and intra-population diversity, respectively. STRUCTURE analysis revealed two or three well-differentiated groups of populations. Cluster I comprised one population (NIK) and cluster II comprised the remaining populations at K = 2. The populations NIK, NAS, and the remaining populations were assigned to clusters I, II, and III, respectively, at K = 3. For conservation practices, we recommend that each cluster be regarded as a different management unit. We further suggest that artificial gene flow among MOK and SAK populations is an appropriate option, whereas NIK should not be reinforced with genotypes from the remaining populations.
Collapse
Affiliation(s)
- Takashi Shiga
- Faculty of Education, Niigata University, Ikarashi-Ninocho, Nishi-ku, Niigata, 950-2181, Japan.
| | - Masashi Yokogawa
- Osaka Museum of Natural History, Nagai Park, Higashisumiyoshi-ku, Osaka, 546-0034, Japan
| | - Shingo Kaneko
- Faculty of Symbiotic Systems Science, Fukushima University, Kanayagawa, Fukushima, 960-1296, Japan
| | - Yuji Isagi
- Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
24
|
Kondraskov P, Schütz N, Schüßler C, de Sequeira MM, Guerra AS, Caujapé-Castells J, Jaén-Molina R, Marrero-Rodríguez Á, Koch MA, Linder P, Kovar-Eder J, Thiv M. Biogeography of Mediterranean Hotspot Biodiversity: Re-Evaluating the 'Tertiary Relict' Hypothesis of Macaronesian Laurel Forests. PLoS One 2015; 10:e0132091. [PMID: 26173113 PMCID: PMC4501571 DOI: 10.1371/journal.pone.0132091] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/10/2015] [Indexed: 11/18/2022] Open
Abstract
The Macaronesian laurel forests (MLF) are dominated by trees with a laurophyll habit comparable to evergreen humid forests which were scattered across Europe and the Mediterranean in the Paleogene and Neogene. Therefore, MLF are traditionally regarded as an old, 'Tertiary relict' vegetation type. Here we address the question if key taxa of the MLF are relictual. We evaluated the relict hypothesis consulting fossil data and analyses based on molecular phylogenies of 18 representative species. For molecular dating we used the program BEAST, for ancestral trait reconstructions BayesTraits and Lagrange to infer ancestral areas. Our molecular dating showed that the origins of four species date back to the Upper Miocene while 14 originated in the Plio-Pleistocene. This coincides with the decline of fossil laurophyllous elements in Europe since the middle Miocene. Ancestral trait and area reconstructions indicate that MLF evolved partly from pre-adapted taxa from the Mediterranean, Macaronesia and the tropics. According to the fossil record laurophyllous taxa existed in Macaronesia since the Plio- and Pleistocene. MLF are composed of species with a heterogeneous origin. The taxa dated to the Pleistocene are likely not 'Tertiary relicts'. Some species may be interpreted as relictual. In this case, the establishment of most species in the Plio-Pleistocene suggests that there was a massive species turnover before this time. Alternatively, MLF were largely newly assembled through global recruitment rather than surviving as relicts of a once more widespread vegetation. This process may have possibly been triggered by the intensification of the trade winds at the end of the Pliocene as indicated by proxy data.
Collapse
Affiliation(s)
- Paulina Kondraskov
- Botany Department, State Museum of Natural History Stuttgart, Stuttgart, Germany
- Dept. Biodiversity und Plant Systematics, University of Heidelberg, Heidelberg, Germany
| | - Nicole Schütz
- Botany Department, State Museum of Natural History Stuttgart, Stuttgart, Germany
| | - Christina Schüßler
- Botany Department, State Museum of Natural History Stuttgart, Stuttgart, Germany
- Dept. Biodiversity und Plant Systematics, University of Heidelberg, Heidelberg, Germany
| | | | | | - Juli Caujapé-Castells
- Jardin Botanico Canario "Viera y Clavijo"-Unidad Asociada CSIC, Las Palmas de Gran Canaria, Spain
| | - Ruth Jaén-Molina
- Jardin Botanico Canario "Viera y Clavijo"-Unidad Asociada CSIC, Las Palmas de Gran Canaria, Spain
| | - Águedo Marrero-Rodríguez
- Jardin Botanico Canario "Viera y Clavijo"-Unidad Asociada CSIC, Las Palmas de Gran Canaria, Spain
| | - Marcus A. Koch
- Dept. Biodiversity und Plant Systematics, University of Heidelberg, Heidelberg, Germany
| | - Peter Linder
- Institute of Systematic Botany, University of Zurich, Zurich, Switzerland
| | - Johanna Kovar-Eder
- Botany Department, State Museum of Natural History Stuttgart, Stuttgart, Germany
| | - Mike Thiv
- Botany Department, State Museum of Natural History Stuttgart, Stuttgart, Germany
| |
Collapse
|
25
|
García-Verdugo C, Sajeva M, La Mantia T, Harrouni C, Msanda F, Caujapé-Castells J. Do island plant populations really have lower genetic variation than mainland populations? Effects of selection and distribution range on genetic diversity estimates. Mol Ecol 2015; 24:726-41. [PMID: 25580539 DOI: 10.1111/mec.13060] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/16/2014] [Accepted: 12/30/2014] [Indexed: 01/17/2023]
Abstract
Ecological and evolutionary studies largely assume that island populations display low levels of neutral genetic variation. However, this notion has only been formally tested in a few cases involving plant taxa, and the confounding effect of selection on genetic diversity (GD) estimates based on putatively neutral markers has typically been overlooked. Here, we generated nuclear microsatellite and plastid DNA sequence data in Periploca laevigata, a plant taxon with an island-mainland distribution area, to (i) investigate whether selection affects GD estimates of populations across contrasting habitats; and (ii) test the long-standing idea that island populations have lower GD than their mainland counterparts. Plastid data showed that colonization of the Canary Islands promoted strong lineage divergence within P. laevigata, which was accompanied by selective sweeps at several nuclear microsatellite loci. Inclusion of loci affected by strong divergent selection produced a significant downward bias in the GD estimates of the mainland lineage, but such underestimates were substantial (>14%) only when more than one loci under selection were included in the computations. When loci affected by selection were removed, we did not find evidence that insular Periploca populations have less GD than their mainland counterparts. The analysis of data obtained from a comprehensive literature survey reinforced this result, as overall comparisons of GD estimates between island and mainland populations were not significant across plant taxa (N = 66), with the only exception of island endemics with narrow distributions. This study suggests that identification and removal of markers potentially affected by selection should be routinely implemented in estimates of GD, particularly if different lineages are compared. Furthermore, it provides compelling evidence that the expectation of low GD cannot be generalized to island plant populations.
Collapse
Affiliation(s)
- C García-Verdugo
- Departamento de Biodiversidad Molecular y Banco de ADN, Jardín Botánico Canario 'Viera y Clavijo' - Unidad Asociada CSIC, Cabildo de Gran Canaria, Camino del Palmeral 15 de Tafira Alta, 35017, Las Palmas de Gran Canaria, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Ferrero V, Barrett SCH, Castro S, Caldeirinha P, Navarro L, Loureiro J, Rodríguez-Echeverría S. Invasion genetics of the Bermuda buttercup (Oxalis pes-caprae): complex intercontinental patterns of genetic diversity, polyploidy and heterostyly characterize both native and introduced populations. Mol Ecol 2015; 24:2143-55. [DOI: 10.1111/mec.13056] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/15/2014] [Accepted: 12/20/2014] [Indexed: 01/16/2023]
Affiliation(s)
- Victoria Ferrero
- Department of Ecology and Evolutionary Biology; University of Toronto; 25 Willcocks Street M5S 3B2 Toronto ON Canada
- Department of Plant Biology; Faculty of Science; University of Vigo; As Lagoas-Marcosende 36200 Vigo Spain
| | - Spencer C. H. Barrett
- Department of Ecology and Evolutionary Biology; University of Toronto; 25 Willcocks Street M5S 3B2 Toronto ON Canada
| | - Sílvia Castro
- CFE, Centre for Functional Ecology; Department of Life Sciences; Faculty of Sciences and Technology; University of Coimbra; Calçada Martim de Freitas 3000-456 Coimbra Portugal
| | - Patrícia Caldeirinha
- CFE, Centre for Functional Ecology; Department of Life Sciences; Faculty of Sciences and Technology; University of Coimbra; Calçada Martim de Freitas 3000-456 Coimbra Portugal
| | - Luis Navarro
- Department of Plant Biology; Faculty of Science; University of Vigo; As Lagoas-Marcosende 36200 Vigo Spain
| | - João Loureiro
- CFE, Centre for Functional Ecology; Department of Life Sciences; Faculty of Sciences and Technology; University of Coimbra; Calçada Martim de Freitas 3000-456 Coimbra Portugal
| | - Susana Rodríguez-Echeverría
- CFE, Centre for Functional Ecology; Department of Life Sciences; Faculty of Sciences and Technology; University of Coimbra; Calçada Martim de Freitas 3000-456 Coimbra Portugal
| |
Collapse
|
27
|
Stuessy TF, Takayama K, López-Sepúlveda P, Crawford DJ. Interpretation of patterns of genetic variation in endemic plant species of oceanic islands. BOTANICAL JOURNAL OF THE LINNEAN SOCIETY. LINNEAN SOCIETY OF LONDON 2014; 174:276-288. [PMID: 26074627 PMCID: PMC4459035 DOI: 10.1111/boj.12088] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/18/2013] [Accepted: 07/07/2013] [Indexed: 05/07/2023]
Abstract
Oceanic islands offer special opportunities for understanding the patterns and processes of evolution. The availability of molecular markers in recent decades has enhanced these opportunities, facilitating the use of population genetics to reveal divergence and speciation in island systems. A common pattern seen in taxa on oceanic islands is a decreased level of genetic variation within and among populations, and the founder effect has often been invoked to explain this observation. Founder effects have a major impact on immigrant populations, but, over millions of years, the original genetic signature will normally be erased as a result of mutation, recombination, drift and selection. Therefore, the types and degrees of genetic modifications that occur must often be caused by other factors, which should be considered when explaining the patterns of genetic variation. The age of the island is extremely important because oceanic islands subside on their submarine plates over time. Erosion caused by wind, rain and wave action combine to grind down soft volcanic substrates. These geomorphological events can have a dramatic impact on population number and size, and hence levels of genetic diversity. The mode of speciation is also of significance. With anagenesis, genetic variation accumulates through time, whereas, with cladogenenesis, the gene pool splits into populations of adaptively radiating species. Breeding systems, population sizes and generation times are also important, as is hybridization between closely related taxa. Human disturbance has affected plant population number and size through the harvesting of forests and the introduction of invasive plants and animals. Therefore, the explanation of the observed levels of genetic variation in species of oceanic islands requires the consideration of many interconnected physical, biological and anthropomorphic factors.
Collapse
Affiliation(s)
- Tod F Stuessy
- Department of Systematic and Evolutionary Botany, Biodiversity Center, University of ViennaRennweg 14, A-1030, Vienna, Austria
- *Corresponding author. E-mail:
| | - Koji Takayama
- Department of Systematic and Evolutionary Botany, Biodiversity Center, University of ViennaRennweg 14, A-1030, Vienna, Austria
| | - Patricio López-Sepúlveda
- Department of Systematic and Evolutionary Botany, Biodiversity Center, University of ViennaRennweg 14, A-1030, Vienna, Austria
| | - Daniel J Crawford
- Department of Ecology & Evolutionary Biology and the Biodiversity Institute, University of KansasLawrence, KS, 66045, USA
| |
Collapse
|
28
|
Genetic diversity and differentiation of Juniperus thurifera in Spain and Morocco as determined by SSR. PLoS One 2014; 9:e88996. [PMID: 24533164 PMCID: PMC3923062 DOI: 10.1371/journal.pone.0088996] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/14/2014] [Indexed: 11/25/2022] Open
Abstract
Juniperus thurifera L. is an important tree endemic to the western Mediterranean basin that it is able to grow in semi-arid climates. It nowadays exhibits a disjunct distribution pattern, occurring in North Africa, Spain, France and the Italian Alps. The Strait of Gibraltar has acted as an efficient barrier against gene flow between African and European populations, which are considered different subspecies by some authors. We aimed at describing the intraspecific genetic diversity of J. thurifera in populations from the Iberian Peninsula and Morocco and the phylogeographical relationships among these populations. The ploidy level of J. thurifera was examined and eleven nuclear microsatellites (nSSRs) developed for J. thurifera were assessed for genotyping this species. Six nSSRs were polymorphic and subsequently used to assess the genetic diversity and structure of the studied populations. Genotyping of the tetraploid J. thurifera using nuclear microsatellites supports the separation of Moroccan and Spanish populations into two genetically differentiated groups that correspond to the proposed subspecies africana and thurifera. High values of within population genetic diversity were found, that accounted for 90% of the total genetic variance, while population structure was weak. The estimators of genetic diversity were higher in populations of Spain than in populations of Morocco pointing for a possible loss of genetic diversity during the spread of this species to Africa from Europe.
Collapse
|
29
|
Dufresne F, Stift M, Vergilino R, Mable BK. Recent progress and challenges in population genetics of polyploid organisms: an overview of current state-of-the-art molecular and statistical tools. Mol Ecol 2013; 23:40-69. [DOI: 10.1111/mec.12581] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 12/19/2022]
Affiliation(s)
- France Dufresne
- Département de Biologie; Université du Québec à Rimouski; Québec QC Canada G5L 3A1
| | - Marc Stift
- Department of Biology; University of Konstanz; Konstanz D 78457 Germany
| | - Roland Vergilino
- Department of Integrative Biology; University of Guelph; Guelph ON Canada N1G 2W1
| | - Barbara K. Mable
- Institute of Biodiversity; Animal Health and Comparative Medicine; College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| |
Collapse
|