1
|
Fujita T, Aoki N, Mori C, Homma KJ, Yamaguchi S. Molecular characterization of chicken DA systems reveals that the avian personality gene, DRD4, is expressed in the mitral cells of the olfactory bulb. Front Neuroanat 2025; 19:1531200. [PMID: 39886560 PMCID: PMC11774857 DOI: 10.3389/fnana.2025.1531200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025] Open
Abstract
Animal personalities are stable, context-dependent behavioral differences. Associations between the personality of birds and polymorphisms in the dopamine receptor D4 (DRD4) gene have been repeatedly observed. In mammals, our understanding of the role of the dopamine (DA) system in higher cognitive functions and psychiatric disorders is improving, and we are beginning to understand the relationship between the neural circuits modulating the DA system and personality traits. However, to understand the phylogenetic continuity of the neural basis of personality, it is necessary to clarify the neural circuits that process personality in other animals and compare them with those in mammals. In birds, the DA system is anatomically and molecularly similar to that in mammals; however, the function of DRD4 remains largely unknown. In this study, we used chicks as model birds to reveal the expression regions of the DA neuron-related markers tyrosine hydroxylase (TH), dopa decarboxylase (DDC), dopamine β-hydroxylase (DBH), and DRD4, as well as other DRDs throughout the forebrain. We found that DRD4 was selectively expressed in the mitral cells of the olfactory bulb (OB). Furthermore, a detailed comparison of the expression regions of DA neurons and DRD4 in the OB revealed a cellular composition similar to that of mammals. Our findings suggest that the animal personality gene DRD4 is important for olfactory information processing in birds, providing a new basis for comparing candidate neural circuits for personality traits between birds and mammals.
Collapse
Affiliation(s)
- Toshiyuki Fujita
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Naoya Aoki
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Chihiro Mori
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Koichi J. Homma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Shinji Yamaguchi
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| |
Collapse
|
2
|
Zimmerman SJ, Aldridge CL, Schroeder MA, Fike JA, Cornman RS, Oyler-McCance SJ. The potential influence of genome-wide adaptive divergence on conservation translocation outcome in an isolated greater sage-grouse population. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14254. [PMID: 38563102 DOI: 10.1111/cobi.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/20/2023] [Accepted: 01/20/2024] [Indexed: 04/04/2024]
Abstract
Conservation translocations are an important conservation tool commonly employed to augment declining or reestablish extirpated populations. One goal of augmentation is to increase genetic diversity and reduce the risk of inbreeding depression (i.e., genetic rescue). However, introducing individuals from significantly diverged populations risks disrupting coadapted traits and reducing local fitness (i.e., outbreeding depression). Genetic data are increasingly more accessible for wildlife species and can provide unique insight regarding the presence and retention of introduced genetic variation from augmentation as an indicator of effectiveness and adaptive similarity as an indicator of source and recipient population suitability. We used 2 genetic data sets to evaluate augmentation of isolated populations of greater sage-grouse (Centrocercus urophasianus) in the northwestern region of the species range (Washington, USA) and to retrospectively evaluate adaptive divergence among source and recipient populations. We developed 2 statistical models for microsatellite data to evaluate augmentation outcomes. We used one model to predict genetic diversity after augmentation and compared these predictions with observations of genetic change. We used the second model to quantify the amount of observed reproduction attributed to transplants (proof of population integration). We also characterized genome-wide adaptive divergence among source and recipient populations. Observed genetic diversity (HO = 0.65) was higher in the recipient population than predicted had no augmentation occurred (HO = 0.58) but less than what was predicted by our model (HO = 0.75). The amount of shared genetic variation between the 2 geographically isolated resident populations increased, which is evidence of periodic gene flow previously assumed to be rare. Among candidate adaptive genes associated with elevated fixation index (FST) (143 genes) or local environmental variables (97 and 157 genes for each genotype-environment association method, respectively), we found clusters of genes with related functions that may influence the ability of transplants to use local resources and navigate unfamiliar environments and their reproductive potential, all possible reasons for low genetic retention from augmentation.
Collapse
Affiliation(s)
- Shawna J Zimmerman
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, Colorado, USA
| | - Cameron L Aldridge
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, Colorado, USA
| | | | - Jennifer A Fike
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, Colorado, USA
| | - Robert Scott Cornman
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, Colorado, USA
| | - Sara J Oyler-McCance
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, Colorado, USA
| |
Collapse
|
3
|
Brand JA, Garcia-Gonzalez F, Dowling DK, Wong BBM. Mitochondrial genetic variation as a potential mediator of intraspecific behavioural diversity. Trends Ecol Evol 2024; 39:199-212. [PMID: 37839905 DOI: 10.1016/j.tree.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023]
Abstract
Mitochondrial genes play an essential role in energy metabolism. Variation in the mitochondrial DNA (mtDNA) sequence often exists within species, and this variation can have consequences for energy production and organismal life history. Yet, despite potential links between energy metabolism and the expression of animal behaviour, mtDNA variation has been largely neglected to date in studies investigating intraspecific behavioural diversity. We outline how mtDNA variation and interactions between mitochondrial and nuclear genotypes may contribute to the expression of individual-to-individual behavioural differences within populations, and why such effects may lead to sex differences in behaviour. We contend that integration of the mitochondrial genome into behavioural ecology research may be key to fully understanding the evolutionary genetics of animal behaviour.
Collapse
Affiliation(s)
- Jack A Brand
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Francisco Garcia-Gonzalez
- Doñana Biological Station-CSIC, Seville, Spain; Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Le Clercq LS, Bazzi G, Ferrer Obiol J, Cecere JG, Gianfranceschi L, Grobler JP, Kotzé A, Riutort León M, González-Solís J, Rubolini D, Liedvogel M, Dalton DL. Birds of a feather flock together: a dataset for Clock and Adcyap1 genes from migration genetics studies. Sci Data 2023; 10:787. [PMID: 37945571 PMCID: PMC10636037 DOI: 10.1038/s41597-023-02717-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Birds in seasonal habitats rely on intricate strategies for optimal timing of migrations. This is governed by environmental cues, including photoperiod. Genetic factors affecting intrinsic timekeeping mechanisms, such as circadian clock genes, have been explored, yielding inconsistent findings with potential lineage-dependency. To clarify this evidence, a systematic review and phylogenetic reanalysis was done. This descriptor outlines the methodology for sourcing, screening, and processing relevant literature and data. PRISMA guidelines were followed, ultimately including 66 studies, with 34 focusing on candidate genes at the genotype-phenotype interface. Studies were clustered using bibliographic coupling and citation network analysis, alongside scientometric analyses by publication year and location. Data was retrieved for allele data from databases, article supplements, and direct author communications. The dataset, version 1.0.2, encompasses data from 52 species, with 46 species for the Clock gene and 43 for the Adcyap1 gene. This dataset, featuring data from over 8000 birds, constitutes the most extensive cross-species collection for these candidate genes, used in studies investigating gene polymorphisms and seasonal bird migration.
Collapse
Affiliation(s)
- Louis-Stéphane Le Clercq
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa.
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa.
| | - Gaia Bazzi
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale, via Ca' Fornacetta 9, I-40064, Ozzano Emilia, BO, Italy
| | - Joan Ferrer Obiol
- Departament de Genètica, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007, Barcelona, Spain
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26, Milan, I-20133, Italy
| | - Jacopo G Cecere
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale, via Ca' Fornacetta 9, I-40064, Ozzano Emilia, BO, Italy
| | - Luca Gianfranceschi
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, Milan, I-20133, Italy
| | - J Paul Grobler
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Antoinette Kotzé
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Marta Riutort León
- Departament de Genètica, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007, Barcelona, Spain
| | - Jacob González-Solís
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007, Barcelona, Spain
- Departament de Biologia Evolutiva, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007, Barcelona, Spain
| | - Diego Rubolini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26, Milan, I-20133, Italy
- Istituto di Ricerca sulle Acque, IRSA-CNR, Via del Mulino 19, I-20861, Brugherio, (MB), Italy
| | - Miriam Liedvogel
- Max Planck Research Group Behavioural Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
- Institute of Avian Research, An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
| | - Desiré Lee Dalton
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK
| |
Collapse
|
5
|
Le Clercq LS, Bazzi G, Cecere JG, Gianfranceschi L, Grobler JP, Kotzé A, Rubolini D, Liedvogel M, Dalton DL. Time trees and clock genes: a systematic review and comparative analysis of contemporary avian migration genetics. Biol Rev Camb Philos Soc 2023; 98:1051-1080. [PMID: 36879518 DOI: 10.1111/brv.12943] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
Timing is a crucial aspect for survival and reproduction in seasonal environments leading to carefully scheduled annual programs of migration in many species. But what are the exact mechanisms through which birds (class: Aves) can keep track of time, anticipate seasonal changes, and adapt their behaviour? One proposed mechanism regulating annual behaviour is the circadian clock, controlled by a highly conserved set of genes, collectively called 'clock genes' which are well established in controlling the daily rhythmicity of physiology and behaviour. Due to diverse migration patterns observed within and among species, in a seemingly endogenously programmed manner, the field of migration genetics has sought and tested several candidate genes within the clock circuitry that may underlie the observed differences in breeding and migration behaviour. Among others, length polymorphisms within genes such as Clock and Adcyap1 have been hypothesised to play a putative role, although association and fitness studies in various species have yielded mixed results. To contextualise the existing body of data, here we conducted a systematic review of all published studies relating polymorphisms in clock genes to seasonality in a phylogenetically and taxonomically informed manner. This was complemented by a standardised comparative re-analysis of candidate gene polymorphisms of 76 bird species, of which 58 are migrants and 18 are residents, along with population genetics analyses for 40 species with available allele data. We tested genetic diversity estimates, used Mantel tests for spatial genetic analyses, and evaluated relationships between candidate gene allele length and population averages for geographic range (breeding- and non-breeding latitude), migration distance, timing of migration, taxonomic relationships, and divergence times. Our combined analysis provided evidence (i) of a putative association between Clock gene variation and autumn migration as well as a putative association between Adcyap1 gene variation and spring migration in migratory species; (ii) that these candidate genes are not diagnostic markers to distinguish migratory from sedentary birds; and (iii) of correlated variability in both genes with divergence time, potentially reflecting ancestrally inherited genotypes rather than contemporary changes driven by selection. These findings highlight a tentative association between these candidate genes and migration attributes as well as genetic constraints on evolutionary adaptation.
Collapse
Affiliation(s)
- Louis-Stéphane Le Clercq
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Gaia Bazzi
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale, via Ca' Fornacetta 9, Ozzano Emilia (BO), I-40064, Italy
| | - Jacopo G Cecere
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale, via Ca' Fornacetta 9, Ozzano Emilia (BO), I-40064, Italy
| | - Luca Gianfranceschi
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, Milan, I-20133, Italy
| | - Johannes Paul Grobler
- Department of Genetics, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Antoinette Kotzé
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Diego Rubolini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26, Milan, I-20133, Italy
- Istituto di Ricerca sulle Acque, IRSA-CNR, Via del Mulino 19, Brugherio (MB), I-20861, Italy
| | - Miriam Liedvogel
- Max Planck Research Group Behavioral Genomics, Max Planck Institute for Evolutionary Biology, Plön, 24306, Germany
- Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven, 26386, Germany
| | - Desiré Lee Dalton
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK
| |
Collapse
|
6
|
van Oers K, van den Heuvel K, Sepers B. The Epigenetics of Animal Personality. Neurosci Biobehav Rev 2023; 150:105194. [PMID: 37094740 DOI: 10.1016/j.neubiorev.2023.105194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
Animal personality, consistent individual differences in behaviour, is an important concept for understanding how individuals vary in how they cope with environmental challenges. In order to understand the evolutionary significance of animal personality, it is crucial to understand the underlying regulatory mechanisms. Epigenetic marks such as DNA methylation are hypothesised to play a major role in explaining variation in phenotypic changes in response to environmental alterations. Several characteristics of DNA methylation also align well with the concept of animal personality. In this review paper, we summarise the current literature on the role that molecular epigenetic mechanisms may have in explaining personality variation. We elaborate on the potential for epigenetic mechanisms to explain behavioural variation, behavioural development and temporal consistency in behaviour. We then suggest future routes for this emerging field and point to potential pitfalls that may be encountered. We conclude that a more inclusive approach is needed for studying the epigenetics of animal personality and that epigenetic mechanisms cannot be studied without considering the genetic background.
Collapse
Affiliation(s)
- Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Behavioural Ecology Group, Wageningen University & Research (WUR), Wageningen, the Netherlands.
| | - Krista van den Heuvel
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Behavioural Ecology Group, Wageningen University & Research (WUR), Wageningen, the Netherlands
| | - Bernice Sepers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Behavioural Ecology Group, Wageningen University & Research (WUR), Wageningen, the Netherlands
| |
Collapse
|
7
|
Mai S, Wittor C, Merker S, Woog F. DRD4 allele frequencies in greylag geese vary between urban and rural sites. Ecol Evol 2023; 13:e9811. [PMID: 36789334 PMCID: PMC9909002 DOI: 10.1002/ece3.9811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
With the increasing urbanization of the last decades, more and more bird species occur in urban habitats. Birds which thrive in urban habitats often have a higher tolerance toward human disturbance and show behaviors which differ from their rural counterparts. There is increasing evidence that many behaviors have a genetic basis. One candidate gene is the dopamine receptor D4 (DRD4), which has been associated with fear and thus, flight initiation distance (FID). In this study, we analyzed a segment of DRD4 in greylag geese Anser anser, describing the variability of this gene across several geographically distant populations, and comparing its variability between an urban and a rural site in south-west Germany. We additionally measured FIDs of urban and rural geese to test for a possible correlation with DRD4 genotypes. We found a high variation within DRD4, with 10 variable sites leading to 11 alleles and 35 genotypes. Two genotypes occurred in 60% of all geese and were thus defined as common genotypes versus 33 rare genotypes. Population differentiation was very low between the urban and rural sites in Germany but common genotypes occurred more often in the urban area and rare genotypes more often in the rural area. FID was significantly higher at the rural site, but no significant correlation between FID and DRD4 genotypes could be detected. Nevertheless, our results suggest that local site selection may be related to DRD4 genotypes.
Collapse
Affiliation(s)
- Sabrina Mai
- Department of ZoologyState Museum of Natural History StuttgartStuttgartGermany
- Center of Excellence for Biodiversity and integrative TaxonomyUniversity of HohenheimStuttgartGermany
| | - Caroline Wittor
- Department of ZoologyState Museum of Natural History StuttgartStuttgartGermany
- Center of Excellence for Biodiversity and integrative TaxonomyUniversity of HohenheimStuttgartGermany
| | - Stefan Merker
- Department of ZoologyState Museum of Natural History StuttgartStuttgartGermany
| | - Friederike Woog
- Department of ZoologyState Museum of Natural History StuttgartStuttgartGermany
| |
Collapse
|
8
|
Riyahi S, Carrillo-Ortiz JG, Uribe F, Calafell F, Senar JC. Risk-taking coping style correlates with SERT SNP290 polymorphisms in free-living great tits. J Exp Biol 2022; 225:274842. [PMID: 35332918 DOI: 10.1242/jeb.243342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/10/2022] [Indexed: 11/20/2022]
Abstract
The coping style of an individual in relation to potentially dangerous situations has been suggested to be inherited in a polygenic fashion, being SERT one of the candidate genes. In this paper, we assessed in free-living great tits Parus major the association between SNP290 in the SERT promoter and three standard fear-related behaviors, namely the response of the birds to a black and white flag fixed to the top of the nest-box, distress calling rate of the birds in the hand once captured and the hissing call of incubating females when approached by a predator. We found a strong association between SNP290 polymorphism and the three risk-taking behaviors, with birds with genotype CT entering faster to the nest box with the flag and displaying more distress calls and less hissing calls. CT birds could therefore be described as more proactive than CC individuals. These results also suggest that hissing behavior should be regarded as a fear-induced shy behavior, and confirm that SERT has an important function in relation to risk aversion behaviors and coping style.
Collapse
Affiliation(s)
- Sepand Riyahi
- Museu de Ciències Naturals de Barcelona, Psseig Picasso s/n, Parc Ciutadella, 08003 Barcelona, Spain.,Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | - José G Carrillo-Ortiz
- Museu de Ciències Naturals de Barcelona, Psseig Picasso s/n, Parc Ciutadella, 08003 Barcelona, Spain
| | - Francesc Uribe
- Museu de Ciències Naturals de Barcelona, Psseig Picasso s/n, Parc Ciutadella, 08003 Barcelona, Spain
| | - Francesc Calafell
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Juan Carlos Senar
- Museu de Ciències Naturals de Barcelona, Psseig Picasso s/n, Parc Ciutadella, 08003 Barcelona, Spain
| |
Collapse
|
9
|
Grunst AS, Grunst ML, Staes N, Thys B, Pinxten R, Eens M. Serotonin transporter (SERT) polymorphisms, personality and problem-solving in urban great tits. Sci Rep 2021; 11:24270. [PMID: 34930949 PMCID: PMC8688470 DOI: 10.1038/s41598-021-03466-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Understanding underlying genetic variation can elucidate how diversity in behavioral phenotypes evolves and is maintained. Genes in the serotonergic signaling pathway, including the serotonin transporter gene (SERT), are candidates for affecting animal personality, cognition and fitness. In a model species, the great tit (Parus major), we reevaluated previous findings suggesting relationships between SERT polymorphisms, neophobia, exploratory behavior and fitness parameters, and performed a first test of the relationship between single nucleotide polymorphisms (SNPs) in SERT and problem-solving in birds. We found some evidence for associations between SERT SNPs and neophobia, exploratory behavior and laying date. Furthermore, several SNPs were associated with behavioral patterns and success rates during obstacle removal problem-solving tests performed at nest boxes. In females, minor allele homozygotes (AA) for nonsynonymous SNP226 in exon 1 made fewer incorrect attempts and were more likely to problem-solve. In both sexes, there was some evidence that minor allele homozygotes (CC) for SNP84 in exon 9 were more likely to problem-solve. Only one SNP-behavior relationship was statistically significant after correcting for multiple comparisons, but several were associated with substantial effect sizes. Our study provides a foundation for future research on the genetic basis of behavioral and cognitive variation in wild animal populations.
Collapse
Affiliation(s)
- Andrea S Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Antwerp, Belgium.
- Littoral Environnement Et Sociétés, La Rochelle Université, La Rochelle, France.
| | - Melissa L Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Antwerp, Belgium
- Littoral Environnement Et Sociétés, La Rochelle Université, La Rochelle, France
| | - Nicky Staes
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Antwerp, Belgium
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Bert Thys
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Antwerp, Belgium
| | - Rianne Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Antwerp, Belgium
- Faculty of Social Sciences, Antwerp School of Education, University of Antwerp, Antwerp, Belgium
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Genomics for conservation: a case study of behavioral genes in the Tasmanian devil. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
The serotonin transporter gene and female personality variation in a free-living passerine. Sci Rep 2021; 11:8577. [PMID: 33883685 PMCID: PMC8060275 DOI: 10.1038/s41598-021-88225-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 02/02/2023] Open
Abstract
Quantifying variation in behaviour-related genes provides insight into the evolutionary potential of repeatable among-individual variation in behaviour (i.e. personality). Yet, individuals typically also plastically adjust their behaviour in response to environmental conditions and/or age, thereby complicating the detection of genotype-phenotype associations. Here, using a population of free-living great tits (Parus major), we assessed the association between single nucleotide polymorphisms (SNPs) in the serotonin transporter gene (SERT) and two repeatable behavioural traits, i.e. female-female aggression and female hissing behaviour. For female-female aggression, a trait showing age-related plasticity, we found no evidence for associations with SERT SNPs, even when assessing potential age-dependent effects of SERT genotype on aggression. We also found no strong support for associations between SERT SNPs and hissing behaviour, yet we identified two synonymous polymorphisms (exon 13 SNP66 and exon 12 SNP144) of particular interest, each explaining about 1.3% of the total variation in hissing behaviour. Overall, our results contribute to the general understanding of the biological underpinning of complex behavioural traits and will facilitate further (meta-analytic) research on behaviour-related genes. Moreover, we emphasize that future molecular genetic studies should consider age-dependent genotype-phenotype associations for behavioural trait (co)variation, as this will vastly improve our understanding of the proximate causes and ultimate consequences of personality variation in natural populations.
Collapse
|
12
|
Silva PA, Trigo S, Marques CI, Cardoso GC, Soares MC. Experimental evidence for a role of dopamine in avian personality traits. J Exp Biol 2020; 223:jeb216499. [PMID: 31953366 DOI: 10.1242/jeb.216499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/10/2020] [Indexed: 11/20/2022]
Abstract
There is increasing interest in the genetic and physiological bases of behavioural differences among individuals, namely animal personality. One particular dopamine (DA) receptor gene (the dopamine receptor D4 gene) has been used as candidate gene to explain personality differences, but with mixed results. Here, we used an alternative approach, exogenously manipulating the dopaminergic system and testing for effects on personality assays in a social bird species, the common waxbill (Estrilda astrild). We treated birds with agonists and antagonists for DA receptors of both D1 and D2 receptor pathways (the latter includes the D4 receptor) and found that short-term manipulation of DA signalling had an immediate effect on personality-related behaviours. In an assay of social responses (mirror test), manipulation of D2 receptor pathways reduced time spent looking at the social stimulus (mirror image). Blocking D2 receptors reduced motor activity in this social assay, while treatment with a D2 receptor agonist augmented activity in this social assay but reduced activity in a non-social behavioural assay. Also, in the non-social assay, treatment with the D1 receptor antagonist markedly increased time spent at the feeder. These results show distinct and context-specific effects of the dopaminergic pathways on waxbill personality traits. Our results also suggest that experimental manipulation of DA signalling can disrupt a behavioural correlation (more active individuals being less attentive to mirror image) that is habitually observed as part of a behavioural syndrome in waxbills. We discuss our results in the context of animal personality, and the role of the DA system in reward and social behaviour.
Collapse
Affiliation(s)
- Paulo A Silva
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão 4485-661, Portugal
| | - Sandra Trigo
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão 4485-661, Portugal
| | - Cristiana I Marques
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão 4485-661, Portugal
| | - Gonçalo C Cardoso
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão 4485-661, Portugal
- Behavioural Ecology Group, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Marta C Soares
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão 4485-661, Portugal
| |
Collapse
|
13
|
Schielzeth H, Rios Villamil A, Burri R. Success and failure in replication of genotype-phenotype associations: How does replication help in understanding the genetic basis of phenotypic variation in outbred populations? Mol Ecol Resour 2018; 18:739-754. [PMID: 29575806 DOI: 10.1111/1755-0998.12780] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 12/29/2022]
Abstract
Recent developments in sequencing technologies have facilitated genomewide mapping of phenotypic variation in natural populations. Such mapping efforts face a number of challenges potentially leading to low reproducibility. However, reproducible research forms the basis of scientific progress. We here discuss the options for replication and the reasons for potential nonreproducibility. We then review the evidence for reproducible quantitative trait loci (QTL) with a focus on natural animal populations. Existing case studies of replication fall into three categories: (i) traits that have been mapped to major effect loci (including chromosomal inversion and supergenes) by independent research teams; (ii) QTL fine-mapped in discovery populations; and (iii) attempts to replicate QTL across multiple populations. Major effect loci, in particular those associated with inversions, have been successfully replicated in several cases within and across populations. Beyond such major effect variants, replication has been more successful within than across populations, suggesting that QTL discovered in natural populations may often be population-specific. This suggests that biological causes (differences in linkage patterns, allele frequencies or context-dependencies of QTL) contribute to nonreproducibility. Evidence from other fields, notably animal breeding and QTL mapping in humans, suggests that a significant fraction of QTL is indeed reproducible in direction and magnitude at least within populations. However, there is also a large number of QTL that cannot be easily reproduced. We put forward that more studies should explicitly address the causes and context-dependencies of QTL signals, in particular to disentangle linkage differences, allele frequency differences and gene-by-environment interactions as biological causes of nonreproducibility of QTL, especially between populations.
Collapse
Affiliation(s)
- Holger Schielzeth
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University, Jena, Germany
| | - Alejandro Rios Villamil
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University, Jena, Germany
| | - Reto Burri
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
14
|
Kim JM, Santure AW, Barton HJ, Quinn JL, Cole EF, Visser ME, Sheldon BC, Groenen MAM, van Oers K, Slate J. A high-density SNP chip for genotyping great tit (Parus major) populations and its application to studying the genetic architecture of exploration behaviour. Mol Ecol Resour 2018; 18:877-891. [PMID: 29573186 DOI: 10.1111/1755-0998.12778] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/05/2018] [Accepted: 03/05/2018] [Indexed: 12/25/2022]
Abstract
High-density SNP microarrays ("SNP chips") are a rapid, accurate and efficient method for genotyping several hundred thousand polymorphisms in large numbers of individuals. While SNP chips are routinely used in human genetics and in animal and plant breeding, they are less widely used in evolutionary and ecological research. In this article, we describe the development and application of a high-density Affymetrix Axiom chip with around 500,000 SNPs, designed to perform genomics studies of great tit (Parus major) populations. We demonstrate that the per-SNP genotype error rate is well below 1% and that the chip can also be used to identify structural or copy number variation. The chip is used to explore the genetic architecture of exploration behaviour (EB), a personality trait that has been widely studied in great tits and other species. No SNPs reached genomewide significance, including at DRD4, a candidate gene. However, EB is heritable and appears to have a polygenic architecture. Researchers developing similar SNP chips may note: (i) SNPs previously typed on alternative platforms are more likely to be converted to working assays; (ii) detecting SNPs by more than one pipeline, and in independent data sets, ensures a high proportion of working assays; (iii) allele frequency ascertainment bias is minimized by performing SNP discovery in individuals from multiple populations; and (iv) samples with the lowest call rates tend to also have the greatest genotyping error rates.
Collapse
Affiliation(s)
- J-M Kim
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, UK.,Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, Korea
| | - A W Santure
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, UK.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - H J Barton
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, UK
| | - J L Quinn
- School of Biological, Earth and Environmental Science (BEES), University College Cork, Cork, Ireland
| | - E F Cole
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| | | | - M E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - B C Sheldon
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - M A M Groenen
- Wageningen University and Research - Animal Breeding and Genomics, Wageningen, Netherlands
| | - K van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - J Slate
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
15
|
Bay RA, Harrigan RJ, Underwood VL, Gibbs HL, Smith TB, Ruegg K. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 2018; 359:83-86. [PMID: 29302012 DOI: 10.1126/science.aan4380] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/16/2017] [Indexed: 01/18/2023]
Abstract
The ongoing loss of biodiversity caused by rapid climatic shifts requires accurate models for predicting species' responses. Despite evidence that evolutionary adaptation could mitigate climate change impacts, evolution is rarely integrated into predictive models. Integrating population genomics and environmental data, we identified genomic variation associated with climate across the breeding range of the migratory songbird, yellow warbler (Setophaga petechia). Populations requiring the greatest shifts in allele frequencies to keep pace with future climate change have experienced the largest population declines, suggesting that failure to adapt may have already negatively affected populations. Broadly, our study suggests that the integration of genomic adaptation can increase the accuracy of future species distribution models and ultimately guide more effective mitigation efforts.
Collapse
Affiliation(s)
- Rachael A Bay
- Center for Tropical Research, Institute for the Environment and Sustainability, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Ryan J Harrigan
- Center for Tropical Research, Institute for the Environment and Sustainability, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Vinh Le Underwood
- Center for Tropical Research, Institute for the Environment and Sustainability, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - H Lisle Gibbs
- Department of Evolution, Ecology, and Organismal Biology and Ohio Biodiversity Conservation Partnership, Ohio State University, Columbus, OH 43210, USA
| | - Thomas B Smith
- Center for Tropical Research, Institute for the Environment and Sustainability, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Department of Ecology and Evolutionary Biology, University of California, 621 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Kristen Ruegg
- Center for Tropical Research, Institute for the Environment and Sustainability, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
16
|
Affiliation(s)
- Mark J Fitzpatrick
- Integrative Behaviour and Neuroscience Group, Department of Biological Sciences, University of Toronto Scarborough, Toronto ON, M1C 1A4, Canada.
| | - Allan H Edelsparre
- Integrative Behaviour and Neuroscience Group, Department of Biological Sciences, University of Toronto Scarborough, Toronto ON, M1C 1A4, Canada
| |
Collapse
|
17
|
Hertler SC. Beyond birth order: The biological logic of personality variation among siblings. COGENT PSYCHOLOGY 2017. [DOI: 10.1080/23311908.2017.1325570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Steven C. Hertler
- Department of Psychology, College of New Rochelle, New Rochelle, NY 10805, USA
| |
Collapse
|
18
|
Berrio A, Guerrero RF, Aglyamova GV, Okhovat M, Matz MV, Phelps SM. Complex selection on a regulator of social cognition: Evidence of balancing selection, regulatory interactions and population differentiation in the prairie vole
Avpr1a
locus. Mol Ecol 2017; 27:419-431. [DOI: 10.1111/mec.14455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 10/13/2017] [Accepted: 11/02/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Alejandro Berrio
- Department of Integrative Biology University of Texas at Austin Austin TX USA
- Department of Biology Duke University Durham NC USA
| | | | - Galina V. Aglyamova
- Department of Integrative Biology University of Texas at Austin Austin TX USA
| | - Mariam Okhovat
- Department of Integrative Biology University of Texas at Austin Austin TX USA
| | - Mikhail V. Matz
- Department of Integrative Biology University of Texas at Austin Austin TX USA
| | - Steven M. Phelps
- Department of Integrative Biology University of Texas at Austin Austin TX USA
| |
Collapse
|
19
|
Mueller JC, Edelaar P, Baños-Villalba A, Carrete M, Potti J, Blas J, Tella JL, Kempenaers B. Selection on a behaviour-related gene during the first stages of the biological invasion pathway. Mol Ecol 2017; 26:6110-6121. [PMID: 28926158 DOI: 10.1111/mec.14353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/30/2017] [Accepted: 09/05/2017] [Indexed: 01/22/2023]
Abstract
Human-induced biological invasions are common worldwide and often have negative impacts on wildlife and human societies. Several studies have shown evidence for selection on invaders after introduction to the new range. However, selective processes already acting prior to introduction have been largely neglected. Here, we tested whether such early selection acts on known behaviour-related gene variants in the yellow-crowned bishop (Euplectes afer), a pet-traded African songbird. We tested for nonrandom allele frequency changes after trapping, acclimation and survival in captivity. We also compared the native source population with two independent invasive populations. Allele frequencies of two SNPs in the dopamine receptor D4 (DRD4) gene-known to be linked to behavioural activity in response to novelty in this species-significantly changed over all early invasion stages. They also differed between the African native population and the two invading European populations. The two-locus genotype associated with reduced activity declined consistently, but strongest at the trapping stage. Overall genetic diversity did not substantially decrease, and there is little evidence for new alleles in the introduced populations, indicating that selection at the DRD4 gene predominantly worked on the standing genetic variation already present in the native population. Our study demonstrates selection on a behaviour-related gene during the first stages of a biological invasion. Thus, pre-establishment stages of a biological invasion do not only determine the number of propagules that are introduced (their quantity), but also their phenotypic and genetic characteristics (their quality).
Collapse
Affiliation(s)
- Jakob C Mueller
- Department of Behavioural Ecology & Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Pim Edelaar
- Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Sevilla, Spain
| | - Adrián Baños-Villalba
- Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Sevilla, Spain
| | - Martina Carrete
- Department of Conservation Biology, Estación Biológica de Doñana - CSIC, Sevilla, Spain.,Department of Physical, Chemical and Natural Systems, University Pablo de Olavide, Sevilla, Spain
| | - Jaime Potti
- Department of Evolutionary Ecology, Estación Biológica de Doñana - CSIC, Sevilla, Spain
| | - Julio Blas
- Department of Conservation Biology, Estación Biológica de Doñana - CSIC, Sevilla, Spain
| | - Jose Luis Tella
- Department of Conservation Biology, Estación Biológica de Doñana - CSIC, Sevilla, Spain
| | - Bart Kempenaers
- Department of Behavioural Ecology & Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
20
|
Riyahi S, Björklund M, Mateos-Gonzalez F, Senar JC. Personality and urbanization: behavioural traits and DRD4 SNP830 polymorphisms in great tits in Barcelona city. J ETHOL 2016. [DOI: 10.1007/s10164-016-0496-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Genetic structure and viability selection in the golden eagle (Aquila chrysaetos), a vagile raptor with a Holarctic distribution. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0863-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Cobben MM, van Oers K. Bolder Takes All and the Role of Epigenetics. A Comment on Canestrelli et al. Trends Ecol Evol 2016; 31:498-499. [DOI: 10.1016/j.tree.2016.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 04/27/2016] [Indexed: 01/24/2023]
|
23
|
Verhulst EC, Mateman AC, Zwier MV, Caro SP, Verhoeven KJF, van Oers K. Evidence from pyrosequencing indicates that natural variation in animal personality is associated with DRD4 DNA methylation. Mol Ecol 2016; 25:1801-11. [PMID: 26678756 DOI: 10.1111/mec.13519] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 12/08/2015] [Accepted: 12/14/2015] [Indexed: 12/19/2022]
Abstract
Personality traits are heritable and respond to natural selection, but are at the same time influenced by the ontogenetic environment. Epigenetic effects, such as DNA methylation, have been proposed as a key mechanism to control personality variation. However, to date little is known about the contribution of epigenetic effects to natural variation in behaviour. Here, we show that great tit (Parus major) lines artificially selected for divergent exploratory behaviour for four generations differ in their DNA methylation levels at the dopamine receptor D4 (DRD4) gene. This D4 receptor is statistically associated with personality traits in both humans and nonhuman animals, including the great tit. Previous work in this songbird failed to detect functional genetic polymorphisms within DRD4 that could account for the gene-trait association. However, our observation supports the idea that DRD4 is functionally involved in exploratory behaviour but that its effects are mediated by DNA methylation. While the exact mechanism underlying the transgenerational consistency of DRD4 methylation remains to be elucidated, this study shows that epigenetic mechanisms are involved in shaping natural variation in personality traits. We outline how this first finding provides a basis for investigating the epigenetic contribution to personality traits in natural systems and its subsequent role for understanding the ecology and evolution of behavioural consistency.
Collapse
Affiliation(s)
- Eveline C Verhulst
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.,Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - A Christa Mateman
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Mathijs V Zwier
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, P.O. Box 196, 9700 AD, Groningen, The Netherlands
| | - Samuel P Caro
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Koen J F Verhoeven
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
24
|
Holtmann B, Grosser S, Lagisz M, Johnson SL, Santos ESA, Lara CE, Robertson BC, Nakagawa S. Population differentiation and behavioural association of the two ‘personality’ genesDRD4andSERTin dunnocks (Prunella modularis). Mol Ecol 2016; 25:706-22. [DOI: 10.1111/mec.13514] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 12/13/2022]
Affiliation(s)
- B. Holtmann
- Department of Zoology; University of Otago; 340 Great King Street Dunedin 9016 New Zealand
| | - S. Grosser
- Department of Zoology; University of Otago; 340 Great King Street Dunedin 9016 New Zealand
| | - M. Lagisz
- Department of Zoology; University of Otago; 340 Great King Street Dunedin 9016 New Zealand
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences; University of New South Wales; Sydney NSW 2052 Australia
| | - S. L. Johnson
- Department of Zoology; University of Otago; 340 Great King Street Dunedin 9016 New Zealand
| | - E. S. A. Santos
- Department of Zoology; University of Otago; 340 Great King Street Dunedin 9016 New Zealand
- Departamento de Zoologia; Universidade de São Paulo; Rua do Matão, Trav. 14, n˚ 101 Cid. Universitária São Paulo SP 05508-090 Brazil
| | - C. E. Lara
- Department of Zoology; University of Otago; 340 Great King Street Dunedin 9016 New Zealand
| | - B. C. Robertson
- Department of Zoology; University of Otago; 340 Great King Street Dunedin 9016 New Zealand
| | - S. Nakagawa
- Department of Zoology; University of Otago; 340 Great King Street Dunedin 9016 New Zealand
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences; University of New South Wales; Sydney NSW 2052 Australia
| |
Collapse
|
25
|
van Dongen WFD, Robinson RW, Weston MA, Mulder RA, Guay PJ. Variation at the DRD4 locus is associated with wariness and local site selection in urban black swans. BMC Evol Biol 2015; 15:253. [PMID: 26653173 PMCID: PMC4676183 DOI: 10.1186/s12862-015-0533-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 11/04/2015] [Indexed: 11/24/2022] Open
Abstract
Background Interactions between wildlife and humans are increasing. Urban animals are often less wary of humans than their non-urban counterparts, which could be explained by habituation, adaptation or local site selection. Under local site selection, individuals that are less tolerant of humans are less likely to settle in urban areas. However, there is little evidence for such temperament-based site selection, and even less is known about its underlying genetic basis. We tested whether site selection in urban and non-urban habitats by black swans (Cygnus atratus) was associated with polymorphisms in two genes linked to fear in animals, the dopamine receptor D4 (DRD4) and serotonin transporter (SERT) genes. Results Wariness in swans was highly repeatable between disturbance events (repeatability = 0.61) and non-urban swans initiated escape from humans earlier than urban swans. We found no inter-individual variation in the SERT gene, but identified five DRD4 genotypes and an association between DRD4 genotype and wariness. Individuals possessing the most common DRD4 genotype were less wary than individuals possessing rarer genotypes. As predicted by the local site selection hypothesis, genotypes associated with wary behaviour were over three times more frequent at the non-urban site. This resulted in moderate population differentiation at DRD4 (FST = 0.080), despite the sites being separated by only 30 km, a short distance for this highly-mobile species. Low population differentiation at neutrally-selected microsatellite loci and the likely occasional migration of swans between the populations reduces the likelihood of local site adaptations. Conclusion Our results suggest that wariness in swans is partly genetically-determined and that wary swans settle in less-disturbed areas. More generally, our findings suggest that site-specific management strategies may be necessary that consider the temperament of local animals.
Collapse
Affiliation(s)
- Wouter F D van Dongen
- Applied Ecology Research Group and Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University-Footscray Park Campus, PO Box 14428, Melbourne MC, VIC, 8001, Australia. .,Centre for Integrative Ecology, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia.
| | - Randall W Robinson
- Applied Ecology Research Group and Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University-Footscray Park Campus, PO Box 14428, Melbourne MC, VIC, 8001, Australia.
| | - Michael A Weston
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia.
| | - Raoul A Mulder
- Department of Zoology, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Patrick-Jean Guay
- Applied Ecology Research Group and Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University-Footscray Park Campus, PO Box 14428, Melbourne MC, VIC, 8001, Australia.
| |
Collapse
|
26
|
Riyahi S, Sánchez-Delgado M, Calafell F, Monk D, Senar JC. Combined epigenetic and intraspecific variation of the DRD4 and SERT genes influence novelty seeking behavior in great tit Parus major. Epigenetics 2015; 10:516-25. [PMID: 25933062 DOI: 10.1080/15592294.2015.1046027] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
DNA methylation is one of the main epigenetic mechanisms that can regulate gene expression and is an important means for creating phenotypic variation. In the present study, we performed methylation profiling of 2 candidate genes for personality traits, namely DRD4 and SERT, in the great tit Parus major to ascertain whether personality traits and behavior within different habitats have evolved with the aid of epigenetic variation. We applied bisulphite PCR and strand-specific sequencing to determine the methylation profile of the CpG dinucleotides in the DRD4 and SERT promoters and also in the CpG island overlapping DRD4 exon 3. Furthermore, we performed pyrosequencing to quantify the total methylation levels at each CpG location. Our results indicated that methylation was ∼1-4% higher in urban than in forest birds, for all loci and tissues analyzed, suggesting that this epigenetic modification is influenced by environmental conditions. Screening of genomic DNA sequence revealed that the SERT promoter is CpG poor region. The methylation at a single CpG dinucleotide located 288 bp from the transcription start site was related to exploration score in urban birds. In addition, the genotypes of the SERT polymorphism SNP234 located within the minimal promoter were significantly correlated with novelty seeking behavior in captivity, with the allele increasing this behavior being more frequent in urban birds. As a conclusion, it seems that both genetic and methylation variability of the SERT gene have an important role in shaping personality traits in great tits, whereas genetic and methylation variation at the DRD4 gene is not strongly involved in behavior and personality traits.
Collapse
Affiliation(s)
- Sepand Riyahi
- a Evolutionary Ecology Associate Research Unit (CSIC); Natural History Museum of Barcelona ; Barcelona , Spain
| | | | | | | | | |
Collapse
|
27
|
DRD4 gene polymorphism in great tits: gender-specific association with behavioural variation in the wild. Behav Ecol Sociobiol 2015. [DOI: 10.1007/s00265-015-1887-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Sun ZX, Zhai YF, Zhang JQ, Kang K, Cai JH, Fu Y, Qiu JQ, Shen JW, Zhang WQ. The genetic basis of population fecundity prediction across multiple field populations of Nilaparvata lugens. Mol Ecol 2015; 24:771-84. [PMID: 25581109 DOI: 10.1111/mec.13069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/30/2014] [Accepted: 01/06/2015] [Indexed: 12/16/2022]
Abstract
Identifying the molecular markers for complex quantitative traits in natural populations promises to provide novel insight into genetic mechanisms of adaptation and to aid in forecasting population dynamics. In this study, we investigated single nucleotide polymorphisms (SNPs) using candidate gene approach from high- and low-fecundity populations of the brown planthopper (BPH) Nilaparvata lugens Stål (Hemiptera: Delphacidae) divergently selected for fecundity. We also tested whether the population fecundity can be predicted by a few SNPs. Seven genes (ACE, fizzy, HMGCR, LpR, Sxl, Vg and VgR) were inspected for SNPs in N. lugens, which is a serious insect pest of rice. By direct sequencing of the complementary DNA and promoter sequences of these candidate genes, 1033 SNPs were discovered within high- and low-fecundity BPH populations. A panel of 121 candidate SNPs were selected and genotyped in 215 individuals from 2 laboratory populations (HFP and LFP) and 3 field populations (GZP, SGP and ZSP). Prior to association tests, population structure and linkage disequilibrium (LD) among the 3 field populations were analysed. The association results showed that 7 SNPs were significantly associated with population fecundity in BPH. These significant SNPs were used for constructing general liner models with stepwise regression. The best predictive model was composed of 2 SNPs (ACE-862 and VgR-816 ) with very good fitting degree. We found that 29% of the phenotypic variation in fecundity could be accounted for by only two markers. Using two laboratory populations and a complete independent field population, the predictive accuracy was 84.35-92.39%. The predictive model provides an efficient molecular method to predict BPH fecundity of field populations and provides novel insights for insect population management.
Collapse
Affiliation(s)
- Zhong Xiang Sun
- Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mueller JC, Edelaar P, Carrete M, Serrano D, Potti J, Blas J, Dingemanse NJ, Kempenaers B, Tella JL. Behaviour-related DRD4 polymorphisms in invasive bird populations. Mol Ecol 2014; 23:2876-85. [PMID: 24750181 DOI: 10.1111/mec.12763] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/09/2014] [Accepted: 04/16/2014] [Indexed: 01/11/2023]
Abstract
It has been suggested that individual behavioural traits influence the potential to successfully colonize new areas. Identifying the genetic basis of behavioural variation in invasive species thus represents an important step towards understanding the evolutionary potential of the invader. Here, we sequenced a candidate region for neophilic/neophobic and activity behaviour - the complete exon 3 of the DRD4 gene - in 100 Yellow-crowned bishops (Euplectes afer) from two invasive populations in Spain and Portugal. The same birds were scored twice for activity behaviour while exposed to novel objects (battery or slice of apple) in captivity. Response to novel objects was repeatable (r = 0.41) within individuals. We identified two synonymous DRD4 SNPs that explained on average between 11% and 15% of the phenotypic variance in both populations, indicating a clear genetic component to the neophilic/neophobic/activity personality axis in this species. This consistently high estimated effect size was mainly due to the repeated measurement design, which excludes part of the within-individual nongenetic variance in the response to different novel objects. We suggest that the alternative alleles of these SNPs are likely introduced from the original population and maintained by weak or antagonistic selection during different stages of the invasion process. The identified genetic variants have not only the potential to serve as genetic markers of the neophobic/neophilic/activity personality axis, but may also help to understand the evolution of behaviour in these invasive bird populations.
Collapse
Affiliation(s)
- J C Mueller
- Department of Behavioural Ecology & Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Schielzeth H, Husby A. Challenges and prospects in genome-wide quantitative trait loci mapping of standing genetic variation in natural populations. Ann N Y Acad Sci 2014; 1320:35-57. [PMID: 24689944 DOI: 10.1111/nyas.12397] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A considerable challenge in evolutionary genetics is to understand the genetic mechanisms that facilitate or impede evolutionary adaptation in natural populations. For this, we must understand the genetic loci contributing to trait variation and the selective forces acting on them. The decreased costs and increased feasibility of obtaining genotypic data on a large number of individuals have greatly facilitated gene mapping in natural populations, particularly because organisms whose genetics have been historically difficult to study are now within reach. Here we review the methods available to evolutionary ecologists interested in dissecting the genetic basis of traits in natural populations. Our focus lies on standing genetic variation in outbred populations. We present an overview of the current state of research in the field, covering studies on both plants and animals. We also draw attention to particular challenges associated with the discovery of quantitative trait loci and discuss parallels to studies on crops, livestock, and humans. Finally, we point to some likely future developments in genetic mapping studies.
Collapse
Affiliation(s)
- Holger Schielzeth
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | | |
Collapse
|
32
|
Garamszegi LZ, Mueller JC, Markó G, Szász E, Zsebők S, Herczeg G, Eens M, Török J. The relationship between DRD4 polymorphisms and phenotypic correlations of behaviors in the collared flycatcher. Ecol Evol 2014; 4:1466-79. [PMID: 24834341 PMCID: PMC4020704 DOI: 10.1002/ece3.1041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/23/2014] [Accepted: 02/24/2014] [Indexed: 12/19/2022] Open
Abstract
There is increasing evidence that the genetic architecture of exploration behavior includes the dopamine receptor D4 gene (DRD4). Such a link implies that the within-individual consistency in the same behavior has a genetic basis. Behavioral consistency is also prevalent in the form of between-individual correlation of functionally different behaviors; thus, the relationship between DRD4 polymorphism and exploration may also be manifested for other behaviors. Here, in a Hungarian population of the collared flycatcher, Ficedula albicollis, we investigate how males with distinct DRD4 genotypes differ in the consistent elements of their behavioral displays during the courtship period. In completely natural conditions, we assayed novelty avoidance, aggression and risk-taking, traits that were previously shown repeatable over time and correlate with each other, suggesting that they could have a common mechanistic basis. We identified two single-nucleotide polymorphisms (SNP554 and SNP764) in the exon 3 of the DRD4 gene by sequencing a subsample, then we screened 202 individuals of both sexes for these SNPs. Focusing on the genotypic variation in courting males, we found that “AC” heterozygote individuals at the SNP764 take lower risk than the most common “AA” homozygotes (the “CC” homozygotes were not represented in our subsample of males). We also found a considerable effect size for the relationship between SNP554 polymorphism and novelty avoidance. Therefore, in addition to exploration, DRD4 polymorphisms may also be associated with the regulation of behaviors that may incur fear or stress. Moreover, polymorphisms at the two SNPs were not independent indicating a potential role for genetic constraints or another functional link, which may partially explain behavioral correlations.
Collapse
Affiliation(s)
- László Z Garamszegi
- Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC Seville, Spain
| | - Jakob C Mueller
- Department of Behavioral Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology Seewiesen, Germany
| | - Gábor Markó
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University Budapest, Hungary ; Department of Plant Pathology, Corvinus University of Budapest Budapest, Hungary ; Ecology Research Group, Hungarian Academy of Sciences, Hungarian Natural History Museum Budapest, Hungary
| | - Eszter Szász
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University Budapest, Hungary
| | - Sándor Zsebők
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University Budapest, Hungary ; Ecology Research Group, Hungarian Academy of Sciences, Hungarian Natural History Museum Budapest, Hungary ; Université Paris-Sud, Centre de Neurosciences Paris-Sud UMR 8195, Orsay, France
| | - Gábor Herczeg
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University Budapest, Hungary
| | - Marcel Eens
- Ethology Group, Department of Biology, University of Antwerp Wilrijk, Belgium
| | - János Török
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University Budapest, Hungary
| |
Collapse
|