1
|
An K, Zhou C, Tong B, Liu D, Shan X, Zhang X, Bian F. Population genetic differentiation and structure of rare plant Anemone shikokiana based on genotyping-by-sequencing (GBS). BMC PLANT BIOLOGY 2024; 24:995. [PMID: 39438785 PMCID: PMC11515793 DOI: 10.1186/s12870-024-05705-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Anemone shikokiana (Makino) Makino is a perennial herb of the genus Anemone in the family Ranunculaceae. Endemic to the Shandong Peninsula in China and Shikoku Island in Japan, it is a rare and endangered plant with a narrow, disjunct distribution. It is threatened with extinction and is in urgent need of conservation. Evaluating the genetic diversity of species, revealing the population genetic structure and gene flow, and inferring the population history are of great importance for species conservation, especially for rare and endangered plants. RESULTS In our study, 73 samples from eight wild populations in China were sequenced by Super-GBS, yielding a total of 40.59 G clean reads and 52,231 SNPs. Based on the obtained SNP data set, we evaluated the population genetic diversity, genetic structure, and gene flow of A. shikokiana. A low level of genetic diversity was found (He = 0.1925, Ho = 0.1422). The neighbor-joining (NJ) tree, principal component analysis and ADMIXTURE analysis suggested that these 73 A. shikokiana could be considered as two groups. Pairwise genetic differentiation coefficients (Fst) indicated that genetic differentiation was lower between adjacent populations and higher between geographically separated populations. The gene flow between Kunyu Mountain and Lao Mountain was very low. However, neither of the two regions showed evidence of Isolation by Distance. CONCLUSIONS Here, we revealed the population genetic structure and gene flow of A. shikokiana from the Shandong Peninsula, China. This research provides valuable genetic resources for A. shikokiana and contributes to the scientific and effective conservation of the species.
Collapse
Affiliation(s)
- Kang An
- School of Life Sciences, Yantai University, Yantai, 264000, China
| | - Chunxia Zhou
- School of Life Sciences, Yantai University, Yantai, 264000, China
| | - Boqiang Tong
- Shandong Forestry and Grass Germplasm Resource Center, Jinan, 250102, China
| | - Dan Liu
- Shandong Forestry and Grass Germplasm Resource Center, Jinan, 250102, China
| | - Xiaohan Shan
- School of Life Sciences, Yantai University, Yantai, 264000, China
| | - Xin Zhang
- School of Life Sciences, Yantai University, Yantai, 264000, China
| | - Fuhua Bian
- School of Life Sciences, Yantai University, Yantai, 264000, China.
| |
Collapse
|
2
|
Genetic and demographic consequences of range contraction patterns during biological annihilation. Sci Rep 2023; 13:1691. [PMID: 36717685 PMCID: PMC9886963 DOI: 10.1038/s41598-023-28927-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Species range contractions both contribute to, and result from, biological annihilation, yet do not receive the same attention as extinctions. Range contractions can lead to marked impacts on populations but are usually characterized only by reduction in extent of range. For effective conservation, it is critical to recognize that not all range contractions are the same. We propose three distinct patterns of range contraction: shrinkage, amputation, and fragmentation. We tested the impact of these patterns on populations of a generalist species using forward-time simulations. All three patterns caused 86-88% reduction in population abundance and significantly increased average relatedness, with differing patterns in declines of nucleotide diversity relative to the contraction pattern. The fragmentation pattern resulted in the strongest effects on post-contraction genetic diversity and structure. Defining and quantifying range contraction patterns and their consequences for Earth's biodiversity would provide useful and necessary information to combat biological annihilation.
Collapse
|
3
|
Benítez-Benítez C, Sanz-Arnal M, Urbani M, Jiménez-Mejías P, Martín-Bravo S. Dramatic impact of future climate change on the genetic diversity and distribution of ecologically relevant Western Mediterranean Carex (Cyperaceae). PeerJ 2022; 10:e13464. [PMID: 35669962 PMCID: PMC9165605 DOI: 10.7717/peerj.13464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/28/2022] [Indexed: 01/14/2023] Open
Abstract
Anticipating the evolutionary responses of species to ongoing climate change is essential to propose effective management and conservation measures. The Western Mediterranean Basin constitutes one of the hotspots of biodiversity where the effects of climate change are expected to be more dramatic. Plant species with ecological relevance constitute ideal models to evaluate and predict the impact of climate change on ecosystems. Here we investigate these impacts through the spatio-temporal comparison of genetic diversity/structure (AFLPs), potential distribution under different future scenarios of climate change, and ecological space in two Western Mediterranean sister species of genus Carex. Both species are ecologically key in their riparian habitats, but display contrasting distribution patterns, with one widespread in the Iberian Peninsula and North Africa (C. reuteriana), while the other (C. panormitana) is a restricted, probably endangered, Central Mediterranean endemic. At present, we found a strong genetic structure driven by geography in both species, and lower values of genetic diversity and a narrower ecological space in C. panormitana than in C. reuteriana, while the allelic rarity was higher in the former than in C. reuteriana subspecies. Future projections predict an overall dramatic reduction of suitable areas for both species under all climate change scenarios, which could be almost total for C. panormitana. In addition, gene diversity was inferred to decrease in all taxa, with genetic structure reinforcing in C. reuteriana by the loss of admixture among populations. Our findings stress the need for a reassessment of C. panormitana conservation status under IUCN Red List criteria and the implementation of conservation measures.
Collapse
Affiliation(s)
- Carmen Benítez-Benítez
- Department of Molecular Biology and Biochemical Engineering/Botany Area, Universidad Pablo de Olavide, Seville, Seville, Spain
| | - María Sanz-Arnal
- Department of Biology, Universidad Autónoma de Madrid, Campus Cantoblanco, Madrid, Madrid, Spain
| | - Malvina Urbani
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Sardinia, Italy
| | - Pedro Jiménez-Mejías
- Department of Biology, Universidad Autónoma de Madrid, Campus Cantoblanco, Madrid, Madrid, Spain
| | - Santiago Martín-Bravo
- Department of Molecular Biology and Biochemical Engineering/Botany Area, Universidad Pablo de Olavide, Seville, Seville, Spain
| |
Collapse
|
4
|
Martín-Hernanz S, Albaladejo RG, Lavergne S, Rubio E, Grall A, Aparicio A. Biogeographic history and environmental niche evolution in the palearctic genus Helianthemum (Cistaceae). Mol Phylogenet Evol 2021; 163:107238. [PMID: 34197899 DOI: 10.1016/j.ympev.2021.107238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/27/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022]
Abstract
The biogeographic history and the degree of environmental niche conservatism provide essential clues to decipher the underlying macroevolutionary processes of species diversification and to understand contemporary patterns of biodiversity. The genus Helianthemum constitutes an excellent case study to investigate the impact of the geo-climatic changes and the environmental niche shifts on the origins of plant species diversity in the Mediterranean hotspot. It is a palearctic species-rich lineage with c. 140 species and subspecies mostly belonging to three distinct evolutionary radiations, almost confined to the Mediterranean region and occurring across varied environmental conditions. In this work, we studied the ample and rapid diversification of the genus Helianthemum across its whole distribution range by performing phylogenetic reconstructions of ancestral ranges and environmental niche evolution. We observed a striking synchrony of biogeographic movements with niche shifts between the three major clades of the genus Helianthemum, likely related to the geo-climatic events occurred in the Mediterranean Basin since the Upper Miocene. In particular, Late Miocene and Early Pliocene were dominated by episodes of range expansions, the Late Pliocene by range contraction and vicariance events, and Pleistocene by most intense environmental niche shifts and in-situ diversification. Our study also provides evidence for four main environmental niches in Helianthemum (i.e., Mediterranean, subdesert, humid-montane and subtropical-insular) and a tendency toward environmental niche conservatism within different subclades, with few niche shifts mostly occurring from Mediterranean ancestors. The relative longer time spent in Mediterranean areas by the ancestors of Helianthemum suggests that the larger species diversity observed in the Mediterranean (i.e. Northern Africa and Southern Europe) may have been generated by a time-for-speciation effect reinforced by environmental niche conservatism. Overall, our work highlights the role of the Mediterranean Basin as a 'cradle of diversity' and an 'evolutionary hub', facilitating the environmental transitions and determining the building up of a global plant biodiversity hotspot.
Collapse
Affiliation(s)
- Sara Martín-Hernanz
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain.
| | - Rafael G Albaladejo
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Sébastien Lavergne
- Laboratoire d'Ecologie Alpine (LECA), CNRS - Université Grenoble Alpes - Université Savoie Mont Blanc, FR-38000 Grenoble, France
| | - Encarnación Rubio
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Aurélie Grall
- Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| | - Abelardo Aparicio
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
5
|
Pérez-Martínez C, Rühland KM, Smol JP, Jones VJ, Conde-Porcuna JM. Long-term ecological changes in Mediterranean mountain lakes linked to recent climate change and Saharan dust deposition revealed by diatom analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138519. [PMID: 32498206 DOI: 10.1016/j.scitotenv.2020.138519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/13/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic climate change and the recent increase of Saharan dust deposition has had substantial effects on Mediterranean alpine regions. We examined changes in diatom assemblage composition over the past ~180 years from high-resolution, dated sediment cores retrieved from six remote lakes in the Sierra Nevada Mountains of Southern Spain. In all lakes, changes in diatom composition began over a century ago, but were more pronounced after ~1970 CE, concurrent with trends in rising regional air temperature, declining precipitation, and increased Saharan dust deposition. Temperature was identified as the main predictor of diatom assemblage changes, whereas both Saharan dust deposition drivers, the Sahel precipitation index and the winter North Atlantic Oscillation, were secondary explanatory variables. Diatom compositional shifts are indicative of lake alkalinization (linked to heightened evapoconcentration and an increase in calcium-rich Saharan dust input) and reduced lake water turbulence (linked to lower water levels and reduced inflows to the lakes). Moreover, decreases in epiphytic diatom species were indicative of increasing aridity and the drying of catchment meadows. Our results support the conclusions of previous chlorophyll-a and cladoceran-based paleolimnological analyses of these same dated sedimentary records which show a regional-scale response to climate change and Saharan dust deposition in Sierra Nevada lakes and their catchments during the 20th century. However, diatom assemblages seem to respond to different atmospheric and climate-related effects than cladoceran assemblages and chlorophyll-a concentrations. The recent impact of climate change and atmospheric Saharan deposition on lake biota assemblages and water chemistry, as well as catchment water availability, will have important implications for the valuable ecosystem services that the Sierra Nevada provides.
Collapse
Affiliation(s)
- Carmen Pérez-Martínez
- Institute of Water Research, University of Granada, 18071 Granada, Spain; Department of Ecology, Faculty of Science, University of Granada, 18071 Granada, Spain.
| | - Kathleen M Rühland
- Paleoecological Environmental Assessment and Research Lab (PEARL), Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - John P Smol
- Paleoecological Environmental Assessment and Research Lab (PEARL), Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Vivienne J Jones
- Environmental Change Research Centre, Department of Geography, University College London, Pearson Building, Gower Street, London WC1E 6BT, UK
| | - José M Conde-Porcuna
- Institute of Water Research, University of Granada, 18071 Granada, Spain; Department of Ecology, Faculty of Science, University of Granada, 18071 Granada, Spain
| |
Collapse
|
6
|
Walas Ł, Ganatsas P, Iszkuło G, Thomas PA, Dering M. Spatial genetic structure and diversity of natural populations of Aesculus hippocastanum L. in Greece. PLoS One 2019; 14:e0226225. [PMID: 31826015 PMCID: PMC6905551 DOI: 10.1371/journal.pone.0226225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/21/2019] [Indexed: 11/18/2022] Open
Abstract
Horse-chestnut (Aesculus hippocastanum L.) is an endemic and relict species from the Mediterranean biodiversity hotspot and a popular ornamental tree. Knowledge about the evolutionary history of this species remains scarce. Here, we ask what historical and ecological factors shaped the pattern of genetic diversity and differentiation of this species. We genotyped 717 individuals from nine natural populations using microsatellite markers. The influence of distance, topography and habitat variables on spatial genetic structure was tested within the approaches of isolation-by-distance and isolation-by-ecology. Species niche modeling was used to project the species theoretical range through time and space. The species showed high genetic diversity and moderate differentiation for which topography, progressive range contraction through the species’ history and long-term persistence in stable climatic refugia are likely responsible. A strong geographic component was revealed among five genetic clusters that are connected with very limited gene flow. The environmental variables were a significant factor in the spatial genetic structure. Modeling results indicated that future reduction of the species range may affect its survival. The possible impact of climate changes and high need of in situ conservation are discussed.
Collapse
Affiliation(s)
- Łukasz Walas
- Institute of Dendrology, Polish Academy of Sciences, Parkowa, Kórnik, Poland
- * E-mail:
| | - Petros Ganatsas
- Aristotle University of Thessaloniki, School of Forestry and Natural Environment, Laboratory of Silviculture, Thessaloniki, Greece
| | - Grzegorz Iszkuło
- Institute of Dendrology, Polish Academy of Sciences, Parkowa, Kórnik, Poland
- Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana, Zielona Góra, Poland
| | - Peter A. Thomas
- School of Biological Sciences, Keele University, Staffordshire, United Kingdom
- Harvard Forest, Harvard University, Petersham, MA, United States of America
| | - Monika Dering
- Institute of Dendrology, Polish Academy of Sciences, Parkowa, Kórnik, Poland
- Faculty of Forestry, Poznań University of Life Sciences, Wojska Polskiego, Poznań, Poland
| |
Collapse
|
7
|
Interpopulational and intrapopulational genetic diversity of the endangered Itasenpara bitterling (Acheilognathus longipinnis) with reference to its demographic history. CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01232-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Rodríguez-Rodríguez P, G. Fernández de Castro A, Seguí J, Traveset A, Sosa PA. Alpine species in dynamic insular ecosystems through time: conservation genetics and niche shift estimates of the endemic and vulnerable Viola cheiranthifolia. ANNALS OF BOTANY 2019; 123:505-519. [PMID: 30307538 PMCID: PMC6377099 DOI: 10.1093/aob/mcy185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND AIMS Alpine oceanic ecosystems are considered amongst the most ephemeral and restricted habitats, with a biota highly vulnerable to climate changes and disturbances. As an example of an alpine insular endemic, the past and future population genetic structure and diversity, and the future distribution of Viola cheiranthifolia (Violaceae), endemic to Tenerife (Canary Islands), were estimated. The main goals were to predict distribution changes of this alpine oceanic plant under climate change, and to assist in actions for its conservation. METHODS To perform population genetic analysis, 14 specific microsatellite markers and algorithms which considered the polyploid condition of V. cheiranthifolia were employed. The niche modelling approach incorporated temperature gradients, topography and snow cover maps. Models were projected into climate change scenarios to assess the extent of the altitudinal shifts of environmental suitability. Finally, simulations were performed to predict whether the environmental suitability loss will affect the genetic diversity of populations. KEY RESULTS Viola cheiranthifolia presents short dispersal capacity, moderate levels of genetic diversity and a clear population genetic structure divided into two main groups (Teide and Las Cañadas Wall), showing signs of recolonization dynamics after volcanic eruptions. Future estimates of the distribution of the study populations also showed that, despite being extremely vulnerable to climate change, the species will not lose all its potential area in the next decades. The simulations to estimate genetic diversity loss show that it is correlated to suitability loss, especially in Las Cañadas Wall. CONCLUSIONS The low dispersal capacity of V. cheiranthifolia, coupled with herbivory pressure, mainly from rabbits, will make its adaptation to future climate conditions in this fragile alpine ecosystem difficult. Conservation actions should be focused on herbivore control, population reinforcement and surveillance of niche shifts, especially in Guajara, which represents the oldest isolated population and a genetic reservoir for the species.
Collapse
Affiliation(s)
- Priscila Rodríguez-Rodríguez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (IUNAT), Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, Canary Islands, Spain
| | | | - Jaume Seguí
- Global Change Research Group, Mediterranean Institute for Advanced Studies (CSIC-UIB), c/ Miquel Marquès, Esporles Balearic Islands, Spain
| | - Anna Traveset
- Global Change Research Group, Mediterranean Institute for Advanced Studies (CSIC-UIB), c/ Miquel Marquès, Esporles Balearic Islands, Spain
| | - Pedro A Sosa
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (IUNAT), Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
9
|
Blanco-Pastor JL, Fernández-Mazuecos M, Coello AJ, Pastor J, Vargas P. Topography explains the distribution of genetic diversity in one of the most fragile European hotspots. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12836] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- José Luis Blanco-Pastor
- Real Jardín Botánico de Madrid (RJB-CSIC); Madrid Spain
- INRA; Centre Nouvelle-Aquitaine-Poitiers, UR4 (URP3F); Lusignan France
| | | | - Alberto J. Coello
- Real Jardín Botánico de Madrid (RJB-CSIC); Madrid Spain
- Universidad Rey Juan Carlos; Madrid Spain
| | - Julia Pastor
- Real Jardín Botánico de Madrid (RJB-CSIC); Madrid Spain
| | - Pablo Vargas
- Real Jardín Botánico de Madrid (RJB-CSIC); Madrid Spain
| |
Collapse
|
10
|
Noguerales V, Cordero PJ, Ortego J. Testing the role of ancient and contemporary landscapes on structuring genetic variation in a specialist grasshopper. Ecol Evol 2017; 7:3110-3122. [PMID: 28480010 PMCID: PMC5415511 DOI: 10.1002/ece3.2810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/31/2016] [Accepted: 01/24/2017] [Indexed: 12/19/2022] Open
Abstract
Understanding the processes underlying spatial patterns of genetic diversity and structure of natural populations is a central topic in evolutionary biogeography. In this study, we combine data on ancient and contemporary landscape composition to get a comprehensive view of the factors shaping genetic variation across the populations of the scrub‐legume grasshopper (Chorthippus binotatus binotatus) from the biogeographically complex region of southeast Iberia. First, we examined geographical patterns of genetic structure and employed an approximate Bayesian computation (ABC) approach to compare different plausible scenarios of population divergence. Second, we used a landscape genetic framework to test for the effects of (1) Late Miocene paleogeography, (2) Pleistocene climate fluctuations, and (3) contemporary topographic complexity on the spatial patterns of population genetic differentiation. Genetic structure and ABC analyses supported the presence of three genetic clusters and a sequential west‐to‐east splitting model that predated the last glacial maximum (LGM, c. 21 Kya). Landscape genetic analyses revealed that population genetic differentiation was primarily shaped by contemporary topographic complexity, but was not explained by any paleogeographic scenario or resistance distances based on climate suitability in the present or during the LGM. Overall, this study emphasizes the need of integrating information on ancient and contemporary landscape composition to get a comprehensive view of their relative importance to explain spatial patterns of genetic variation in organisms inhabiting regions with complex biogeographical histories.
Collapse
Affiliation(s)
- Víctor Noguerales
- Grupo de Investigación de la Biodiversidad Genética y Cultural Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM) Ciudad Real Spain
| | - Pedro J Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM) Ciudad Real Spain
| | - Joaquín Ortego
- Department of Integrative Ecology Estación Biológica de Doñana (EBD-CSIC) Seville Spain
| |
Collapse
|
11
|
Ye Z, Chen P, Bu W. Terrestrial mountain islands and Pleistocene climate fluctuations as motors for speciation: A case study on the genus Pseudovelia (Hemiptera: Veliidae). Sci Rep 2016; 6:33625. [PMID: 27650911 PMCID: PMC5030487 DOI: 10.1038/srep33625] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 08/31/2016] [Indexed: 11/08/2022] Open
Abstract
This study investigated the influences of geographic isolation and climate fluctuation on the genetic diversity, speciation, and biogeography of the genus Pseudovelia (Hemiptera: Veliidae) in subtropical China and tropic Indo-China Peninsula. Species nucleotide and haplotype diversities decreased with reduction in species distribution limits. The gene tree was congruent with the taxonomy of monophyly, except for four species, P. contorta, P. extensa, P. tibialis tibialis, and P. vittiformis. The conflicts between the genes and species tree could be due to long-term isolation and incomplete lineage sorting. Diversification analysis showed that the diversification rate (0.08 sp/My shifted to 0.5 sp/My) changed at 2.1 Ma, which occurred in the early Pleistocene period. Ancestral area reconstruction suggested that subtropical species possibly evolved from the tropics region (i.e., Indo-China Peninsula). Results implied that narrow endemics harbored relatively low genetic diversity because of small effective population and genetic drift. Radiation of subtropical Pseudovelia species was rapidly promoted by Pleistocene climate fluctuations and geographic isolation. The acute rising of the Hengduan Mountain with the entire uplift of the Qinghai-Tibet Plateau induced the initial differentiation of Pseudovelia species. These results highlighted the importance of geographical isolation and climate changes in promoting speciation in mountain habitat islands.
Collapse
Affiliation(s)
- Zhen Ye
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071,China
- College of Environmental Science and Engineering, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Pingping Chen
- Netherlands Biodiversity Centre – Naturalis, 2300 RA Leiden, The Netherlands
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071,China
| |
Collapse
|
12
|
Gentili R, Bacchetta G, Fenu G, Cogoni D, Abeli T, Rossi G, Salvatore MC, Baroni C, Citterio S. From cold to warm-stage refugia for boreo-alpine plants in southern European and Mediterranean mountains: the last chance to survive or an opportunity for speciation? ACTA ACUST UNITED AC 2015. [DOI: 10.1080/14888386.2015.1116407] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Mairal M, Pokorny L, Aldasoro JJ, Alarcón M, Sanmartín I. Ancient vicariance and climate-driven extinction explain continental-wide disjunctions in Africa: the case of the Rand Flora genusCanarina(Campanulaceae). Mol Ecol 2015; 24:1335-54. [DOI: 10.1111/mec.13114] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 01/17/2023]
Affiliation(s)
- M. Mairal
- Real Jardín Botánico (RJB-CSIC); 28014 Madrid Spain
| | - L. Pokorny
- Real Jardín Botánico (RJB-CSIC); 28014 Madrid Spain
| | - J. J. Aldasoro
- Institut Botànic de Barcelona (IBB-CSIC); 08038 Barcelona Spain
| | - M. Alarcón
- Institut Botànic de Barcelona (IBB-CSIC); 08038 Barcelona Spain
| | - I. Sanmartín
- Real Jardín Botánico (RJB-CSIC); 28014 Madrid Spain
| |
Collapse
|
14
|
Blanco-Pastor JL, Ornosa C, Romero D, Liberal IM, Gómez JM, Vargas P. Bees explain floral variation in a recent radiation of Linaria. J Evol Biol 2015; 28:851-63. [DOI: 10.1111/jeb.12609] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/15/2015] [Accepted: 02/20/2015] [Indexed: 01/06/2023]
Affiliation(s)
- J. L. Blanco-Pastor
- Real Jardín Botánico de Madrid (RJB-CSIC); Madrid Spain
- Department of Biological and Environmental Sciences; University of Gothenburg; Göteborg Sweden
| | - C. Ornosa
- Departmento de Zoología y Antropología Física; Universidad Complutense de Madrid; Madrid Spain
| | - D. Romero
- Departmento de Zoología y Antropología Física; Universidad Complutense de Madrid; Madrid Spain
| | - I. M. Liberal
- Real Jardín Botánico de Madrid (RJB-CSIC); Madrid Spain
| | - J. M. Gómez
- Departmento de Ecología Funcional y Evolutiva; Estación Experimental de Zonas Áridas (EEZA-CSIC); Almería Spain
- Departamento de Ecología; Universidad de Granada; Granada Spain
| | - P. Vargas
- Real Jardín Botánico de Madrid (RJB-CSIC); Madrid Spain
| |
Collapse
|
15
|
Leung MY, Paszkowski C, Russell A. Genetic structure of the endangered Greater Short-horned Lizard (Phrynosoma hernandesi) in Canada: evidence from mitochondrial and nuclear genes. CAN J ZOOL 2014. [DOI: 10.1139/cjz-2014-0079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The northern edge of the range of the Greater Short-horned Lizard (Phrynosoma hernandesi Girard, 1858) occurs in western Canada, where the species has “endangered” status and exhibits a patchy distribution. Phylogenetic inference and genetic analyses were employed to investigate the genetic structure of P. hernandesi throughout its Canadian range. One nuclear and two mitochondrial DNA genes were sequenced from 94 lizard tail tips. Overall, sequences from lizards from both Alberta and Saskatchewan displayed very little variability, and the consistent clustering of all the P. hernandesi mitochondrial and nuclear DNA sequences from Canada in both phylogenetic and population genetic analyses is consistent with the lizards from all sampled localities having originated from a single glacial refugium, and with being, until recently (or currently) interconnected genetically. The genetic data obtained so far furnish no information useful for interpreting the species’ present-day patchy distribution patterns or for formulating conservation strategies.
Collapse
Affiliation(s)
- M.N.-Y. Leung
- Department of Biological Sciences, University of Calgary, 2500 University Drive Northwest, Calgary, AB T2N 1N4, Canada
| | - C.A. Paszkowski
- Department of Biological Sciences, University of Alberta, 116 Street and 85th Avenue, Edmonton, AB T6G 2R3, Canada
| | - A.P. Russell
- Department of Biological Sciences, University of Calgary, 2500 University Drive Northwest, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
16
|
Fernández-Mazuecos M, Blanco-Pastor JL, Gómez JM, Vargas P. Corolla morphology influences diversification rates in bifid toadflaxes (Linaria sect. Versicolores). ANNALS OF BOTANY 2013; 112:1705-22. [PMID: 24142920 PMCID: PMC3838546 DOI: 10.1093/aob/mct214] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS The role of flower specialization in plant speciation and evolution remains controversial. In this study the evolution of flower traits restricting access to pollinators was analysed in the bifid toadflaxes (Linaria sect. Versicolores), a monophyletic group of ~30 species and subspecies with highly specialized corollas. METHODS A time-calibrated phylogeny based on both nuclear and plastid DNA sequences was obtained using a coalescent-based method, and flower morphology was characterized by means of morphometric analyses. Directional trends in flower shape evolution and trait-dependent diversification rates were jointly analysed using recently developed methods, and morphological shifts were reconstructed along the phylogeny. Pollinator surveys were conducted for a representative sample of species. KEY RESULTS A restrictive character state (narrow corolla tube) was reconstructed in the most recent common ancestor of Linaria sect. Versicolores. After its early loss in the most species-rich clade, this character state has been convergently reacquired in multiple lineages of this clade in recent times, yet it seems to have exerted a negative influence on diversification rates. Comparative analyses and pollinator surveys suggest that the narrow- and broad-tubed flowers are evolutionary optima representing divergent strategies of pollen placement on nectar-feeding insects. CONCLUSIONS The results confirm that different forms of floral specialization can lead to dissimilar evolutionary success in terms of diversification. It is additionally suggested that opposing individual-level and species-level selection pressures may have driven the evolution of pollinator-restrictive traits in bifid toadflaxes.
Collapse
Affiliation(s)
- Mario Fernández-Mazuecos
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014 Madrid, Spain
- For correspondence. E-mail
| | - José Luis Blanco-Pastor
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014 Madrid, Spain
| | - José M. Gómez
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA-CSIC), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
- Departamento de Ecología, Universidad de Granada, Avenida de Fuente Nueva s/n, 18071 Granada, Spain
| | - Pablo Vargas
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014 Madrid, Spain
| |
Collapse
|
17
|
Blanco-Pastor JL, Vargas P. Autecological traits determined two evolutionary strategies in Mediterranean plants during the Quaternary: low differentiation and range expansion versus geographical speciation in Linaria. Mol Ecol 2013; 22:5651-68. [PMID: 24134639 DOI: 10.1111/mec.12518] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 08/24/2013] [Indexed: 01/18/2023]
Abstract
The evolutionary patterns of the Mediterranean flora during the Quaternary have been relatively well documented based on phylogenetic and biogeographic analyses, but few studies have addressed the evolutionary traits that determined diversification and range expansion success during this period. We analysed previously published and newly generated sequences of three plastid noncoding regions (rpl32-trnL(UAG) , trnS-trnG and trnL-trnF), the nuclear ribosomal internal transcribed spacer (ITS) and a low-copy nuclear gene intron (AGT1) of Linaria sect. Supinae, a group of angiosperms that diversified in the Quaternary. The origin and recent colonization dynamics of closely related lineages were inferred by biogeographic reconstruction and phylogeographic analyses, while breeding system experiments coupled with ecological and morphological data were used to test association with range expansion and diversification. A combination of traits, including selfing, short lifespan and the ability to tolerate a wide variety of substrates, were key factors underlying range expansion after long-distance dispersal throughout the Mediterranean basin. By contrast, self-incompatibility may have promoted higher diversification rates in narrow ranges of the Iberian Peninsula. We argue that a few traits contributed to the adoption of two contrasting strategies that may have been predominant in the evolution of Mediterranean angiosperms.
Collapse
Affiliation(s)
- J L Blanco-Pastor
- Real Jardín Botánico de Madrid (RJB-CSIC), Plaza de Murillo, 2, 28014, Madrid, Spain
| | | |
Collapse
|