1
|
Marasco V, Fusani L, Haubensak P, Pola G, Smith S. Brain gene expression reveals pathways underlying nocturnal migratory restlessness. Sci Rep 2024; 14:22420. [PMID: 39341882 PMCID: PMC11439032 DOI: 10.1038/s41598-024-73033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Migration is one of the most extreme and energy demanding life history strategies to have evolved in the animal kingdom. In birds, champions of long-distance migrations, the seasonal emergence of the migratory phenotype is characterised by rapid physiological and metabolic remodelling, including substantial accumulation of fat stores and increases in nocturnality. The molecular underpinnings and brain adaptations to seasonal migrations remain poorly understood. Here, we exposed Common quails (Coturnix coturnix) to controlled changes in day length to simulate southward autumn migration, and then blocked the photoperiod until birds entered the non-migratory wintering phase. We first performed de novo RNA-Sequencing from selected brain samples (hypothalamus) collected from birds at a standardised time at night, either in a migratory state (when restlessness was highest and at their body mass peak), or in a non-migratory state and conducted differential gene expression and functional pathways analyses. We found that the migratory state was associated with up-regulation of a few, yet functionally well defined, gene expression networks implicated in fat trafficking, protein and carbohydrate metabolism. Further analyses that focused on candidate genes (apolipoprotein H or APOH, lysosomal associated membrane protein-2 or LAMP2) from samples collected during the day or night across the entire study population suggested differences in the expression of these genes depending on the time of the day with the largest expression levels being found in the migratory birds sampled at night. We also found that expression of APOH was positively associated with levels of nocturnal activity in the migratory birds; such an association was absent within the non-migratory birds. Our results provide novel experimental evidence revealing that hypothalamic changes in expression of apolipoprotein pathways, which regulate the circulatory transport of lipids, are likely key regulatory activators of nocturnal migratory movements. Our study paves the way for performing deeper functional investigations on seasonal molecular remodelling underlying the development of the migratory phenotype.
Collapse
Affiliation(s)
- Valeria Marasco
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1a, Vienna, 1160, Austria.
| | - Leonida Fusani
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Savoyenstraße 1a, Vienna, A-1160, Austria
- Department of Behavioural and Cognitive Biology, University of Vienna, Djerassiplatz 1, Vienna, 1030, Austria
| | - Patricia Haubensak
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Savoyenstraße 1a, Vienna, A-1160, Austria
| | - Gianni Pola
- Istituto Sperimentale Zootecnico per la Sicilia, via Roccazzo 85, 90135, Palermo, Italy
| | - Steve Smith
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Savoyenstraße 1a, Vienna, A-1160, Austria
| |
Collapse
|
2
|
Lagos-Oviedo JJ, Pen I, Kreider JJ. Coevolution of larval signalling and worker response can trigger developmental caste determination in social insects. Proc Biol Sci 2024; 291:20240538. [PMID: 39013422 PMCID: PMC11251759 DOI: 10.1098/rspb.2024.0538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 07/18/2024] Open
Abstract
Eusocial insects belong to distinct queen and worker castes, which, in turn, can be divided into several morphologically specialized castes of workers. Caste determination typically occurs by differential nutrition of developing larvae. We present a model for the coevolution of larval signalling and worker task allocation-both modelled by flexible smooth reaction norms-to investigate the evolution of caste determination mechanisms and worker polymorphism. In our model, larvae evolve to signal their nutritional state to workers. The workers evolve to allocate time to foraging for resources versus feeding the brood, conditional on the larval signals and their body size. Worker polymorphism evolves under accelerating foraging returns of increasing body size, which causes selection to favour large foraging and small nursing workers. Worker castes emerge because larvae evolve to amplify their signals after obtaining some food, which causes them to receive more food, while the other larvae remain unfed. This leads to symmetry-breaking among the larvae, which are either well-nourished or malnourished, thus emerging as small or large workers. Our model demonstrates the evolution of nutrition-dependent caste determination and worker polymorphism by a self-reinforcement mechanism that evolves from the interplay of larval signalling and worker response to the signals.
Collapse
Affiliation(s)
- Juan J. Lagos-Oviedo
- Theoretical Research in Evolutionary Life Sciences, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Ido Pen
- Theoretical Research in Evolutionary Life Sciences, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | - Jan J. Kreider
- Theoretical Research in Evolutionary Life Sciences, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| |
Collapse
|
3
|
Bell F, Ouwehand J, Both C, Briedis M, Lisovski S, Wang X, Bearhop S, Burgess M. Individuals departing non-breeding areas early achieve earlier breeding and higher breeding success. Sci Rep 2024; 14:4075. [PMID: 38374332 PMCID: PMC10876959 DOI: 10.1038/s41598-024-53575-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
Conditions experienced by an individual during migration have the potential to shape migratory tactic and in turn fitness. For large birds, environmental conditions encountered during migration have been linked with survival and subsequent reproductive output, but this is less known for smaller birds, hindering our understanding of mechanisms driving population change. By combining breeding and tracking data from 62 pied flycatchers (Ficedula hypoleuca) representing two breeding populations collected over 2016-2020, we determine how variation in migration phenology and tactic among individuals affects subsequent breeding. Departure date from West African non-breeding areas to European breeding grounds was highly variable among individuals and had a strong influence on migration tactic. Early departing individuals had longer spring migrations which included longer staging duration yet arrived at breeding sites and initiated breeding earlier than later departing individuals. Individuals with longer duration spring migrations and early arrival at breeding sites had larger clutches, and for males higher fledging success. We suggest that for pied flycatchers, individual carry-over effects may act through departure phenology from West Africa, and the associated spring migration duration, to influence reproduction. While our results confirm that departure date from non-breeding areas can be associated with breeding success in migratory passerines, we identify spring staging duration as a key component of this process.
Collapse
Affiliation(s)
- Fraser Bell
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, UK.
- Royal Society for the Protection of Birds, Centre for Conservation Science, The Lodge, Sandy, Bedfordshire, UK.
| | - Janne Ouwehand
- Conservation Ecology Group, University of Groningen, Groningen, The Netherlands
| | - Christiaan Both
- Conservation Ecology Group, University of Groningen, Groningen, The Netherlands
| | - Martins Briedis
- Department of Bird Migration, Swiss Ornithological Institute, Sempach, Switzerland
- Lab of Ornithology, Institute of Biology, University of Latvia, Rīga, Latvia
| | - Simeon Lisovski
- Alfred Wegener Institute for Polar and Marine Research, Telegrafenberg, Potsdam, Germany
| | - Xuelai Wang
- Conservation Ecology Group, University of Groningen, Groningen, The Netherlands
| | - Stuart Bearhop
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, UK
| | - Malcolm Burgess
- Royal Society for the Protection of Birds, Centre for Conservation Science, The Lodge, Sandy, Bedfordshire, UK
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, Devon, UK
- PiedFly.Net, Yarner Wood, Bovey Tracey, Devon, UK
| |
Collapse
|
4
|
Le Clercq LS, Bazzi G, Ferrer Obiol J, Cecere JG, Gianfranceschi L, Grobler JP, Kotzé A, Riutort León M, González-Solís J, Rubolini D, Liedvogel M, Dalton DL. Birds of a feather flock together: a dataset for Clock and Adcyap1 genes from migration genetics studies. Sci Data 2023; 10:787. [PMID: 37945571 PMCID: PMC10636037 DOI: 10.1038/s41597-023-02717-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Birds in seasonal habitats rely on intricate strategies for optimal timing of migrations. This is governed by environmental cues, including photoperiod. Genetic factors affecting intrinsic timekeeping mechanisms, such as circadian clock genes, have been explored, yielding inconsistent findings with potential lineage-dependency. To clarify this evidence, a systematic review and phylogenetic reanalysis was done. This descriptor outlines the methodology for sourcing, screening, and processing relevant literature and data. PRISMA guidelines were followed, ultimately including 66 studies, with 34 focusing on candidate genes at the genotype-phenotype interface. Studies were clustered using bibliographic coupling and citation network analysis, alongside scientometric analyses by publication year and location. Data was retrieved for allele data from databases, article supplements, and direct author communications. The dataset, version 1.0.2, encompasses data from 52 species, with 46 species for the Clock gene and 43 for the Adcyap1 gene. This dataset, featuring data from over 8000 birds, constitutes the most extensive cross-species collection for these candidate genes, used in studies investigating gene polymorphisms and seasonal bird migration.
Collapse
Affiliation(s)
- Louis-Stéphane Le Clercq
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa.
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa.
| | - Gaia Bazzi
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale, via Ca' Fornacetta 9, I-40064, Ozzano Emilia, BO, Italy
| | - Joan Ferrer Obiol
- Departament de Genètica, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007, Barcelona, Spain
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26, Milan, I-20133, Italy
| | - Jacopo G Cecere
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale, via Ca' Fornacetta 9, I-40064, Ozzano Emilia, BO, Italy
| | - Luca Gianfranceschi
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, Milan, I-20133, Italy
| | - J Paul Grobler
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Antoinette Kotzé
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Marta Riutort León
- Departament de Genètica, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007, Barcelona, Spain
| | - Jacob González-Solís
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007, Barcelona, Spain
- Departament de Biologia Evolutiva, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007, Barcelona, Spain
| | - Diego Rubolini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26, Milan, I-20133, Italy
- Istituto di Ricerca sulle Acque, IRSA-CNR, Via del Mulino 19, I-20861, Brugherio, (MB), Italy
| | - Miriam Liedvogel
- Max Planck Research Group Behavioural Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
- Institute of Avian Research, An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
| | - Desiré Lee Dalton
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK
| |
Collapse
|
5
|
Estandía A, Sendell-Price AT, Oatley G, Robertson F, Potvin D, Massaro M, Robertson BC, Clegg SM. Candidate gene polymorphisms are linked to dispersive and migratory behaviour: Searching for a mechanism behind the "paradox of the great speciators". J Evol Biol 2023; 36:1503-1516. [PMID: 37750610 DOI: 10.1111/jeb.14222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/22/2023] [Indexed: 09/27/2023]
Abstract
The "paradox of the great speciators" has puzzled evolutionary biologists for over half a century. A great speciator requires excellent dispersal propensity to explain its occurrence on multiple islands, but reduced dispersal ability to explain its high number of subspecies. A rapid reduction in dispersal ability is often invoked to solve this apparent paradox, but a proximate mechanism has not been identified yet. Here, we explored the role of six genes linked to migration and animal personality differences (CREB1, CLOCK, ADCYAP1, NPAS2, DRD4, and SERT) in 20 South Pacific populations of silvereye (Zosterops lateralis) that range from highly sedentary to partially migratory, to determine if genetic variation is associated with dispersal propensity and migration. We detected genetic associations in three of the six genes: (i) in a partial migrant population, migrant individuals had longer microsatellite alleles at the CLOCK gene compared to resident individuals from the same population; (ii) CREB1 displayed longer average microsatellite allele lengths in recently colonized island populations (<200 years), compared to evolutionarily older populations. Bayesian broken stick regression models supported a reduction in CREB1 length with time since colonization; and (iii) like CREB1, DRD4 showed differences in polymorphisms between recent and old colonizations but a larger sample is needed to confirm. ADCYAP1, SERT, and NPAS2 were variable but that variation was not associated with dispersal propensity. The association of genetic variants at three genes with migration and dispersal ability in silvereyes provides the impetus for further exploration of genetic mechanisms underlying dispersal shifts, and the prospect of resolving a long-running evolutionary paradox through a genetic lens.
Collapse
Affiliation(s)
- Andrea Estandía
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, Oxford, UK
| | - Ashley T Sendell-Price
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, Oxford, UK
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Graeme Oatley
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Fiona Robertson
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Dominique Potvin
- School of Science, Technology and Engineering, University of the Sunshine Coast, Petrie, Queensland, Australia
| | - Melanie Massaro
- Gulbali Institute and School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Albury, New South Wales, Australia
| | | | - Sonya M Clegg
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, Oxford, UK
- Centre for Planetary Health and Food Security, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Birchard K, Driver HG, Ademidun D, Bedolla-Guzmán Y, Birt T, Chown EE, Deane P, Harkness BAS, Morrin A, Masello JF, Taylor RS, Friesen VL. Circadian gene variation in relation to breeding season and latitude in allochronic populations of two pelagic seabird species complexes. Sci Rep 2023; 13:13692. [PMID: 37608061 PMCID: PMC10444859 DOI: 10.1038/s41598-023-40702-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 08/16/2023] [Indexed: 08/24/2023] Open
Abstract
Annual cues in the environment result in physiological changes that allow organisms to time reproduction during periods of optimal resource availability. Understanding how circadian rhythm genes sense these environmental cues and stimulate the appropriate physiological changes in response is important for determining the adaptability of species, especially in the advent of changing climate. A first step involves characterizing the environmental correlates of natural variation in these genes. Band-rumped and Leach's storm-petrels (Hydrobates spp.) are pelagic seabirds that breed across a wide range of latitudes. Importantly, some populations have undergone allochronic divergence, in which sympatric populations use the same breeding sites at different times of year. We investigated the relationship between variation in key functional regions of four genes that play an integral role in the cellular clock mechanism-Clock, Bmal1, Cry2 and Per2-with both breeding season and absolute latitude in these two species complexes. We discovered that allele frequencies in two genes, Clock and Bmal1, differed between seasonal populations in one archipelago, and also correlated with absolute latitude of breeding colonies. These results indicate that variation in these circadian rhythm genes may be involved in allochronic speciation, as well as adaptation to photoperiod at breeding locations.
Collapse
Affiliation(s)
- Katie Birchard
- Biology Department, Queen's University, Kingston, ON, K7L 3N6, Canada
- Apex Resource Management Solutions, Ottawa, ON, K2A 3K2, Canada
| | - Hannah G Driver
- Biology Department, Queen's University, Kingston, ON, K7L 3N6, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Dami Ademidun
- Biology Department, Queen's University, Kingston, ON, K7L 3N6, Canada
| | | | - Tim Birt
- Biology Department, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Erin E Chown
- Biology Department, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Petra Deane
- Biology Department, Queen's University, Kingston, ON, K7L 3N6, Canada
- Mascoma LLC, Lallemand Inc., Lebanon, NH, 03766, USA
| | - Bronwyn A S Harkness
- Biology Department, Queen's University, Kingston, ON, K7L 3N6, Canada
- Environment and Climate Change Canada, Wildlife Research Division, Ottawa, ON, K1S 5B6, Canada
| | - Austin Morrin
- Biology Department, Queen's University, Kingston, ON, K7L 3N6, Canada
- Sims Animal Hospital, Kingston, ON, K7K 7E9, Canada
| | - Juan F Masello
- Department of Animal Behaviour, University of Bielefeld, 33615, Bielefeld, Germany
| | - Rebecca S Taylor
- Biology Department, Queen's University, Kingston, ON, K7L 3N6, Canada
- Environment and Climate Change Canada, Landscape Science and Technology Division, Ottawa, ON, K1S 5R1, Canada
| | - Vicki L Friesen
- Biology Department, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
7
|
Le Clercq LS, Bazzi G, Cecere JG, Gianfranceschi L, Grobler JP, Kotzé A, Rubolini D, Liedvogel M, Dalton DL. Time trees and clock genes: a systematic review and comparative analysis of contemporary avian migration genetics. Biol Rev Camb Philos Soc 2023; 98:1051-1080. [PMID: 36879518 DOI: 10.1111/brv.12943] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
Timing is a crucial aspect for survival and reproduction in seasonal environments leading to carefully scheduled annual programs of migration in many species. But what are the exact mechanisms through which birds (class: Aves) can keep track of time, anticipate seasonal changes, and adapt their behaviour? One proposed mechanism regulating annual behaviour is the circadian clock, controlled by a highly conserved set of genes, collectively called 'clock genes' which are well established in controlling the daily rhythmicity of physiology and behaviour. Due to diverse migration patterns observed within and among species, in a seemingly endogenously programmed manner, the field of migration genetics has sought and tested several candidate genes within the clock circuitry that may underlie the observed differences in breeding and migration behaviour. Among others, length polymorphisms within genes such as Clock and Adcyap1 have been hypothesised to play a putative role, although association and fitness studies in various species have yielded mixed results. To contextualise the existing body of data, here we conducted a systematic review of all published studies relating polymorphisms in clock genes to seasonality in a phylogenetically and taxonomically informed manner. This was complemented by a standardised comparative re-analysis of candidate gene polymorphisms of 76 bird species, of which 58 are migrants and 18 are residents, along with population genetics analyses for 40 species with available allele data. We tested genetic diversity estimates, used Mantel tests for spatial genetic analyses, and evaluated relationships between candidate gene allele length and population averages for geographic range (breeding- and non-breeding latitude), migration distance, timing of migration, taxonomic relationships, and divergence times. Our combined analysis provided evidence (i) of a putative association between Clock gene variation and autumn migration as well as a putative association between Adcyap1 gene variation and spring migration in migratory species; (ii) that these candidate genes are not diagnostic markers to distinguish migratory from sedentary birds; and (iii) of correlated variability in both genes with divergence time, potentially reflecting ancestrally inherited genotypes rather than contemporary changes driven by selection. These findings highlight a tentative association between these candidate genes and migration attributes as well as genetic constraints on evolutionary adaptation.
Collapse
Affiliation(s)
- Louis-Stéphane Le Clercq
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Gaia Bazzi
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale, via Ca' Fornacetta 9, Ozzano Emilia (BO), I-40064, Italy
| | - Jacopo G Cecere
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale, via Ca' Fornacetta 9, Ozzano Emilia (BO), I-40064, Italy
| | - Luca Gianfranceschi
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, Milan, I-20133, Italy
| | - Johannes Paul Grobler
- Department of Genetics, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Antoinette Kotzé
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Diego Rubolini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26, Milan, I-20133, Italy
- Istituto di Ricerca sulle Acque, IRSA-CNR, Via del Mulino 19, Brugherio (MB), I-20861, Italy
| | - Miriam Liedvogel
- Max Planck Research Group Behavioral Genomics, Max Planck Institute for Evolutionary Biology, Plön, 24306, Germany
- Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven, 26386, Germany
| | - Desiré Lee Dalton
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK
| |
Collapse
|
8
|
Halliwell C, Ketcher M, Proud A, Westerberg S, Douglas DJT, Burgess MD. Early life conditions influence fledging success and subsequent local recruitment rates in a declining migratory songbird, the Whinchat Saxicola rubetra. Ecol Evol 2023; 13:e10346. [PMID: 37484934 PMCID: PMC10361359 DOI: 10.1002/ece3.10346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023] Open
Abstract
Life history traits and environmental conditions influence reproductive success in animals, and consequences of these can influence subsequent survival and recruitment into breeding populations. Understanding influences on demographic rates is required to determine the causes of decline. Migratory species experience spatially and temporally variable conditions across their annual cycle, making identifying where the factors influencing demographic rates operate challenging. Here, we use the Whinchat Saxicola rubetra as a model declining long-distance migrant bird. We analyse 10 years of data from 247 nesting attempts and 2519 post-fledging observations of 1193 uniquely marked nestlings to examine the influence of life history traits, habitat characteristics and weather on survival of young from the nestling stage to local recruitment into the natal population. We detected potential silver spoon effects where conditions during the breeding stage influence subsequent apparent local recruitment rates, with higher recruitment for fledglings from larger broods, and recruitment rate negatively related to rainfall that chicks experienced in-nest. Additionally, extreme temperatures experienced pre- and post-fledging increased fledging success and recruitment rate. However, we could not determine whether this was driven by temperature influencing mortality during the post-fledging period or later in the annual cycle. Brood size declined with hatching date. In-nest survival increased with brood size and was highest at local temperature extremes. Furthermore, nest survival was highest at nests surrounded with 40%-60% vegetation cover of Bracken Pteridium aquilinum within 50 m of the nest. Our results show that breeding phenology and environmental factors may influence fledging success and recruitment in songbird populations, with conditions experienced during the nestling stage influencing local recruitment rates in Whinchats (i.e. silver spoon effect). Recruitment rates are key drivers of songbird population dynamics. Our results help identify some of the likely breeding season mechanisms that could be important population drivers.
Collapse
|
9
|
Sharma A, Sur S, Tripathi V, Kumar V. Genetic Control of Avian Migration: Insights from Studies in Latitudinal Passerine Migrants. Genes (Basel) 2023; 14:1191. [PMID: 37372370 DOI: 10.3390/genes14061191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Twice-a-year, large-scale movement of billions of birds across latitudinal gradients is one of the most fascinating behavioral phenomena seen among animals. These seasonal voyages in autumn southwards and in spring northwards occur within a discrete time window and, as part of an overall annual itinerary, involve close interaction of the endogenous rhythm at several levels with prevailing photoperiod and temperature. The overall success of seasonal migrations thus depends on their close coupling with the other annual sub-cycles, namely those of the breeding, post-breeding recovery, molt and non-migratory periods. There are striking alterations in the daily behavior and physiology with the onset and end of the migratory period, as shown by the phase inversions in behavioral (a diurnal passerine bird becomes nocturnal and flies at night) and neural activities. Interestingly, there are also differences in the behavior, physiology and regulatory strategies between autumn and spring (vernal) migrations. Concurrent molecular changes occur in regulatory (brain) and metabolic (liver, flight muscle) tissues, as shown in the expression of genes particularly associated with 24 h timekeeping, fat accumulation and the overall metabolism. Here, we present insights into the genetic basis of migratory behavior based on studies using both candidate and global gene expression approaches in passerine migrants, with special reference to Palearctic-Indian migratory blackheaded and redheaded buntings.
Collapse
Affiliation(s)
- Aakansha Sharma
- IndoUS Center in Chronobiology, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Sayantan Sur
- IndoUS Center in Chronobiology, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Vatsala Tripathi
- Department of Zoology, Dyal Singh College, University of Delhi, Delhi 110003, India
| | - Vinod Kumar
- IndoUS Center in Chronobiology, Department of Zoology, University of Delhi, Delhi 110007, India
| |
Collapse
|
10
|
de Greef E, Suh A, Thorstensen MJ, Delmore KE, Fraser KC. Genomic architecture of migration timing in a long-distance migratory songbird. Sci Rep 2023; 13:2437. [PMID: 36765096 PMCID: PMC9918537 DOI: 10.1038/s41598-023-29470-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The impact of climate change on spring phenology poses risks to migratory birds, as migration timing is controlled predominantly by endogenous mechanisms. Despite recent advances in our understanding of the underlying genetic basis of migration timing, the ways that migration timing phenotypes in wild individuals may map to specific genomic regions requires further investigation. We examined the genetic architecture of migration timing in a long-distance migratory songbird (purple martin, Progne subis subis) by integrating genomic data with an extensive dataset of direct migratory tracks. A moderate to large amount of variance in spring migration arrival timing was explained by genomics (proportion of phenotypic variation explained by genomics = 0.74; polygenic score R2 = 0.24). On chromosome 1, a region that was differentiated between migration timing phenotypes contained genes that could facilitate nocturnal flights and act as epigenetic modifiers. Overall, these results advance our understanding of the genomic underpinnings of migration timing.
Collapse
Affiliation(s)
- Evelien de Greef
- Department of Biological Sciences, University of Manitoba, Winnipeg, R3T 2N2, Canada.
| | - Alexander Suh
- Department of Organismal Biology, Uppsala University, 752 36, Uppsala, Sweden
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TU, UK
| | - Matt J Thorstensen
- Department of Biological Sciences, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Kira E Delmore
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Kevin C Fraser
- Department of Biological Sciences, University of Manitoba, Winnipeg, R3T 2N2, Canada
| |
Collapse
|
11
|
Bonar M, Anderson SJ, Anderson CR, Wittemyer G, Northrup JM, Shafer ABA. Genomic correlates for migratory direction in a free-ranging cervid. Proc Biol Sci 2022; 289:20221969. [PMID: 36475444 PMCID: PMC9727677 DOI: 10.1098/rspb.2022.1969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Animal migrations are some of the most ubiquitous and one of the most threatened ecological processes globally. A wide range of migratory behaviours occur in nature, and this behaviour is not uniform among and within species, where even individuals in the same population can exhibit differences. While the environment largely drives migratory behaviour, it is necessary to understand the genetic mechanisms influencing migration to elucidate the potential of migratory species to cope with novel conditions and adapt to environmental change. In this study, we identified genes associated with a migratory trait by undertaking pooled genome-wide scans on a natural population of migrating mule deer. We identified genomic regions associated with variation in migratory direction, including FITM1, a gene linked to the formation of lipids, and DPPA3, a gene linked to epigenetic modifications of the maternal line. Such a genetic basis for a migratory trait contributes to the adaptive potential of the species and might affect the flexibility of individuals to change their behaviour in the face of changes in their environment.
Collapse
Affiliation(s)
- Maegwin Bonar
- Environmental & Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada K9L 0G2
| | - Spencer J. Anderson
- Environmental & Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada K9L 0G2
| | - Charles R. Anderson
- Mammals Research Section, Colorado Parks and Wildlife, Fort Collins, CO 80523, USA
| | - George Wittemyer
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Joseph M. Northrup
- Environmental & Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada K9L 0G2,Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources & Forestry, Peterborough, Ontario, Canada K9J 3C7
| | - Aaron B. A. Shafer
- Environmental & Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada K9L 0G2
| |
Collapse
|
12
|
Matyjasiak P, López-Calderón C, Ambrosini R, Balbontín J, Costanzo A, Kiat Y, Romano A, Rubolini D. Wing morphology covaries with migration distance in a highly aerial insectivorous songbird. Curr Zool 2022. [DOI: 10.1093/cz/zoac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
According to classical prediction of aerodynamic theory, birds and other powered fliers that migrate over long distances should have longer and more pointed wings than those that migrate less. However, the association between wing morphology and migratory behavior can be masked by contrasting selective pressures related to foraging behavior, habitat selection and predator avoidance, possibly at the cost of lower flight energetic efficiency. We studied the handwing morphology of Eurasian barn swallows Hirundo rustica from four populations representing a migration distance gradient. This species is an aerial insectivore, so it flies extensively while foraging, and may migrate during the day using a ‘fly-and-forage’ migration strategy. Prolonged foraging flights may reinforce the effects of migration distance on flight morphology. We found that two wings’ aerodynamic properties – isometric handwing length and pointedness, both favoring energetically efficient flight, were more pronounced in barn swallows from populations undertaking longer seasonal migrations compared to less migratory populations. Our result contrast with two recent interspecific comparative studies that either reported no relationship or reported a negative relationship between pointedness and the degree of migratory behavior in hirundines. Our results may thus contribute to confirming the universality of the rule that longer migrations are associated with more pointed wings.
Collapse
Affiliation(s)
- Piotr Matyjasiak
- Museum and Institute of Zoology Polish Academy of Sciences, Wilcza 64 , PL-00-679 Warsaw, Poland
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Wóycickiego 1/3 , PL-01-815 Warsaw, Poland
| | - Cosme López-Calderón
- Departamento de Zoología, Facultad de Biología, Edificio Verde , Avda. de Reina Mercedes s/n, E-41012 Sevilla, Spain
- Department of Wetland Ecology, Estación Biológica de Doñana CSIC, Americo Vespucio s/n , E-41092 Seville, Spain
| | - Roberto Ambrosini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26 , I-20133 Milan, Italy
| | - Javier Balbontín
- Departamento de Zoología, Facultad de Biología, Edificio Verde , Avda. de Reina Mercedes s/n, E-41012 Sevilla, Spain
| | - Alessandra Costanzo
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26 , I-20133 Milan, Italy
| | - Yosef Kiat
- Israeli Bird Ringing Center (IBRC), Israel Ornithological Center, Society for the Protection of Nature in Israel , Hanegev 2, Tel-Aviv, Israel
| | - Andrea Romano
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26 , I-20133 Milan, Italy
| | - Diego Rubolini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26 , I-20133 Milan, Italy
- Istituto di Ricerca sulle Acque, IRSA-CNR, Via del Mulino 19 , I-20861 Brugherio (MB), Italy
| |
Collapse
|
13
|
Population-specific association of Clock gene polymorphism with annual cycle timing in stonechats. Sci Rep 2022; 12:7947. [PMID: 35562382 PMCID: PMC9106710 DOI: 10.1038/s41598-022-11158-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 04/19/2022] [Indexed: 11/28/2022] Open
Abstract
Timing is essential for survival and reproduction of organisms across the tree of life. The core circadian clock gene Clk is involved in the regulation of annual timing events and shows highly conserved sequence homology across vertebrates except for one variable region of poly-glutamine repeats. Clk genotype varies in some species with latitude, seasonal timing and migration. However, findings are inconsistent, difficult to disentangle from environmental responses, and biased towards high latitudes. Here we combine field data with a common-garden experiment to study associations of Clk polymorphism with latitude, migration and annual-cycle timing within the stonechat species complex across its trans-equatorial distribution range. Our dataset includes 950 records from 717 individuals from nine populations with diverse migratory strategies. Gene diversity was lowest in resident African and Canary Island populations and increased with latitude, independently of migration distance. Repeat length and annual-cycle timing was linked in a population-specific way. Specifically, equatorial African stonechats showed delayed timing with longer repeat length for all annual-cycle stages. Our data suggest that at low latitudes with nearly constant photoperiod, Clk genotype might orchestrate a range of consistent, individual chronotypes. In contrast, the influence of Clk on annual-cycle timing at higher latitudes might be mediated by its interactions with genes involved in (circadian) photoperiodic pathways.
Collapse
|
14
|
Bossu CM, Heath JA, Kaltenecker GS, Helm B, Ruegg KC. Clock-linked genes underlie seasonal migratory timing in a diurnal raptor. Proc Biol Sci 2022; 289:20212507. [PMID: 35506230 PMCID: PMC9069262 DOI: 10.1098/rspb.2021.2507] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/07/2022] [Indexed: 01/04/2023] Open
Abstract
Seasonal migration is a dynamic natural phenomenon that allows organisms to exploit favourable habitats across the annual cycle. While the morphological, physiological and behavioural changes associated with migratory behaviour are well characterized, the genetic basis of migration and its link to endogenous biological time-keeping pathways are poorly understood. Historically, genome-wide research has focused on genes of large effect, whereas many genes of small effect may work together to regulate complex traits like migratory behaviour. Here, we explicitly relax stringent outlier detection thresholds and, as a result, discover how multiple biological time-keeping genes are important to migratory timing in an iconic raptor species, the American kestrel (Falco sparverius). To validate the role of candidate loci in migratory timing, we genotyped kestrels captured across autumn migration and found significant associations between migratory timing and genetic variation in metabolic and light-input pathway genes that modulate biological clocks (top1, phlpp1, cpne4 and peak1). Further, we demonstrate that migrating individuals originated from a single panmictic source population, suggesting the existence of distinct early and late migratory genotypes (i.e. chronotypes). Overall, our results provide empirical support for the existence of a within-population-level polymorphism in genes underlying migratory timing in a diurnally migrating raptor.
Collapse
Affiliation(s)
- Christen M. Bossu
- Biology Department, Colorado State University, Fort Collins, CO 80521, USA
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| | - Julie A. Heath
- Raptor Research Center and Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Gregory S. Kaltenecker
- Intermountain Bird Observatory, Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Barbara Helm
- Department of Bird Migration, Swiss Ornithological Institute, 6204 Sempach, Switzerland
| | - Kristen C. Ruegg
- Biology Department, Colorado State University, Fort Collins, CO 80521, USA
| |
Collapse
|
15
|
de Almeida Miranda D, Araripe J, de Morais Magalhães NG, de Siqueira LS, de Abreu CC, Pereira PDC, Henrique EP, da Silva Chira PAC, de Melo MAD, do Rêgo PS, Diniz DG, Sherry DF, Diniz CWP, Guerreiro-Diniz C. Shorebirds' Longer Migratory Distances Are Associated With Larger ADCYAP1 Microsatellites and Greater Morphological Complexity of Hippocampal Astrocytes. Front Psychol 2022; 12:784372. [PMID: 35185684 PMCID: PMC8855117 DOI: 10.3389/fpsyg.2021.784372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
For the epic journey of autumn migration, long-distance migratory birds use innate and learned information and follow strict schedules imposed by genetic and epigenetic mechanisms, the details of which remain largely unknown. In addition, bird migration requires integrated action of different multisensory systems for learning and memory, and the hippocampus appears to be the integration center for this task. In previous studies we found that contrasting long-distance migratory flights differentially affected the morphological complexity of two types of hippocampus astrocytes. Recently, a significant association was found between the latitude of the reproductive site and the size of the ADCYAP1 allele in long distance migratory birds. We tested for correlations between astrocyte morphological complexity, migratory distances, and size of the ADCYAP1 allele in three long-distance migrant species of shorebird and one non-migrant. Significant differences among species were found in the number and morphological complexity of the astrocytes, as well as in the size of the microsatellites of the ADCYAP1 gene. We found significant associations between the size of the ADCYAP1 microsatellites, the migratory distances, and the degree of morphological complexity of the astrocytes. We suggest that associations between astrocyte number and morphological complexity, ADCYAP1 microsatellite size, and migratory behavior may be part of the adaptive response to the migratory process of shorebirds.
Collapse
Affiliation(s)
- Diego de Almeida Miranda
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil.,Laboratório de Genética e Conservação, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Bragança, Brazil
| | - Juliana Araripe
- Laboratório de Genética e Conservação, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Bragança, Brazil
| | - Nara G de Morais Magalhães
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Lucas Silva de Siqueira
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Cintya Castro de Abreu
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Patrick Douglas Corrêa Pereira
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Ediely Pereira Henrique
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Pedro Arthur Campos da Silva Chira
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Mauro A D de Melo
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Péricles Sena do Rêgo
- Laboratório de Genética e Conservação, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Bragança, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Belém, Brazil.,Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Brazil
| | - David Francis Sherry
- Department of Psychology, Advanced Facility for Avian Research, University of Western Ontario, London, ON, Canada
| | - Cristovam W P Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Belém, Brazil
| | - Cristovam Guerreiro-Diniz
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| |
Collapse
|
16
|
Cao LJ, Song W, Chen JC, Fan XL, Hoffmann AA, Wei SJ. Population genomic signatures of the oriental fruit moth related to the Pleistocene climates. Commun Biol 2022; 5:142. [PMID: 35177826 PMCID: PMC8854661 DOI: 10.1038/s42003-022-03097-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/31/2022] [Indexed: 12/31/2022] Open
Abstract
The Quaternary climatic oscillations are expected to have had strong impacts on the evolution of species. Although legacies of the Quaternary climates on population processes have been widely identified in diverse groups of species, adaptive genetic changes shaped during the Quaternary have been harder to decipher. Here, we assembled a chromosome-level genome of the oriental fruit moth and compared genomic variation among refugial and colonized populations of this species that diverged in the Pleistocene. High genomic diversity was maintained in refugial populations. Demographic analysis showed that the effective population size of refugial populations declined during the penultimate glacial maximum (PGM) but remained stable during the last glacial maximum (LGM), indicating a strong impact of the PGM rather than the LGM on this pest species. Genome scans identified one chromosomal inversion and a mutation of the circadian gene Clk on the neo-Z chromosome potentially related to the endemicity of a refugial population. In the colonized populations, genes in pathways of energy metabolism and wing development showed signatures of selection. These different genomic signatures of refugial and colonized populations point to multiple impacts of Quaternary climates on adaptation in an extant species.
Collapse
Affiliation(s)
- Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing, 100097, China
| | - Wei Song
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing, 100097, China
- Beijing Key Laboratory for Forest Pests Control, Beijing Forestry University, Beijing, 100083, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing, 100097, China
| | - Xu-Lei Fan
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing, 100097, China
| | - Ary Anthony Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing, 100097, China.
| |
Collapse
|
17
|
Frias-Soler RC, Kelsey NA, Villarín Pildaín L, Wink M, Bairlein F. Transcriptome signature changes in the liver of a migratory passerine. Genomics 2022; 114:110283. [PMID: 35143886 DOI: 10.1016/j.ygeno.2022.110283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 12/01/2022]
Abstract
The liver plays a principal role in avian migration. Here, we characterised the liver transcriptome of a long-distance migrant, the Northern Wheatear (Oenanthe oenanthe), sampled at different migratory stages, looking for molecular processes linked with adaptations to migration. The analysis of the differentially expressed genes suggested changes in the periods of the circadian rhythm, variation in the proportion of cells in G1/S cell-cycle stages and the putative polyploidization of this cell population. This may explain the dramatic increment in the liver's metabolic capacities towards migration. Additionally, genes involved in anti-oxidative stress, detoxification and innate immune responses, lipid metabolism, inflammation and angiogenesis were regulated. Lipophagy and lipid catabolism were active at all migratory stages and increased towards the fattening and fat periods, explaining the relevance of lipolysis in controlling steatosis and maintaining liver health. Our study clears the way for future functional studies regarding long-distance avian migration.
Collapse
Affiliation(s)
- Roberto Carlos Frias-Soler
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany; Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | - Natalie A Kelsey
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany.
| | - Lilian Villarín Pildaín
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | - Franz Bairlein
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany; Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany.
| |
Collapse
|
18
|
Rapid adjustments of migration and life history in hemisphere-switching cliff swallows. Curr Biol 2021; 31:2914-2919.e2. [PMID: 33951458 DOI: 10.1016/j.cub.2021.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/26/2021] [Accepted: 04/09/2021] [Indexed: 01/20/2023]
Abstract
Many aspects of bird migration are necessarily innate.1 However, the extent of deterministic genetic control, environmental influence, and individual decision making in the control of migration remains unclear.2-8 Globally, few cases of rapid and dramatic life-history changes resulting in novel migration strategies are known. An example is latitudinal trans-hemispheric breeding colonization, whereby a subpopulation suddenly begins breeding on its non-breeding range.9-13 These life-history reversals demand concomitant changes in the timing of migration, feather molt, and breeding if the population is to remain viable.13 Cliff swallows, Petrochelidon pyrrhonota, are long-distance migrants that breed in North America and spend the non-breeding season mostly in South America.14 However, in 2015, a small population switched hemispheres by breeding successfully in Argentina,9 over 8,000 km from the nearest potential source, after presumably failed attempts.15,16 This provided a unique chance to characterize the early mechanisms of change in migratory behavior and phenology and to assess the possibility of double breeding. We tracked cliff swallows with geolocators following their second and fourth breeding seasons in Argentina, documenting inverted seasonality, three new migratory patterns and non-breeding areas (North America, Mesoamerica, and South America), and a shift of molt phenology by approximately 6 months, all possibly arising within a single generation. These birds did not practice migratory double breeding, although some spent the boreal summer in the traditional breeding range. Our data show that fundamental phenological changes occurred very rapidly during colonization and that phenotypic plasticity can underlie profound changes in the life histories of migratory birds.
Collapse
|
19
|
Ryzhanovskiy VN, Gilev AV. Hierarchy of Factors that Determine the Timing of the Arrival of Passeriformes in the Ob Forested Tundra. BIOL BULL+ 2021. [DOI: 10.1134/s1062359020080117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Capblancq T, Fitzpatrick MC, Bay RA, Exposito-Alonso M, Keller SR. Genomic Prediction of (Mal)Adaptation Across Current and Future Climatic Landscapes. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-020720-042553] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Signals of local adaptation have been found in many plants and animals, highlighting the heterogeneity in the distribution of adaptive genetic variation throughout species ranges. In the coming decades, global climate change is expected to induce shifts in the selective pressures that shape this adaptive variation. These changes in selective pressures will likely result in varying degrees of local climate maladaptation and spatial reshuffling of the underlying distributions of adaptive alleles. There is a growing interest in using population genomic data to help predict future disruptions to locally adaptive gene-environment associations. One motivation behind such work is to better understand how the effects of changing climate on populations’ short-term fitness could vary spatially across species ranges. Here we review the current use of genomic data to predict the disruption of local adaptation across current and future climates. After assessing goals and motivationsunderlying the approach, we review the main steps and associated statistical methods currently in use and explore our current understanding of the limits and future potential of using genomics to predict climate change (mal)adaptation.
Collapse
Affiliation(s)
- Thibaut Capblancq
- Department of Plant Biology, University of Vermont, Burlington, Vermont 05405, USA
| | - Matthew C. Fitzpatrick
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, Maryland 21532, USA
| | - Rachael A. Bay
- Department of Evolution and Ecology, University of California, Davis, California 95616, USA
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Stephen R. Keller
- Department of Plant Biology, University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|
21
|
Bingman VP, Ewry EM. On a Search for a Neurogenomics of Cognitive Processes Supporting Avian Migration and Navigation. Integr Comp Biol 2020; 60:967-975. [DOI: 10.1093/icb/icaa040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Synopsis
The migratory behavioral profile of birds is characterized by considerable variation in migratory phenotype, and a number of distinct orientation and navigational mechanisms supports avian migration and homing. As such, bird navigation potentially offers a unique opportunity to investigate the neurogenomics of an often spectacular, naturally occurring spatial cognition. However, a number of factors may impede realization of this potential. First, aspects of the migratory behavior displayed by birds, including some navigational-support mechanisms, are under innate/genetic influence as, for example, young birds on their first migration display appropriate migratory orientation and timing without any prior experience and even when held in captivity from the time of birth. Second, many of the genes with an allelic variation that co-varies with migratory phenotype are genes that regulate processes unrelated to cognition. Where cognition and navigation clearly converge is in the familiar landmark/landscape navigation best studied in homing pigeons and known to be dependent on the hippocampus. Encouraging here are differences in the hippocampal organization among different breeds of domestic pigeons and a different allelic profile in the LRP8 gene of homing pigeons. A focus on the hippocampus also suggests that differences in developmentally active genes that promote hippocampal differentiation might also be genes where allelic or epigenetic variation could explain the control of or comparison-group differences in a cognition of navigation. Sobering, however, is just how little has been learned about the neurogenomics of cognition (“intelligence”) in humans despite the vast resources and research activity invested; resources that would be unimaginable for any avian study investigating bird navigation.
Collapse
Affiliation(s)
- Verner P Bingman
- Department of Psychology and J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Emily M Ewry
- Department of Psychology and J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, USA
| |
Collapse
|
22
|
Transcriptome signatures in the brain of a migratory songbird. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100681. [PMID: 32222683 DOI: 10.1016/j.cbd.2020.100681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/06/2020] [Accepted: 03/15/2020] [Indexed: 12/22/2022]
Abstract
Most of the birds's adaptations for migration have a neuroendocrine origin, triggered by changes in photoperiod and the patterns of Earth's magnetic field. Migration phenomenology has been well described in the past decades, yet the genetic structure behind it remains terra incognita. We used RNA-Seq data to investigate which biological functions are linked with the seasonal brain adaptations of a long-distance trans-continental migratory passerine, the Northern Wheatear (Oenanthe oenanthe). We sequenced the wheatear's transcriptomes at three different stages: lean birds, a characteristic phenotype before the onset of migration, during fattening, and at their maximal migratory body mass. We identified a total of 15,357 genes in the brain of wheatears, of which 84 were differentially expressed. These were mostly related to nervous tissue development, angiogenesis, ATP production, innate immune response, and antioxidant protection, as well as GABA and dopamine signalling. The expression pattern of differentially expressed genes is correlated with typical phenotypic changes before migration, such as hyperphagia, migratory restlessness, and a potential increment in the visual and spatial memory capacities. Our work points out, for future studies, biological functions found to be involved in the development of the migratory phenotype -a unique model to study the core of neural, energetic and muscular adaptations for endurance exercise. Comparison of wheatears' transcriptomic data with two other studies with similar goals shows no correlation among the trends in the gene expression. It highlights the complexity and diversity of adaptations for long-distance migration in birds.
Collapse
|
23
|
Parody-Merino ÁM, Battley PF, Conklin JR, Fidler AE. No evidence for an association between Clock gene allelic variation and migration timing in a long-distance migratory shorebird (Limosa lapponica baueri). Oecologia 2019; 191:843-859. [PMID: 31659437 DOI: 10.1007/s00442-019-04524-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 10/01/2019] [Indexed: 01/09/2023]
Abstract
The gene Clock is a key part of the Core Circadian Oscillator, and the length of the polyglutamine (poly-Q) repeat sequence in Clock (ClkpolyQcds) has been proposed to be associated with the timing of annual cycle events in birds. We tested whether variation in ClkpolyQcds corresponds to variation in migration timing in the bar-tailed godwit (Limosa lapponica baueri), a species in which individuals show strong annual consistency in their migration timing despite the New Zealand population migrating across a 5-week period. We describe allelic variation of the ClkpolyQcds in 135 godwits over-wintering in New Zealand (N.Z.) and investigate whether polymorphism in this region is associated with northward migration timing (chronophenotype) from N.Z. or (for 32 birds tracked by geolocator) after the primary stopover in Asia. Six Clock alleles were detected (Q7‒Q12) and there was substantial variation between individuals (heterozygosity of 0.79). There was no association between ClkpolyQcds polymorphism and migration timing from N.Z. The length of the shorter Clock allele was related to migration timing from Asia, though this relationship arose largely from just a few northern-breeding birds with longer alleles. Other studies show no consistent associations between ClkpolyQcds and migration timing in birds, although Clock may be associated with breeding latitude in some species (as an adaptation to photoperiodic regime). Apparent relationships with migration timing could reflect latitude-related variation in migration timing, rather than Clock directly affecting migration timing. On current evidence, ClkpolyQcds is not a strong candidate for driving migration timing in migratory birds generally.
Collapse
Affiliation(s)
- Ángela M Parody-Merino
- Wildlife and Ecology Group, School of Agriculture and Environment, Massey University, Palmerston North, 4442, New Zealand.
| | - Phil F Battley
- Wildlife and Ecology Group, School of Agriculture and Environment, Massey University, Palmerston North, 4442, New Zealand
| | - Jesse R Conklin
- Conservation Ecology Group, University of Groningen, 9700 AB, Groningen, The Netherlands
| | - Andrew E Fidler
- Institute of Marine Science, University of Auckland, Auckland, 1142, New Zealand
| |
Collapse
|
24
|
Rittenhouse JL, Robart AR, Watts HE. Variation in chronotype is associated with migratory timing in a songbird. Biol Lett 2019; 15:20190453. [PMID: 31455169 DOI: 10.1098/rsbl.2019.0453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Like many organisms, birds exhibit daily (circadian) and seasonal biological rhythms, and within populations both daily and seasonal timing often vary among individuals. Because photoperiod interacts with the circadian rhythms of many organisms to induce seasonal changes in behaviour and physiology, it is hypothesized that differences in daily timing, called chronotypes, underpin differences among individuals in the timing of seasonal events. For seasonal events stimulated by increasing daylength, this hypothesis predicts a positive relationship between the timing of daily and seasonal activities of individuals, with advanced chronotypes expressing events earlier in the year. The few previous tests of this hypothesis have focused on seasonal reproductive timing in birds. However, the hypothesis predicts that this relationship should extend to other photoinduced seasonal events. Therefore, we tested whether variation in chronotype was associated with variation in spring migratory timing in a captive songbird model, the pine siskin (Spinus pinus). We found that pine siskins expressing migratory restlessness exhibited repeatable chronotypes in their timing of nocturnal activity. Further, chronotype was significantly associated with the onset date of migratory behaviour, consistent with the hypothesized relationship between chronotype and seasonal timing.
Collapse
Affiliation(s)
| | - Ashley R Robart
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Heather E Watts
- School of Biological Sciences, Washington State University, Pullman, WA, USA.,Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| |
Collapse
|
25
|
Ralston J, Lorenc L, Montes M, DeLuca WV, Kirchman JJ, Woodworth BK, Mackenzie SA, Newman A, Cooke HA, Freeman NE, Sutton AO, Tauzer L, Norris DR. Length polymorphisms at two candidate genes explain variation of migratory behaviors in blackpoll warblers ( Setophaga striata). Ecol Evol 2019; 9:8840-8855. [PMID: 31410284 PMCID: PMC6686290 DOI: 10.1002/ece3.5436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/30/2019] [Accepted: 06/15/2019] [Indexed: 12/12/2022] Open
Abstract
Migratory behaviors such as the timing and duration of migration are genetically inherited and can be under strong natural selection, yet we still know very little about the specific genes or molecular pathways that control these behaviors. Studies in candidate genes Clock and Adcyap1 have revealed that both of these loci can be significantly correlated with migratory behaviors in birds, though observed relationships appear to vary across species. We investigated geographic genetic structure of Clock and Adcyap1 in four populations of blackpoll warblers (Setophaga striata), a Neotropical-Nearctic migrant that exhibits geographic variation in migratory timing and duration across its boreal breeding distribution. Further, we used data on migratory timing and duration, obtained from light-level geolocator trackers to investigate candidate genotype-phenotype relationships at the individual level. While we found no geographic structure in either candidate gene, we did find evidence that candidate gene lengths are correlated with five of the six migratory traits. Maximum Clock allele length was significantly and negatively associated with spring arrival date. Minimum Adcyap1 allele length was significantly and negatively associated with spring departure date and positively associated with fall arrival date at the wintering grounds. Additionally, we found a significant interaction between Clock and Adcyap1 allele lengths on both spring and fall migratory duration. Adcyap1 heterozygotes also had significantly shorter migration duration in both spring and fall compared to homozygotes. Our results support the growing body of evidence that Clock and Adcyap1 allele lengths are correlated with migratory behaviors in birds.
Collapse
Affiliation(s)
- Joel Ralston
- Department of BiologySaint Mary's CollegeNotre DameINUSA
| | - Lydia Lorenc
- Department of BiologySaint Mary's CollegeNotre DameINUSA
| | - Melissa Montes
- Department of BiologySaint Mary's CollegeNotre DameINUSA
| | - William V. DeLuca
- Department of Environmental ConservationUniversity of MassachusettsAmherstMAUSA
| | | | - Bradley K. Woodworth
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
- School of Biological SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | | | - Amy Newman
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
| | | | | | - Alex O. Sutton
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
| | - Lila Tauzer
- Wildlife Conservation Society CanadaWhitehorseYTCanada
| | - D. Ryan Norris
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
| |
Collapse
|
26
|
Ambrosini R, Corti M, Franzetti A, Caprioli M, Rubolini D, Motta VM, Costanzo A, Saino N, Gandolfi I. Cloacal microbiomes and ecology of individual barn swallows. FEMS Microbiol Ecol 2019; 95:5479878. [DOI: 10.1093/femsec/fiz061] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023] Open
Affiliation(s)
- Roberto Ambrosini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milano, Italy
| | - Margherita Corti
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milano, Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Manuela Caprioli
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milano, Italy
| | - Diego Rubolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milano, Italy
| | - Veronica Maria Motta
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Alessandra Costanzo
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milano, Italy
| | - Nicola Saino
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milano, Italy
| | - Isabella Gandolfi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| |
Collapse
|
27
|
Hoke KL, Adkins-Regan E, Bass AH, McCune AR, Wolfner MF. Co-opting evo-devo concepts for new insights into mechanisms of behavioural diversity. ACTA ACUST UNITED AC 2019; 222:222/8/jeb190058. [PMID: 30988051 DOI: 10.1242/jeb.190058] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We propose that insights from the field of evolutionary developmental biology (or 'evo-devo') provide a framework for an integrated understanding of the origins of behavioural diversity and its underlying mechanisms. Towards that goal, in this Commentary, we frame key questions in behavioural evolution in terms of molecular, cellular and network-level properties with a focus on the nervous system. In this way, we highlight how mechanistic properties central to evo-devo analyses - such as weak linkage, versatility, exploratory mechanisms, criticality, degeneracy, redundancy and modularity - affect neural circuit function and hence the range of behavioural variation that can be filtered by selection. We outline why comparative studies of molecular and neural systems throughout ontogeny will provide novel insights into diversity in neural circuits and behaviour.
Collapse
Affiliation(s)
- Kim L Hoke
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Elizabeth Adkins-Regan
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA.,Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Amy R McCune
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
28
|
Musitelli F, Ambrosini R, Caffi M, Caprioli M, Rubolini D, Saino N, Franzetti A, Gandolfi I. Ecological features of feather microbiota in breeding common swifts. ETHOL ECOL EVOL 2018. [DOI: 10.1080/03949370.2018.1459865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Federica Musitelli
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, I-20126 Milan, Italy
| | - Roberto Ambrosini
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, I-20126 Milan, Italy
| | - Mario Caffi
- Osservatorio Ornitologico Pianura Bresciana “Padernello”, Via Cavour 1, I-25022 Borgo San Giacomo (BS), Italy
| | - Manuela Caprioli
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, I-20133 Milan, Italy
| | - Diego Rubolini
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, I-20133 Milan, Italy
| | - Nicola Saino
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, I-20133 Milan, Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, I-20126 Milan, Italy
| | - Isabella Gandolfi
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, I-20126 Milan, Italy
| |
Collapse
|
29
|
Hau M, Dominoni D, Casagrande S, Buck CL, Wagner G, Hazlerigg D, Greives T, Hut RA. Timing as a sexually selected trait: the right mate at the right moment. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0249. [PMID: 28993493 DOI: 10.1098/rstb.2016.0249] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2017] [Indexed: 12/20/2022] Open
Abstract
Sexual selection favours the expression of traits in one sex that attract members of the opposite sex for mating. The nature of sexually selected traits such as vocalization, colour and ornamentation, their fitness benefits as well as their costs have received ample attention in field and laboratory studies. However, sexually selected traits may not always be expressed: coloration and ornaments often follow a seasonal pattern and behaviours may be displayed only at specific times of the day. Despite the widely recognized differences in the daily and seasonal timing of traits and their consequences for reproductive success, the actions of sexual selection on the temporal organization of traits has received only scant attention. Drawing on selected examples from bird and mammal studies, here we summarize the current evidence for the daily and seasonal timing of traits. We highlight that molecular advances in chronobiology have opened exciting new opportunities for identifying the genetic targets that sexual selection may act on to shape the timing of trait expression. Furthermore, known genetic links between daily and seasonal timing mechanisms lead to the hypothesis that selection on one timescale may simultaneously also affect the other. We emphasize that studies on the timing of sexual displays of both males and females from wild populations will be invaluable for understanding the nature of sexual selection and its potential to act on differences within and between the sexes in timing. Molecular approaches will be important for pinpointing genetic components of biological rhythms that are targeted by sexual selection, and to clarify whether these represent core or peripheral components of endogenous clocks. Finally, we call for a renewed integration of the fields of evolution, behavioural ecology and chronobiology to tackle the exciting question of how sexual selection contributes to the evolution of biological clocks.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.
Collapse
Affiliation(s)
- Michaela Hau
- Max Planck Institute for Ornithology, Seewiesen, Germany .,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Davide Dominoni
- Department of Animal Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | | | - C Loren Buck
- Department of Biological Sciences and Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, AZ, USA
| | - Gabriela Wagner
- Department of Arctic and Marine Biology, UiT: the Arctic University of Norway, Tromsø, Norway
| | - David Hazlerigg
- Department of Arctic and Marine Biology, UiT: the Arctic University of Norway, Tromsø, Norway
| | - Timothy Greives
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Roelof A Hut
- Chronobiology unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| |
Collapse
|
30
|
Di Lecce I, Bazzocchi C, Cecere JG, Epis S, Sassera D, Villani BM, Bazzi G, Negri A, Saino N, Spina F, Bandi C, Rubolini D. Patterns of Midichloria infection in avian-borne African ticks and their trans-Saharan migratory hosts. Parasit Vectors 2018; 11:106. [PMID: 29471857 PMCID: PMC5824480 DOI: 10.1186/s13071-018-2669-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/23/2018] [Indexed: 11/10/2022] Open
Abstract
Background Ticks are obligate haematophagous ectoparasites of vertebrates and frequently parasitize avian species that can carry them across continents during their long-distance migrations. Ticks may have detrimental effects on the health state of their avian hosts, which can be either directly caused by blood-draining or mediated by microbial pathogens transmitted during the blood meal. Indeed, ticks host complex microbial communities, including bacterial pathogens and symbionts. Midichloria bacteria (Rickettsiales) are widespread tick endosymbionts that can be transmitted to vertebrate hosts during the tick bite, inducing an antibody response. Their actual role as infectious/pathogenic agents is, however, unclear. Methods We screened for Midichloria DNA African ticks and blood samples collected from trans-Saharan migratory songbirds at their arrival in Europe during spring migration. Results Tick infestation rate was 5.7%, with most ticks belonging to the Hyalomma marginatum species complex. Over 90% of Hyalomma ticks harboured DNA of Midichloria bacteria belonging to the monophylum associated with ticks. Midichloria DNA was detected in 43% of blood samples of avian hosts. Tick-infested adult birds were significantly more likely to test positive to the presence of Midichloria DNA than non-infested adults and second-year individuals, suggesting a long-term persistence of these bacteria within avian hosts. Tick parasitism was associated with a significantly delayed timing of spring migration of avian hosts but had no significant effects on body condition, whereas blood Midichloria DNA presence negatively affected fat deposits of tick-infested avian hosts. Conclusions Our results show that ticks effectively transfer Midichloria bacteria to avian hosts, supporting the hypothesis that they are infectious to vertebrates. Bird infection likely enhances the horizontal spread of these bacteria across haematophagous ectoparasite populations. Moreover, we showed that Midichloria and tick parasitism have detrimental non-independent effects on avian host health during migration, highlighting the complexity of interactions involving ticks, their vertebrate hosts, and tick-borne bacteria. Electronic supplementary material The online version of this article (10.1186/s13071-018-2669-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene Di Lecce
- Wild Urban Evolution and Ecology Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland
| | - Chiara Bazzocchi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, via Celoria 10, I-20133, Milan, Italy
| | - Jacopo G Cecere
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), via Cà Fornacetta 9, I-40064, Ozzano Emilia (BO), Italy
| | - Sara Epis
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, I-20133, Milan, Italy
| | - Davide Sassera
- Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia, via Ferrata 9, I-27100, Pavia, Italy
| | - Barbara M Villani
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, I-20133, Milan, Italy
| | - Gaia Bazzi
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, I-20133, Milan, Italy
| | - Agata Negri
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, I-20133, Milan, Italy
| | - Nicola Saino
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26, I-20133, Milan, Italy
| | - Fernando Spina
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), via Cà Fornacetta 9, I-40064, Ozzano Emilia (BO), Italy
| | - Claudio Bandi
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, I-20133, Milan, Italy
| | - Diego Rubolini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26, I-20133, Milan, Italy.
| |
Collapse
|
31
|
Examination of Clock and Adcyap1 gene variation in a neotropical migratory passerine. PLoS One 2018; 13:e0190859. [PMID: 29324772 PMCID: PMC5764313 DOI: 10.1371/journal.pone.0190859] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 12/21/2017] [Indexed: 11/19/2022] Open
Abstract
Complex behavioral traits, such as those making up a migratory phenotype, are regulated by multiple environmental factors and multiple genes. We investigated possible relationships between microsatellite variation at two candidate genes implicated in the control of migratory behavior, Clock and Adcyap1, and several aspects of migratory life-history and evolutionary divergence in the Painted Bunting (Passerina ciris), a species that shows wide variation in migratory and molting strategies across a disjunct distribution. We focused on Clock and Adcyap1 microsatellite variation across three Painted Bunting populations in Oklahoma, Louisiana, and North Carolina, and for the Oklahoma breeding population we used published migration tracking data on adult males to explore phenotypic variation in individual migratory behavior. We found no correlation between microsatellite allele size within either Clock and Adcyap1 relative to the initiation or duration of fall migration in adult males breeding in Oklahoma. We also show the lack of significant correlations with aspects of the migratory phenotype for the Louisiana population. Our research highlights the limitations of studying microsatellite allelic mutations that are of undetermined functional influence relative to complex behavioral phenotypes.
Collapse
|
32
|
Romano A, Possenti CD, Caprioli M, Gatti E, Gianfranceschi L, Rubolini D, Saino N, Parolini M. Circadian genes polymorphism and breeding phenology in a resident bird, the yellow‐legged gull. J Zool (1987) 2017. [DOI: 10.1111/jzo.12501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- A. Romano
- Department of Environmental Science and Policy University of Milan Milan Italy
| | - C. D. Possenti
- Department of Environmental Science and Policy University of Milan Milan Italy
| | - M. Caprioli
- Department of Environmental Science and Policy University of Milan Milan Italy
| | - E. Gatti
- Department of Biosciences University of Milan Milan Italy
| | | | - D. Rubolini
- Department of Environmental Science and Policy University of Milan Milan Italy
| | - N. Saino
- Department of Environmental Science and Policy University of Milan Milan Italy
| | - M. Parolini
- Department of Environmental Science and Policy University of Milan Milan Italy
| |
Collapse
|
33
|
Lugo Ramos JS, Delmore KE, Liedvogel M. Candidate genes for migration do not distinguish migratory and non-migratory birds. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:383-397. [PMID: 28585043 PMCID: PMC5522501 DOI: 10.1007/s00359-017-1184-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 10/27/2022]
Abstract
Migratory traits in birds have been shown to have a strong heritable component and several candidate genes have been suggested to control these migratory traits. To investigate if the genetic makeup of one or a set of these candidate genes can be used to identify a general pattern between migratory and non-migratory birds, we extracted genomic sequence data for 25 hypothesised candidate genes for migration from 70 available genomes across all orders of Aves and characterised sequence divergence between migratory and non-migratory phenotypes. When examining each gene separately across all species, we did not identify any genetic variants in candidate genes that distinguished migrants from non-migrants; any resulting pattern was driven by the phylogenetic signal. This was true for each gene analysed independently, but also for concatenated sequence alignments of all candidate genes combined. We also attempted to distinguish between migrant and non-migrants using structural features at four candidate genes that have previously been reported to show associated with migratory behaviour but did not pick up a signal for migratory phenotype here either. Finally, a screen for dN/dS ratio across all focal candidate genes to probe for putative features of selection did not uncover a pattern, though this might not be expected given the broad phylogenetic scale used here. Our study demonstrates the potential of public genomic data to test for general patterns of migratory gene candidates in a cross-species comparative context, and raise questions on the applicability of candidate gene approaches in a macro-evolutionary context to understand the genetic architecture of migratory behaviour.
Collapse
Affiliation(s)
- Juan S Lugo Ramos
- Max Planck Institute for Evolutionary Biology, AG Behavioural Genomics, August-Thienemann-Str. 2, 24306, Plön, Germany
| | - Kira E Delmore
- Max Planck Institute for Evolutionary Biology, AG Behavioural Genomics, August-Thienemann-Str. 2, 24306, Plön, Germany
| | - Miriam Liedvogel
- Max Planck Institute for Evolutionary Biology, AG Behavioural Genomics, August-Thienemann-Str. 2, 24306, Plön, Germany.
| |
Collapse
|
34
|
Saino N, Ambrosini R, Albetti B, Caprioli M, De Giorgio B, Gatti E, Liechti F, Parolini M, Romano A, Romano M, Scandolara C, Gianfranceschi L, Bollati V, Rubolini D. Migration phenology and breeding success are predicted by methylation of a photoperiodic gene in the barn swallow. Sci Rep 2017; 7:45412. [PMID: 28361883 PMCID: PMC5374444 DOI: 10.1038/srep45412] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/16/2017] [Indexed: 02/07/2023] Open
Abstract
Individuals often considerably differ in the timing of their life-cycle events, with major consequences for individual fitness, and, ultimately, for population dynamics. Phenological variation can arise from genetic effects but also from epigenetic modifications in DNA expression and translation. Here, we tested if CpG methylation at the poly-Q and 5'-UTR loci of the photoperiodic Clock gene predicted migration and breeding phenology of long-distance migratory barn swallows (Hirundo rustica) that were tracked year-round using light-level geolocators. Increasing methylation at Clock poly-Q was associated with earlier spring departure from the African wintering area, arrival date at the European breeding site, and breeding date. Higher methylation levels also predicted increased breeding success. Thus, we showed for the first time in any species that CpG methylation at a candidate gene may affect phenology and breeding performance. Methylation at Clock may be a candidate mechanism mediating phenological responses of migratory birds to ongoing climate change.
Collapse
Affiliation(s)
- Nicola Saino
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Roberto Ambrosini
- Department of Earth and Environmental Sciences (DISAT), University of Milano Bicocca, Piazza della Scienza, 1, I-20126 Milan, Italy
| | - Benedetta Albetti
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab - Department of Clinical Sciences and Community Health, University of Milan, via San Barnaba 8, I-20122 Milan, Italy
| | - Manuela Caprioli
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Barbara De Giorgio
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab - Department of Clinical Sciences and Community Health, University of Milan, via San Barnaba 8, I-20122 Milan, Italy
| | - Emanuele Gatti
- Department of Earth and Environmental Sciences (DISAT), University of Milano Bicocca, Piazza della Scienza, 1, I-20126 Milan, Italy
| | - Felix Liechti
- Swiss Ornithological Insititute, Seerose 1, CH-6204, Sempach, Switzerland
| | - Marco Parolini
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Andrea Romano
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Maria Romano
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Chiara Scandolara
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Luca Gianfranceschi
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Valentina Bollati
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab - Department of Clinical Sciences and Community Health, University of Milan, via San Barnaba 8, I-20122 Milan, Italy
| | - Diego Rubolini
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| |
Collapse
|
35
|
|
36
|
Romano A, De Giorgio B, Parolini M, Favero C, Possenti CD, Iodice S, Caprioli M, Rubolini D, Ambrosini R, Gianfranceschi L, Saino N, Bollati V. Methylation of the circadian Clock gene in the offspring of a free-living passerine bird increases with maternal and individual exposure to PM 10. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:29-37. [PMID: 27712846 DOI: 10.1016/j.envpol.2016.08.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/01/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
The consequences of exposure to particulate matter (PM) have been thoroughly investigated in humans and other model species, but there is a dearth of studies of the effects of PM on physiology and life-history traits of non-human organisms living in natural or semi-natural environments. Besides toxicological relevance, PM has been recently suggested to exert epigenetic effects by altering DNA methylation patterns. Here, we investigated for the first time the association between the exposure to free-air PM10 and DNA methylation at two loci ('poly-Q exon' and '5'-UTR') of the Clock gene in blood cells of the nestlings of a synanthropic passerine bird, the barn swallow (Hirundo rustica). The Clock gene is a phylogenetically highly conserved gene playing a major role in governing circadian rhythms and circannual life cycles of animals, implying that change in its level of methylation can impact on important fitness traits. We found that methylation at both loci significantly increased with PM10 levels recorded few days before blood sampling, and also with PM10 exposure experienced by the mother during or shortly before egg laying. This study is the first where methylation at a functionally important gene has been shown to vary according to the concentration of anthropogenic pollutants in any animal species in the wild. Since early-life environmental conditions produce epigenetic effects that can transgenerationally be transmitted, DNA methylation of genes controlling photoperiodic response can have far reaching consequences for the ecology and the evolution of wild animal populations.
Collapse
Affiliation(s)
- Andrea Romano
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Barbara De Giorgio
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab - Department of Clinical Sciences and Community Health, University of Milan, via San Barnaba 8, I-20122 Milan, Italy
| | - Marco Parolini
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Chiara Favero
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab - Department of Clinical Sciences and Community Health, University of Milan, via San Barnaba 8, I-20122 Milan, Italy
| | | | - Simona Iodice
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab - Department of Clinical Sciences and Community Health, University of Milan, via San Barnaba 8, I-20122 Milan, Italy
| | - Manuela Caprioli
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Diego Rubolini
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Roberto Ambrosini
- Department of Earth and Environmental Sciences (DISAT), University of Milano Bicocca, Piazza della Scienza, 1, I-20126 Milan, Italy
| | - Luca Gianfranceschi
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy.
| | - Nicola Saino
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Valentina Bollati
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab - Department of Clinical Sciences and Community Health, University of Milan, via San Barnaba 8, I-20122 Milan, Italy.
| |
Collapse
|
37
|
Bazzi G, Cecere JG, Caprioli M, Gatti E, Gianfranceschi L, Podofillini S, Possenti CD, Ambrosini R, Saino N, Spina F, Rubolini D. Clock gene polymorphism, migratory behaviour and geographic distribution: a comparative study of trans-Saharan migratory birds. Mol Ecol 2016; 25:6077-6091. [PMID: 27862517 DOI: 10.1111/mec.13913] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/18/2022]
Abstract
Migratory behaviour is controlled by endogenous circannual rhythms that are synchronized by external cues, such as photoperiod. Investigations on the genetic basis of circannual rhythmicity in vertebrates have highlighted that variation at candidate 'circadian clock' genes may play a major role in regulating photoperiodic responses and timing of life cycle events, such as reproduction and migration. In this comparative study of 23 trans-Saharan migratory bird species, we investigated the relationships between species-level genetic variation at two candidate genes, Clock and Adcyap1, and species' traits related to migration and geographic distribution, including timing of spring migration across the Mediterranean Sea, migration distance and breeding latitude. Consistently with previous evidence showing latitudinal clines in 'circadian clock' genotype frequencies, Clock allele size increased with breeding latitude across species. However, early- and late-migrating species had similar Clock allele size. Species migrating over longer distances, showing delayed spring migration and smaller phenotypic variance in spring migration timing, had significantly reduced Clock (but not Adcyap1) gene diversity. Phylogenetic confirmatory path analysis suggested that migration date and distance were the most important variables directly affecting Clock gene diversity. Hence, our study supports the hypothesis that Clock allele size increases poleward as a consequence of adaptation to the photoperiodic regime of the breeding areas. Moreover, we show that long-distance migration is associated with lower Clock diversity, coherently with strong stabilizing selection acting on timing of life cycle events in long-distance migratory species, likely resulting from the time constraints imposed by late spring migration.
Collapse
Affiliation(s)
- Gaia Bazzi
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, I-20133, Milan, Italy
| | - Jacopo G Cecere
- ISPRA - Istituto Superiore per la Protezione e la Ricerca Ambientale, via Cà Fornacetta 9, I-40064, Ozzano dell'Emilia (BO), Italy
| | - Manuela Caprioli
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, I-20133, Milan, Italy
| | - Emanuele Gatti
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, I-20133, Milan, Italy
| | - Luca Gianfranceschi
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, I-20133, Milan, Italy
| | - Stefano Podofillini
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, I-20133, Milan, Italy
| | - Cristina D Possenti
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, I-20133, Milan, Italy
| | - Roberto Ambrosini
- Dipartimento di Scienze dell'Ambiente e della Terra (DISAT), Università degli Studi di Milano Bicocca, Piazza della Scienza 1, I-20126, Milan, Italy
| | - Nicola Saino
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, I-20133, Milan, Italy
| | - Fernando Spina
- ISPRA - Istituto Superiore per la Protezione e la Ricerca Ambientale, via Cà Fornacetta 9, I-40064, Ozzano dell'Emilia (BO), Italy
| | - Diego Rubolini
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, I-20133, Milan, Italy
| |
Collapse
|
38
|
Ouwehand J, Both C. African departure rather than migration speed determines variation in spring arrival in pied flycatchers. J Anim Ecol 2016; 86:88-97. [DOI: 10.1111/1365-2656.12599] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/26/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Janne Ouwehand
- Conservation Ecology Group; Groningen Institute for Evolutionary Life Sciences; University of Groningen; P.O. Box 11103 NL-9700 CC Groningen, The Netherlands
| | - Christiaan Both
- Conservation Ecology Group; Groningen Institute for Evolutionary Life Sciences; University of Groningen; P.O. Box 11103 NL-9700 CC Groningen, The Netherlands
| |
Collapse
|
39
|
Johnston RA, Paxton KL, Moore FR, Wayne RK, Smith TB. Seasonal gene expression in a migratory songbird. Mol Ecol 2016; 25:5680-5691. [DOI: 10.1111/mec.13879] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/17/2016] [Accepted: 09/21/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Rachel A. Johnston
- Department of Ecology and Evolutionary Biology University of California, Los Angeles 610 Charles E Young Dr. South Rm. 4162 Los Angeles CA 90095 USA
| | - Kristina L. Paxton
- Department of Biological Sciences University of Southern Mississippi Hattiesburg MS 39406 USA
- Department of Biology University of Hawaii Hilo Hilo HI 96720 USA
| | - Frank R. Moore
- Department of Biological Sciences University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Robert K. Wayne
- Department of Ecology and Evolutionary Biology University of California, Los Angeles 610 Charles E Young Dr. South Rm. 4162 Los Angeles CA 90095 USA
| | - Thomas B. Smith
- Department of Ecology and Evolutionary Biology University of California, Los Angeles 610 Charles E Young Dr. South Rm. 4162 Los Angeles CA 90095 USA
- Center for Tropical Research Institute of the Environment and Sustainability University of California, Los Angeles Los Angeles CA 90095 USA
| |
Collapse
|
40
|
Bazzi G, Podofillini S, Gatti E, Gianfranceschi L, Cecere JG, Spina F, Saino N, Rubolini D. Candidate genes have sex-specific effects on timing of spring migration and moult speed in a long-distance migratory bird. Curr Zool 2016; 63:479-486. [PMID: 29492007 PMCID: PMC5804205 DOI: 10.1093/cz/zow103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/07/2016] [Indexed: 01/09/2023] Open
Abstract
The timing of major life-history events, such as migration and moult, is set by endogenous circadian and circannual clocks, that have been well characterized at the molecular level. Conversely, the genetic sources of variation in phenology and in other behavioral traits have been sparsely addressed. It has been proposed that inter-individual variability in the timing of seasonal events may arise from allelic polymorphism at phenological candidate genes involved in the signaling cascade of the endogenous clocks. In this study of a long-distance migratory passerine bird, the willow warbler Phylloscopus trochilus, we investigated whether allelic variation at 5 polymorphic loci of 4 candidate genes (Adcyap1, Clock, Creb1, and Npas2), predicted 2 major components of the annual schedule, namely timing of spring migration across the central Mediterranean sea and moult speed, the latter gauged from ptilochronological analyses of tail feathers moulted in the African winter quarters. We identified a novel Clock gene locus (Clock region 3) showing polyQ polymorphism, which was however not significantly associated with any phenotypic trait. Npas2 allele size predicted male (but not female) spring migration date, with males bearing longer alleles migrating significantly earlier than those bearing shorter alleles. Creb1 allele size significantly predicted male (but not female) moult speed, longer alleles being associated with faster moult. All other genotype-phenotype associations were statistically non-significant. These findings provide new evidence for a role of candidate genes in modulating the phenology of different circannual activities in long-distance migratory birds, and for the occurrence of sex-specific candidate gene effects.
Collapse
Affiliation(s)
- Gaia Bazzi
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, Milan I-20133, Italy
| | - Stefano Podofillini
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, Milan I-20133, Italy
| | - Emanuele Gatti
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, Milan I-20133, Italy
| | - Luca Gianfranceschi
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, Milan I-20133, Italy
| | - Jacopo G Cecere
- ISPRA-Istituto Superiore per la Protezione e la Ricerca Ambientale, via Cà Fornacetta 9, Ozzano dell'Emilia, BO I-40064, Italy
| | - Fernando Spina
- ISPRA-Istituto Superiore per la Protezione e la Ricerca Ambientale, via Cà Fornacetta 9, Ozzano dell'Emilia, BO I-40064, Italy
| | - Nicola Saino
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, Milan I-20133, Italy
| | - Diego Rubolini
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, Milan I-20133, Italy
| |
Collapse
|
41
|
Bazzi G, Galimberti A, Hays QR, Bruni I, Cecere JG, Gianfranceschi L, Hobson KA, Morbey YE, Saino N, Guglielmo CG, Rubolini D. Adcyap1 polymorphism covaries with breeding latitude in a Nearctic migratory songbird, the Wilson's warbler (Cardellina pusilla). Ecol Evol 2016; 6:3226-39. [PMID: 27252831 PMCID: PMC4870208 DOI: 10.1002/ece3.2053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/12/2016] [Indexed: 12/14/2022] Open
Abstract
Understanding the genetic background of complex behavioral traits, showing multigenic control and extensive environmental effects, is a challenging task. Among such traits, migration is known to show a large additive genetic component. Yet, the identification of specific genes or gene regions explaining phenotypic variance in migratory behavior has received less attention. Migration ultimately depends on seasonal cycles, and polymorphism at phenological candidate genes may underlie variation in timing of migration or other aspects of migratory behavior. In this study of a Nearctic–Neotropical migratory songbird, the Wilson's warbler (Cardellina pusilla), we investigated the association between polymorphism at two phenological candidate genes, Clock and Adcyap1, and two aspects of the migratory phenotype, timing of spring migration through a stopover site and inferred latitude of the breeding destination. The breeding destination of migrating individuals was identified using feather deuterium ratio (δ2H), which reliably reflects breeding latitude throughout the species' western breeding range. Ninety‐eight percent of the individuals were homozygous at Clock, and the rare heterozygotes did not deviate from homozygous migration phenology. Adcyap1 was highly polymorphic, and allele size was not significantly associated with migration date. However, Adcyap1 allele size significantly positively predicted the inferred breeding latitude of males but not of females. Moreover, we found a strong positive association between inferred breeding latitude and Adcyap1 allele size in long‐distance migrating birds from the northern sector of the breeding range (western Canada), while this was not the case in short‐distance migrating birds from the southern sector of the breeding range (coastal California). Our findings support previous evidence for a role of Adcyap1 in shaping the avian migratory phenotype, while highlighting that patterns of phenological candidate gene–phenotype associations may be complex, significantly varying between geographically distinct populations and even between the sexes.
Collapse
Affiliation(s)
- Gaia Bazzi
- Dipartimento di Bioscienze Università degli Studi di Milano via Celoria 26 I-20133 Milan Italy
| | - Andrea Galimberti
- ZooPlantLab Dipartimento di Biotecnologie e Bioscienze Università degli Studi di Milano-Bicocca Piazza della Scienza 2 I-20126 Milan Italy
| | - Quentin R Hays
- Department of Biology Advanced Facility for Avian Research University of Western Ontario London Ontario N6A 5B7 Canada; Natural Resources Department Eastern New Mexico University - Ruidoso Ruidoso New Mexico 88345
| | - Ilaria Bruni
- ZooPlantLab Dipartimento di Biotecnologie e Bioscienze Università degli Studi di Milano-Bicocca Piazza della Scienza 2 I-20126 Milan Italy
| | - Jacopo G Cecere
- ISPRA - Istituto Superiore per la Protezione e la Ricerca Ambientale Via Cà Fornacetta 9 I-40064 Ozzano dell'Emilia (BO) Italy
| | - Luca Gianfranceschi
- Dipartimento di Bioscienze Università degli Studi di Milano via Celoria 26 I-20133 Milan Italy
| | - Keith A Hobson
- Department of Biology Advanced Facility for Avian Research University of Western Ontario London Ontario N6A 5B7 Canada; Environment Canada 11 Innovation Boulevard Saskatoon Saskatchewan S7N 3H5 Canada
| | - Yolanda E Morbey
- Department of Biology Advanced Facility for Avian Research University of Western Ontario London Ontario N6A 5B7 Canada
| | - Nicola Saino
- Dipartimento di Bioscienze Università degli Studi di Milano via Celoria 26 I-20133 Milan Italy
| | - Christopher G Guglielmo
- Department of Biology Advanced Facility for Avian Research University of Western Ontario London Ontario N6A 5B7 Canada
| | - Diego Rubolini
- Dipartimento di Bioscienze Università degli Studi di Milano via Celoria 26 I-20133 Milan Italy
| |
Collapse
|
42
|
Fudickar AM, Peterson MP, Greives TJ, Atwell JW, Bridge ES, Ketterson ED. Differential gene expression in seasonal sympatry: mechanisms involved in diverging life histories. Biol Lett 2016; 12:20160069. [PMID: 26979563 PMCID: PMC4843230 DOI: 10.1098/rsbl.2016.0069] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/26/2016] [Indexed: 12/22/2022] Open
Abstract
In an era of climate change, understanding the genetic and physiological mechanisms underlying flexibility in phenology and life history has gained greater importance. These mechanisms can be elucidated by comparing closely related populations that differ in key behavioural and physiological traits such as migration and timing of reproduction. We compared gene expression in two recently diverged dark-eyed Junco ( Junco hyemalis) subspecies that live in seasonal sympatry during winter and early spring, but that differ in behaviour and physiology, despite exposure to identical environmental cues. We identified 547 genes differentially expressed in blood and pectoral muscle. Genes involved in lipid transport and metabolism were highly expressed in migrant juncos, while genes involved in reproductive processes were highly expressed in resident breeders. Seasonal differences in gene expression in closely related populations residing in the same environment provide significant insights into mechanisms underlying variation in phenology and life history, and have potential implications for the role of seasonal timing differences in gene flow and reproductive isolation.
Collapse
Affiliation(s)
- Adam M Fudickar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Mark P Peterson
- Department of Biology and Mathematics, Viterbo University, La Crosse, WI 54601, USA
| | - Timothy J Greives
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Jonathan W Atwell
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Eli S Bridge
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Ellen D Ketterson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
43
|
Delmore KE, Liedvogel M. Investigating Factors that Generate and Maintain Variation in Migratory Orientation: A Primer for Recent and Future Work. Front Behav Neurosci 2016; 10:3. [PMID: 26834592 PMCID: PMC4720750 DOI: 10.3389/fnbeh.2016.00003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/04/2016] [Indexed: 01/24/2023] Open
Abstract
The amazing accuracy of migratory orientation performance across the animal kingdom is facilitated by the use of magnetic and celestial compass systems that provide individuals with both directional and positional information. Quantitative genetics analyses in several animal systems suggests that migratory orientation has a strong genetic component. Nevertheless, the exact identity of genes controlling orientation remains largely unknown, making it difficult to obtain an accurate understanding of this fascinating behavior on the molecular level. Here, we provide an overview of molecular genetic techniques employed thus far, highlight the pros and cons of various approaches, generalize results from species-specific studies whenever possible, and evaluate how far the field has come since early quantitative genetics studies. We emphasize the importance of examining different levels of molecular control, and outline how future studies can take advantage of high-resolution tracking and sequencing techniques to characterize the genomic architecture of migratory orientation.
Collapse
Affiliation(s)
- Kira E Delmore
- Behavioural Genomics Department, Max Planck Institute for Evolutionary Biology Plön, Germany
| | - Miriam Liedvogel
- Behavioural Genomics Department, Max Planck Institute for Evolutionary Biology Plön, Germany
| |
Collapse
|
44
|
Genetic Correlates of Individual Differences in Sleep Behavior of Free-Living Great Tits (Parus major). G3-GENES GENOMES GENETICS 2016; 6:599-607. [PMID: 26739645 PMCID: PMC4777123 DOI: 10.1534/g3.115.024216] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Within populations, free-living birds display considerable variation in observable sleep behaviors, reflecting dynamic interactions between individuals and their environment. Genes are expected to contribute to repeatable between-individual differences in sleep behaviors, which may be associated with individual fitness. We identified and genotyped polymorphisms in nine candidate genes for sleep, and measured five repeatable sleep behaviors in free-living great tits (Parus major), partly replicating a previous study in blue tits (Cyanistes caeruleus). Microsatellites in the CLOCK and NPAS2 clock genes exhibited an association with sleep duration relative to night length, and morning latency to exit the nest box, respectively. Furthermore, microsatellites in the NPSR1 and PCSK2 genes associated with relative sleep duration and proportion of time spent awake at night, respectively. Given the detection rate of associations in the same models run with random markers instead of candidate genes, we expected two associations to arise by chance. The detection of four associations between candidate genes and sleep, however, suggests that clock genes, a clock-related gene, or a gene involved in the melanocortin system, could play key roles in maintaining phenotypic variation in sleep behavior in avian populations. Knowledge of the genetic architecture underlying sleep behavior in the wild is important because it will enable ecologists to assess the evolution of sleep in response to selection.
Collapse
|
45
|
Mettler R, Segelbacher G, Schaefer HM. Interactions between a Candidate Gene for Migration (ADCYAP1), Morphology and Sex Predict Spring Arrival in Blackcap Populations. PLoS One 2015; 10:e0144587. [PMID: 26684459 PMCID: PMC4684316 DOI: 10.1371/journal.pone.0144587] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 11/21/2015] [Indexed: 11/19/2022] Open
Abstract
Avian research has begun to reveal associations between candidate genes and migratory behaviors of captive birds, yet few studies utilize genotypic, morphometric, and phenological data from wild individuals. Previous studies have identified an association between ADCYAP1 polymorphism and autumn migratory behavior (restlessness, or zugunruhe), but little is known about the relationship between ADCYAP1 and spring migratory behavior. The timing of spring migration and arrival to the breeding ground are phenological traits which could be particularly favorable for establishing territories and acquiring mates, thus important to fitness and reproductive success. Here, we investigated how individual genotypic ADCYAP1 variation and phenotypic variation (wing length and shape) of blackcaps (Sylvia atricapilla) affect spring arrival date across nine natural populations in Europe. We hypothesized that longer alleles should be associated with earlier spring arrival dates and expected the effect on arrival date to be stronger for males as they arrive earlier. However, we found that longer wings were associated with earlier spring arrival to the breeding grounds for females, but not for males. Another female-specific effect indicated an interaction between ADCYAP1 allele size and wing pointedness on the response of spring arrival: greater allele size had a positive effect on spring arrival date for females with rounder wings, while a negative effect was apparent for females with more pointed wings. Also, female heterozygotes with pointed wing tips arrived significantly earlier than both homozygotes with pointed wings and heterozygotes with round wings. Stable isotope ratios (δ2H) of a subset of blackcaps captured in Freiburg in 2011 allowed us also to assign individuals to their main overwintering areas in northwest (NW) and southwest (SW) Europe. NW males arrived significantly earlier to the Freiburg breeding site than both SW males and females in 2011. NW females had more pointed wing tips compared to SW females, but no difference in ADCYAP1 allele size was found between the different migration routes.
Collapse
Affiliation(s)
- Raeann Mettler
- Department of Evolutionary Biology and Animal Ecology, University of Freiburg, Freiburg, Germany
- School of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
- * E-mail:
| | - Gernot Segelbacher
- Wildlife Ecology and Management, University of Freiburg, Freiburg, Germany
| | - H. Martin Schaefer
- Department of Evolutionary Biology and Animal Ecology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
46
|
Functional gene diversity and migration timing in reintroduced Chinook salmon. CONSERV GENET 2015. [DOI: 10.1007/s10592-015-0753-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Ketterson ED, Fudickar AM, Atwell JW, Greives TJ. Seasonal timing and population divergence: when to breed, when to migrate. Curr Opin Behav Sci 2015. [DOI: 10.1016/j.cobeha.2015.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
48
|
Clock gene polymorphism and scheduling of migration: a geolocator study of the barn swallow Hirundo rustica. Sci Rep 2015. [PMID: 26197782 PMCID: PMC4510496 DOI: 10.1038/srep12443] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Circannual rhythms often rely on endogenous seasonal photoperiodic timers involving ‘clock’ genes, and Clock gene polymorphism has been associated to variation in phenology in some bird species. In the long-distance migratory barn swallow Hirundo rustica, individuals bearing the rare Clock allele with the largest number of C-terminal polyglutamine repeats found in this species (Q8) show a delayed reproduction and moult later. We explored the association between Clock polymorphism and migration scheduling, as gauged by light-level geolocators, in two barn swallow populations (Switzerland; Po Plain, Italy). Genetic polymorphism was low: 91% of the 64 individuals tracked year-round were Q7/Q7 homozygotes. We compared the phenology of the rare genotypes with the phenotypic distribution of Q7/Q7 homozygotes within each population. In Switzerland, compared to Q7/Q7, two Q6/Q7 males departed earlier from the wintering grounds and arrived earlier to their colony in spring, while a single Q7/Q8 female was delayed for both phenophases. On the other hand, in the Po Plain, three Q6/Q7 individuals had a similar phenology compared to Q7/Q7. The Swiss data are suggestive for a role of genetic polymorphism at a candidate phenological gene in shaping migration traits, and support the idea that Clock polymorphism underlies phenological variation in birds.
Collapse
|