1
|
Cumer T, Machado AP, San-Jose LM, Ducrest AL, Simon C, Roulin A, Goudet J. The genomic architecture of continuous plumage colour variation in the European barn owl ( Tyto alba). Proc Biol Sci 2024; 291:20231995. [PMID: 38196365 PMCID: PMC10777144 DOI: 10.1098/rspb.2023.1995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
The maintenance of colour variation in wild populations has long fascinated evolutionary biologists, although most studies have focused on discrete traits exhibiting rather simple inheritance patterns and genetic architectures. However, the study of continuous colour traits and their potentially oligo- or polygenic genetic bases remains rare in wild populations. We studied the genetics of the continuously varying white-to-rufous plumage coloration of the European barn owl (Tyto alba) using a genome-wide association approach on the whole-genome data of 75 individuals. We confirmed a mutation at the melanocortin-1-receptor gene (MC1R) is involved in the coloration and identified two new regions, located in super-scaffolds 9 and 42. The combination of the three regions explains most of the colour variation (80.37%, 95% credible interval 58.45-100%). One discovered region, located in the sex chromosome, differs between the most extreme colorations in owls sharing a specific MC1R genotype. This region may play a role in the colour sex dimorphism of this species, possibly in interaction with the autosomal MC1R. We thus provide insights into the genetic architecture of continuous colour variation, pointing to an oligogenic basis with potential epistatic effects among loci that should aid future studies understanding how continuous colour variation is maintained in nature.
Collapse
Affiliation(s)
- Tristan Cumer
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Ana Paula Machado
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Luis M. San-Jose
- Laboratoire Évolution and Diversité Biologique, UMR 5174, CNRS, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Céline Simon
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
2
|
Elkin J, Martin A, Courtier-Orgogozo V, Santos ME. Analysis of the genetic loci of pigment pattern evolution in vertebrates. Biol Rev Camb Philos Soc 2023; 98:1250-1277. [PMID: 37017088 DOI: 10.1111/brv.12952] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Vertebrate pigmentation patterns are amongst the best characterised model systems for studying the genetic basis of adaptive evolution. The wealth of available data on the genetic basis for pigmentation evolution allows for analysis of trends and quantitative testing of evolutionary hypotheses. We employed Gephebase, a database of genetic variants associated with natural and domesticated trait variation, to examine trends in how cis-regulatory and coding mutations contribute to vertebrate pigmentation phenotypes, as well as factors that favour one mutation type over the other. We found that studies with lower ascertainment bias identified higher proportions of cis-regulatory mutations, and that cis-regulatory mutations were more common amongst animals harbouring a higher number of pigment cell classes. We classified pigmentation traits firstly according to their physiological basis and secondly according to whether they affect colour or pattern, and identified that carotenoid-based pigmentation and variation in pattern boundaries are preferentially associated with cis-regulatory change. We also classified genes according to their developmental, cellular, and molecular functions. We found a greater proportion of cis-regulatory mutations in genes implicated in upstream developmental processes compared to those involved in downstream cellular functions, and that ligands were associated with a higher proportion of cis-regulatory mutations than their respective receptors. Based on these trends, we discuss future directions for research in vertebrate pigmentation evolution.
Collapse
Affiliation(s)
- Joel Elkin
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, 800 22nd St. NW, Suite 6000, Washington, DC, 20052, USA
| | | | - M Emília Santos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
3
|
Tong H, Shao G, Wang L, Li J, Wang T, Zhang L, Lv Y, Ye F, Fu C, Jin Y. Association of a single amino acid replacement with dorsal pigmentation in a lizard from the Qinghai-Tibetan Plateau. Int J Biol Macromol 2023; 242:124907. [PMID: 37230451 DOI: 10.1016/j.ijbiomac.2023.124907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023]
Abstract
Reptiles can evolve adaptive colors in different environments, but relatively little is known about the genetic mechanisms. Here, we identified the MC1R gene and its association with intraspecific color variation in the lizard Phrynocephalus erythrurus. Analysis of the MC1R sequence in 143 individuals from dark South Qiangtang Plateau (SQP) and light North Qiangtang plateau (NQP) populations, revealed two amino acid sites that showed significant differences in frequency between two areas. One SNP, corresponding to Glu183Lys residue, was found to be a highly significant outlier and differentially fixed for SQP and NQP populations. This residue is located in an extracellular area in the second small extracellular loop within the secondary structure of MC1R, which represents an "attachment pocket" part of the 3D structure. Cytological expression of MC1R alleles with the Glu183Lys replacement showed a 39 % increase in intracellular agonist-induced cyclic AMP levels and a 23.18 % greater cell surface expression of MC1R protein in the SQP relative to the NQP allele. Further in silico 3D modeling and in vitro binding experiments indicated a higher MC1R-α-MSH binding for the SQP allele, and elevated melanin synthesis. We provide an overview of how a single amino acid replacement leads to fundamental changes in MC1R function, and hence shapes variation in dorsal pigmentation in lizards from different environments.
Collapse
Affiliation(s)
- Haojie Tong
- College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Gang Shao
- College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Leijie Wang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Jiasheng Li
- College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Tao Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lun Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yudie Lv
- College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Fei Ye
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Caiyun Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuanting Jin
- College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China.
| |
Collapse
|
4
|
Kvalnes T, Sæther BE, Engen S, Roulin A. Density-dependent selection and the maintenance of colour polymorphism in barn owls. Proc Biol Sci 2022; 289:20220296. [PMID: 35642371 PMCID: PMC9156910 DOI: 10.1098/rspb.2022.0296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The capacity of natural selection to generate adaptive changes is (according to the fundamental theorem of natural selection) proportional to the additive genetic variance in fitness. In spite of its importance for development of new adaptations to a changing environment, processes affecting the magnitude of the genetic variance in fitness-related traits are poorly understood. Here, we show that the red-white colour polymorphism in female barn owls is subject to density-dependent selection at the phenotypic and genotypic level. The diallelic melanocortin-1 receptor gene explained a large amount of the phenotypic variance in reddish coloration in the females ([Formula: see text]). Red individuals (RR genotype) were selected for at low densities, while white individuals (WW genotype) were favoured at high densities and were less sensitive to changes in density. We show that this density-dependent selection favours white individuals and predicts fixation of the white allele in this population at longer time scales without immigration or other selective forces. Still, fluctuating population density will cause selection to fluctuate and periodically favour red individuals. These results suggest how balancing selection caused by fluctuations in population density can be a general mechanism affecting the level of additive genetic variance in natural populations.
Collapse
Affiliation(s)
- Thomas Kvalnes
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway
| | - Bernt-Erik Sæther
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway
| | - Steinar Engen
- Department of Mathematical Sciences, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| |
Collapse
|
5
|
Schwochow D, Bornelöv S, Jiang T, Li J, Gourichon D, Bed’Hom B, Dorshorst BJ, Chuong CM, Tixier-Boichard M, Andersson L. The feather pattern autosomal barring in chicken is strongly associated with segregation at the MC1R locus. Pigment Cell Melanoma Res 2021; 34:1015-1028. [PMID: 33793042 PMCID: PMC8484376 DOI: 10.1111/pcmr.12975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/26/2021] [Indexed: 01/14/2023]
Abstract
Color patterns within individual feathers are common in birds but little is known about the genetic mechanisms causing such patterns. Here, we investigate the genetic basis for autosomal barring in chicken, a horizontal striping pattern on individual feathers. Using an informative backcross, we demonstrate that the MC1R locus is strongly associated with this phenotype. A deletion at SOX10, underlying the dark brown phenotype on its own, affects the manifestation of the barring pattern. The coding variant L133Q in MC1R is the most likely causal mutation for autosomal barring in this pedigree. Furthermore, a genetic screen across six different breeds showing different patterning phenotypes revealed that the most striking shared characteristics among these breeds were that they all carried the MC1R alleles Birchen or brown. Our data suggest that the presence of activating MC1R mutations enhancing pigment synthesis is an important mechanism underlying pigmentation patterns on individual feathers in chicken. We propose that MC1R and its antagonist ASIP play a critical role for determining within-feather pigmentation patterns in birds by acting as activator and inhibitor possibly in a Turing reaction-diffusion model.
Collapse
Affiliation(s)
- Doreen Schwochow
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Susanne Bornelöv
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Tingxing Jiang
- Department of Pathology, University of Southern California, Los Angeles, CS, USA
| | - Jingyi Li
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | | | - Bertrand Bed’Hom
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Ben J. Dorshorst
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, CS, USA
| | | | - Leif Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
6
|
Machado AP, Cumer T, Iseli C, Beaudoing E, Ducrest AL, Dupasquier M, Guex N, Dichmann K, Lourenço R, Lusby J, Martens HD, Prévost L, Ramsden D, Roulin A, Goudet J. Unexpected post-glacial colonisation route explains the white colour of barn owls (Tyto alba) from the British Isles. Mol Ecol 2021; 31:482-497. [PMID: 34695244 PMCID: PMC9298239 DOI: 10.1111/mec.16250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/16/2021] [Accepted: 10/13/2021] [Indexed: 12/15/2022]
Abstract
The climate fluctuations of the Quaternary shaped the movement of species in and out of glacial refugia. In Europe, the majority of species followed one of the described traditional postglacial recolonization routes from the southern peninsulas towards the north. Like most organisms, barn owls are assumed to have colonized the British Isles by crossing over Doggerland, a land bridge that connected Britain to northern Europe. However, while they are dark rufous in northern Europe, barn owls in the British Isles are conspicuously white, a contrast that could suggest selective forces are at play on the islands. Yet, our analysis of known candidate genes involved in coloration found no signature of selection. Instead, using whole genome sequences and species distribution modelling, we found that owls colonised the British Isles soon after the last glaciation, directly from a white coloured refugium in the Iberian Peninsula, before colonising northern Europe. They would have followed a hitherto unknown post‐glacial colonization route to the Isles over a westwards path of suitable habitat in now submerged land in the Bay of Biscay, thus not crossing Doggerland. As such, they inherited the white colour of their Iberian founders and maintained it through low gene flow with the mainland that prevents the import of rufous alleles. Thus, we contend that neutral processes probably explain this contrasting white colour compared to continental owls. With the barn owl being a top predator, we expect future research will show this unanticipated route was used by other species from its paleo community.
Collapse
Affiliation(s)
- Ana Paula Machado
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Tristan Cumer
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Christian Iseli
- Bioinformatics Competence Centre, University of Lausanne, Lausanne, Switzerland
| | | | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | - Nicolas Guex
- Bioinformatics Competence Centre, University of Lausanne, Lausanne, Switzerland
| | | | - Rui Lourenço
- Laboratory of Ornithology, Mediterranean Institute for Agriculture, Environment and Development, IIFA, University of Évora, Évora, Portugal
| | - John Lusby
- BirdWatch Ireland, Kilcoole, Co., Wicklow, Ireland
| | | | - Laure Prévost
- Association CHENE, Centre d'Hébergement et d'Etude sur la Nature et l'Environnement, Allouville-Bellefosse, France
| | | | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
7
|
Jin Y, Tong H, Shao G, Li J, Lv Y, Wo Y, Brown RP, Fu C. Dorsal Pigmentation and Its Association with Functional Variation in MC1R in a Lizard from Different Elevations on the Qinghai-Tibetan Plateau. Genome Biol Evol 2021; 12:2303-2313. [PMID: 33095228 PMCID: PMC7719228 DOI: 10.1093/gbe/evaa225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 12/27/2022] Open
Abstract
Identification of the role of the MC1R gene has provided major insights into variation in skin pigmentation in several organisms, including humans, but the evolutionary genetics of this variation is less well established. Variation in this gene and its relationship with degree of melanism was analyzed in one of the world’s highest-elevation lizards, Phrynocephalus theobaldi from the Qinghai–Tibetan Plateau. Individuals from the low-elevation group were shown to have darker dorsal pigmentation than individuals from a high-elevation group. The existence of climatic variation across these elevations was quantified, with lower elevations exhibiting higher air pressure, temperatures, and humidity, but less wind and insolation. Analysis of the MC1R gene in 214 individuals revealed amino acid differences at five sites between intraspecific sister lineages from different elevations, with two sites showing distinct fixed residues at low elevations. Three of the four single-nucleotide polymorphisms that underpinned these amino acid differences were highly significant outliers, relative to the generalized MC1R population structuring, suggestive of selection. Transfection of cells with an MC1R allele from a lighter high-elevation population caused a 43% reduction in agonist-induced cyclic AMP accumulation, and hence lowered melanin synthesis, relative to transfection with an allele from a darker low-elevation population. The high-elevation allele led to less efficient integration of the MC1R protein into melanocyte membranes. Our study identifies variation in the degree of melanism that can be explained by four or fewer MC1R substitutions. We establish a functional link between these substitutions and melanin synthesis and demonstrate elevation-associated shifts in their frequencies.
Collapse
Affiliation(s)
- Yuanting Jin
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Haojie Tong
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Gang Shao
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jiasheng Li
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yudie Lv
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yubin Wo
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Richard P Brown
- College of Life Sciences, China Jiliang University, Hangzhou, China.,School of Biological & Environmental Sciences, Liverpool John Moores University, United Kingdom
| | - Caiyun Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
8
|
Janssen K, Bustnes JO, Mundy NI. Variation in Genetic Mechanisms for Plumage Polymorphism in Skuas (Stercorarius). J Hered 2021; 112:430-435. [PMID: 34343335 PMCID: PMC8634071 DOI: 10.1093/jhered/esab038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Coloration is evolutionarily labile and so provides an excellent trait for examining the repeatability of evolution. Here, we investigate the repeatability of the evolution of polymorphic variation in ventral plumage coloration in skuas (Stercorarius: Stercorariidae). In 2 species, arctic (S. parasiticus) and pomarine skuas (S. pomarinus), plumage polymorphism was previously shown to be associated with coding changes at the melanocortin-1 receptor (MC1R) locus. Here, we show that polymorphism in a third species, the south polar skua (S. maccormicki), is not associated with coding variation at MC1R or with variation at a Z-linked second candidate locus, tyrosinase-related protein 1 (TYRP1). Hence, convergent evolution of plumage polymorphisms in skuas is only partly repeatable at the level of the genetic locus involved. Interestingly, the pattern of repeatability in skuas is aligned not with phylogeny but with the nature of the phenotypic variation. In particular, south polar skuas show a strong sex bias to coloration that is absent in the other species, and it may be that this has a unique genetic architecture.
Collapse
Affiliation(s)
- Kirstin Janssen
- Department of Natural Sciences, Tromsø University Museum, NO-9037 Tromsø, Norway.,Centre of Forensic Genetics, Institute of Medical Biology, Faculty of Health Sciences, UIT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Jan Ove Bustnes
- Norwegian Institute for Nature Research, The Fram Centre, NO-9296 Tromsø,Norway
| | | |
Collapse
|
9
|
Kulikova IV. Molecular Mechanisms and Gene Regulation of Melanic Plumage Coloration in Birds. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542108007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Nicolaï MPJ, Shawkey MD, Porchetta S, Claus R, D'Alba L. Exposure to UV radiance predicts repeated evolution of concealed black skin in birds. Nat Commun 2020; 11:2414. [PMID: 32415098 PMCID: PMC7229023 DOI: 10.1038/s41467-020-15894-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/26/2020] [Indexed: 12/02/2022] Open
Abstract
Plumage is among the most well-studied components of integumentary colouration. However, plumage conceals most skin in birds, and as a result the presence, evolution and function of skin colour remains unexplored. Here we show, using a database of 2259 species encompassing >99% of bird genera, that melanin-rich, black skin is found in a small but sizeable percentage (~5%) of birds, and that it evolved over 100 times. The spatial distribution of black skin follows Gloger’s rule, which states that pigmentation of endothermic animals increases towards the equator. Furthermore, most black-skinned birds inhabit high irradiation regions, and tend to be bald and/or have white feathers. Thus, taken together, our results suggest that melanin-rich, black skin helps to protect birds against ultraviolet irradiation. More generally, our results illustrate that feathered skin colour varies taxonomically, ontogenetically and temporally, providing an additional dimension for avian colour research. In contrast to bird plumage, little is known about the evolution of bird skin color. Here, Nicolaï et al. find that black skin has evolved over 100 times in birds and is associated with baldness and/or white feathers as well as with high irradiation habitats, suggesting a role in UV protection.
Collapse
Affiliation(s)
- Michaël P J Nicolaï
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium. .,Department of Recent Vertebrates, Royal Belgian Institute of Natural Sciences, Leuven, Belgium.
| | - Matthew D Shawkey
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Sara Porchetta
- Department of Earth and Environmental Sciences, KULeuven, Leuven, Belgium.,von Karman Institute for Fluid Dynamics, Sint-Genesius-Rode, Belgium
| | - Ruben Claus
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Liliana D'Alba
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
| |
Collapse
|
11
|
Fogelholm J, Henriksen R, Höglund A, Huq N, Johnsson M, Lenz R, Jensen P, Wright D. CREBBP and WDR 24 Identified as Candidate Genes for Quantitative Variation in Red-Brown Plumage Colouration in the Chicken. Sci Rep 2020; 10:1161. [PMID: 31980681 PMCID: PMC6981141 DOI: 10.1038/s41598-020-57710-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 12/28/2019] [Indexed: 01/12/2023] Open
Abstract
Plumage colouration in birds is important for a plethora of reasons, ranging from camouflage, sexual signalling, and species recognition. The genes underlying colour variation have been vital in understanding how genes can affect a phenotype. Multiple genes have been identified that affect plumage variation, but research has principally focused on major-effect genes (such as those causing albinism, barring, and the like), rather than the smaller effect modifier loci that more subtly influence colour. By utilising a domestic × wild advanced intercross with a combination of classical QTL mapping of red colouration as a quantitative trait and a targeted genetical genomics approach, we have identified five separate candidate genes (CREBBP, WDR24, ARL8A, PHLDA3, LAD1) that putatively influence quantitative variation in red-brown colouration in chickens. By treating colour as a quantitative rather than qualitative trait, we have identified both QTL and genes of small effect. Such small effect loci are potentially far more prevalent in wild populations, and can therefore potentially be highly relevant to colour evolution.
Collapse
Affiliation(s)
- J Fogelholm
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, 58183, Sweden
| | - R Henriksen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, 58183, Sweden
| | - A Höglund
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, 58183, Sweden
| | - N Huq
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, 58183, Sweden
| | - M Johnsson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, Scotland, United Kingdom.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07, Uppsala, Sweden
| | - R Lenz
- ITN Dept of Science and Technology, Linköping University, Linköping, 58183, Sweden
| | - P Jensen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, 58183, Sweden
| | - D Wright
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, 58183, Sweden.
| |
Collapse
|
12
|
Differential fitness effects of moonlight on plumage colour morphs in barn owls. Nat Ecol Evol 2019; 3:1331-1340. [PMID: 31477846 PMCID: PMC6728161 DOI: 10.1038/s41559-019-0967-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/24/2019] [Indexed: 11/17/2022]
Abstract
The Moon cycle exposes nocturnal life to variation in environmental light. However, whether moonlight shapes the fitness of nocturnal species with distinct colour variants remains unknown. Combining long-term monitoring, high-resolution GPS tracking, and experiments on prey, we show that barn owls (Tyto alba) with distinct plumage colourations are differently affected by moonlight. The reddest owls are less successful hunting and providing food to their offspring during moonlit nights, which associates with lower body mass and survival of the youngest nestlings and with female mates starting to lay eggs at low moonlight levels. Although moonlight should make white owls more conspicuous to prey, hunting and fitness of the whitest owls are positively or un-affected by moonlight. We experimentally show that, under full-moon conditions, white plumages trigger longer freezing times in the prey, which should facilitate prey catchability. We propose that the barn owl’s white plumage, a rare trait among nocturnal predators, exploits the known aversion of rodents to bright light, explaining why, counterintuitively, moonlight impacts less the whitest owls. Our study provides evidence for the long-suspected influence of the Moon on the evolution of colouration in nocturnal species, highlighting the importance of colour in nocturnal ecosystems.
Collapse
|
13
|
Whitehead H, Laland KN, Rendell L, Thorogood R, Whiten A. The reach of gene-culture coevolution in animals. Nat Commun 2019; 10:2405. [PMID: 31160560 PMCID: PMC6546714 DOI: 10.1038/s41467-019-10293-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/02/2019] [Indexed: 12/26/2022] Open
Abstract
Culture (behaviour based on socially transmitted information) is present in diverse animal species, yet how it interacts with genetic evolution remains largely unexplored. Here, we review the evidence for gene-culture coevolution in animals, especially birds, cetaceans and primates. We describe how culture can relax or intensify selection under different circumstances, create new selection pressures by changing ecology or behaviour, and favour adaptations, including in other species. Finally, we illustrate how, through culturally mediated migration and assortative mating, culture can shape population genetic structure and diversity. This evidence suggests strongly that animal culture plays an important evolutionary role, and we encourage explicit analyses of gene-culture coevolution in nature.
Collapse
Affiliation(s)
- Hal Whitehead
- Department of Biology, Dalhousie University, Halifax, B3H 4R2, Canada.
| | - Kevin N Laland
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St Andrews, St Andrews, KY16 9TF, United Kingdom
| | - Luke Rendell
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St Andrews, St Andrews, KY16 9TF, United Kingdom
| | - Rose Thorogood
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, 00014, Finland
- Faculty of Biological and Environmental Sciences (Research Program in Organismal & Evolutionary Biology), University of Helsinki, Helsinki, 00014, Finland
| | - Andrew Whiten
- Centre for Social Learning and Cognitive Evolution, School of Psychology and Neuroscience, University of St Andrews, St Andrews, KY16 9JP, United Kingdom
| |
Collapse
|
14
|
Female-biased dispersal and non-random gene flow of MC1R variants do not result in a migration load in barn owls. Heredity (Edinb) 2018; 122:305-314. [PMID: 30006569 DOI: 10.1038/s41437-018-0115-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 11/08/2022] Open
Abstract
Non-random gene flow is a widely neglected force in evolution and ecology. This genotype-dependent dispersal is difficult to assess, yet can impact the genetic variation of natural populations and their fitness. In this work, we demonstrate a high immigration rate of barn owls (Tyto alba) inside a Swiss population surveyed during 15 years. Using ten microsatellite loci as an indirect method to characterize dispersal, two-third of the genetic tests failed to detect a female-biased dispersal, and Monte Carlo simulations confirmed a low statistical power to detect sex-biased dispersal in case of high dispersal rate of both sexes. The capture-recapture data revealed a female-biased dispersal associated with an excess of heterozygote for the melanocortin-1 receptor gene (MC1R), which is responsible for their ventral rufous coloration. Thus, female homozygotes for the MC1RWHITE allele might be negatively selected during dispersal. Despite the higher immigration of females that are heterozygote at MC1R, non-random gene flow should not lead to a migration load regarding this gene because we did not detect an effect of MC1R on survival and reproductive success in our local population. The present study highlights the usefulness of using multiple methods to correctly decrypt dispersal and gene flow. Moreover, despite theoretical expectations, we show that non-random dispersal of particular genotypes does not necessarily lead to migration load in recipient populations.
Collapse
|
15
|
Nigenda‐Morales SF, Hu Y, Beasley JC, Ruiz‐Piña HA, Valenzuela‐Galván D, Wayne RK. Transcriptomic analysis of skin pigmentation variation in the Virginia opossum (
Didelphis virginiana
). Mol Ecol 2018; 27:2680-2697. [DOI: 10.1111/mec.14712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 04/05/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Sergio F. Nigenda‐Morales
- Department of Ecology and Evolutionary Biology University of California, Los Angeles Los Angeles California
| | - Yibo Hu
- Key Lab of Animal Ecology and Conservation Biology Institute of Zoology Chinese Academy of Sciences Chaoyang, Beijing China
| | - James C. Beasley
- Savannah River Ecology Lab Warnell School of Forestry and Natural Resources University of Georgia Aiken South Carolina
| | - Hugo A. Ruiz‐Piña
- Centro de Investigaciones Regionales “Dr. Hideyo Noguchi” Universidad Autónoma de Yucatán Mérida Yucatán Mexico
| | - David Valenzuela‐Galván
- Departamento de Ecología Evolutiva Centro de Investigación en Biodiversidad y Conservación Universidad Autónoma del Estado de Morelos Cuernavaca Morelos Mexico
| | - Robert K. Wayne
- Department of Ecology and Evolutionary Biology University of California, Los Angeles Los Angeles California
| |
Collapse
|
16
|
Dib L, San-Jose LM, Ducrest AL, Salamin N, Roulin A. Selection on the Major Color Gene Melanocortin-1-Receptor Shaped the Evolution of the Melanocortin System Genes. Int J Mol Sci 2017; 18:ijms18122618. [PMID: 29206201 PMCID: PMC5751221 DOI: 10.3390/ijms18122618] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022] Open
Abstract
Modular genetic systems and networks have complex evolutionary histories shaped by selection acting on single genes as well as on their integrated function within the network. However, uncovering molecular coevolution requires the detection of coevolving sites in sequences. Detailed knowledge of the functions of each gene in the system is also necessary to identify the selective agents driving coevolution. Using recently developed computational tools, we investigated the effect of positive selection on the coevolution of ten major genes in the melanocortin system, responsible for multiple physiological functions and human diseases. Substitutions driven by positive selection at the melanocortin-1-receptor (MC1R) induced more coevolutionary changes on the system than positive selection on other genes in the system. Contrarily, selection on the highly pleiotropic POMC gene, which orchestrates the activation of the different melanocortin receptors, had the lowest coevolutionary influence. MC1R and possibly its main function, melanin pigmentation, seems to have influenced the evolution of the melanocortin system more than functions regulated by MC2-5Rs such as energy homeostasis, glucocorticoid-dependent stress and anti-inflammatory responses. Although replication in other regulatory systems is needed, this suggests that single functional aspects of a genetic network or system can be of higher importance than others in shaping coevolution among the genes that integrate it.
Collapse
Affiliation(s)
- Linda Dib
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.
- Laboratoire de Recherche en Neuroimagerie, Centre Hospitalier Universitaire Vaudois, 1015 Lausanne, Switzerland.
| | - Luis M San-Jose
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Nicolas Salamin
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Quartier Sorge, 1015 Lausanne, Switzerland.
- Department of Computational Biology, University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland.
| | - Alexandre Roulin
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.
- Department of Computational Biology, University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland.
| |
Collapse
|
17
|
San-Jose LM, Ducret V, Ducrest AL, Simon C, Roulin A. Beyond mean allelic effects: A locus at the major color gene MC1R associates also with differing levels of phenotypic and genetic (co)variance for coloration in barn owls. Evolution 2017; 71:2469-2483. [PMID: 28861897 DOI: 10.1111/evo.13343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 01/05/2023]
Abstract
The mean phenotypic effects of a discovered variant help to predict major aspects of the evolution and inheritance of a phenotype. However, differences in the phenotypic variance associated to distinct genotypes are often overlooked despite being suggestive of processes that largely influence phenotypic evolution, such as interactions between the genotypes with the environment or the genetic background. We present empirical evidence for a mutation at the melanocortin-1-receptor gene, a major vertebrate coloration gene, affecting phenotypic variance in the barn owl, Tyto alba. The white MC1R allele, which associates with whiter plumage coloration, also associates with a pronounced phenotypic and additive genetic variance for distinct color traits. Contrarily, the rufous allele, associated with a rufous coloration, relates to a lower phenotypic and additive genetic variance, suggesting that this allele may be epistatic over other color loci. Variance differences between genotypes entailed differences in the strength of phenotypic and genetic associations between color traits, suggesting that differences in variance also alter the level of integration between traits. This study highlights that addressing variance differences of genotypes in wild populations provides interesting new insights into the evolutionary mechanisms and the genetic architecture underlying the phenotype.
Collapse
Affiliation(s)
- Luis M San-Jose
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Valérie Ducret
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Céline Simon
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Enbody ED, Lantz SM, Karubian J. Production of plumage ornaments among males and females of two closely related tropical passerine bird species. Ecol Evol 2017; 7:4024-4034. [PMID: 28616197 PMCID: PMC5468133 DOI: 10.1002/ece3.3000] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/30/2017] [Accepted: 03/17/2017] [Indexed: 02/05/2023] Open
Abstract
The evolution of elaborate secondary sexual traits (i.e., ornaments) is well‐studied in males but less so in females. Similarity in the appearance of ornaments between males and females supports the view that female ornaments arise as a neutral byproduct of selection on male traits due to genetic correlation between sexes, but recent research suggests an adaptive function of female ornaments in at least some contexts. Information on the degree to which production of ornaments differs between the sexes can shed light on these alternative perspectives. We therefore characterized the structural underpinnings of melanin‐based plumage production in males and females of two closely related passerine bird species (genus Malurus). Importantly, both ornamented and unornamented phenotypes in each sex are present between these two species, providing an opportunity to test the null expectation of equivalent modes of production in male and female ornamented phenotypes. In Malurus alboscapulatus, ornamented females are qualitatively similar to males, but we describe a distinctive ornamented female phenotype that differs from that of males in lacking a blue sheen and in lower feather barbule density. In M. melanocephalus, unornamented males and females are also similar in appearance, and we describe a similarity between unornamented phenotypes of males and females in both color and underlying feather barbule structure and pigment composition. Unornamented male M. melanocephalus can flexibly transition to the ornamented phenotype in weeks, and we found extreme differences in color and feather structure between these two alternative male phenotypes. These results contradict the idea that female ornaments have evolved in this system following a simple switch to male‐like plumage by demonstrating greater complexity in the production of the ornamented phenotype in males than in females.
Collapse
Affiliation(s)
- Erik D Enbody
- Department of Ecology and Evolutionary Biology Tulane University New Orleans LA USA
| | - Samantha M Lantz
- Department of Ecology and Evolutionary Biology Tulane University New Orleans LA USA
| | - Jordan Karubian
- Department of Ecology and Evolutionary Biology Tulane University New Orleans LA USA
| |
Collapse
|
19
|
Abstract
The melanocortin 1 receptor (MC1R) gene is a candidate functional gene that controls the pigment production in melanocytes. The aim of this study was to identify polymorphisms and investigate the effect of the MC1R gene on plumage coloration in duck breeds, including Korean native ducks. Initially, 34 individuals from seven duck breeds were sequenced, obtaining 12 polymorphisms. Five single nucleotide polymorphisms (SNPs) in the coding region were non-synonymous, with mutations corresponding to amino acid changes. Among these, four SNPs were genotyped using polymerase chain reaction-restriction fragment length polymorphism method in 264 individuals from same seven duck breeds. Fisher's exact test was conducted to identify possible relationships between the MC1R gene polymorphisms and plumage color variations. Four non-synonymous SNPs, c.52A>G (p.Lys18Glu), and c.376 A>G (p.Ile126Val), c.409G>A (p.Ala137Thr) and c.649C>T (p.Arg217Cys), were associated with the two deduced genotypes (i.e., E/E and e+ /e+) based on plumage color phenotypes. In addition, we reconstructed MC1R gene haplotypes, where the haplotype AAGC showed its highest frequency in Nageswari duck breed, which presents an extended black phenotype. Our results indicate that the identified polymorphisms by this study can be used to explore associations with plumage color variations in Asian duck breeds.
Collapse
|
20
|
San-Jose LM, Ducrest AL, Ducret V, Simon C, Richter H, Wakamatsu K, Roulin A. MC1R variants affect the expression of melanocortin and melanogenic genes and the association between melanocortin genes and coloration. Mol Ecol 2016; 26:259-276. [PMID: 27664794 DOI: 10.1111/mec.13861] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/07/2016] [Accepted: 09/14/2016] [Indexed: 12/13/2022]
Abstract
The melanocortin-1 receptor (MC1R) gene influences coloration by altering the expression of genes acting downstream in the melanin synthesis. MC1R belongs to the melanocortin system, a genetic network coding for the ligands that regulate MC1R and other melanocortin receptors controlling different physiological and behavioural traits. The impact of MC1R variants on these regulatory melanocortin genes was never considered, even though MC1R mutations could alter the influence of these genes on coloration (e.g. by decreasing MC1R response to melanocortin ligands). Using barn owl growing feathers, we investigated the differences between MC1R genotypes in the (co)expression of six melanocortin and nine melanogenic-related genes and in the association between melanocortin gene expression and phenotype (feather pheomelanin content). Compared to the MC1R rufous allele, responsible for reddish coloration, the white allele was not only associated with an expected lower expression of melanogenic-related genes (TYR, TYRP1, OCA2, SLC45A2, KIT, DCT) but also with a lower MC1R expression and a higher expression of ASIP, the MC1R antagonist. More importantly, the expression of PCSK2, responsible for the maturation of the MC1R agonist, α-melanocyte-stimulating hormone, was positively related to pheomelanin content in MC1R white homozygotes but not in individuals carrying the MC1R rufous allele. These findings indicate that MC1R mutations not only alter the expression of melanogenic-related genes but also the association between coloration and the expression of melanocortin genes upstream of MC1R. This suggests that MC1R mutations can modulate the regulation of coloration by the pleiotropic melanocortin genes, potentially decoupling the often-observed associations between coloration and other phenotypes.
Collapse
Affiliation(s)
- Luis M San-Jose
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Valérie Ducret
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Céline Simon
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Hannes Richter
- Centre for Integrative Genomics, Genomic Technologies Facility, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, 470-1192, Japan
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| |
Collapse
|
21
|
Ducret V, Gaigher A, Simon C, Goudet J, Roulin A. Sex-specific allelic transmission bias suggests sexual conflict at MC1R. Mol Ecol 2016; 25:4551-63. [PMID: 27480981 DOI: 10.1111/mec.13781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 02/03/2023]
Abstract
Sexual conflict arises when selection in one sex causes the displacement of the other sex from its phenotypic optimum, leading to an inevitable tension within the genome - called intralocus sexual conflict. Although the autosomal melanocortin-1-receptor gene (MC1R) can generate colour variation in sexually dichromatic species, most previous studies have not considered the possibility that MC1R may be subject to sexual conflict. In the barn owl (Tyto alba), the allele MC1RWHITE is associated with whitish plumage coloration, typical of males, and the allele MC1RRUFOUS is associated with dark rufous coloration, typical of females, although each sex can express any phenotype. Because each colour variant is adapted to specific environmental conditions, the allele MC1RWHITE may be more strongly selected in males and the allele MC1RRUFOUS in females. We therefore investigated whether MC1R genotypes are in excess or deficit in male and female fledglings compared with the expected Hardy-Weinberg proportions. Our results show an overall deficit of 7.5% in the proportion of heterozygotes in males and of 12.9% in females. In males, interannual variation in assortative pairing with respect to MC1R explained the year-specific deviations from Hardy-Weinberg proportions, whereas in females, the deficit was better explained by the interannual variation in the probability of inheriting the MC1RWHITE or MC1RRUFOUS allele. Additionally, we observed that sons inherit the MC1RRUFOUS allele from their fathers on average slightly less often than expected under the first Mendelian law. Transmission ratio distortion may be adaptive in this sexually dichromatic species if males and females are, respectively, selected to display white and rufous plumages.
Collapse
Affiliation(s)
- Valérie Ducret
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland.
| | - Arnaud Gaigher
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Céline Simon
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| |
Collapse
|
22
|
Roulin A. Evolutionary trade-off between naturally- and sexually-selected melanin-based colour traits in worldwide barn owls and allies. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Alexandre Roulin
- Department of Ecology and Evolution; University of Lausanne; Biophore Building CH-1015 Lausanne Switzerland
| |
Collapse
|
23
|
Galván I, Solano F. Bird Integumentary Melanins: Biosynthesis, Forms, Function and Evolution. Int J Mol Sci 2016; 17:520. [PMID: 27070583 PMCID: PMC4848976 DOI: 10.3390/ijms17040520] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/27/2016] [Accepted: 03/30/2016] [Indexed: 11/16/2022] Open
Abstract
Melanins are the ubiquitous pigments distributed in nature. They are one of the main pigments responsible for colors in living cells. Birds are among the most diverse animals regarding melanin-based coloration, especially in the plumage, although they also pigment bare parts of the integument. This review is devoted to the main characteristics of bird melanins, including updated views of the formation and nature of melanin granules, whose interest has been raised in the last years for inferring the color of extinct birds and non-avian theropod dinosaurs using resistant fossil feathers. The molecular structure of the two main types of melanin, eumelanin and pheomelanin, and the environmental and genetic factors that regulate avian melanogenesis are also presented, establishing the main relationship between them. Finally, the special functions of melanin in bird feathers are also discussed, emphasizing the aspects more closely related to these animals, such as honest signaling, and the factors that may drive the evolution of pheomelanin and pheomelanin-based color traits, an issue for which birds have been pioneer study models.
Collapse
Affiliation(s)
- Ismael Galván
- Department of Evolutionary Ecology, Doñana Biological Station-CSIC, 41092 Sevilla, Spain.
| | - Francisco Solano
- Department of Biochemistry and Molecular Biology B & Immunology, School of Medicine and IMIB, University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|