1
|
Hunt BJ, Pegoraro M, Marshall H, Mallon EB. A role for DNA methylation in bumblebee morphogenesis hints at female-specific developmental erasure. INSECT MOLECULAR BIOLOGY 2024; 33:481-492. [PMID: 38348493 DOI: 10.1111/imb.12897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/23/2024] [Indexed: 08/20/2024]
Abstract
Epigenetic mechanisms, such as DNA methylation, are crucial factors in animal development. In some mammals, almost all DNA methylation is erased during embryo development and re-established in a sex- and cell-specific manner. This erasure and re-establishment is thought to primarily be a vertebrate-specific trait. Insects are particularly interesting in terms of development as many species often undergo remarkable morphological changes en route to maturity, that is, morphogenesis. However, little is known about the role of epigenetic mechanisms in this process across species. We have used whole-genome bisulfite sequencing to track genome-wide DNA methylation changes through the development of an economically and environmentally important pollinator species, the bumblebee Bombus terrestris (Hymenoptera:Apidae Linnaeus). We find overall levels of DNA methylation vary throughout development, and we find developmentally relevant differentially methylated genes throughout. Intriguingly, we have identified a depletion of DNA methylation in ovaries/eggs and an enrichment of highly methylated genes in sperm. We suggest this could represent a sex-specific DNA methylation erasure event. To our knowledge, this is the first suggestion of possible developmental DNA methylation erasure in an insect species. This study lays the required groundwork for functional experimental work to determine if there is a causal nature to the DNA methylation differences identified. Additionally, the application of single-cell methylation sequencing to this system will enable more accurate identification of if or when DNA methylation is erased during development.
Collapse
Affiliation(s)
- Ben J Hunt
- Centre for Ecology and Conservation, University of Exeter, Cornwall, UK
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Mirko Pegoraro
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Hollie Marshall
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Eamonn B Mallon
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| |
Collapse
|
2
|
Gonulkirmaz-Cancalar O, Shertzer O, Bloch G. Bumble Bees ( Bombus terrestris) Use Time-Memory to Associate Reward with Color and Time of Day. INSECTS 2023; 14:707. [PMID: 37623417 PMCID: PMC10455649 DOI: 10.3390/insects14080707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Circadian clocks regulate ecologically important complex behaviors in honey bees, but it is not clear whether similar capacities exist in other species of bees. One key behavior influenced by circadian clocks is time-memory, which enables foraging bees to precisely time flower visitation to periods of maximal pollen or nectar availability and reduces the costs of visiting a non-rewarding flower patch. Bumble bees live in smaller societies and typically forage over shorter distances than honey bees, and it is therefore not clear whether they can similarly associate reward with time of day. We trained individually marked bumble bee (Bombus terrestris) workers to forage for sugar syrup in a flight cage with yellow or blue feeders rewarding either during the morning or evening. After training for over two weeks, we recorded all visitations to colored feeders filled with only water. We performed two experiments, each with a different colony. We found that bees tended to show higher foraging activity during the morning and evening training sessions compared to other times during the day. During the test day, the trained bees were more likely to visit the rewarding rather than the non-rewarding colored feeders at the same time of day during the test sessions, indicating that they associated time of day and color with the sugar syrup reward. These observations lend credence to the hypothesis that bumble bees have efficient time-memory, indicating that this complex behavior is not limited to honey bees that evolved sophisticated social foraging behaviors over large distances.
Collapse
Affiliation(s)
- Ozlem Gonulkirmaz-Cancalar
- Department of Ecology, Evolution, and Behavior, The Alexander A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel; (O.G.-C.); (O.S.)
| | - Oded Shertzer
- Department of Ecology, Evolution, and Behavior, The Alexander A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel; (O.G.-C.); (O.S.)
| | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, The Alexander A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel; (O.G.-C.); (O.S.)
- The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
3
|
Marshall H, Nicholas MT, van Zweden JS, Wäckers F, Ross L, Wenseleers T, Mallon EB. DNA methylation is associated with codon degeneracy in a species of bumblebee. Heredity (Edinb) 2023; 130:188-195. [PMID: 36658299 PMCID: PMC10076500 DOI: 10.1038/s41437-023-00591-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/21/2023] Open
Abstract
Social insects display extreme phenotypic differences between sexes and castes even though the underlying genome can be almost identical. Epigenetic processes have been proposed as a possible mechanism for mediating these phenotypic differences. Using whole genome bisulfite sequencing of queens, males, and reproductive female workers we have characterised the sex- and caste-specific methylome of the bumblebee Bombus terrestris. We have identified a potential role for DNA methylation in histone modification processes which may influence sex and caste phenotypic differences. We also find differentially methylated genes generally show low levels of DNA methylation which may suggest a separate function for lowly methylated genes in mediating transcriptional plasticity, unlike highly methylated genes which are usually involved in housekeeping functions. We also examined the relationship between the underlying genome and the methylome using whole genome re-sequencing of the same queens and males. We find DNA methylation is enriched at zero-fold degenerate sites. We suggest DNA methylation may be acting as a targeted mutagen at these sites, providing substrate for selection via non-synonymous changes in the underlying genome. However, we did not see any relationship between DNA methylation and rates of positive selection in our samples. In order to fully assess a possible role for DNA methylation in adaptive processes a specifically designed study using natural population data is needed.
Collapse
Affiliation(s)
- H Marshall
- Department of Genetics and Genome Biology, The University of Leicester, Leicester, UK.
| | - M T Nicholas
- Department of Genetics and Genome Biology, The University of Leicester, Leicester, UK
| | - J S van Zweden
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Leuven, Belgium
| | - F Wäckers
- Biobest Belgium N.V., Westerlo, Belgium
- The Lancaster Environmental Centre, University of Lancaster, Lancaster, UK
| | - L Ross
- The Institute for Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - T Wenseleers
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Leuven, Belgium
| | - E B Mallon
- Department of Genetics and Genome Biology, The University of Leicester, Leicester, UK.
| |
Collapse
|
4
|
Yanagisawa T, Kato Y, Inoue MN. Infection Prevalence of Microsporidia Vairimorpha ( Nosema) spp. in Japanese Bumblebees. INSECTS 2023; 14:340. [PMID: 37103155 PMCID: PMC10145284 DOI: 10.3390/insects14040340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Microsporidia are spore-forming intracellular parasites of various invertebrates and vertebrates. Vairimorpha bombi negatively affects the fitness of bumblebees and its prevalence correlates with declining bumblebee populations. The invasive alien species Bombus terrestris colonized Japan and possibly introduced new parasites. To assess the infection prevalence of V. bombi in Japanese bumblebees and B. terrestris, we investigated V. bombi infections using PCR and microscopy. The prevalence of sporulating V. bombi infections in three Bombus s. str. species/subspecies was low, whereas that of non/low-sporulating Vairimorpha sp. infections in three Diversobombus species/subspecies was high. Invasive B. terrestris showed low prevalence of non/low-sporulating V. bombi infections and shared the same V. bombi haplotype with B. hypocrita found in Hokkaido, where B. terrestris is present, and in Honshu, where B. terrestris is absent. Although V. bombi may have been introduced with B. terrestris colonies imported from Europe, it seems to be originally distributed in Japan. Furthermore, a new Vairimorpha sp. was found in Japanese bumblebee species. V. bombi and Vairimorpha sp. showed different organ and host specificities in bumblebees. There are no reports on the specific effects of other Vairimorpha spp. on bumblebees; further studies are needed to clarify the individual characteristics of Vairimorpha spp.
Collapse
|
5
|
Leroy C, Brunet JL, Henry M, Alaux C. Using physiology to better support wild bee conservation. CONSERVATION PHYSIOLOGY 2023; 11:coac076. [PMID: 36632323 PMCID: PMC9825782 DOI: 10.1093/conphys/coac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
There is accumulating evidence that wild bees are experiencing a decline in terms of species diversity, abundance or distribution, which leads to major concerns about the sustainability of both pollination services and intrinsic biodiversity. There is therefore an urgent need to better understand the drivers of their decline, as well as design conservation strategies. In this context, the current approach consists of linking observed occurrence and distribution data of species to environmental features. While useful, a highly complementary approach would be the use of new biological metrics that can link individual bee responses to environmental alteration with population-level responses, which could communicate the actual bee sensitivity to environmental changes and act as early warning signals of bee population decline or sustainability. We discuss here through several examples how the measurement of bee physiological traits or performance can play this role not only in better assessing the impact of anthropogenic pressures on bees, but also in guiding conservation practices with the help of the documentation of species' physiological needs. Last but not least, because physiological changes generally occur well in advance of demographic changes, we argue that physiological traits can help in predicting and anticipating future population trends, which would represent a more proactive approach to conservation. In conclusion, we believe that future efforts to combine physiological, ecological and population-level knowledge will provide meaningful contributions to wild bee conservation-based research.
Collapse
Affiliation(s)
| | - Jean-Luc Brunet
- INRAE, UR 406 Abeilles et Environnement, 84 914 Avignon, France
| | - Mickael Henry
- INRAE, UR 406 Abeilles et Environnement, 84 914 Avignon, France
| | - Cedric Alaux
- INRAE, UR 406 Abeilles et Environnement, 84 914 Avignon, France
| |
Collapse
|
6
|
Garlin J, Theodorou P, Kathe E, Quezada-Euán JJG, Paxton RJ, Soro A. Anthropogenic effects on the body size of two neotropical orchid bees. BMC Ecol Evol 2022; 22:94. [PMID: 35918637 PMCID: PMC9347145 DOI: 10.1186/s12862-022-02048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
To accommodate an ever-increasing human population, agriculture is rapidly intensifying at the expense of natural habitat, with negative and widely reported effects on biodiversity in general and on wild bee abundance and diversity in particular. Cities are similarly increasing in area, though the impact of urbanisation on wild bees is more equivocal and potentially positive in northern temperate regions. Yet agriculture and urbanisation both lead to the loss and alteration of natural habitat, its fragmentation, a potential reduction in floral availability, and warmer temperatures, factors thought to be drivers of wild bee decline. They have also been shown to be factors to which wild bee populations respond through morphological change. Body size is one such trait that, because of its relation to individual fitness, has received growing attention as a morphological feature that responds to human induced modification in land use. Here, we investigated the change in body size of two sympatric orchid bee species on the Yucatan Peninsula of Mexico in response to urbanization and agricultural intensification. By measuring 540 male individuals sampled from overall 24 sites, we found that Euglossa dilemma and Euglossa viridissima were on average smaller in urban and agricultural habitats than in natural ones. We discuss the potential role of reduced availability of resources in driving the observed body size shifts. Agricultural and urban land management in tropical regions might benefit wild bees if it encompassed the planting of flowering herbs and trees to enhance their conservation.
Collapse
|
7
|
Feigs JT, Holzhauer SIJ, Huang S, Brunet J, Diekmann M, Hedwall PO, Kramp K, Naaf T. Pollinator movement activity influences genetic diversity and differentiation of spatially isolated populations of clonal forest herbs. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.908258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In agricultural landscapes, forest herbs live in small, spatially isolated forest patches. For their long-term survival, their populations depend on animals as genetic linkers that provide pollen- or seed-mediated gene flow among different forest patches. However, whether insect pollinators serve as genetic linkers among spatially isolated forest herb populations in agricultural landscapes remains to be shown. Here, we used population genetic methods to analyze: (A) the genetic diversity and genetic differentiation of populations of two common, slow-colonizing temperate forest herb species [Polygonatum multiflorum (L.) All. and Anemone nemorosa L.] in spatially isolated populations within three agricultural landscapes in Germany and Sweden and (B) the movement activity of their most relevant associated pollinator species, i.e., the bumblebee Bombus pascuorum (Scopoli, 1,763) and the hoverfly Melanostoma scalare (Fabricus, 1,794), respectively, which differ in their mobility. We tested whether the indicated pollinator movement activity affected the genetic diversity and genetic differentiation of the forest herb populations. Bumblebee movement indicators that solely indicated movement activity between the forest patches affected both genetic diversity and genetic differentiation of the associated forest herb P. multiflorum in a way that can be explained by pollen-mediated gene flow among the forest herb populations. In contrast, movement indicators reflecting the total movement activity at a forest patch (including within-forest patch movement activity) showed unexpected effects for both plant-pollinator pairs that might be explained by accelerated genetic drift due to enhanced sexual reproduction. Our integrated approach revealed that bumblebees serve as genetic linkers of associated forest herb populations, even if they are more than 2 km apart from each other. No such evidence was found for the forest associated hoverfly species which showed significant genetic differentiation among forest patches itself. Our approach also indicated that a higher within-forest patch movement activity of both pollinator species might enhance sexual recruitment and thus diminishes the temporal buffer that clonal growth provides against habitat fragmentation effects.
Collapse
|
8
|
Theodorou P, Kühn O, Baltz LM, Wild C, Rasti SL, Bucksch CR, Strohm E, Paxton RJ, Kurze C. Bumble bee colony health and performance vary widely across the urban ecosystem. J Anim Ecol 2022; 91:2135-2148. [DOI: 10.1111/1365-2656.13797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Panagiotis Theodorou
- General Zoology Institute for Biology, Martin‐Luther University Halle‐Wittenberg Halle (Saale) Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | - Olga Kühn
- General Zoology Institute for Biology, Martin‐Luther University Halle‐Wittenberg Halle (Saale) Germany
| | - Lucie M. Baltz
- General Zoology Institute for Biology, Martin‐Luther University Halle‐Wittenberg Halle (Saale) Germany
| | - Christopher Wild
- General Zoology Institute for Biology, Martin‐Luther University Halle‐Wittenberg Halle (Saale) Germany
| | - Sirus Leonard Rasti
- General Zoology Institute for Biology, Martin‐Luther University Halle‐Wittenberg Halle (Saale) Germany
| | - Carolina Ruiz Bucksch
- General Zoology Institute for Biology, Martin‐Luther University Halle‐Wittenberg Halle (Saale) Germany
| | - Erhard Strohm
- Institute of Zoology, University of Regensburg Regensburg Germany
| | - Robert J. Paxton
- General Zoology Institute for Biology, Martin‐Luther University Halle‐Wittenberg Halle (Saale) Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | - Christoph Kurze
- General Zoology Institute for Biology, Martin‐Luther University Halle‐Wittenberg Halle (Saale) Germany
- Institute of Zoology, University of Regensburg Regensburg Germany
| |
Collapse
|
9
|
Montero‐Castaño A, Koch JBU, Lindsay TT, Love B, Mola JM, Newman K, Sharkey JK. Pursuing best practices for minimizing wild bee captures to support biological research. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
| | - Jonathan Berenguer Uhuad Koch
- U.S. Department of Agriculture‐Agricultural Research Service Pollinating Insect‐Biology, Management, and Systematics Research Unit Logan Utah USA
| | - Thuy‐Tien Thai Lindsay
- U.S. Department of Agriculture‐Agricultural Research Service Pollinating Insect‐Biology, Management, and Systematics Research Unit Logan Utah USA
| | - Byron Love
- U.S. Department of Agriculture‐Agricultural Research Service Pollinating Insect‐Biology, Management, and Systematics Research Unit Logan Utah USA
| | - John M. Mola
- U.S. Geological Survey Fort Collins Science Center Fort Collins Colorado USA
| | - Kiera Newman
- School of Environmental Sciences University of Guelph Guelph Ontario Canada
| | - Janean K. Sharkey
- School of Environmental Sciences University of Guelph Guelph Ontario Canada
| |
Collapse
|
10
|
Bumble bees exhibit body size clines across an urban gradient despite low genetic differentiation. Sci Rep 2022; 12:4166. [PMID: 35264687 PMCID: PMC8907314 DOI: 10.1038/s41598-022-08093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/28/2022] [Indexed: 11/23/2022] Open
Abstract
Environmental heterogeneity resulting from human-modified landscapes can increase intraspecific trait variation. However, less known is whether such phenotypic variation is driven by plastic or adaptive responses to local environments. Here, we study five bumble bee (Apidae: Bombus) species across an urban gradient in the greater Saint Louis, Missouri region in the North American Midwest and ask: (1) Can urban environments induce intraspecific spatial structuring of body size, an ecologically consequential functional trait? And, if so, (2) is this body size structure the result of plasticity or adaptation? We additionally estimate genetic diversity, inbreeding, and colony density of these species—three factors that affect extinction risk. Using ≥ 10 polymorphic microsatellite loci per species and measurements of body size, we find that two of these species (Bombus impatiens, Bombus pensylvanicus) exhibit body size clines across the urban gradient, despite a lack of population genetic structure. We also reaffirm reports of low genetic diversity in B. pensylvanicus and find evidence that Bombus griseocollis, a species thought to be thriving in North America, is inbred in the greater Saint Louis region. Collectively, our results have implications for conservation in urban environments and suggest that plasticity can cause phenotypic clines across human-modified landscapes.
Collapse
|
11
|
Fowler AE, Giacomini JJ, Connon SJ, Irwin RE, Adler LS. Sunflower pollen reduces a gut pathogen in the model bee species, Bombus impatiens, but has weaker effects in three wild congeners. Proc Biol Sci 2022; 289:20211909. [PMID: 35105241 PMCID: PMC8809364 DOI: 10.1098/rspb.2021.1909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022] Open
Abstract
Commercial bumblebees have become popular models to understand stressors and solutions for pollinator health, but few studies test whether results translate to other pollinators. Consuming sunflower pollen dramatically reduces infection by the gut parasite Crithidia bombi in commercially reared Bombus impatiens. We assessed the effect of sunflower pollen on infection in wild B. impatiens, Bombus griseocollis, Bombus bimaculatus and Bombus vagans. We also asked how pollen diet (50% sunflower pollen versus wildflower pollen) and infection (yes/no) affected performance in wild B. impatiens microcolonies. Compared to controls, sunflower pollen dramatically reduced Crithidia infection in commercial and wild B. impatiens, had similar but less dramatic effects in B. bimaculatus and B. vagans, and no effect in B. griseocollis. Bombus impatiens, B. bimaculatus and B. vagans are in the same subgenus, suggesting that responses to sunflower pollen may be phylogenetically conserved. In microcolonies, 50% sunflower pollen reduced infection compared to wildflower pollen, but also reduced reproduction. Sunflower pollen could control Crithidia infections in B. impatiens and potentially close relatives, but may hinder reproduction if other resources are scarce. We caution that research using managed bee species, such as B. impatiens, be interpreted carefully as findings may not relate to all bee species.
Collapse
Affiliation(s)
- Alison E. Fowler
- Department of Biology, University of Massachusetts Amherst, 221 Morrill Science Center South, 611 North Pleasant Street, Amherst, MA 01003, USA
| | - Jonathan J. Giacomini
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | - Sara June Connon
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | - Rebecca E. Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | - Lynn S. Adler
- Department of Biology, University of Massachusetts Amherst, 221 Morrill Science Center South, 611 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
12
|
Butler RG, Lage C, Dobrin SE, Staples JK, Venturini E, Frank J, Drummond FA. Maine's Bumble Bees (Hymenoptera: Apidae)-Part 2: Comparisons of a Common (Bombus ternarius) and a Rare (Bombus terricola) Species. ENVIRONMENTAL ENTOMOLOGY 2021; 50:1358-1369. [PMID: 34532731 DOI: 10.1093/ee/nvab100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 06/13/2023]
Abstract
As part of a quantitative survey of Maine's bumble bee fauna (Butler et al. 2021), we compared and contrasted genetic diversity, parasite and pathogen burdens, and pesticide exposure of the relatively common Bombus ternarius Say, 1937 and the spatially rare Bombus terricola Kirby, 1837. We recorded 11 Bombus species at 40 survey sites across three Maine ecoregions, and B. ternarius was the most common species, while B. terricola was spatially rare. Nonmetric multidimensional scaling indicated that B. terricola was associated with higher elevation sites in Maine, while B. ternarius was more broadly distributed in the state. Pollinator networks constructed for each bee indicated B. ternarius foraged on more plant species than B. terricola, but that there was considerable overlap (73%) in plant species visited. Genetic diversity was greater in the spatially restricted B. terricola, whereas the widely distributed B. ternarius was characterized by greater genetic differentiation among regions. Bombus terricola had higher molecular marker levels of the microsporidian fungi Nosema spp. and the trypanosome Crithidia spp., and both species had high levels of Trypanosoma spp. exposure. No Western Honey Bee (Apis mellifera, Linnaeus, 1758) viruses were detected in either species. Pesticides were not detected in pollen samples collected from workers of either species, and B. ternarius worker tissue samples exhibited only trace levels of diflubenzuron.
Collapse
Affiliation(s)
- Ronald G Butler
- Department of Biology, University of Maine, Farmington, ME, USA
| | - Christopher Lage
- College of Arts and Sciences, University of Maine Augusta, Augusta, ME, USA
| | - Scott E Dobrin
- Collegium of Natural Sciences, Eckerd College, St. Petersburg, FL, USA
| | - Joseph K Staples
- Department of Environmental Science and Policy, University of Southern Maine, Gorham, ME, USA
| | - Eric Venturini
- Maine Wild Blueberry Commission, University of Maine, Orono, ME, USA
| | - Jereme Frank
- Maine Forest Service, Department of Agriculture Conservation and Forestry, Old Town, ME, USA
| | - Francis A Drummond
- Professor Emeritus, School of Biology and Ecology, University of Maine, Orono, ME, USA
| |
Collapse
|
13
|
Christmas MJ, Jones JC, Olsson A, Wallerman O, Bunikis I, Kierczak M, Whitley KM, Sullivan I, Geib JC, Miller-Struttmann NE, Webster MT. A genomic and morphometric analysis of alpine bumblebees: Ongoing reductions in tongue length but no clear genetic component. Mol Ecol 2021; 31:1111-1127. [PMID: 34837435 DOI: 10.1111/mec.16291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022]
Abstract
Over the last six decades, populations of the bumblebees Bombus sylvicola and Bombus balteatus in Colorado have experienced decreases in tongue length, a trait important for plant-pollinator mutualisms. It has been hypothesized that this observation reflects selection resulting from shifts in floral composition under climate change. Here we used morphometrics and population genomics to determine whether morphological change is ongoing, investigate the genetic basis of morphological variation, and analyse population structure in these populations. We generated a genome assembly of B. balteatus. We then analysed whole-genome sequencing data and morphometric measurements of 580 samples of both species from seven high-altitude localities. Out of 281 samples originally identified as B. sylvicola, 67 formed a separate genetic cluster comprising a newly-discovered cryptic species ("incognitus"). However, an absence of genetic structure within species suggests that gene flow is common between mountains. We found a significant decrease in tongue length between bees collected between 2012-2014 and in 2017, indicating that morphological shifts are ongoing. We did not discover any genetic associations with tongue length, but a SNP related to production of a proteolytic digestive enzyme was implicated in body size variation. We identified evidence of covariance between kinship and both tongue length and body size, which is suggestive of a genetic component of these traits, although it is possible that shared environmental effects between colonies are responsible. Our results provide evidence for ongoing modification of a morphological trait important for pollination and indicate that this trait probably has a complex genetic and environmental basis.
Collapse
Affiliation(s)
- Matthew J Christmas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Julia C Jones
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Anna Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ignas Bunikis
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Marcin Kierczak
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Kaitlyn M Whitley
- Department of Biology, Appalachian State University, Boone, North Carolina, USA.,U.S. Department of Agriculture, Agriculture Research Service, Charleston, South Carolina, USA
| | - Isabel Sullivan
- Department of Biology, Appalachian State University, Boone, North Carolina, USA.,Marine Estuarine Environmental Sciences, University of Maryland, College Park, Maryland, USA
| | - Jennifer C Geib
- Department of Biology, Appalachian State University, Boone, North Carolina, USA
| | | | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Averill AL, Couto AV, Andersen JC, Elkinton JS. Parasite Prevalence May Drive the Biotic Impoverishment of New England (USA) Bumble Bee Communities. INSECTS 2021; 12:insects12100941. [PMID: 34680710 PMCID: PMC8539347 DOI: 10.3390/insects12100941] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/13/2023]
Abstract
Simple Summary Here we discuss widespread changes in the community structure of bumble bees (Bombus spp.) found in the coastal-zone community of New England. One species in particular, Bombus impatiens Cresson, 1863, has increased in relative abundance nearly 45% since the 1990s to become the dominant species in the region, representing nearly 75% of all Bombus individuals collected in our studies. These changes in abundance may be, in part, due to differences in infection rates by microparasites, with B. impatiens having significantly fewer microparasites than several other less common and declining Bombus species. We discuss the possible role of microparasites in influencing the community composition of Bombus species in our region, and how these infections might be compounding declines in conjunction with habitat loss and climate change. Abstract Numerous studies have reported a diversity of stressors that may explain continental-scale declines in populations of native pollinators, particularly those in the genus Bombus. However, there has been little focus on the identification of the local-scale dynamics that may structure currently impoverished Bombus communities. For example, the historically diverse coastal-zone communities of New England (USA) now comprise only a few species and are primarily dominated by a single species, B. impatiens. To better understand the local-scale factors that might be influencing this change in community structure, we examined differences in the presence of parasites in different species of Bombus collected in coastal-zone communities. Our results indicate that Bombus species that are in decline in this region were more likely to harbor parasites than are B. impatiens populations, which were more likely to be parasite-free and to harbor fewer intense infections or co-infections. The contrasting parasite burden between co-occurring winners and losers in this community may impact the endgame of asymmetric contests among species competing for dwindling resources. We suggest that under changing climate and landscape conditions, increasing domination of communities by healthy, synanthropic Bombus species (such as B. impatiens) may be another factor hastening the further erosion of bumble bee diversity.
Collapse
Affiliation(s)
- Anne L. Averill
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA; (J.C.A.); (J.S.E.)
- Correspondence: ; Tel.: +1-413-545-1054
| | - Andrea V. Couto
- Department of Computer Science, Bridgewater State University, Bridgewater, MA 02324, USA;
| | - Jeremy C. Andersen
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA; (J.C.A.); (J.S.E.)
| | - Joseph S. Elkinton
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA; (J.C.A.); (J.S.E.)
| |
Collapse
|
15
|
Theodorou P, Baltz LM, Paxton RJ, Soro A. Urbanization is associated with shifts in bumblebee body size, with cascading effects on pollination. Evol Appl 2021; 14:53-68. [PMID: 33519956 PMCID: PMC7819558 DOI: 10.1111/eva.13087] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Urbanization is a global phenomenon with major effects on species, the structure of community functional traits and ecological interactions. Body size is a key species trait linked to metabolism, life-history and dispersal as well as a major determinant of ecological networks. Here, using a well-replicated urban-rural sampling design in Central Europe, we investigate the direction of change of body size in response to urbanization in three common bumblebee species, Bombus lapidarius, Bombus pascuorum and Bombus terrestris, and potential knock-on effects on pollination service provision. We found foragers of B. terrestris to be larger in cities and the body size of all species to be positively correlated with road density (albeit at different, species-specific scales); these are expected consequences of habitat fragmentation resulting from urbanization. High ambient temperature at sampling was associated with both a small body size and an increase in variation of body size in all three species. At the community level, the community-weighted mean body size and its variation increased with urbanization. Urbanization had an indirect positive effect on pollination services through its effects not only on flower visitation rate but also on community-weighted mean body size and its variation. We discuss the eco-evolutionary implications of the effect of urbanization on body size, and the relevance of these findings for the key ecosystem service of pollination.
Collapse
Affiliation(s)
- Panagiotis Theodorou
- General ZoologyInstitute of BiologyMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Lucie M. Baltz
- General ZoologyInstitute of BiologyMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Robert J. Paxton
- General ZoologyInstitute of BiologyMartin Luther University Halle‐WittenbergHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Antonella Soro
- General ZoologyInstitute of BiologyMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| |
Collapse
|
16
|
Miles LS, Carlen EJ, Winchell KM, Johnson MTJ. Urban evolution comes into its own: Emerging themes and future directions of a burgeoning field. Evol Appl 2021; 14:3-11. [PMID: 33519952 PMCID: PMC7819569 DOI: 10.1111/eva.13165] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/01/2020] [Indexed: 01/02/2023] Open
Abstract
Urbanization has recently emerged as an exciting new direction for evolutionary research founded on our growing understanding of rapid evolution paired with the expansion of novel urban habitats. Urbanization can influence adaptive and nonadaptive evolution in urban-dwelling species, but generalized patterns and the predictability of urban evolutionary responses within populations remain unclear. This editorial introduces the special feature "Evolution in Urban Environments" and addresses four major emerging themes, which include: (a) adaptive evolution and phenotypic plasticity via physiological responses to urban climate, (b) adaptive evolution via phenotype-environment relationships in urban habitats, (c) population connectivity and genetic drift in urban landscapes, and (d) human-wildlife interactions in urban spaces. Here, we present the 16 articles (12 empirical, 3 review, 1 capstone) within this issue and how they represent each of these four emerging themes in urban evolutionary biology. Finally, we discuss how these articles address previous questions and have now raised new ones, highlighting important new directions for the field.
Collapse
Affiliation(s)
- Lindsay S. Miles
- Department of BiologyUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Urban EnvironmentsUniversity of Toronto MississaugaMississaugaONCanada
| | | | | | - Marc T. J. Johnson
- Department of BiologyUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Urban EnvironmentsUniversity of Toronto MississaugaMississaugaONCanada
| |
Collapse
|
17
|
Pimsler ML, Oyen KJ, Herndon JD, Jackson JM, Strange JP, Dillon ME, Lozier JD. Biogeographic parallels in thermal tolerance and gene expression variation under temperature stress in a widespread bumble bee. Sci Rep 2020; 10:17063. [PMID: 33051510 PMCID: PMC7553916 DOI: 10.1038/s41598-020-73391-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Global temperature changes have emphasized the need to understand how species adapt to thermal stress across their ranges. Genetic mechanisms may contribute to variation in thermal tolerance, providing evidence for how organisms adapt to local environments. We determine physiological thermal limits and characterize genome-wide transcriptional changes at these limits in bumble bees using laboratory-reared Bombus vosnesenskii workers. We analyze bees reared from latitudinal (35.7-45.7°N) and altitudinal (7-2154 m) extremes of the species' range to correlate thermal tolerance and gene expression among populations from different climates. We find that critical thermal minima (CTMIN) exhibit strong associations with local minimums at the location of queen origin, while critical thermal maximum (CTMAX) was invariant among populations. Concordant patterns are apparent in gene expression data, with regional differentiation following cold exposure, and expression shifts invariant among populations under high temperatures. Furthermore, we identify several modules of co-expressed genes that tightly correlate with critical thermal limits and temperature at the region of origin. Our results reveal that local adaptation in thermal limits and gene expression may facilitate cold tolerance across a species range, whereas high temperature responses are likely constrained, both of which may have implications for climate change responses of bumble bees.
Collapse
Affiliation(s)
- Meaghan L Pimsler
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Kennan J Oyen
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - James D Herndon
- USDA-ARS Pollinating Insects Research Unit, Utah State University, Logan, UT, 84322, USA
| | - Jason M Jackson
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - James P Strange
- USDA-ARS Pollinating Insects Research Unit, Utah State University, Logan, UT, 84322, USA
- Department of Entomology, The Ohio State University, Columbus, OH, 44691, USA
| | - Michael E Dillon
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
18
|
Drossart M, Gérard M. Beyond the Decline of Wild Bees: Optimizing Conservation Measures and Bringing Together the Actors. INSECTS 2020; 11:E649. [PMID: 32971790 PMCID: PMC7564822 DOI: 10.3390/insects11090649] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
Wild bees are facing a global decline mostly induced by numerous human factors for the last decades. In parallel, public interest for their conservation increased considerably, namely through numerous scientific studies relayed in the media. In spite of this broad interest, a lack of knowledge and understanding of the subject is blatant and reveals a gap between awareness and understanding. While their decline is extensively studied, information on conservation measures is often scattered in the literature. We are now beyond the precautionary principle and experts are calling for effective actions to promote wild bee diversity and the enhancement of environment quality. In this review, we draw a general and up-to-date assessment of the conservation methods, as well as their efficiency and the current projects that try to fill the gaps and optimize the conservation measures. Targeting bees, we focused our attention on (i) the protection and restoration of wild bee habitats, (ii) the conservation measures in anthropogenic habitats, (iii) the implementation of human made tools, (iv) how to deal with invasive alien species, and finally (v) how to communicate efficiently and accurately. This review can be considered as a needed catalyst to implement concrete and qualitative conversation actions for bees.
Collapse
Affiliation(s)
- Maxime Drossart
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons (UMONS), Place du Parc 20, B-7000 Mons, Belgium
| | - Maxence Gérard
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons (UMONS), Place du Parc 20, B-7000 Mons, Belgium
| |
Collapse
|
19
|
De Novo Genome Assemblies for Three North American Bumble Bee Species: Bombus bifarius, Bombus vancouverensis, and Bombus vosnesenskii. G3-GENES GENOMES GENETICS 2020; 10:2585-2592. [PMID: 32586847 PMCID: PMC7407468 DOI: 10.1534/g3.120.401437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bumble bees are ecologically and economically important insect pollinators. Three abundant and widespread species in western North America, Bombus bifarius, Bombus vancouverensis, and Bombus vosnesenskii, have been the focus of substantial research relating to diverse aspects of bumble bee ecology and evolutionary biology. We present de novo genome assemblies for each of the three species using hybrid assembly of Illumina and Oxford Nanopore Technologies sequences. All three assemblies are of high quality with large N50s (> 2.2 Mb), BUSCO scores indicating > 98% complete genes, and annotations producing 13,325 - 13,687 genes, comparing favorably with other bee genomes. Analysis of synteny against the most complete bumble bee genome, Bombus terrestris, reveals a high degree of collinearity. These genomes should provide a valuable resource for addressing questions relating to functional genomics and evolutionary biology in these species.
Collapse
|
20
|
Jackson JM, Pimsler ML, Oyen KJ, Strange JP, Dillon ME, Lozier JD. Local adaptation across a complex bioclimatic landscape in two montane bumble bee species. Mol Ecol 2020; 29:920-939. [PMID: 32031739 DOI: 10.1111/mec.15376] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 01/21/2020] [Accepted: 02/02/2020] [Indexed: 12/21/2022]
Abstract
Understanding evolutionary responses to variation in temperature and precipitation across species ranges is of fundamental interest given ongoing climate change. The importance of temperature and precipitation for multiple aspects of bumble bee (Bombus) biology, combined with large geographic ranges that expose populations to diverse environmental pressures, make these insects well-suited for studying local adaptation. Here, we analyzed genome-wide sequence data from two widespread bumble bees, Bombus vosnesenskii and Bombus vancouverensis, using multiple environmental association analysis methods to investigate climate adaptation across latitude and altitude. The strongest signatures of selection were observed in B. vancouverensis, but despite unique responses between species for most loci, we detected several shared responses. Genes relating to neural and neuromuscular function and ion transport were especially evident with respect to temperature variables, while genes relating to cuticle formation, tracheal and respiratory system development, and homeostasis were associated with precipitation variables. Our data thus suggest that adaptive responses for tolerating abiotic variation are likely to be complex, but that several parallels among species can emerge even for these complex traits and landscapes. Results provide the framework for future work into mechanisms of thermal and desiccation tolerance in bumble bees and a set of genomic targets that might be monitored for future conservation efforts.
Collapse
Affiliation(s)
- Jason M Jackson
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Meaghan L Pimsler
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Kennan J Oyen
- Department of Zoology & Physiology and Program in Ecology, University of Wyoming, Laramie, WY, USA.,Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - James P Strange
- Department of Entomology, The Ohio State University, Columbus, OH, USA
| | - Michael E Dillon
- Department of Zoology & Physiology and Program in Ecology, University of Wyoming, Laramie, WY, USA
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
21
|
Ballare KM, Pope NS, Castilla AR, Cusser S, Metz RP, Jha S. Utilizing field collected insects for next generation sequencing: Effects of sampling, storage, and DNA extraction methods. Ecol Evol 2019; 9:13690-13705. [PMID: 31938475 PMCID: PMC6953651 DOI: 10.1002/ece3.5756] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 08/20/2019] [Accepted: 09/15/2019] [Indexed: 01/04/2023] Open
Abstract
DNA sequencing technologies continue to advance the biological sciences, expanding opportunities for genomic studies of non-model organisms for basic and applied questions. Despite these opportunities, many next generation sequencing protocols have been developed assuming a substantial quantity of high molecular weight DNA (>100 ng), which can be difficult to obtain for many study systems. In particular, the ability to sequence field-collected specimens that exhibit varying levels of DNA degradation remains largely unexplored. In this study we investigate the influence of five traditional insect capture and curation methods on Double-Digest Restriction Enzyme Associated DNA (ddRAD) sequencing success for three wild bee species. We sequenced a total of 105 specimens (between 7-13 specimens per species and treatment). We additionally investigated how different DNA quality metrics (including pre-sequence concentration and contamination) predicted downstream sequencing success, and also compared two DNA extraction methods. We report successful library preparation for all specimens, with all treatments and extraction methods producing enough highly reliable loci for population genetic analyses. Although results varied between species, we found that specimens collected by net sampling directly into 100% EtOH, or by passive trapping followed by 100% EtOH storage before pinning tended to produce higher quality ddRAD assemblies, likely as a result of rapid specimen desiccation. Surprisingly, we found that specimens preserved in propylene glycol during field sampling exhibited lower-quality assemblies. We provide recommendations for each treatment, extraction method, and DNA quality assessment, and further encourage researchers to consider utilizing a wider variety of specimens for genomic analyses.
Collapse
Affiliation(s)
- Kimberly M. Ballare
- Department of Integrative BiologyThe University of Texas at AustinAustinTXUSA
- Present address:
Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzCAUSA
| | - Nathaniel S. Pope
- Department of Integrative BiologyThe University of Texas at AustinAustinTXUSA
- Present address:
Department of EntomologyPennsylvania State UniversityUniversity ParkPAUSA
| | - Antonio R. Castilla
- Department of Integrative BiologyThe University of Texas at AustinAustinTXUSA
- Present address:
Centre for Applied Ecology “Prof. Baeta Neves”/INBIOInstitutoSuperior of AgronomyUniversity of LisbonLisbonPortugal
| | - Sarah Cusser
- Department of Integrative BiologyThe University of Texas at AustinAustinTXUSA
- Present address:
Kellogg Biological StationMichigan State UniversityHickory CornersMIUSA
| | - Richard P. Metz
- Genomics and Bioinformatics ServiceTexas A&M AgriLife ResearchCollege StationTXUSA
| | - Shalene Jha
- Department of Integrative BiologyThe University of Texas at AustinAustinTXUSA
| |
Collapse
|
22
|
Silva SE, Seabra SG, Carvalheiro LG, Nunes VL, Marabuto E, Mendes R, Rodrigues ASB, Pina-Martins F, Yurtsever S, Laurentino TG, Figueiredo E, Rebelo MT, Paulo OS. Population genomics of Bombus terrestris reveals high but unstructured genetic diversity in a potential glacial refugium. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Ongoing climate change is expected to cause an increase in temperature and a reduction of precipitation levels in the Mediterranean region, which might cause changes in many species distributions. These effects negatively influence species gene pools, decreasing genetic variability and adaptive potential. Here, we use mitochondrial DNA and RADseq to analyse population genetic structure and genetic diversity of the bumblebee species Bombus terrestris (subspecies Bombus terrestris lusitanicus), in the Iberian Peninsula. Although this subspecies shows a panmictic pattern of population structure across Iberia and beyond, we found differentiation between subspecies B. t. lusitanicus and B. t. africanus, probably caused by the existence of barriers to gene flow between Iberia and North Africa. Furthermore, the results revealed that the Iberian Peninsula harbours a large fraction of B. terrestris intraspecific genetic variation, with the highest number of mitochondrial haplotypes found when compared with any other region in Europe studied so far, suggesting a potential role for the Iberian Peninsula as a glacial refugium. Our findings strengthen the idea that Iberia is a very important source of diversity for the global genetic pool of this species, because rare alleles might play a role in population resilience against human- or climate-mediated changes.
Collapse
Affiliation(s)
- Sara E Silva
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Sofia G Seabra
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Luísa G Carvalheiro
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Department of Ecology, Universidade Federal de Goiás, Goiânia, Brazil
| | - Vera L Nunes
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Eduardo Marabuto
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Raquel Mendes
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana S B Rodrigues
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Francisco Pina-Martins
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Selçuk Yurtsever
- Biology Department, Science Faculty, Trakya University, Edirne, Turkey
| | | | - Elisabete Figueiredo
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - Maria T Rebelo
- Centre for Environmental and Marine Research (CESAM), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Octávio S Paulo
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
23
|
Marshall H, Lonsdale ZN, Mallon EB. Methylation and gene expression differences between reproductive and sterile bumblebee workers. Evol Lett 2019; 3:485-499. [PMID: 31636941 PMCID: PMC6791180 DOI: 10.1002/evl3.129] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022] Open
Abstract
Phenotypic plasticity is the production of multiple phenotypes from a single genome and is notably observed in social insects. Multiple epigenetic mechanisms have been associated with social insect plasticity, with DNA methylation being explored to the greatest extent. DNA methylation is thought to play a role in caste determination in Apis mellifera, and other social insects, but there is limited knowledge on its role in other bee species. In this study, we analyzed whole genome bisulfite sequencing and RNA-seq data sets from head tissue of reproductive and sterile castes of the eusocial bumblebee Bombus terrestris. We found that genome-wide methylation in B. terrestris is similar to other holometabolous insects and does not differ between reproductive castes. We did, however, find differentially methylated genes between castes, which are enriched for multiple biological processes including reproduction. However, we found no relationship between differential methylation and differential gene expression or differential exon usage between castes. Our results also indicate high intercolony variation in methylation. These findings suggest that methylation is associated with caste differences but may serve an alternate function, other than direct caste determination in this species. This study provides the first insights into the nature of a bumblebee caste-specific methylome as well as its interaction with gene expression and caste-specific alternative splicing, providing greater understanding of the role of methylation in phenotypic plasticity within social bee species. Future experimental work is needed to determine the function of methylation and other epigenetic mechanisms in insects.
Collapse
Affiliation(s)
- Hollie Marshall
- Department of Genetics and Genome BiologyThe University of LeicesterLeicesterUnited Kingdom
| | - Zoë N. Lonsdale
- Department of Genetics and Genome BiologyThe University of LeicesterLeicesterUnited Kingdom
| | - Eamonn B. Mallon
- Department of Genetics and Genome BiologyThe University of LeicesterLeicesterUnited Kingdom
| |
Collapse
|
24
|
Troczka BJ, Homem RA, Reid R, Beadle K, Kohler M, Zaworra M, Field LM, Williamson MS, Nauen R, Bass C, Davies TGE. Identification and functional characterisation of a novel N-cyanoamidine neonicotinoid metabolising cytochrome P450, CYP9Q6, from the buff-tailed bumblebee Bombus terrestris. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 111:103171. [PMID: 31136794 PMCID: PMC6675907 DOI: 10.1016/j.ibmb.2019.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/26/2019] [Accepted: 05/15/2019] [Indexed: 05/07/2023]
Abstract
Recent work has shown that two bumblebee (Bombus terrestris) cytochrome P450s of the CYP9Q subfamily, CYP9Q4 and CYP9Q5, are important biochemical determinants of sensitivity to neonicotinoid insecticides. Here, we report the characterisation of a third P450 gene CYP9Q6, previously mis-annotated in the genome of B. terrestris, encoding an enzyme that metabolises the N-cyanoamidine neonicotinoids thiacloprid and acetamiprid with high efficiency. The genomic location and complete ORF of CYP9Q6 was corroborated by PCR and its metabolic activity characterised in vitro by expression in an insect cell line. CYP9Q6 metabolises both thiacloprid and acetamiprid more rapidly than the previously reported CYP9Q4 and CYP9Q5. We further demonstrate a direct, in vivo correlation between the expression of the CYP9Q6 enzyme in transgenic Drosophila melanogaster and an increased tolerance to thiacloprid and acetamiprid. We conclude that CYP9Q6 is an efficient metaboliser of N-cyanoamidine neonicotinoids and likely plays a key role in the high tolerance of B. terrestris to these insecticides.
Collapse
Affiliation(s)
- Bartlomiej J Troczka
- Biointeractions and Crop Protection Department, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK; College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Rafael A Homem
- Biointeractions and Crop Protection Department, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - Rebecca Reid
- Biointeractions and Crop Protection Department, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - Katherine Beadle
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Maxie Kohler
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789, Monheim, Germany
| | - Marion Zaworra
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789, Monheim, Germany
| | - Linda M Field
- Biointeractions and Crop Protection Department, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - Martin S Williamson
- Biointeractions and Crop Protection Department, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789, Monheim, Germany
| | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - T G Emyr Davies
- Biointeractions and Crop Protection Department, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK.
| |
Collapse
|
25
|
Pattern of population structuring between Belgian and Estonian bumblebees. Sci Rep 2019; 9:9651. [PMID: 31273269 PMCID: PMC6609714 DOI: 10.1038/s41598-019-46188-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/24/2019] [Indexed: 11/23/2022] Open
Abstract
Several population genetic studies investigated the extent of gene flow and population connectivity in bumblebees. In general, no restriction in gene flow is considered for mainland populations of common bumblebee species. Whether this assumption holds true for all species is not known. An assessment of bumblebee genetic structure in the context of their geographic distribution is needed to prioritize conservation and management needs. Here, we conducted a genetic study on seven bumblebee species occurring in Belgium and Estonia. Using 16 microsatellite markers, we investigated genetic diversity and population structuring in each species. This is the first study investigating population structuring of both declining and stable bumblebee species on both small and large geographic scales. Our results showed no or only low population structuring between the populations of the restricted and declining bumblebee species on both scales, while significant structuring was found for populations of the common species on the larger scale. The latter result, which may be due to human or environmental changes in the landscape, implies the need for the conservation of also widespread bumblebee species. Conservation strategies to improve gene flow and connectivity of populations could avoid the isolation and future losses of populations of these important species.
Collapse
|
26
|
López-Uribe MM, Jha S, Soro A. A trait-based approach to predict population genetic structure in bees. Mol Ecol 2019; 28:1919-1929. [PMID: 30667117 DOI: 10.1111/mec.15028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/11/2019] [Indexed: 02/06/2023]
Abstract
Understanding population genetic structure is key to developing predictions about species susceptibility to environmental change, such as habitat fragmentation and climate change. It has been theorized that life-history traits may constrain some species in their dispersal and lead to greater signatures of population genetic structure. In this study, we use a quantitative comparative approach to assess if patterns of population genetic structure in bees are driven by three key species-level life-history traits: body size, sociality, and diet breadth. Specifically, we reviewed the current literature on bee population genetic structure, as measured by the differentiation indices Nei's GST, Hedrick's G'ST , and Jost's D. We then used phylogenetic generalised linear models to estimate the correlation between the evolution of these traits and patterns of genetic differentiation. Our analyses revealed a negative and significant effect of body size on genetic structure, regardless of differentiation index utilized. For Hedrick's G'ST and Jost's D, we also found a significant impact of sociality, where social species exhibited lower levels of differentiation than solitary species. We did not find an effect of diet specialization on population genetic structure. Overall, our results suggest that physical dispersal or other functions related to body size are among the most critical for mediating population structure for bees. We further highlight the importance of standardizing population genetic measures to more easily compare studies and to identify the most susceptible species to landscape and climatic changes.
Collapse
Affiliation(s)
- Margarita M López-Uribe
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, Pennsylvania
| | - Shalene Jha
- Deparment of Integrative Biology, The University of Texas at Austin, Austin, Texas
| | - Antonella Soro
- Institute for Biology, Martin-Luther University, Halle (Saale), Germany
| |
Collapse
|
27
|
Crowther LP, Wright DJ, Richardson DS, Carvell C, Bourke AFG. Spatial ecology of a range-expanding bumble bee pollinator. Ecol Evol 2019; 9:986-997. [PMID: 30805135 PMCID: PMC6374649 DOI: 10.1002/ece3.4722] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/20/2018] [Accepted: 10/11/2018] [Indexed: 01/16/2023] Open
Abstract
Molecular methods have greatly increased our understanding of the previously cryptic spatial ecology of bumble bees (Bombus spp.), with knowledge of the spatial ecology of these bees being central to conserving their essential pollination services. Bombus hypnorum, the Tree Bumble Bee, is unusual in that it has recently rapidly expanded its range, having colonized much of the UK mainland since 2001. However, the spatial ecology of B. hypnorum has not previously been investigated. To address this issue, and to investigate whether specific features of the spatial ecology of B. hypnorum are associated with its rapid range expansion, we used 14 microsatellite markers to estimate worker foraging distance, nest density, between-year lineage survival rate and isolation by distance in a representative UK B. hypnorum population. After assigning workers to colonies based on full or half sibship, we estimated the mean colony-specific worker foraging distance as 103.6 m, considerably less than values reported from most other bumble bee populations. Estimated nest density was notably high (2.56 and 0.72 colonies ha-1 in 2014 and 2015, respectively), estimated between-year lineage survival rate was 0.07, and there was no evidence of fine-scale isolation by distance. In addition, genotyping stored sperm dissected from sampled queens confirmed polyandry in this population (mean minimum mating frequency of 1.7 males per queen). Overall, our findings establish critical spatial ecological parameters and the mating system of this unusual bumble bee population and suggest that short worker foraging distances and high nest densities are associated with its rapid range expansion.
Collapse
Affiliation(s)
- Liam P. Crowther
- School of Environmental SciencesUniversity of East Anglia, Norwich Research ParkNorwichUK
| | - David J. Wright
- School of Biological SciencesUniversity of East Anglia, Norwich Research Park NorwichUK
| | - David S. Richardson
- School of Biological SciencesUniversity of East Anglia, Norwich Research Park NorwichUK
| | - Claire Carvell
- NERC Centre for Ecology & HydrologyCrowmarsh GiffordWallingfordUK
| | - Andrew F. G. Bourke
- School of Biological SciencesUniversity of East Anglia, Norwich Research Park NorwichUK
| |
Collapse
|
28
|
Woodard SH, Duennes MA, Watrous KM, Jha S. Diet and nutritional status during early adult life have immediate and persistent effects on queen bumble bees. CONSERVATION PHYSIOLOGY 2019; 7:coz048. [PMID: 32802333 PMCID: PMC6694593 DOI: 10.1093/conphys/coz048] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/02/2019] [Accepted: 06/26/2019] [Indexed: 05/12/2023]
Abstract
Many insects sequester nutrients during developmentally programmed periods, which they metabolize during subsequent life history stages. During these periods, failure to store adequate nutrients can have persistent effects on fitness. Here, we examined a critical but under-studied nutrient storage period in queen bumble bees: the first days of adult life, which are followed by a diapause period typically coinciding with winter. We experimentally manipulated availability of pollen (the primary dietary source of lipids and protein) and the sugar concentration of artificial nectar (the primary source of carbohydrates) for laboratory-reared queens during this period and examined three nutritional phenomena: (i) diet impacts on nutritional status, (ii) the timescale upon which nutrient sequestration occurs and (iii) the fitness consequences of nutrient sequestration, specifically related to survival across the life cycle. We found evidence that pollen and nectar starvation negatively impact lipid storage, whereas nectar sugar concentration impacts stored carbohydrates. The majority of nutrients were stored during the first ~ 3 days of adult life. Nutrients derived from pollen during this period appear to be more critical for surviving earlier life stages, whereas nutrients sequestered from nectar become more important for surviving the diapause and post-diapause periods. Negative impacts of a poor diet during early life persisted in our experiment, even when pollen and a relatively high (50%) nectar sugar concentration were provided post-diapause. Based on these findings, we posit that the nutritional environment during the early adult life of queens has both immediate and persistent impacts on fitness. These findings underscore the importance of examining effects of stage-specific nutritional limitations on physiology and life history traits in this social insect group. Moreover, the findings may shed light on how declining food resources are contributing to the decline of wild bumble bee populations.
Collapse
Affiliation(s)
- S Hollis Woodard
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
- Corresponding author: Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA. Tel.: 1-951-827-5761.
| | | | - Kristal M Watrous
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | - Shalene Jha
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
29
|
Mobley MW, Gegear RJ. One size does not fit all: Caste and sex differences in the response of bumblebees (Bombus impatiens) to chronic oral neonicotinoid exposure. PLoS One 2018; 13:e0200041. [PMID: 30296261 PMCID: PMC6175506 DOI: 10.1371/journal.pone.0200041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/24/2018] [Indexed: 11/19/2022] Open
Abstract
Neonicotinoid insecticides have been implicated in the rapid global decline of bumblebees over recent years, particularly in agricultural and urban areas. While there is much known about neonicotinoid toxicity effects at the colony stage of the bumblebee annual cycle, far less is known about such effects at other stages critical for the maintenance of wild populations. In the present work, individual-based feeding assays were used to show that chronic consumption of the widely used neonicotinoid clothianidin at a field-realistic average rate of 3.6 and 4.0 ng/g·bee/day reduces survival of queen and male bumblebees, respectively, within a 7-day period. In contrast, worker survival was unaffected at a similar consumption rate of 3.9 ng/g·bee/day. To test the hypothesis that males have a lower tolerance for oral clothianidin exposure than workers due to their haploid genetic status, RNAseq analysis was used to compare the transcriptomic responses of workers and males to chronic intake of clothianidin at a sub-lethal dose of 0.37ng/bee/day for 5 days. Surprisingly, clothianidin consumption only altered the expression of 19 putative detoxification genes in a sex-specific manner, with 11/19 genes showing increased expression in workers. Sub-lethal clothianidin exposure also altered the expression of 40 genes associated with other major biological functions, including locomotion, reproduction, and immunity. Collectively, these results suggest that chronic oral toxicity effects of neonicotinoids are greatest during mating and nest establishment phases of the bumblebee life cycle. Chronic oral toxicity testing on males and queens is therefore required in order to fully assess the impact of neonicotinoids on wild bumblebee populations.
Collapse
Affiliation(s)
- Melissa W. Mobley
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Robert J. Gegear
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
30
|
Koch JB, Vandame R, Mérida‐Rivas J, Sagot P, Strange J. Quaternary climate instability is correlated with patterns of population genetic variability in Bombus huntii. Ecol Evol 2018; 8:7849-7864. [PMID: 30250668 PMCID: PMC6145020 DOI: 10.1002/ece3.4294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 05/03/2018] [Accepted: 05/18/2018] [Indexed: 11/20/2022] Open
Abstract
Climate oscillations have left a significant impact on the patterns of genetic diversity observed in numerous taxa. In this study, we examine the effect of Quaternary climate instability on population genetic variability of a bumble bee pollinator species, Bombus huntii in western North America. Pleistocene and contemporary B. huntii habitat suitability (HS) was estimated with an environmental niche model (ENM) by associating 1,035 locality records with 10 bioclimatic variables. To estimate genetic variability, we genotyped 380 individuals from 33 localities at 13 microsatellite loci. Bayesian inference was used to examine population structure with and without a priori specification of geographic locality. We compared isolation by distance (IBD) and isolation by resistance (IBR) models to examine population differentiation within and among the Bayesian inferred genetic clusters. Furthermore, we tested for the effect of environmental niche stability (ENS) on population genetic diversity with linear regression. As predicted, high-latitude B. huntii habitats exhibit low ENS when compared to low-latitude habitats. Two major genetic clusters of B. huntii inhabit western North America: (a) a north genetic cluster predominantly distributed north of 28°N and (b) a south genetic cluster distributed south of 28°N. In the south genetic cluser, both IBD and IBR models are significant. However, in the north genetic cluster, IBD is significant but not IBR. Furthermore, the IBR models suggest that low-latitude montane populations are surrounded by habitat with low HS, possibly limiting dispersal, and ultimately gene flow between populations. Finally, we detected high genetic diversity across populations in regions that have been climatically unstable since the last glacial maximum (LGM), and low genetic diversity across populations in regions that have been climatically stable since the LGM. Understanding how species have responded to climate change has the potential to inform management and conservation decisions of both ecological and economic concerns.
Collapse
Affiliation(s)
- Jonathan B. Koch
- Department of BiologyUtah State UniversityLoganUtah
- Pollinating Insects Research UnitUSDA‐ARS‐PWALoganUtah
| | - Rémy Vandame
- Departamento Agricultura Sociedad y AmbienteEl Colegio de la Frontera SurSan Cristóbal de Las CasasChiapasMexico
| | - Jorge Mérida‐Rivas
- Departamento Agricultura Sociedad y AmbienteEl Colegio de la Frontera SurSan Cristóbal de Las CasasChiapasMexico
| | - Philippe Sagot
- Departamento Agricultura Sociedad y AmbienteEl Colegio de la Frontera SurSan Cristóbal de Las CasasChiapasMexico
| | - James Strange
- Pollinating Insects Research UnitUSDA‐ARS‐PWALoganUtah
| |
Collapse
|
31
|
Guan W, Tang L, Wang Y, Cui H. Fabrication of an Effective Avermectin Nanoemulsion Using a Cleavable Succinic Ester Emulsifier. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7568-7576. [PMID: 29976065 DOI: 10.1021/acs.jafc.8b01388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, a new emulsifier precursor was prepared via esterification of avermectin with succinic anhydride. The chemical structure of the product was confirmed to be monosubstituted avermectin. After neutralization with triethanolamine, it exhibited adequate emulsification ability for avermectin. Avermectin was then encapsulated in nanoparticles in the nanoemulsion with a high drug loading up to 60 wt % and high stability. The nanoemulsion of nanoparticles that serves as a carrier of avermectin shows highly efficient pesticide characteristics, including low surface tension, high affinity to leaves, and improved photostability. In the presence of esterase or under strongly basic conditions, the ester bonds of the emulsifier can be hydrolyzed, and the encapsulated avermectin molecules can be released in an accelerated manner. The nanoemulsion exhibited improved insecticidal effect compared with commercial emulsifiable concentrate, which was attributed to the cleavage of ester bonds of the emulsifier by esterase in vivo.
Collapse
Affiliation(s)
- Wenxun Guan
- Key Laboratory of Advanced Materials of Ministry of Education of China Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Liming Tang
- Key Laboratory of Advanced Materials of Ministry of Education of China Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agriculture Sciences , Beijing 100081 , China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agriculture Sciences , Beijing 100081 , China
| |
Collapse
|
32
|
Guan W, Zhang W, Tang L, Wang Y, Cui H. Fabrication of Novel Avermectin Nanoemulsion Using a Polyurethane Emulsifier with Cleavable Disulfide Bonds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6569-6577. [PMID: 28700229 DOI: 10.1021/acs.jafc.7b01427] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, a polyurethane emulsifer with various functional groups was prepared from isophorone diisocyanate, avermectin, 2,2-dimethylol propionic acid, and bis(2-hydroxyethyl) disulfide. The chemical structure of the polymer was confirmed by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, and element analysis. The polymer exhibited adequate emulsification ability for avermectin after neutralization with triethylamine. A satisfaying nanoemulsion was obtained, in which avermectin was encapsulated in nanoparticles with 50 wt % drug loading, low organic solvent content, and high stability under dilution and centrifuging treatment in addition to low surface tension, high affinity to crop leaf, and improved avermectin photostability. The resulting nanoparticles showed degradability in the presence of dl-dithiothreitol or inside the insect as a result of the disulfide bonds, promoting the release of avermectin. As a result, the avermectin nanoparticles showed higher insecticidal ability compared to both the avermectin nanoparticles without a disulfide group and the avermectin emulsifiable concentrate.
Collapse
Affiliation(s)
- Wenxun Guan
- Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Wenxiang Zhang
- Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Liming Tang
- Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| |
Collapse
|
33
|
Jackson JM, Pimsler ML, Oyen KJ, Koch‐Uhuad JB, Herndon JD, Strange JP, Dillon ME, Lozier JD. Distance, elevation and environment as drivers of diversity and divergence in bumble bees across latitude and altitude. Mol Ecol 2018; 27:2926-2942. [DOI: 10.1111/mec.14735] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Jason M. Jackson
- Department of Biological Sciences The University of Alabama Tuscaloosa Alabama
| | - Meaghan L. Pimsler
- Department of Biological Sciences The University of Alabama Tuscaloosa Alabama
| | - Kennan Jeannet Oyen
- Department of Zoology & Physiology and Program in Ecology University of Wyoming Laramie Wyoming
| | - Jonathan B. Koch‐Uhuad
- Tropical Conservation Biology & Environmental Science Graduate Program Department of Biology University of Hawaii at Hilo Hilo Hawaii
| | - James D. Herndon
- USDA‐ARS Pollinating Insect Research Unit Utah State University Logan Utah
| | - James P. Strange
- USDA‐ARS Pollinating Insect Research Unit Utah State University Logan Utah
| | - Michael E. Dillon
- Department of Zoology & Physiology and Program in Ecology University of Wyoming Laramie Wyoming
| | - Jeffrey D. Lozier
- Department of Biological Sciences The University of Alabama Tuscaloosa Alabama
| |
Collapse
|
34
|
Theodorou P, Radzevičiūtė R, Kahnt B, Soro A, Grosse I, Paxton RJ. Genome-wide single nucleotide polymorphism scan suggests adaptation to urbanization in an important pollinator, the red-tailed bumblebee ( Bombus lapidarius L.). Proc Biol Sci 2018; 285:20172806. [PMID: 29669900 PMCID: PMC5936727 DOI: 10.1098/rspb.2017.2806] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/26/2018] [Indexed: 01/24/2023] Open
Abstract
Urbanization is considered a global threat to biodiversity; the growth of cities results in an increase in impervious surfaces, soil and air pollution, fragmentation of natural vegetation and invasion of non-native species, along with numerous environmental changes, including the heat island phenomenon. The combination of these effects constitutes a challenge for both the survival and persistence of many native species, while also imposing altered selective regimes. Here, using 110 314 single nucleotide polymorphisms generated by restriction-site-associated DNA sequencing, we investigated the genome-wide effects of urbanization on putative neutral and adaptive genomic diversity in a major insect pollinator, Bombus lapidarius, collected from nine German cities and nine paired rural sites. Overall, genetic differentiation among sites was low and there was no obvious genome-wide genetic structuring, suggesting the absence of strong effects of urbanization on gene flow. We nevertheless identified several loci under directional selection, a subset of which was associated with urban land use, including the percentage of impervious surface surrounding each sampling site. Overall, our results provide evidence of local adaptation to urbanization in the face of gene flow in a highly mobile insect pollinator.
Collapse
Affiliation(s)
- Panagiotis Theodorou
- General Zoology, Institute of Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Rita Radzevičiūtė
- General Zoology, Institute of Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
- Molecular Evolution and Animal Systematics, Institute of Biology, University of Leipzig, Talstrasse 33, 04103 Leipzig, Germany
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, 10257 Vilnius, Lithuania
| | - Belinda Kahnt
- General Zoology, Institute of Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Antonella Soro
- General Zoology, Institute of Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Ivo Grosse
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1, 06120 Halle (Saale), Germany
| | - Robert J Paxton
- General Zoology, Institute of Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| |
Collapse
|
35
|
Price J, Harrison MC, Hammond RL, Adams S, Gutierrez-Marcos JF, Mallon EB. Alternative splicing associated with phenotypic plasticity in the bumble bee Bombus terrestris. Mol Ecol 2018; 27:1036-1043. [DOI: 10.1111/mec.14495] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/08/2018] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
Affiliation(s)
- J. Price
- School of Life Sciences; Gibbet Hill Campus; University of Warwick; Coventry UK
| | - M. C. Harrison
- Institute for Evolution and Biodiversity; University of Münster; Münster Germany
| | - R. L. Hammond
- Department of Genetics and Genome Biology; University of Leicester; Leicester UK
| | - S. Adams
- School of Life Sciences; Gibbet Hill Campus; University of Warwick; Coventry UK
| | | | - E. B. Mallon
- Department of Genetics and Genome Biology; University of Leicester; Leicester UK
| |
Collapse
|
36
|
Meng L, Wang Y, Wei WH, Zhang H. Population genetic structure of Diaphorina citri Kuwayama (Hemiptera: Liviidae): host-driven genetic differentiation in China. Sci Rep 2018; 8:1473. [PMID: 29367741 PMCID: PMC5784137 DOI: 10.1038/s41598-018-19533-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/04/2018] [Indexed: 11/09/2022] Open
Abstract
The Asian citrus psyllid Diaphorina citri Kuwayama is a major pest in citrus production, transmitting Candidatus Liberibacter asiaticus. It has spread widely across eastern and southern China. Unfortunately, little is known about the genetic diversity and population structure of D. citri, making pest control difficult. In this study, nine specifically developed SSR markers and three known mitochondrial DNA were used for population genetics study of D. citri using 225 samples collected from all 7 distribution regions in China. Based on the SSR data, D. citri was found highly diverse with a mean observed heterozygosity of 0.50, and three subgroups were structured by host plant: (i) Shatangju, NF mandarin and Ponkan; (ii) Murraya paniculata and Lemon; (iii) Citrus unshiu, Bingtangcheng, Summer orange and Navel. No significant genetic differences were found with mtDNA data. We suggested the host-associated divergence is likely to have occurred very recently. A unimodal distribution of paired differences, the negative and significant Tajima’s D and Fu’s FS parameters among mtDNA suggested a recent demographic expansion. The extensive citrus cultivation and increased suitable living habitat was recommended as a key for this expansion event.
Collapse
Affiliation(s)
- Lixue Meng
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Yongmo Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Wen-Hua Wei
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, 9016, New Zealand
| | - Hongyu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China.
| |
Collapse
|
37
|
Woodard SH. Bumble bee ecophysiology: integrating the changing environment and the organism. CURRENT OPINION IN INSECT SCIENCE 2017; 22:101-108. [PMID: 28805631 DOI: 10.1016/j.cois.2017.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 06/07/2023]
Abstract
Bumble bees are among the most ecologically and economically important pollinators worldwide, yet many of their populations are being threatened by a suite of interrelated, human-mediated environmental changes. Here, I discuss recent progress in our understanding of bumble bee ecophysiology, including advances related to thermal biology in light of global warming; nutritional biology in the context of declining food resources; and the capacity for bumble bees to exhibit physiological plasticity or adaptations to novel or extreme environments, with reference to their evolutionary history and current biogeography.
Collapse
Affiliation(s)
- S Hollis Woodard
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
38
|
Conservation genetics of bees: advances in the application of molecular tools to guide bee pollinator conservation. CONSERV GENET 2017. [DOI: 10.1007/s10592-017-0975-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Pimsler ML, Jackson JM, Lozier JD. Population genomics reveals a candidate gene involved in bumble bee pigmentation. Ecol Evol 2017; 7:3406-3413. [PMID: 28515876 PMCID: PMC5433978 DOI: 10.1002/ece3.2935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/27/2017] [Accepted: 03/03/2017] [Indexed: 01/03/2023] Open
Abstract
Variation in bumble bee color patterns is well‐documented within and between species. Identifying the genetic mechanisms underlying such variation may be useful in revealing evolutionary forces shaping rapid phenotypic diversification. The widespread North American species Bombus bifarius exhibits regional variation in abdominal color forms, ranging from red‐banded to black‐banded phenotypes and including geographically and phenotypically intermediate forms. Identifying genomic regions linked to this variation has been complicated by strong, near species level, genome‐wide differentiation between red‐ and black‐banded forms. Here, we instead focus on the closely related black‐banded and intermediate forms that both belong to the subspecies B. bifarius nearcticus. We analyze an RNA sequencing (RNAseq) data set and identify a cluster of single nucleotide polymorphisms (SNPs) within one gene, Xanthine dehydrogenase/oxidase‐like, that exhibit highly unusual differentiation compared to the rest of the sequenced genome. Homologs of this gene contribute to pigmentation in other insects, and results thus represent a strong candidate for investigating the genetic basis of pigment variation in B. bifarius and other bumble bee mimicry complexes.
Collapse
Affiliation(s)
- Meaghan L Pimsler
- Department of Biological Sciences University of Alabama Tuscaloosa AL USA
| | - Jason M Jackson
- Department of Biological Sciences University of Alabama Tuscaloosa AL USA
| | - Jeffrey D Lozier
- Department of Biological Sciences University of Alabama Tuscaloosa AL USA
| |
Collapse
|
40
|
Lozier JD. Ecology: A helping habitat for bumblebees. Nature 2017; 543:498-499. [PMID: 28297713 DOI: 10.1038/nature21897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeffrey D Lozier
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487, USA
| |
Collapse
|
41
|
Graystock P, Rehan SM, McFrederick QS. Hunting for healthy microbiomes: determining the core microbiomes of Ceratina, Megalopta, and Apis bees and how they associate with microbes in bee collected pollen. CONSERV GENET 2017. [DOI: 10.1007/s10592-017-0937-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
|
43
|
Le Féon V, Poggio SL, Torretta JP, Bertrand C, Molina GAR, Burel F, Baudry J, Ghersa CM. Diversity and life-history traits of wild bees (Insecta: Hymenoptera) in intensive agricultural landscapes in the Rolling Pampa, Argentina. J NAT HIST 2015. [DOI: 10.1080/00222933.2015.1113315] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Lozier JD, Cameron SA, Duennes MA, Strange JP, Williams PH, Goulson D, Brown MJF, Morales C, Jepsen S. Relocation risky for bumblebee colonies. Science 2015; 350:286-7. [PMID: 26472900 DOI: 10.1126/science.350.6258.286-b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Jeffrey D Lozier
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Sydney A Cameron
- Department of Entomology, University of Illinois, Urbana, IL 61801, USA
| | | | - James P Strange
- USDA-ARS, Pollinating Insect Research Unit, Utah State University, Logan, UT 84322, USA
| | - Paul H Williams
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK
| | - David Goulson
- Evolution, Behaviour, and Environment, School of Life Sciences, University of Sussex, Falmer, East Sussex, BN1 9QG, UK
| | - Mark J F Brown
- School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Carolina Morales
- Laboratorio Ecotono, INIBIOMA (Universidad Nacional del Comahue-CONICET), Bariloche, Rio Negro, Argentina
| | - Sarina Jepsen
- The Xerces Society for Invertebrate Conservation, Portland, OR 97232, USA
| |
Collapse
|