1
|
Illera JC, Rando JC, Melo M, Valente L, Stervander M. Avian Island Radiations Shed Light on the Dynamics of Adaptive and Nonadaptive Radiation. Cold Spring Harb Perspect Biol 2024; 16:a041451. [PMID: 38621823 PMCID: PMC11610763 DOI: 10.1101/cshperspect.a041451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Understanding the mechanisms underlying species formation and differentiation is a central goal of evolutionary biology and a formidable challenge. This understanding can provide valuable insights into the origins of the astonishing diversity of organisms living on our planet. Avian evolutionary radiations on islands have long fascinated biologists as they provide the ideal variation to study the ecological and evolutionary forces operating on the continuum between incipient lineages to complete speciation. In this review, we summarize the key insights gained from decades of research on adaptive and nonadaptive radiations of both extant and extinct insular bird species. We present a new comprehensive global list of potential avian radiations on oceanic islands, based on published island species checklists, taxonomic studies, and phylogenetic analyses. We demonstrate that our understanding of evolutionary processes is being greatly enhanced through the use of genomic tools. However, to advance the field, it is critical to complement this information with a solid understanding of the ecological and behavioral traits of both extinct and extant avian island species.
Collapse
Affiliation(s)
- Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo University-Principality of Asturias), University of Oviedo, Mieres 33600, Asturias, Spain
| | - Juan Carlos Rando
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, La Laguna 38206, Tenerife, Spain
| | - Martim Melo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
- Museu de História Natural e da Ciência da Universidade do Porto, Porto 4050-368, Portugal
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town 7701, South Africa
| | - Luís Valente
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9700 AB, The Netherlands
| | - Martin Stervander
- Bird Group, Natural History Museum, Tring HP23 6AP, Hertfordshire, United Kingdom
- Department of Natural Sciences, National Museums Scotland, Edinburgh EH1 1JF, United Kingdom
| |
Collapse
|
2
|
Cui J, Batley KC, Silver LW, McLennan EA, Hogg CJ, Belov K. Spatial variation in toll-like receptor diversity in koala populations across their geographic distribution. Immunogenetics 2024; 77:5. [PMID: 39614880 PMCID: PMC11608166 DOI: 10.1007/s00251-024-01365-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/25/2024] [Indexed: 01/29/2025]
Abstract
The koala (Phascolarctos cinereus) is an iconic Australian species that is listed as endangered in the northern parts of its range due to loss of habitat, disease, and road deaths. Diseases contribute significantly to the decline of koala populations, primarily Chlamydia and koala retrovirus. The distribution of these diseases across the species' range, however, is not even. Toll-like receptors (TLRs) play a crucial role in innate immunity by recognising and responding to various pathogens. Variations in TLR genes can influence an individual's susceptibility or resistance to infectious diseases. The aim of this study was to identify koala TLR diversity across the east coast of Australia using 413 re-sequenced genomes at 30 × coverage. We identified 45 single-nucleotide polymorphisms (SNP) leading to 51 alleles within ten TLR genes. Our results show that the diversity of TLR genes in the koala forms four distinct genetic groups, which are consistent with the diversity of the koala major histocompatibility complex (MHC), another key immune gene family. The bioinformatics approach presented here has broad applicability to other threatened species with existing genomic resources.
Collapse
Affiliation(s)
- Jian Cui
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kimberley C Batley
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Luke W Silver
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
| | - Elspeth A McLennan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia.
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Martin CA, Sheppard EC, Ali HAA, Illera JC, Suh A, Spurgin LG, Richardson DS. Genomic landscapes of divergence among island bird populations: Evidence of parallel adaptation but at different loci? Mol Ecol 2024; 33:e17365. [PMID: 38733214 DOI: 10.1111/mec.17365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/01/2024] [Indexed: 05/13/2024]
Abstract
When populations colonise new environments, they may be exposed to novel selection pressures but also suffer from extensive genetic drift due to founder effects, small population sizes and limited interpopulation gene flow. Genomic approaches enable us to study how these factors drive divergence, and disentangle neutral effects from differentiation at specific loci due to selection. Here, we investigate patterns of genetic diversity and divergence using whole-genome resequencing (>22× coverage) in Berthelot's pipit (Anthus berthelotii), a passerine endemic to the islands of three north Atlantic archipelagos. Strong environmental gradients, including in pathogen pressure, across populations in the species range, make it an excellent system in which to explore traits important in adaptation and/or incipient speciation. First, we quantify how genomic divergence accumulates across the speciation continuum, that is, among Berthelot's pipit populations, between sub species across archipelagos, and between Berthelot's pipit and its mainland ancestor, the tawny pipit (Anthus campestris). Across these colonisation timeframes (2.1 million-ca. 8000 years ago), we identify highly differentiated loci within genomic islands of divergence and conclude that the observed distributions align with expectations for non-neutral divergence. Characteristic signatures of selection are identified in loci associated with craniofacial/bone and eye development, metabolism and immune response between population comparisons. Interestingly, we find limited evidence for repeated divergence of the same loci across the colonisation range but do identify different loci putatively associated with the same biological traits in different populations, likely due to parallel adaptation. Incipient speciation across these island populations, in which founder effects and selective pressures are strong, may therefore be repeatedly associated with morphology, metabolism and immune defence.
Collapse
Affiliation(s)
- Claudia A Martin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | | | - Hisham A A Ali
- Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, UK
| | - Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo University-Principality of Asturias), University of Oviedo, Mieres, Asturias, Spain
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | | |
Collapse
|
4
|
Sheppard EC, Martin CA, Armstrong C, González-Quevedo C, Illera JC, Suh A, Spurgin LG, Richardson DS. Genotype-environment associations reveal genes potentially linked to avian malaria infection in populations of an endemic island bird. Mol Ecol 2024; 33:e17329. [PMID: 38533805 DOI: 10.1111/mec.17329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 01/29/2024] [Accepted: 03/01/2024] [Indexed: 03/28/2024]
Abstract
Patterns of pathogen prevalence are, at least partially, the result of coevolutionary host-pathogen interactions. Thus, exploring the distribution of host genetic variation in relation to infection by a pathogen within and across populations can provide important insights into mechanisms of host defence and adaptation. Here, we use a landscape genomics approach (Bayenv) in conjunction with genome-wide data (ddRADseq) to test for associations between avian malaria (Plasmodium) prevalence and host genetic variation across 13 populations of the island endemic Berthelot's pipit (Anthus berthelotii). Considerable and consistent spatial heterogeneity in malaria prevalence was observed among populations over a period of 15 years. The prevalence of malaria infection was also strongly positively correlated with pox (Avipoxvirus) prevalence. Multiple host loci showed significant associations with malaria prevalence after controlling for genome-wide neutral genetic structure. These sites were located near to or within genes linked to metabolism, stress response, transcriptional regulation, complement activity and the inflammatory response, many previously implicated in vertebrate responses to malarial infection. Our findings identify diverse genes - not just limited to the immune system - that may be involved in host protection against malaria and suggest that spatially variable pathogen pressure may be an important evolutionary driver of genetic divergence among wild animal populations, such as Berthelot's pipit. Furthermore, our data indicate that spatio-temporal variation in multiple different pathogens (e.g. malaria and pox in this case) may have to be studied together to develop a more holistic understanding of host pathogen-mediated evolution.
Collapse
Affiliation(s)
| | - Claudia A Martin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
| | - Claire Armstrong
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | - Catalina González-Quevedo
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Grupo Ecología y Evolución de Vertebrados, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo, University-Principality of Asturias), University of Oviedo, Mieres, Asturias, Spain
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | | |
Collapse
|
5
|
Peters C, Geary M, Hosie C, Nelson H, Rusk B, Muir A. Non-invasive sampling reveals low mitochondrial genetic diversity for an island endemic species: The critically endangered Grenada Dove Leptotila wellsi. Ecol Evol 2023; 13:e10767. [PMID: 38020693 PMCID: PMC10667608 DOI: 10.1002/ece3.10767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
As an island endemic with a decreasing population, the critically endangered Grenada Dove Leptotila wellsi is threatened by accelerated loss of genetic diversity resulting from ongoing habitat fragmentation. Small, threatened populations are difficult to sample directly but advances in molecular methods mean that non-invasive samples can be used. We performed the first assessment of genetic diversity of populations of Grenada Dove by (a) assessing mtDNA genetic diversity in the only two areas of occupancy on Grenada, (b) defining the number of haplotypes present at each site and (c) evaluating evidence of isolation between sites. We used non-invasively collected samples from two locations: Mt Hartman (n = 18) and Perseverance (n = 12). DNA extraction and PCR were used to amplify 1751 bps of mtDNA from two mitochondrial markers: NADH dehydrogenase 2 (ND2) and Cytochrome b (Cyt b). Haplotype diversity (h) of 0.4, a nucleotide diversity (π) of 0.00023 and two unique haplotypes were identified within the ND2 sequences; a single haplotype was identified within the Cyt b sequences. Of the two haplotypes identified, the most common haplotype (haplotype A = 73.9%) was observed at both sites and the other (haplotype B = 26.1%) was unique to Perseverance. Our results show low mitochondrial genetic diversity and clear evidence for genetically isolated populations. The Grenada Dove needs urgent conservation action, including habitat protection and potentially augmentation of gene flow by translocation in order to increase genetic resilience and diversity with the ultimate aim of securing the long-term survival of this critically endangered species.
Collapse
Affiliation(s)
- Catherine Peters
- Conservation Biology Research Group, Department of Biological SciencesUniversity of ChesterChesterUK
| | - Matthew Geary
- Conservation Biology Research Group, Department of Biological SciencesUniversity of ChesterChesterUK
| | - Charlotte Hosie
- Conservation Biology Research Group, Department of Biological SciencesUniversity of ChesterChesterUK
| | | | - Bonnie Rusk
- Grenada Dove Conservation ProgrammeSt GeorgesGrenada
| | - Anna Muir
- Conservation Biology Research Group, Department of Biological SciencesUniversity of ChesterChesterUK
| |
Collapse
|
6
|
Minias P, Podlaszczuk P, Indykiewicz P, Ledwoń M, Nowakowski J, Chyb A, Janiszewski T. Genetic variation at innate and adaptive immune genes - contrasting patterns of differentiation and local adaptation in a wild gull. Heredity (Edinb) 2023; 131:282-291. [PMID: 37553491 PMCID: PMC10539538 DOI: 10.1038/s41437-023-00645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/15/2023] [Accepted: 07/30/2023] [Indexed: 08/10/2023] Open
Abstract
Immunogenetic variation in natural vertebrate populations is expected to respond to spatial and temporal fluctuations in pathogen assemblages. While spatial heterogeneity in pathogen-driven selection enhances local immunogenetic adaptations and population divergence, different immune genes may yield contrasting responses to the environment. Here, we investigated population differentiation at the key pathogen recognition genes of the innate and adaptive immune system in a colonial bird species, the black-headed gull Chroicocephalus ridibundus. We assessed genetic variation at three toll-like receptor (TLR) genes (innate immunity) and the major histocompatibility complex (MHC) class I and II genes (adaptive immunity) in gulls from seven colonies scattered across Poland. As expected, we found much greater polymorphism at the MHC than TLRs. Population differentiation at the MHC class II, but not MHC-I, was significantly stronger than at neutral microsatellite loci, suggesting local adaptation. This could reflect spatial variation in the composition of extracellular parasite communities (e.g., helminths), possibly driven by sharp differences in habitat structure between colonies. Despite contrasting patterns of population differentiation, both MHC classes showed similar regimes of diversifying selection. Some significant population differentiation was also observed at TLRs, suggesting that innate immune receptors may respond to fine-scale spatial variation in pathogen pressure, although this pattern could have been enhanced by drift. Our results suggested that local adaptation at the pathogen recognition immune genes can be maintained at relatively small or moderate spatial scales in species with high dispersal potential and they highlighted the complexity of immunogenetic responses of animals to heterogeneous environments.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland.
| | - Patrycja Podlaszczuk
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| | - Piotr Indykiewicz
- Department of Biology and Animal Environment, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| | - Mateusz Ledwoń
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016, Kraków, Poland
| | - Jacek Nowakowski
- Department of Ecology and Environmental Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727, Olsztyn, Poland
| | - Amelia Chyb
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| | - Tomasz Janiszewski
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| |
Collapse
|
7
|
Włodarczyk R, Těšický M, Vinkler M, Novotný M, Remisiewicz M, Janiszewski T, Minias P. Divergent evolution drives high diversity of toll-like receptors (TLRs) in passerine birds: Buntings and finches. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 144:104704. [PMID: 37019350 DOI: 10.1016/j.dci.2023.104704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 06/05/2023]
Abstract
Toll-like receptors (TLRs) form a key component of animal innate immunity, being responsible for recognition of conserved microbial structures. As such, TLRs may be subject to diversifying and balancing selection, which maintains allelic variation both within and between populations. However, most research on TLRs in non-model avian species is focused on bottlenecked populations with depleted genetic variation. Here, we assessed variation at the extracellular domains of three TLR genes (TLR1LA, TLR3, TLR4) across eleven species from two passerine families of buntings (Emberizidae) and finches (Fringillidae), all having large breeding population sizes (millions of individuals). We found extraordinary TLR polymorphism in our study taxa, with >100 alleles detected at TLR1LA and TLR4 across species and high haplotype diversity (>0.75) in several species. Despite recent species divergence, no nucleotide allelic variants were shared between species, suggesting rapid TLR evolution. Higher variation at TLR1LA and TLR4 than TLR3 was associated with a stronger signal of diversifying selection, as measured with nucleotide substitutions rates and the number of positively selected sites (PSS). Structural protein modelling of TLRs showed that some PSS detected within TLR1LA and TLR4 were previously recognized as functionally important sites or were located in their proximity, possibly affecting ligand recognition. Furthermore, we identified PSS responsible for major surface electrostatic charge clustering, which may indicate their adaptive importance. Our study provides compelling evidence for the divergent evolution of TLR genes in buntings and finches and indicates that high TLR variation may be adaptively maintained via diversifying selection acting on functional ligand binding sites.
Collapse
Affiliation(s)
- Radosław Włodarczyk
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland.
| | - Martin Těšický
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic
| | - Michal Vinkler
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic
| | - Marian Novotný
- Charles University, Faculty of Science, Department of Cell Biology, Viničná 7, 128 43, Prague, Czech Republic
| | - Magdalena Remisiewicz
- Bird Migration Research Station, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Tomasz Janiszewski
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland.
| |
Collapse
|
8
|
Vinkler M, Fiddaman SR, Těšický M, O'Connor EA, Savage AE, Lenz TL, Smith AL, Kaufman J, Bolnick DI, Davies CS, Dedić N, Flies AS, Samblás MMG, Henschen AE, Novák K, Palomar G, Raven N, Samaké K, Slade J, Veetil NK, Voukali E, Höglund J, Richardson DS, Westerdahl H. Understanding the evolution of immune genes in jawed vertebrates. J Evol Biol 2023; 36:847-873. [PMID: 37255207 PMCID: PMC10247546 DOI: 10.1111/jeb.14181] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Driven by co-evolution with pathogens, host immunity continuously adapts to optimize defence against pathogens within a given environment. Recent advances in genetics, genomics and transcriptomics have enabled a more detailed investigation into how immunogenetic variation shapes the diversity of immune responses seen across domestic and wild animal species. However, a deeper understanding of the diverse molecular mechanisms that shape immunity within and among species is still needed to gain insight into-and generate evolutionary hypotheses on-the ultimate drivers of immunological differences. Here, we discuss current advances in our understanding of molecular evolution underpinning jawed vertebrate immunity. First, we introduce the immunome concept, a framework for characterizing genes involved in immune defence from a comparative perspective, then we outline how immune genes of interest can be identified. Second, we focus on how different selection modes are observed acting across groups of immune genes and propose hypotheses to explain these differences. We then provide an overview of the approaches used so far to study the evolutionary heterogeneity of immune genes on macro and microevolutionary scales. Finally, we discuss some of the current evidence as to how specific pathogens affect the evolution of different groups of immune genes. This review results from the collective discussion on the current key challenges in evolutionary immunology conducted at the ESEB 2021 Online Satellite Symposium: Molecular evolution of the vertebrate immune system, from the lab to natural populations.
Collapse
Affiliation(s)
- Michal Vinkler
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Martin Těšický
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Anna E. Savage
- Department of BiologyUniversity of Central FloridaFloridaOrlandoUSA
| | - Tobias L. Lenz
- Research Unit for Evolutionary ImmunogenomicsDepartment of BiologyUniversity of HamburgHamburgGermany
| | | | - Jim Kaufman
- Institute for Immunology and Infection ResearchUniversity of EdinburghEdinburghUK
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | | | - Neira Dedić
- Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
| | - Andrew S. Flies
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - M. Mercedes Gómez Samblás
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
- Department of ParasitologyUniversity of GranadaGranadaSpain
| | | | - Karel Novák
- Department of Genetics and BreedingInstitute of Animal SciencePragueUhříněvesCzech Republic
| | - Gemma Palomar
- Faculty of BiologyInstitute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - Nynke Raven
- Department of ScienceEngineering and Build EnvironmentDeakin UniversityVictoriaWaurn PondsAustralia
| | - Kalifa Samaké
- Department of Genetics and MicrobiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Joel Slade
- Department of BiologyCalifornia State UniversityFresnoCaliforniaUSA
| | | | - Eleni Voukali
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Jacob Höglund
- Department of Ecology and GeneticsUppsala UniversitetUppsalaSweden
| | | | | |
Collapse
|
9
|
Martin CA, Sheppard EC, Illera JC, Suh A, Nadachowska-Brzyska K, Spurgin LG, Richardson DS. Runs of homozygosity reveal past bottlenecks and contemporary inbreeding across diverging populations of an island-colonizing bird. Mol Ecol 2023; 32:1972-1989. [PMID: 36704917 DOI: 10.1111/mec.16865] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023]
Abstract
Genomes retain evidence of the demographic history and evolutionary forces that have shaped populations and drive speciation. Across island systems, contemporary patterns of genetic diversity reflect population demography, including colonization events, bottlenecks, gene flow and genetic drift. Here, we investigate genome-wide diversity and the distribution of runs of homozygosity (ROH) using whole-genome resequencing of individuals (>22× coverage) from six populations across three archipelagos of Berthelot's pipit (Anthus berthelotii)-a passerine that has recently undergone island speciation. We show the most dramatic reduction in diversity occurs between the mainland sister species (the tawny pipit) and Berthelot's pipit and is lowest in the populations that have experienced sequential bottlenecks (i.e., the Madeiran and Selvagens populations). Pairwise sequential Markovian coalescent (PSMC) analyses estimated that Berthelot's pipit diverged from its sister species ~2 million years ago, with the Madeiran archipelago founded 50,000 years ago, and the Selvagens colonized 8000 years ago. We identify many long ROH (>1 Mb) in these most recently colonized populations. Population expansion within the last 100 years may have eroded long ROH in the Madeiran archipelago, resulting in a prevalence of short ROH (<1 Mb). However, the extensive long and short ROH detected in the Selvagens suggest strong recent inbreeding and bottleneck effects, with as much as 38% of the autosomes consisting of ROH >250 kb. These findings highlight the importance of demographic history, as well as selection and genetic drift, in shaping contemporary patterns of genomic diversity across diverging populations.
Collapse
Affiliation(s)
- Claudia A Martin
- School of Biological Sciences, University of East Anglia, Norfolk, UK.,Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
| | | | - Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo University-Principality of Asturias), University of Oviedo, Mieres, Asturias, Spain
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norfolk, UK.,Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | | |
Collapse
|
10
|
Vlček J, Miláček M, Vinkler M, Štefka J. Effect of population size and selection on Toll-like receptor diversity in populations of Galápagos mockingbirds. J Evol Biol 2023; 36:109-120. [PMID: 36398499 DOI: 10.1111/jeb.14121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 08/25/2022] [Accepted: 09/10/2022] [Indexed: 11/19/2022]
Abstract
The interactions of evolutionary forces are difficult to analyse in free-living populations. However, when properly understood, they provide valuable insights into evolutionary biology and conservation genetics. This is particularly important for the interplay of genetic drift and natural selection in immune genes that confer resistance to disease. The Galápagos Islands are inhabited by four closely related species of mockingbirds (Mimus spp.). We used 12 different-sized populations of Galápagos mockingbirds and one population of their continental relative northern mockingbird (Mimus polyglottos) to study the effects of genetic drift on the molecular evolution of immune genes, the Toll-like receptors (TLRs: TLR1B, TLR4 and TLR15). We found that neutral genetic diversity was positively correlated with island size, indicating an important effect of genetic drift. However, for TLR1B and TLR4, there was little correlation between functional (e.g., protein) diversity and island size, and protein structural properties were largely conserved, indicating only a limited effect of genetic drift on molecular phenotype. By contrast, TLR15 was less conserved and even its putative functional polymorphism correlated with island size. The patterns observed for the three genes suggest that genetic drift does not necessarily dominate selection even in relatively small populations, but that the final outcome depends on the degree of selection constraint that is specific for each TLR locus.
Collapse
Affiliation(s)
- Jakub Vlček
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.,Department of Zoology, University of South Bohemia in České Budějovice Faculty of Science, České Budějovice, Czech Republic.,Department of Botany, Charles University Faculty of Science, Prague, Czech Republic
| | - Matěj Miláček
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.,Department of Zoology, University of South Bohemia in České Budějovice Faculty of Science, České Budějovice, Czech Republic
| | - Michal Vinkler
- Department of Zoology, Charles University Faculty of Science, Prague, Czech Republic
| | - Jan Štefka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.,Department of Zoology, University of South Bohemia in České Budějovice Faculty of Science, České Budějovice, Czech Republic
| |
Collapse
|
11
|
Magid M, Wold JR, Moraga R, Cubrinovska I, Houston DM, Gartrell BD, Steeves TE. Leveraging an existing whole-genome resequencing population data set to characterize toll-like receptor gene diversity in a threatened bird. Mol Ecol Resour 2022; 22:2810-2825. [PMID: 35635119 PMCID: PMC9543821 DOI: 10.1111/1755-0998.13656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/29/2022] [Accepted: 05/26/2022] [Indexed: 11/27/2022]
Abstract
Species recovery programs are increasingly using genomic data to measure neutral genetic diversity and calculate metrics like relatedness. While these measures can inform conservation management, determining the mechanisms underlying inbreeding depression requires information about functional genes associated with adaptive or maladaptive traits. Toll-like receptors (TLRs) are one family of functional genes, which play a crucial role in recognition of pathogens and activation of the immune system. Previously, these genes have been analysed using species-specific primers and PCR. Here, we leverage an existing short-read reference genome, whole-genome resequencing population data set, and bioinformatic tools to characterize TLR gene diversity in captive and wild tchūriwat'/tūturuatu/shore plover (Thinornis novaeseelandiae), a threatened bird endemic to Aotearoa New Zealand. Our results show that TLR gene diversity in tchūriwat'/tūturuatu is low, and forms two distinct captive and wild genetic clusters. The bioinformatic approach presented here has broad applicability to other threatened species with existing genomic resources in Aotearoa New Zealand and beyond.
Collapse
Affiliation(s)
- Molly Magid
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Jana R. Wold
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Roger Moraga
- Tea Break Bioinformatics, LtdPalmerston NorthNew Zealand
| | - Ilina Cubrinovska
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Dave M. Houston
- Department of ConservationBiodiversity GroupAucklandNew Zealand
| | - Brett D. Gartrell
- Institute of Veterinary, Animal, and Biomedical SciencesWildbase, Massey UniversityPalmerston NorthNew Zealand
| | - Tammy E. Steeves
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| |
Collapse
|
12
|
Sheppard EC, Martin CA, Armstrong C, González-Quevedo C, Illera JC, Suh A, Spurgin LG, Richardson DS. Genomic associations with poxvirus across divergent island populations in Berthelot's pipit. Mol Ecol 2022; 31:3154-3173. [PMID: 35395699 PMCID: PMC9321574 DOI: 10.1111/mec.16461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/04/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022]
Abstract
Understanding the mechanisms and genes that enable animal populations to adapt to pathogens is important from an evolutionary, health and conservation perspective. Berthelot's pipit (Anthus berthelotii) experiences extensive and consistent spatial heterogeneity in avian pox infection pressure across its range of island populations, thus providing an excellent system with which to examine how pathogen-mediated selection drives spatial variation in immunogenetic diversity. Here we test for evidence of genetic variation associated with avian pox at both an individual and population-level. At the individual level, we find no evidence that variation in MHC class I and TLR4 (both known to be important in recognising viral infection) was associated with pox infection within two separate populations. However, using genotype-environment association (Bayenv) in conjunction with genome-wide (ddRAD-seq) data, we detected strong associations between population-level avian pox prevalence and allele frequencies of single nucleotide polymorphisms (SNPs) at a number of sites across the genome. These sites were located within genes involved in cellular stress signalling and immune responses, many of which have previously been associated with responses to viral infection in humans and other animals. Consequently, our analyses indicates that pathogen-mediated selection may play a role in shaping genomic variation among relatively recently colonised island bird populations and highlights the utility of genotype-environment associations for identifying candidate genes potentially involved in host-pathogen interactions.
Collapse
Affiliation(s)
- Eleanor C Sheppard
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| | - Claudia A Martin
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| | - Claire Armstrong
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| | - Catalina González-Quevedo
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK.,Grupo Ecología y Evolución de Vertebrados, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo University-Principality of Asturias), University of Oviedo, Campus of Mieres, Research Building, 5th Floor, c/ Gonzalo Gutiérrez Quirós, s/n, 33600 Mieres, Asturias, Spain
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK.,Department of Ecology and Genetics - Evolutionary Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| |
Collapse
|
13
|
Boyd RJ, Denommé MR, Grieves LA, MacDougall-Shackleton EA. Stronger population differentiation at infection-sensing than infection-clearing innate immune loci in songbirds: Different selective regimes for different defenses. Evolution 2021; 75:2736-2746. [PMID: 34596241 DOI: 10.1111/evo.14368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Parasite-mediated selection is widespread at loci involved in immune defense, but different defenses may experience different selective regimes. For defenses involved in clearing infections, purifying selection favoring a single most efficacious allele likely predominates. However, for defenses involved in sensing and recognizing infections, evolutionary arms races may make positive selection particularly important. This could manifest primarily within populations (e.g., balancing selection maintaining variation) or among them (e.g., spatially varying selection enhancing population differences in allele frequencies). We genotyped three toll-like receptors (TLR; involved in sensing infections) and three avian beta-defensins (involved in clearing infections) in 96 song sparrows (Melospiza melodia) from three breeding populations that differ in disease resistance. Variation-based indicators of selection (proportion of variable sites, proportion of nonsynonymous SNPs, proportion of sites bearing signatures of positive or purifying selection, rare allele frequencies) did not differ appreciably between the two locus types. However, differentiation was generally higher at infection-sensing than infection-clearing loci. Allele frequencies differed markedly at TLR3, driven by a variant predicted to alter protein function. Geographically structured variants at infection-sensing loci may reflect local adaptation to spatially heterogeneous parasite communities. Selective regimes experienced by infection-sensing versus infection-clearing loci may differ primarily due to parasite-mediated population differentiation.
Collapse
Affiliation(s)
- Rachel J Boyd
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada.,McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| | - Melanie R Denommé
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada.,Department of Biological Sciences, Brock University Faculty of Mathematics & Science, St. Catherines, Ontario, L2S 3A1, Canada
| | - Leanne A Grieves
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada.,Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, L8S 4M4, Canada
| | | |
Collapse
|
14
|
Minias P, Drzewińska-Chańko J, Włodarczyk R. Evolution of innate and adaptive immune genes in a non-model waterbird, the common tern. INFECTION GENETICS AND EVOLUTION 2021; 95:105069. [PMID: 34487864 DOI: 10.1016/j.meegid.2021.105069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022]
Abstract
Toll-like receptors (TLRs) and the Major Histocompatibility Complex (MHC) are the key pathogen-recognition genes of vertebrate immune system and they have a crucial role in the initiation of innate and adaptive immune response, respectively. Recent advancements in sequencing technology sparked research on highly duplicated MHC genes in non-model species, but TLR variation in natural vertebrate populations has remained little studied and comparisons of polymorphism across both TLRs and MHC are scarce. Here, we aimed to compare variation across innate (four TLR loci) and adaptive (MHC class I and class II) immune genes in a non-model avian species, the common tern Sterna hirundo. We detected relatively high allelic richness at TLR genes (9-48 alleles per locus), which was similar to or even higher than the estimated per locus allelic richness at the MHC (24-30 alleles at class I and 13-16 alleles at class II under uniform sample sizes). Despite this, the total number of MHC alleles across all duplicated loci (four class I and three class II) was much higher and MHC alleles showed greater sequence divergence than TLRs. Positive selection targeted relatively more sites at the MHC than TLRs, but the strength of selection (dN/dS ratios) at TLRs was higher when compared to MHC class I. There were also differences in the signature of positive selection and recombination (gene conversion) between MHC class I and II (stronger signature at class II), suggesting that mechanisms maintaining variation at the MHC may vary between both classes. Our study indicates that allelic richness of both innate and adaptive immune receptors may be maintained at relatively high levels in viable avian populations and we recommend a transition from the traditional gene-specific to multi-gene approach in studying molecular evolution of vertebrate immune system.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237 Łódź, Poland.
| | - Joanna Drzewińska-Chańko
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237 Łódź, Poland
| | - Radosław Włodarczyk
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237 Łódź, Poland
| |
Collapse
|
15
|
Davies CS, Taylor MI, Hammers M, Burke T, Komdeur J, Dugdale HL, Richardson DS. Contemporary evolution of the innate immune receptor gene TLR3 in an isolated vertebrate population. Mol Ecol 2021; 30:2528-2542. [PMID: 33949028 DOI: 10.1111/mec.15914] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022]
Abstract
Understanding where genetic variation exists, and how it influences fitness within populations is important from an evolutionary and conservation perspective. Signatures of past selection suggest that pathogen-mediated balancing selection is a key driver of immunogenetic variation, but studies tracking contemporary evolution are needed to help resolve the evolutionary forces and mechanism at play. Previous work in a bottlenecked population of Seychelles warblers (Acrocephalus sechellensis) show that functional variation has been maintained at the viral-sensing Toll-like receptor 3 (TLR3) gene, including one nonsynonymous SNP, resulting in two alleles. Here, we characterise evolution at this TLR3 locus over a 25-year period within the original remnant population of the Seychelles warbler, and in four other derived, populations. Results show a significant and consistent temporal decline in the frequency of the TLR3C allele in the original population, and that similar declines in the TLR3C allele frequency occurred in all the derived populations. Individuals (of both sexes) with the TLR3CC genotype had lower survival, and males - but not females - that carry the TLR3C allele had significantly lower lifetime reproductive success than those with only the TLR3A allele. These results indicate that positive selection on the TLR3A allele, caused by an as yet unknown agent, is driving TLR3 evolution in the Seychelles warbler. No evidence of heterozygote advantage was detected. However, whether the positive selection observed is part of a longer-term pattern of balancing selection (through fluctuating selection or rare-allele advantage) cannot be resolved without tracking the TLR3C allele over an extended time period.
Collapse
Affiliation(s)
- Charli S Davies
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, UK
| | - Martin I Taylor
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, UK
| | - Martijn Hammers
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Terry Burke
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Hannah L Dugdale
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands.,Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, UK.,Nature Seychelles, Roche Caiman, Mahé, Republic of Seychelles
| |
Collapse
|
16
|
Perrin A, Khimoun A, Faivre B, Ollivier A, de Pracontal N, Théron F, Loubon M, Leblond G, Duron O, Garnier S. Habitat fragmentation differentially shapes neutral and immune gene variation in a tropical bird species. Heredity (Edinb) 2021; 126:148-162. [PMID: 32934360 PMCID: PMC7853120 DOI: 10.1038/s41437-020-00366-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/30/2020] [Accepted: 08/30/2020] [Indexed: 01/11/2023] Open
Abstract
Habitat fragmentation is a major cause of biodiversity loss, responsible for an alteration of intraspecific patterns of neutral genetic diversity and structure. Although neutral genetic variation can be informative for demographic inferences, it may be a poor predictor of adaptive genetic diversity and thus of the consequences of habitat fragmentation on selective evolutionary processes. In this context, we contrasted patterns of genetic diversity and structure of neutral loci (microsatellites) and immune genes (i.e., toll-like receptors) in an understorey bird species, the wedge-billed woodcreeper Glyphorynchus spirurus. The objectives were (1) to investigate forest fragmentation effects on population genetic diversity, (2) to disentangle the relative role of demography (genetic drift and migration) and selection, and (3) to assess whether immunogenetic patterns could be associated with variation of ectoparasite (i.e., ticks) pressures. Our results revealed an erosion of neutral genetic diversity and a substantial genetic differentiation among fragmented populations, resulting from a decrease in landscape connectivity and leading to the divergence of distinct genetic pools at a small spatial scale. Patterns of genetic diversity observed for TLR4 and TLR5 were concordant with neutral genetic patterns, whereas those observed for TLR3 and TLR21 were discordant. This result underlines that the dominant evolutionary force shaping immunogenetic diversity (genetic drift vs. selection) may be different depending on loci considered. Finally, tick prevalence was higher in fragmented environments. We discussed the hypothesis that pathogen selective pressures may contribute to maintain adaptive genetic diversity despite the negative demographic effect of habitat fragmentation on neutral genetic diversity.
Collapse
Affiliation(s)
- Antoine Perrin
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France.
| | - Aurélie Khimoun
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Bruno Faivre
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Anthony Ollivier
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Nyls de Pracontal
- Groupe d'Etude et de Protection des Oiseaux en Guyane, 431 route d'Attila Cabassou, 97354, Rémire-Montjoly, France
| | - Franck Théron
- Groupe d'Etude et de Protection des Oiseaux en Guyane, 431 route d'Attila Cabassou, 97354, Rémire-Montjoly, France
| | - Maxime Loubon
- Groupe d'Etude et de Protection des Oiseaux en Guyane, 431 route d'Attila Cabassou, 97354, Rémire-Montjoly, France
| | - Gilles Leblond
- SARL BIOS, Route de Davidon, Duzer, 97115, Sainte-Rose, France
| | - Olivier Duron
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France
| | - Stéphane Garnier
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| |
Collapse
|
17
|
Nandakumar M, Ishtiaq F. Genetic drift and bottleneck do not influence diversity in Toll-like receptor genes at a small spatial scale in a Himalayan passerine. Ecol Evol 2020; 10:12246-12263. [PMID: 33209285 PMCID: PMC7663051 DOI: 10.1002/ece3.6855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022] Open
Abstract
Genetic diversity is important for long-term viability of a population. Low genetic diversity reduces persistence and survival of populations and increases susceptibility to diseases. Comparisons of the neutral markers with functional loci such as immune genes [Toll-like receptors; TLR] can provide useful insights into evolutionary potential of a species and how the diversity of pathogens and selection pressures on their hosts are directly linked to their environment. In this study, we compare genetic diversity in neutral (eleven microsatellite loci) and adaptive (seven TLR loci) loci to determine genetic variation in a nonmigratory western Himalayan passerine, the black-throated tit (Aegithalos concinnus), distributed across an elevation gradient with varying degree of pathogen-mediated selection pressure. We further compare the diversity in TLR loci with a high-elevation sister species, the white-throated tit (Aegithalos niveogularis). Our results indicate a lack of population genetic structure in the black-throated tit and signatures of a past bottleneck. In contrast, we found high diversity in TLR loci and locus-specific (TLR7) signatures of pathogen-mediated selection, which was comparable to diversity in the white-throated tit. Levels of diversity at TLR5 locus corresponded very closely with neutral microsatellite variation. We found evidence of positive selection in TLR1LA, TLR5, and TLR7 loci highlighting the importance in pathogen recognition. Our finding demonstrates that reduction in neutral variation does not necessarily lead to reduction in functional genetic diversity and probably helps in revival of population in a widespread species.
Collapse
Affiliation(s)
- Mridula Nandakumar
- Centre for Ecological SciencesIndian Institute of ScienceBangaloreIndia
- Present address:
Department of BiologyLund UniversityLundSweden
| | - Farah Ishtiaq
- Centre for Ecological SciencesIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
18
|
Zapata D, Rivera-Gutierrez HF, Parra JL, Gonzalez-Quevedo C. Low adaptive and neutral genetic diversity in the endangered Antioquia wren (Thryophilus sernai). CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
|
20
|
Levy H, Fiddaman SR, Vianna JA, Noll D, Clucas GV, Sidhu JKH, Polito MJ, Bost CA, Phillips RA, Crofts S, Miller GD, Pistorius P, Bonnadonna F, Le Bohec C, Barbosa A, Trathan P, Raya Rey A, Frantz LAF, Hart T, Smith AL. Evidence of Pathogen-Induced Immunogenetic Selection across the Large Geographic Range of a Wild Seabird. Mol Biol Evol 2020; 37:1708-1726. [PMID: 32096861 PMCID: PMC7253215 DOI: 10.1093/molbev/msaa040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Over evolutionary time, pathogen challenge shapes the immune phenotype of the host to better respond to an incipient threat. The extent and direction of this selection pressure depend on the local pathogen composition, which is in turn determined by biotic and abiotic features of the environment. However, little is known about adaptation to local pathogen threats in wild animals. The Gentoo penguin (Pygoscelis papua) is a species complex that lends itself to the study of immune adaptation because of its circumpolar distribution over a large latitudinal range, with little or no admixture between different clades. In this study, we examine the diversity in a key family of innate immune genes-the Toll-like receptors (TLRs)-across the range of the Gentoo penguin. The three TLRs that we investigated present varying levels of diversity, with TLR4 and TLR5 greatly exceeding the diversity of TLR7. We present evidence of positive selection in TLR4 and TLR5, which points to pathogen-driven adaptation to the local pathogen milieu. Finally, we demonstrate that two positively selected cosegregating sites in TLR5 are sufficient to alter the responsiveness of the receptor to its bacterial ligand, flagellin. Taken together, these results suggest that Gentoo penguins have experienced distinct pathogen-driven selection pressures in different environments, which may be important given the role of the Gentoo penguin as a sentinel species in some of the world's most rapidly changing environments.
Collapse
Affiliation(s)
- Hila Levy
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - Juliana A Vianna
- Departamento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Macul, Santiago, Chile
| | - Daly Noll
- Departamento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Macul, Santiago, Chile
- Departamento de Ciencias Ecológicas, Instituto de Ecología y Biodiversidad, Universidad de Chile, Santiago, Chile
| | - Gemma V Clucas
- Cornell Atkinson Center for a Sustainable Future, Cornell University, Ithaca, NY
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY
| | | | - Michael J Polito
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA
| | - Charles A Bost
- Centre d’Etudes Biologiques de Chizé (CEBC), UMR 7372 du CNRS‐Université de La Rochelle, Villiers‐en‐Bois, France
| | | | - Sarah Crofts
- Falklands Conservation, Stanley, Falkland Islands, United Kingdom
| | - Gary D Miller
- Microbiology and Immunology, PALM, University of Western Australia, Crawley, Western Australia, Australia
| | - Pierre Pistorius
- DST/NRF Centre of Excellence at the Percy FitzPatrick Institute for African Ornithology, Department of Zoology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Francesco Bonnadonna
- CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, Montpellier, France
| | - Céline Le Bohec
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- Département de Biologie Polaire, Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Andrés Barbosa
- Museo Nacional de Ciencias Naturales, Departamento de Ecología Evolutiva, CSIC, Madrid, Spain
| | - Phil Trathan
- British Antarctic Survey, Cambridge, United Kingdom
| | - Andrea Raya Rey
- Centro Austral de Investigaciones Científicas – Consejo Nacional de Investigaciones Científicas y Técnicas (CADIC-CONICET), Ushuaia, Tierra del Fuego, Argentina
- Instituto de Ciencias Polares, Ambiente y Recursos Naturales, Universidad Nacional de Tierra del Fuego, Ushuaia, Tierra del Fuego, Argentina
- Wildlife Conservation Society, Buenos Aires, Argentina
| | - Laurent A F Frantz
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Tom Hart
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Adrian L Smith
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Xu W, Zhou X, Fang W, Chen X. Genetic diversity of toll-like receptor genes in the vulnerable Chinese egret (Egretta eulophotes). PLoS One 2020; 15:e0233714. [PMID: 32469968 PMCID: PMC7259618 DOI: 10.1371/journal.pone.0233714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/11/2020] [Indexed: 01/15/2023] Open
Abstract
Toll-like receptor (TLR) genes have recently been employed to assess genetic diversity, as they can be used to infer both demographic history and adaptation to environments with different pathogen pressure. Here, we sampled 120 individuals of the Chinese egret (Egretta eulophotes), a globally vulnerable species, from four breeding populations across China. We assessed the levels of genetic diversity, selection pressure, and population differentiation at seven TLR loci (TLR1LB, TLR2A, TLR3, TLR4, TLR5, TLR7, and TLR15). Using a variety of metrics (SNPs, heterozygosity, nucleotides, haplotypes), our analyses showed that genetic diversity was lower at 4 of the 7 TLR loci in the vulnerable Chinese egret compared to the more common little egret (Egretta garzetta). The selection test indicated TLRs, except for TLR5, were under purifying selection in TLR evolution, suggesting that low TLR genetic diversity in the Chinese egret may be caused by purifying selection. Moreover, analysis of molecular variance indicated low but significant population differentiation among four populations at all of the TLR loci in this egret. However, some comparisons based on fixation index analyses did not show significant population differentiation, and Bayesian clustering showed admixture. Our finding suggested that these four populations of the Chinese egret in China may be considered a single unit for conservation planning. These results, the new report of TLR genetic diversity in a long-distance migratory vulnerable Ardeid species, will provide fundamental TLR information for further studies on the conservation genetics of the Chinese egret and other Ardeids.
Collapse
Affiliation(s)
- Wei Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Xiaoping Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Wenzhen Fang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Xiaolin Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People’s Republic of China
| |
Collapse
|
22
|
Ham-Dueñas JG, Canales-del-Castillo R, Voelker G, Ruvalcaba-Ortega I, Aguirre-Calderón CE, González-Rojas JI. Adaptive genetic diversity and evidence of population genetic structure in the endangered Sierra Madre Sparrow (Xenospiza baileyi). PLoS One 2020; 15:e0232282. [PMID: 32352998 PMCID: PMC7192469 DOI: 10.1371/journal.pone.0232282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/10/2020] [Indexed: 12/13/2022] Open
Abstract
The magnitude and distribution of genetic diversity through space and time can provide useful information relating to evolutionary potential and conservation status in threatened species. In assessing genetic diversity in species that are of conservation concern, several studies have focused on the use of Toll-like receptors (TLRs). TLRs are innate immune genes related to pathogen resistance, and polymorphisms may reflect not only levels of functional diversity, but may also be used to assess genetic diversity within and among populations. Here, we combined four potentially adaptive markers (TLRs) with one mitochondrial (COI) marker to evaluate genetic variation in the endangered Sierra Madre Sparrow (Xenospiza baileyi). This species offers an ideal model to investigate population and evolutionary genetic processes that may be occurring in a habitat restricted endangered species with disjunct populations (Mexico City and Durango), the census sizes of which differ by an order of magnitude. TLRs diversity in the Sierra Madre Sparrow was relatively high, which was not expected given its two small, geographically isolated populations. Genetic diversity was different (but not significantly so) between the two populations, with less diversity seen in the smaller Durango population. Population genetic structure between populations was due to isolation and different selective forces acting on different TLRs; population structure was also evident in COI. Reduction of genetic diversity in COI was observed over 20 years in the Durango population, a result likely caused by habitat loss, a factor which may be the main cause of diversity decline generally. Our results provide information related to the ways in which adaptive variation can be altered by demographic changes due to human-mediated habitat alterations. Furthermore, our findings may help to guide conservation schemes for both populations and their restricted habitat.
Collapse
Affiliation(s)
- José G. Ham-Dueñas
- Laboratorio de Biología de la Conservación y Desarrollo Sustentable. Cd. Universitaria, Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Nuevo León, México
| | - Ricardo Canales-del-Castillo
- Laboratorio de Biología de la Conservación y Desarrollo Sustentable. Cd. Universitaria, Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Nuevo León, México
- * E-mail:
| | - Gary Voelker
- Department of Wildlife and Fisheries Sciences, Biodiversity Research and Teaching Collections, Texas A&M University, College Station, Texas, United States of America
| | - Irene Ruvalcaba-Ortega
- Laboratorio de Biología de la Conservación y Desarrollo Sustentable. Cd. Universitaria, Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Nuevo León, México
| | | | - José I. González-Rojas
- Laboratorio de Biología de la Conservación y Desarrollo Sustentable. Cd. Universitaria, Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Nuevo León, México
| |
Collapse
|
23
|
Kloch A, Biedrzycka A. Post-glacial phylogeography and variation in innate immunity loci in a sylvatic rodent, bank vole Myodes glareolus. Mamm Biol 2020. [DOI: 10.1007/s42991-020-00016-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AbstractIn the northern hemisphere, the spatial structure of many taxa has been shaped by migration patterns after the last glaciation, and phylogeography based on mtDNA variation may reflect the post-glacial demography. The mtDNA lineages are expected to differ in their adaptations to local conditions but little is known about the impact of these conditions on functional genetic variation. Here, we answer this question through an analysis of geographic variation and selection patterns in seven innate immunity genes in free-living bank voles Myodes glareolus from 10 localities across species range assigned to different lineages based on mtDNA. We found clear discrepancies between population structure in mtDNA and each of the studied innate immunity genes. There was no uniform pattern of spatial variation at immunity loci, they differed in the levels of polymorphism, and the results of neutrality tests were not consistent over loci. Each locus comprised a few common haplotypes shared between mitochondrial lineages and studied locations, plus numerous haplotypes unique for each studied site. Our results suggest that the diversity of innate immunity genes cannot be explained solely in terms of demographic processes, and that the observed polymorphism may be attributed to local selection. The strength and direction of selection differed between loci, even within the same gene family, which underlines how crucial it is to take a complex approach while studying the selection patterns acting on immune-related genes.
Collapse
|
24
|
Garcia MM, Goicoechea C, Molina-Álvarez M, Pascual D. Toll-like receptor 4: A promising crossroads in the diagnosis and treatment of several pathologies. Eur J Pharmacol 2020; 874:172975. [PMID: 32017939 DOI: 10.1016/j.ejphar.2020.172975] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/20/2019] [Accepted: 01/29/2020] [Indexed: 12/26/2022]
Abstract
Toll-like receptor 4 (TLR4) is expressed in a wide variety of cells and is the central component of the mammalian innate immune system. Since its discovery in 1997, TLR4 has been assigned an ever-increasing number of functions that extend from pathogen recognition to tissue damage identification and promotion of the intrinsic "damage repair response" in pain, intestinal, respiratory and vascular disorders. Precisely, the finding of conserved sequence homology among species along with the molecular and functional characterisation of the TLR4 gene enabled researchers to envisage a common operating system in the activation of innate immunity and the initiation of plastic changes at the onset of chronic pain. Malfunctioning in other conditions was conceived in parallel. In this respect, "pivot" proteins and pathway redundancy are not just evolutionary leftovers but essential for normal functioning or cell survival. Indeed, at present, TLR4 single nucleotide polymorphisms (SNP) and their association with certain dysfunctions and diseases are being confirmed in different pools of patients. However, despite its ability to trigger pathogen infection or alternatively tissue injury communications to immune system, TLR4 targeting might not be considered a panacea. This review article represents a compilation of what we know about TLR4 from clinics and basic research on the 20th anniversary of its discovery. Understanding how to fine-tune the interaction between TLR4 and its specific ligands may lead in the next decades to the development of promising new treatments, reducing polypharmacy and probably having an impact on drug use in numerous pathologies.
Collapse
Affiliation(s)
- Miguel M Garcia
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Universidad Rey Juan Carlos, Avda, Atenas S/n, 28922, Alcorcón, Spain
| | - Carlos Goicoechea
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Universidad Rey Juan Carlos, Avda, Atenas S/n, 28922, Alcorcón, Spain
| | - Miguel Molina-Álvarez
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Universidad Rey Juan Carlos, Avda, Atenas S/n, 28922, Alcorcón, Spain
| | - David Pascual
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Universidad Rey Juan Carlos, Avda, Atenas S/n, 28922, Alcorcón, Spain.
| |
Collapse
|
25
|
Relaxation of selective constraints shapes variation of toll-like receptors in a colonial waterbird, the black-headed gull. Immunogenetics 2020; 72:251-262. [PMID: 31996941 PMCID: PMC7182547 DOI: 10.1007/s00251-020-01156-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/14/2020] [Indexed: 11/01/2022]
Abstract
Nonspecific innate immune response is activated by toll-like receptors (TLRs), which recognize conserved molecular motifs characteristic for a broad spectrum of pathogens. In this study, we examined nucleotide substitution patterns and allelic diversity at five TLR genes in a wild nonpasserine bird, the black-headed gull Chroicocephalus ridibundus. We hypothesized that balancing selection can maintain high allelic diversity of TLR genes in the black-headed gull because of its ecological characteristics, coloniality, and migratoriness, which are associated with increased exposure and transmission of pathogens. Although we found moderately high levels of sequence polymorphism (8-49 haplotypes retrieved per locus within a sample of 60 individuals), most of these haplotypes were recorded at low frequencies within our study population. At the same time, we found no convincing evidence for the role of balancing selection in the maintenance of this variation (Tajima's D < 0.5), and sites with a significant excess of nonsynonymous mutations (dN/dS > 1) were recorded only at two loci (TLR5 and TLR7). This pattern is consistent with relaxation of selective constraints, where most mutations are slightly deleterious and usually removed by purifying selection. No differences in the diversity and nucleotide substitution rates were found between endosomal loci responsible for viral RNA sensing and loci responsible for the recognition of extracellular pathogens. Our study provides the first information on evolutionary mechanisms shaping polymorphism of TLRs in a species from Lari suborder (gulls and allies) and suggests that TLR genes may be poorly responsive to ecological and life-history characteristics of hosts.
Collapse
|
26
|
Armstrong C, Davies RG, González‐Quevedo C, Dunne M, Spurgin LG, Richardson DS. Adaptive landscape genetics and malaria across divergent island bird populations. Ecol Evol 2019; 9:12482-12502. [PMID: 31788192 PMCID: PMC6875583 DOI: 10.1002/ece3.5700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 12/31/2022] Open
Abstract
Environmental conditions play a major role in shaping the spatial distributions of pathogens, which in turn can drive local adaptation and divergence in host genetic diversity. Haemosporidians, such as Plasmodium (malaria), are a strong selective force, impacting survival and fitness of hosts, with geographic distributions largely determined by habitat suitability for their insect vectors. Here, we have tested whether patterns of fine-scale local adaptation to malaria are replicated across discrete, ecologically differing island populations of Berthelot's pipits Anthus berthelotii. We sequenced TLR4, an innate immunity gene that is potentially under positive selection in Berthelot's pipits, and two SNPs previously identified as being associated with malaria infection in a genome-wide association study (GWAS) in Berthelot's pipits in the Canary Islands. We determined the environmental predictors of malaria infection, using these to estimate variation in malaria risk on Porto Santo, and found some congruence with previously identified environmental risk factors on Tenerife. We also found a negative association between malaria infection and a TLR4 variant in Tenerife. In contrast, one of the GWAS SNPs showed an association with malaria risk in Porto Santo, but in the opposite direction to that found in the Canary Islands GWAS. Together, these findings suggest that disease-driven local adaptation may be an important factor in shaping variation among island populations.
Collapse
Affiliation(s)
| | | | - Catalina González‐Quevedo
- School of Biological SciencesUniversity of East AngliaNorwichUK
- Grupo Ecología y Evolución de VertebradosInstituto de BiologíaFacultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
| | - Molly Dunne
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | | | | |
Collapse
|
27
|
Nelson-Flower MJ, Germain RR, MacDougall-Shackleton EA, Taylor SS, Arcese P. Purifying Selection in the Toll-Like Receptors of Song Sparrows Melospiza melodia. J Hered 2019; 109:501-509. [PMID: 29893971 DOI: 10.1093/jhered/esy027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 06/08/2018] [Indexed: 01/22/2023] Open
Abstract
Variation in immune gene sequences is known to influence resistance to infectious diseases and parasites, and hence survival and mate choice, across animal taxa. Toll-like receptors (TLRs) comprise one essential gene family in the vertebrate innate immune system and recognize evolutionarily conserved structures from all major microorganism classes. However, the causes and consequences of TLR variation in passerine birds remain largely unexplored. We examined 7 TLR genes in song sparrows (Melospiza melodia), a species that is studied across North America. We then examined sequences from 4 unduplicated TLRs (TLR1LB, TLR3, TLR4, and TLR15) from birds in 2 parts of the species' range (N = 27, N = 6), tested for evidence of selection, and conducted pilot analyses of the role of TLR heterozygosity in survival. We identified 45 SNPs: 19 caused changes in amino acid sequences and 2 of these were likely deleterious. We found no evidence of codon-level episodic positive selection but detected purifying selection at codons in all TLRs. Contrary to expectations we found no strong correlation between heterozygosity at TLRs and inbreeding coefficient f (estimate ± standard error [SE] = -0.68 ± 0.37, Radj2 = 0.08, F1,25 = 3.38, P = 0.08). In addition, pilot analyses revealed no relationship between TLR heterozygosity and survival (β ± SE: 0.09 ± 2.00, P = 0.96), possibly due to small sample size. Further analyses of genetic diversity in TLRs are likely to advance understanding of the effects of innate immune gene diversity on the fitness and persistence of wild populations.
Collapse
Affiliation(s)
- Martha J Nelson-Flower
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Sabrina S Taylor
- The School of Renewable Natural Resources, Louisiana State University and AgCenter, Baton Rouge, LA
| | - Peter Arcese
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
28
|
Sanaei E, Husemann M, Seiedy M, Rethwisch M, Tuda M, Toshova TB, Kim MJ, Atanasova D, Kim I. Global genetic diversity, lineage distribution, and Wolbachia infection of the alfalfa weevil Hypera postica (Coleoptera: Curculionidae). Ecol Evol 2019; 9:9546-9563. [PMID: 31534674 PMCID: PMC6745856 DOI: 10.1002/ece3.5474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/06/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023] Open
Abstract
The alfalfa weevil (Hypera postica) is a well-known example of a worldwide-distributed pest with high genetic variation. Based on the mitochondrial genes, the alfalfa weevil clusters into two main mitochondrial lineages. However, there is no clear picture of the global diversity and distribution of these lineages; neither the drivers of its diversification are known. However, it appears likely that historic demographic events including founder effects played a role. In addition, Wolbachia, a widespread intracellular parasite/symbiont, likely played an important role in the evolution of the species. Wolbachia infection so far was only detected in the Western lineage of H. postica with no information on the infecting strain, its frequency, and its consequences on the genetic diversity of the host. We here used a combination of mitochondrial and nuclear sequences of the host and sequence information on Wolbachia to document the distribution of strains and the degree of infection. The Eastern lineage has a higher genetic diversity and is found in the Mediterranean, the Middle East, Eastern Europe, and eastern America, whereas the less diverse Western lineage is found in Central Europe and the western America. Both lineages are infected with the same common strain of Wolbachia belonging to Supergroup B. Based on neutrality tests, selection tests, and the current distribution and diversification of Wolbachia in H. postica, we suggested the Wolbachia infection did not shape genetic diversity of the host. The introduced populations in the United States are generally genetically less diverse, which is in line with founder effects.
Collapse
Affiliation(s)
- Ehsan Sanaei
- Department of Applied BiologyCollege of Agriculture and Life ScienceChonnam National UniversityGwnagjuKorea
- School of Biological ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | | | - Marjan Seiedy
- School of Biology and Center of Excellence in Phylogeny of Living OrganismsCollege of ScienceUniversity of TehranTehranIran
| | | | - Midori Tuda
- Faculty of AgricultureInstitute of Biological ControlKyushu UniversityFukuokaJapan
- Laboratory of Insect Natural EnemiesDepartment of Bioresource SciencesFaculty of AgricultureKyushu UniversityFukuokaJapan
| | - Teodora B. Toshova
- Institute of Biodiversity and Ecosystem ResearchBulgarian Academy of SciencesSofiaBulgaria
| | - Min Jee Kim
- Department of Applied BiologyCollege of Agriculture and Life ScienceChonnam National UniversityGwnagjuKorea
| | - Daniela Atanasova
- Department of EntomologyFaculty of Plant Protection and AgroecologyAgricultural UniversityPlovdivBulgaria
| | - Iksoo Kim
- Department of Applied BiologyCollege of Agriculture and Life ScienceChonnam National UniversityGwnagjuKorea
| |
Collapse
|
29
|
Coetzer WG, Turner TR, Schmitt CA, Grobler JP. Adaptive genetic variation at three loci in South African vervet monkeys ( Chlorocebus pygerythrus) and the role of selection within primates. PeerJ 2018; 6:e4953. [PMID: 29888138 PMCID: PMC5991302 DOI: 10.7717/peerj.4953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/22/2018] [Indexed: 12/22/2022] Open
Abstract
Vervet monkeys (Chlorocebus pygerythrus) are one of the most widely distributed non-human primate species found in South Africa. They occur across all the South African provinces, inhabiting a large variety of habitats. These habitats vary sufficiently that it can be assumed that various factors such as pathogen diversity could influence populations in different ways. In turn, these factors could lead to varied levels of selection at specific fitness linked loci. The Toll-like receptor (TLR) gene family, which play an integral role in vertebrate innate immunity, is a group of fitness linked loci which has been the focus of much research. In this study, we assessed the level of genetic variation at partial sequences of two TLR loci (TLR4 and 7) and a reproductively linked gene, acrosin (ACR), across the different habitat types within the vervet monkey distribution range. Gene variation and selection estimates were also made among 11-21 primate species. Low levels of genetic variation for all three gene regions were observed within vervet monkeys, with only two polymorphic sites identified for TLR4, three sites for TLR7 and one site for ACR. TLR7 variation was positively correlated with high mean annual rainfall, which was linked to increased pathogen abundance. The observed genetic variation at TLR4 might have been influenced by numerous factors including pathogens and climatic conditions. The ACR exonic regions showed no variation in vervet monkeys, which could point to the occurrence of a selective sweep. The TLR4 and TLR7 results for the among primate analyses was mostly in line with previous studies, indicating a higher rate of evolution for TLR4. Within primates, ACR coding regions also showed signs of positive selection, which was congruent with previous reports on mammals. Important additional information to the already existing vervet monkey knowledge base was gained from this study, which can guide future research projects on this highly researched taxon as well as help conservation agencies with future management planning involving possible translocations of this species.
Collapse
Affiliation(s)
- Willem G Coetzer
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
| | - Trudy R Turner
- Department of Anthropology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | - J Paul Grobler
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
30
|
Armstrong C, Richardson DS, Hipperson H, Horsburgh GJ, Küpper C, Percival‐Alwyn L, Clark M, Burke T, Spurgin LG. Genomic associations with bill length and disease reveal drift and selection across island bird populations. Evol Lett 2018; 2:22-36. [PMID: 30283662 PMCID: PMC6121843 DOI: 10.1002/evl3.38] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 12/15/2022] Open
Abstract
Island species provide excellent models for investigating how selection and drift operate in wild populations, and for determining how these processes act to influence local adaptation and speciation. Here, we examine the role of selection and drift in shaping genomic and phenotypic variation across recently separated populations of Berthelot's pipit (Anthus berthelotii), a passerine bird endemic to three archipelagos in the Atlantic. We first characterized genetic diversity and population structuring that supported previous inferences of a history of recent colonizations and bottlenecks. We then tested for regions of the genome associated with the ecologically important traits of bill length and malaria infection, both of which vary substantially across populations in this species. We identified a SNP associated with variation in bill length among individuals, islands, and archipelagos; patterns of variation at this SNP suggest that both phenotypic and genotypic variation in bill length is largely shaped by founder effects. Malaria was associated with SNPs near/within genes involved in the immune response, but this relationship was not consistent among archipelagos, supporting the view that disease resistance is complex and rapidly evolving. Although we found little evidence for divergent selection at candidate loci for bill length and malaria resistance, genome scan analyses pointed to several genes related to immunity and metabolism as having important roles in divergence and adaptation. Our findings highlight the utility and challenges involved with combining association mapping and population genetic analysis in nonequilibrium populations, to disentangle the effects of drift and selection on shaping genotypes and phenotypes.
Collapse
Affiliation(s)
- Claire Armstrong
- School of Biological Sciences, University of East AngliaNorwich Research ParkNorwich NR4 7TJUnited Kingdom
| | - David S. Richardson
- School of Biological Sciences, University of East AngliaNorwich Research ParkNorwich NR4 7TJUnited Kingdom
| | - Helen Hipperson
- NERC Biomolecular Analysis Facility, Department of Animal and Plant SciencesUniversity of SheffieldSheffield S10 2TNUnited Kingdom
| | - Gavin J. Horsburgh
- NERC Biomolecular Analysis Facility, Department of Animal and Plant SciencesUniversity of SheffieldSheffield S10 2TNUnited Kingdom
| | - Clemens Küpper
- Max Planck Institute for Ornithology82319 SeewiesenGermany
| | | | - Matt Clark
- Earlham InstituteNorwich Research ParkNorwich NR4 7UZUnited Kingdom
| | - Terry Burke
- NERC Biomolecular Analysis Facility, Department of Animal and Plant SciencesUniversity of SheffieldSheffield S10 2TNUnited Kingdom
| | - Lewis G. Spurgin
- School of Biological Sciences, University of East AngliaNorwich Research ParkNorwich NR4 7TJUnited Kingdom
| |
Collapse
|
31
|
Acevedo-Whitehouse K, Gulland FMD, Bowen L. MHC class II DRB diversity predicts antigen recognition and is associated with disease severity in California sea lions naturally infected with Leptospira interrogans. INFECTION GENETICS AND EVOLUTION 2017; 57:158-165. [PMID: 29183820 DOI: 10.1016/j.meegid.2017.11.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 11/07/2017] [Accepted: 11/23/2017] [Indexed: 12/26/2022]
Abstract
We examined the associations between California sea lion MHC class II DRB (Zaca-DRB) configuration and diversity, and leptospirosis. As Zaca-DRB gene sequences are involved with antigen presentation of bacteria and other extracellular pathogens, we predicted that they would play a role in determining responses to these pathogenic spirochaetes. Specifically, we investigated whether Zaca-DRB diversity (number of genes) and configuration (presence of specific genes) explained differences in disease severity, and whether higher levels of Zaca-DRB diversity predicted the number of specific Leptospira interrogans serovars that a sea lion's serum would react against. We found that serum from diseased sea lions with more Zaca-DRB loci reacted against a wider array of serovars. Specific Zaca-DRB loci were linked to reactions with particular serovars. Interestingly, sea lions with clinical manifestation of leptospirosis that had higher numbers of Zaca-DRB loci were less likely to recover from disease than those with lower diversity, and those that harboured Zaca-DRB.C or -G were 4.5 to 5.3 times more likely to die from leptospirosis, regardless of the infective serovars. We propose that for leptospirosis, a disadvantage of having a wider range of antigen presentation might be increased disease severity due to immunopathology. Ours is the first study to examine the importance of Zaca-DRB diversity for antigen detection and disease severity following natural exposure to infective leptospires.
Collapse
Affiliation(s)
- Karina Acevedo-Whitehouse
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Av. de las Ciencias S/N, Queretaro 76230, Mexico; The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA 94965, USA.
| | | | - Lizabeth Bowen
- USGS Western Ecological Research Center, 1 Shields Ave., University of California, Davis, CA 95616-5224, USA
| |
Collapse
|
32
|
Raven N, Lisovski S, Klaassen M, Lo N, Madsen T, Ho SYW, Ujvari B. Purifying selection and concerted evolution of RNA-sensing toll-like receptors in migratory waders. INFECTION GENETICS AND EVOLUTION 2017; 53:135-145. [PMID: 28528860 DOI: 10.1016/j.meegid.2017.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 01/05/2023]
Abstract
Migratory birds encounter a broad range of pathogens during their journeys, making them ideal models for studying immune gene evolution. Despite the potential value of these species to immunoecology and disease epidemiology, previous studies have typically focused on their adaptive immune gene repertoires. In this study, we examined the evolution of innate immune genes in three long-distance migratory waders (order Charadriiformes). We analysed two parts of the extracellular domains of two Toll-like receptors (TLR3 and TLR7) involved in virus recognition in the Sanderling (Calidris alba), Red-necked Stint (Calidris ruficollis), and Ruddy Turnstone (Arenaria interpres). Our analysis was extended to 50 avian species for which whole-genome sequences were available, including two additional waders. We found that the inferred relationships among avian TLR3 and TLR7 do not match the whole-genome phylogeny of birds. Further analyses showed that although both loci are predominantly under purifying selection, the evolution of the extracellular domain of avian TLR3 has also been driven by episodic diversifying selection. TLR7 was found to be duplicated in all five wader species and in two other orders of birds, Cuculiformes and Passeriformes. The duplication is likely to have occurred in the ancestor of each order, and the duplicated copies appear to be undergoing concerted evolution. The phylogenetic relationships of wader TLR7 matched those of the five wader species, but that of TLR3 did not. Instead, the tree inferred from TLR3 showed potential associations with the species' ecology, including migratory behaviour and exposure to pathogens. Our study demonstrates the importance of combining immunological and ecological knowledge to understand the impact of immune gene polymorphism on the evolutionary ecology of infectious diseases.
Collapse
Affiliation(s)
- Nynke Raven
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Simeon Lisovski
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Nathan Lo
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Thomas Madsen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia.
| |
Collapse
|
33
|
Gilroy DL, Phillips KP, Richardson DS, van Oosterhout C. Toll-like receptor variation in the bottlenecked population of the Seychelles warbler: computer simulations see the 'ghost of selection past' and quantify the 'drift debt'. J Evol Biol 2017; 30:1276-1287. [PMID: 28370771 DOI: 10.1111/jeb.13077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 03/21/2017] [Indexed: 01/09/2023]
Abstract
Balancing selection can maintain immunogenetic variation within host populations, but detecting its signal in a postbottlenecked population is challenging due to the potentially overriding effects of drift. Toll-like receptor genes (TLRs) play a fundamental role in vertebrate immune defence and are predicted to be under balancing selection. We previously characterized variation at TLR loci in the Seychelles warbler (Acrocephalus sechellensis), an endemic passerine that has undergone a historical bottleneck. Five of seven TLR loci were polymorphic, which is in sharp contrast to the low genomewide variation observed. However, standard population genetic statistical methods failed to detect a contemporary signature of selection at any TLR locus. We examined whether the observed TLR polymorphism could be explained by neutral evolution, simulating the population's demography in the software DIYABC. This showed that the posterior distributions of mutation rates had to be unrealistically high to explain the observed genetic variation. We then conducted simulations with an agent-based model using typical values for the mutation rate, which indicated that weak balancing selection has acted on the three TLR genes. The model was able to detect evidence of past selection elevating TLR polymorphism in the prebottleneck populations, but was unable to discern any effects of balancing selection in the contemporary population. Our results show drift is the overriding evolutionary force that has shaped TLR variation in the contemporary Seychelles warbler population, and the observed TLR polymorphisms might be merely the 'ghost of selection past'. Forecast models predict immunogenetic variation in this species will continue to be eroded in the absence of contemporary balancing selection. Such 'drift debt' occurs when a gene pool has not yet reached its new equilibrium level of polymorphism, and this loss could be an important threat to many recently bottlenecked populations.
Collapse
Affiliation(s)
- D L Gilroy
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - K P Phillips
- School of Biological Sciences, University of East Anglia, Norwich, UK.,Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - D S Richardson
- School of Biological Sciences, University of East Anglia, Norwich, UK.,Nature Seychelles, Mahe, Republic of Seychelles
| | - C van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
34
|
Van Doren BM, Campagna L, Helm B, Illera JC, Lovette IJ, Liedvogel M. Correlated patterns of genetic diversity and differentiation across an avian family. Mol Ecol 2017; 26:3982-3997. [PMID: 28256062 DOI: 10.1111/mec.14083] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/19/2017] [Accepted: 02/22/2017] [Indexed: 01/01/2023]
Abstract
Comparative studies of closely related taxa can provide insights into the evolutionary forces that shape genome evolution and the prevalence of convergent molecular evolution. We investigated patterns of genetic diversity and differentiation in stonechats (genus Saxicola), a widely distributed avian species complex with phenotypic variation in plumage, morphology and migratory behaviour, to ask whether similar genomic regions have become differentiated in independent, but closely related, taxa. We used whole-genome pooled sequencing of 262 individuals from five taxa and found that levels of genetic diversity and divergence are strongly correlated among different stonechat taxa. We then asked whether these patterns remain correlated at deeper evolutionary scales and found that homologous genomic regions have become differentiated in stonechats and the closely related Ficedula flycatchers. Such correlation across a range of evolutionary divergence and among phylogenetically independent comparisons suggests that similar processes may be driving the differentiation of these independently evolving lineages, which in turn may be the result of intrinsic properties of particular genomic regions (e.g. areas of low recombination). Consequently, studies employing genome scans to search for areas important for reproductive isolation or adaptation should account for corresponding regions of differentiation, as these regions may not necessarily represent speciation islands or evidence of local adaptation.
Collapse
Affiliation(s)
- Benjamin M Van Doren
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA.,Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| | - Leonardo Campagna
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA.,Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| | - Barbara Helm
- Animal Health and Comparative Medicine, Institute of Biodiversity, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Juan Carlos Illera
- Research Unit of Biodiversity (UO-CSIC-PA), Oviedo University, Campus of Mieres, Research Building, 5th Floor, c/ Gonzalo Gutiérrez Quirós s/n, 33600, Mieres, Asturias, Spain
| | - Irby J Lovette
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA.,Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| | - Miriam Liedvogel
- Max Planck Institute for Evolutionary Biology, AG Behavioural Genomics, August-Thienemann-Str. 2, 24306, Plön, Germany
| |
Collapse
|
35
|
Lourenço A, Álvarez D, Wang IJ, Velo-Antón G. Trapped within the city: integrating demography, time since isolation and population-specific traits to assess the genetic effects of urbanization. Mol Ecol 2017; 26:1498-1514. [DOI: 10.1111/mec.14019] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 01/05/2023]
Affiliation(s)
- André Lourenço
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto; Rua Campo Alegre 4169-007 Porto Portugal
- CIBIO/InBIO; Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto; Instituto de Ciências Agrárias de Vairão; Rua Padre Armando Quintas 7 4485-661 Vairão Portugal
| | - David Álvarez
- Ecology Unit; Department of Organisms and Systems Biology; University of Oviedo; C/ Catedrático Rodrigo Uría 33071 Oviedo Spain
| | - Ian J. Wang
- Department of Environmental Science, Policy and Management; University of California; 130 Mulford Hall #3114 Berkeley CA 94705 USA
| | - Guillermo Velo-Antón
- CIBIO/InBIO; Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto; Instituto de Ciências Agrárias de Vairão; Rua Padre Armando Quintas 7 4485-661 Vairão Portugal
| |
Collapse
|
36
|
Gilroy DL, van Oosterhout C, Komdeur J, Richardson DS. Toll-like receptor variation in the bottlenecked population of the endangered Seychelles warbler. Anim Conserv 2016. [DOI: 10.1111/acv.12307] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- D. L. Gilroy
- School of Biological Sciences; Norwich Research Park; University of East Anglia; Norwich UK
| | - C. van Oosterhout
- School of Environmental Sciences; Norwich Research Park; University of East Anglia; Norwich UK
| | - J. Komdeur
- Behavioural Ecology and Self-Organization; Centre for Ecological and Evolutionary Studies; University of Groningen; Groningen The Netherlands
| | - D. S. Richardson
- School of Biological Sciences; Norwich Research Park; University of East Anglia; Norwich UK
- Nature Seychelles; Mahe Republic of Seychelles
| |
Collapse
|
37
|
Le Gros A, Clergeau P, Zuccon D, Cornette R, Mathys B, Samadi S. Invasion history and demographic processes associated with rapid morphological changes in the Red-whiskered bulbul established on tropical islands. Mol Ecol 2016; 25:5359-5376. [DOI: 10.1111/mec.13853] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 07/22/2016] [Accepted: 09/04/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Ariane Le Gros
- Sorbonne Paris Cité; Université Paris Diderot; 5 Rue Thomas Mann 75013 Paris France
- MNHN; CNRS; UPMC; CP51; Centre d'Ecologie et des Sciences de la Conservation (CESCO UMR7204); Sorbonne Universités; 55 rue Buffon 75005 Paris France
- MNHN; CNRS; UPMC; CP26; Institut de Systématique; Evolution; Biodiversité (ISYEB UMR 7205); Sorbonne Universités; 57 rue Cuvier 75005 Paris France
| | - Philippe Clergeau
- MNHN; CNRS; UPMC; CP51; Centre d'Ecologie et des Sciences de la Conservation (CESCO UMR7204); Sorbonne Universités; 55 rue Buffon 75005 Paris France
| | - Dario Zuccon
- MNHN; CNRS; UPMC; CP26; Institut de Systématique; Evolution; Biodiversité (ISYEB UMR 7205); Sorbonne Universités; 57 rue Cuvier 75005 Paris France
| | - Raphaël Cornette
- MNHN; CNRS; UPMC; CP26; Institut de Systématique; Evolution; Biodiversité (ISYEB UMR 7205); Sorbonne Universités; 57 rue Cuvier 75005 Paris France
| | - Blake Mathys
- Division of Mathematics; Computer and Natural Sciences; Ohio Dominican University; Columbus OH 43219 USA
| | - Sarah Samadi
- MNHN; CNRS; UPMC; CP26; Institut de Systématique; Evolution; Biodiversité (ISYEB UMR 7205); Sorbonne Universités; 57 rue Cuvier 75005 Paris France
| |
Collapse
|
38
|
Vlček J, Hoeck PEA, Keller LF, Wayhart JP, Dolinová I, Štefka J. Balancing selection and genetic drift create unusual patterns of MHCIIβ variation in Galápagos mockingbirds. Mol Ecol 2016; 25:4757-72. [PMID: 27545344 DOI: 10.1111/mec.13807] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 07/28/2016] [Accepted: 08/08/2016] [Indexed: 01/01/2023]
Abstract
The extracellular subunit of the major histocompatibility complex MHCIIβ plays an important role in the recognition of pathogens and the initiation of the adaptive immune response of vertebrates. It is widely accepted that pathogen-mediated selection in combination with neutral micro-evolutionary forces (e.g. genetic drift) shape the diversity of MHCIIβ, but it has proved difficult to determine the relative effects of these forces. We evaluated the effect of genetic drift and balancing selection on MHCIIβ diversity in 12 small populations of Galápagos mockingbirds belonging to four different species, and one larger population of the Northern mockingbird from the continental USA. After genotyping MHCIIβ loci by high-throughput sequencing, we applied a correlational approach to explore the relationships between MHCIIβ diversity and population size by proxy of island size. As expected when drift predominates, we found a positive effect of population size on the number of MHCIIβ alleles present in a population. However, the number of MHCIIβ alleles per individual and number of supertypes were not correlated with population size. This discrepancy points to an interesting feature of MHCIIβ diversity dynamics: some levels of diversity might be shaped by genetic drift while others are independent and possibly maintained by balancing selection.
Collapse
Affiliation(s)
- Jakub Vlček
- Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1670, České Budějovice, Czech Republic
| | - Paquita E A Hoeck
- Institute for Conservation Research, San Diego Zoo Global, 15600 San Pasqual Valley Road, Escondido, CA, 92027, USA
| | - Lukas F Keller
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jessica P Wayhart
- Institute for Conservation Research, San Diego Zoo Global, 15600 San Pasqual Valley Road, Escondido, CA, 92027, USA
| | - Iva Dolinová
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec, Czech Republic
| | - Jan Štefka
- Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, Branišovská 1670, České Budějovice, Czech Republic.
| |
Collapse
|