1
|
Boman J, Qvarnström A, Mugal CF. Regulatory and evolutionary impact of DNA methylation in two songbird species and their naturally occurring F 1 hybrids. BMC Biol 2024; 22:124. [PMID: 38807214 PMCID: PMC11134931 DOI: 10.1186/s12915-024-01920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Regulation of transcription by DNA methylation in 5'-CpG-3' context is a widespread mechanism allowing differential expression of genetically identical cells to persist throughout development. Consequently, differences in DNA methylation can reinforce variation in gene expression among cells, tissues, populations, and species. Despite a surge in studies on DNA methylation, we know little about the importance of DNA methylation in population differentiation and speciation. Here we investigate the regulatory and evolutionary impact of DNA methylation in five tissues of two Ficedula flycatcher species and their naturally occurring F1 hybrids. RESULTS We show that the density of CpG in the promoters of genes determines the strength of the association between DNA methylation and gene expression. The impact of DNA methylation on gene expression varies among tissues with the brain showing unique patterns. Differentially expressed genes between parental species are predicted by genetic and methylation differentiation in CpG-rich promoters. However, both these factors fail to predict hybrid misexpression suggesting that promoter mismethylation is not a main determinant of hybrid misexpression in Ficedula flycatchers. Using allele-specific methylation estimates in hybrids, we also determine the genome-wide contribution of cis- and trans effects in DNA methylation differentiation. These distinct mechanisms are roughly balanced in all tissues except the brain, where trans differences predominate. CONCLUSIONS Overall, this study provides insight on the regulatory and evolutionary impact of DNA methylation in songbirds.
Collapse
Affiliation(s)
- Jesper Boman
- Department of Ecology and Genetics (IEG), Division of Evolutionary Biology, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden.
| | - Anna Qvarnström
- Department of Ecology and Genetics (IEG), Division of Animal Ecology, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden
| | - Carina F Mugal
- Department of Ecology and Genetics (IEG), Division of Evolutionary Biology, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden.
- CNRS, Laboratory of Biometry and Evolutionary Biology (LBBE), UMR 5558, University of Lyon 1, Villeurbanne, France.
| |
Collapse
|
2
|
Venney CJ, Mérot C, Normandeau E, Rougeux C, Laporte M, Bernatchez L. Epigenetic and Genetic Differentiation Between Coregonus Species Pairs. Genome Biol Evol 2024; 16:evae013. [PMID: 38271269 PMCID: PMC10849188 DOI: 10.1093/gbe/evae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Phenotypic diversification is classically associated with genetic differentiation and gene expression variation. However, increasing evidence suggests that DNA methylation is involved in evolutionary processes due to its phenotypic and transcriptional effects. Methylation can increase mutagenesis and could lead to increased genetic divergence between populations experiencing different environmental conditions for many generations, though there has been minimal empirical research on epigenetically induced mutagenesis in diversification and speciation. Whitefish, freshwater members of the salmonid family, are excellent systems to study phenotypic diversification and speciation due to the repeated divergence of benthic-limnetic species pairs serving as natural replicates. Here we investigate whole genome genetic and epigenetic differentiation between sympatric benthic-limnetic species pairs in lake and European whitefish (Coregonus clupeaformis and Coregonus lavaretus) from four lakes (N = 64). We found considerable, albeit variable, genetic and epigenetic differences between species pairs. All SNP types were enriched at CpG sites supporting the mutagenic nature of DNA methylation, though C>T SNPs were most common. We also found an enrichment of overlaps between outlier SNPs with the 5% highest FST between species and differentially methylated loci. This could possibly represent differentially methylated sites that have caused divergent genetic mutations between species, or divergent selection leading to both genetic and epigenetic variation at these sites. Our results support the hypothesis that DNA methylation contributes to phenotypic divergence and mutagenesis during whitefish speciation.
Collapse
Affiliation(s)
- Clare J Venney
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Claire Mérot
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- UMR 6553 Ecobio, OSUR, CNRS, Université de Rennes, Rennes, France
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Clément Rougeux
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Martin Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Ministère des Forêts, de la Faune et des Parcs (MFFP), Québec, Québec, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| |
Collapse
|
3
|
Hu Y, Yuan S, Du X, Liu J, Zhou W, Wei F. Comparative analysis reveals epigenomic evolution related to species traits and genomic imprinting in mammals. Innovation (N Y) 2023; 4:100434. [PMID: 37215528 PMCID: PMC10196708 DOI: 10.1016/j.xinn.2023.100434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
DNA methylation is an epigenetic modification that plays a crucial role in various regulatory processes, including gene expression regulation, transposable element repression, and genomic imprinting. However, most studies on DNA methylation have been conducted in humans and other model species, whereas the dynamics of DNA methylation across mammals remain poorly explored, limiting our understanding of epigenomic evolution in mammals and the evolutionary impacts of conserved and lineage-specific DNA methylation. Here, we generated and gathered comparative epigenomic data from 13 mammalian species, including two marsupial species, to demonstrate that DNA methylation plays critical roles in several aspects of gene evolution and species trait evolution. We found that the species-specific DNA methylation of promoters and noncoding elements correlates with species-specific traits such as body patterning, indicating that DNA methylation might help establish or maintain interspecies differences in gene regulation that shape phenotypes. For a broader view, we investigated the evolutionary histories of 88 known imprinting control regions across mammals to identify their evolutionary origins. By analyzing the features of known and newly identified potential imprints in all studied mammals, we found that genomic imprinting may function in embryonic development through the binding of specific transcription factors. Our findings show that DNA methylation and the complex interaction between the genome and epigenome have a significant impact on mammalian evolution, suggesting that evolutionary epigenomics should be incorporated to develop a unified evolutionary theory.
Collapse
Affiliation(s)
- Yisi Hu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Shenli Yuan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Du
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenliang Zhou
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Fuwen Wei
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
4
|
Tshilate TS, Ishengoma E, Rhode C. A first annotated genome sequence for Haliotis midae with genomic insights into abalone evolution and traits of economic importance. Mar Genomics 2023; 70:101044. [PMID: 37196472 DOI: 10.1016/j.margen.2023.101044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
Haliotis midae or "perlemoen" is one of five abalone species endemic to South Africa, and being palatable, the only commercially important abalone species with a high international demand. The higher demand for this abalone species has resulted in the decrease of natural stocks due to overexploitation by capture fisheries and poaching. Facilitating aquaculture production of H. midae should assist in minimising the pressure on the wild populations. Here, the draft genome of H. midae has been sequenced, assembled, and annotated. The draft assembly resulted in a total length of 1.5 Gb, contig N50 of 0.238 Mb, scaffold N50 of 0. 238 Mb and GC level of 40%. Gene annotation, combining ab initio and evidence-based pipelines identified 52,280 genes with protein coding potential. The genes identified were used to predict orthologous genes shared among the four other abalone species (H. laevigata, H. rubra, H. discus hannai and H. rufescens) and 4702 orthologous genes were shared across the five species. Among the orthologous genes in abalones, single copy genes were further analysed for signatures of selection and several molecular regulatory proteins involved in developmental functions were found to be under positive selection in specific abalone lineages. Furthermore, whole genome SNP-based phylogenomic assessment was performed to confirm the evolutionary relationship among the considered abalone species with draft genomes, reaffirming that H. midae is closely related to the Australian Greenlip (H. laevigata) and Blacklip (H. rubra). The study assists in the understanding of genes related to various biological systems underscoring the evolution and development of abalones, with potential applications for genetic improvement of commercial stocks.
Collapse
Affiliation(s)
- Thendo S Tshilate
- Department of Genetics, Stellenbosch University, Private bag X1, Matieland 7602, South Africa
| | - Edson Ishengoma
- Department of Genetics, Stellenbosch University, Private bag X1, Matieland 7602, South Africa; Mkwawa University College of Education, University of Dar es Salaam, P.O. BOX 2513, Iringa, Tanzania
| | - Clint Rhode
- Department of Genetics, Stellenbosch University, Private bag X1, Matieland 7602, South Africa.
| |
Collapse
|
5
|
Zhang Y, Zhang Q, Yang X, Gu X, Chen J, Shi T. 6mA DNA Methylation on Genes in Plants Is Associated with Gene Complexity, Expression and Duplication. PLANTS (BASEL, SWITZERLAND) 2023; 12:1949. [PMID: 37653866 PMCID: PMC10221889 DOI: 10.3390/plants12101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 09/02/2023]
Abstract
N6-methyladenine (6mA) DNA methylation has emerged as an important epigenetic modification in eukaryotes. Nevertheless, the evolution of the 6mA methylation of homologous genes after species and after gene duplications remains unclear in plants. To understand the evolution of 6mA methylation, we detected the genome-wide 6mA methylation patterns of four lotus plants (Nelumbo nucifera) from different geographic origins by nanopore sequencing and compared them to patterns in Arabidopsis and rice. Within lotus, the genomic distributions of 6mA sites are different from the widely studied 5mC methylation sites. Consistently, in lotus, Arabidopsis and rice, 6mA sites are enriched around transcriptional start sites, positively correlated with gene expression levels, and preferentially retained in highly and broadly expressed orthologs with longer gene lengths and more exons. Among different duplicate genes, 6mA methylation is significantly more enriched and conserved in whole-genome duplicates than in local duplicates. Overall, our study reveals the convergent patterns of 6mA methylation evolution based on both lineage and duplicate gene divergence, which underpin their potential role in gene regulatory evolution in plants.
Collapse
Affiliation(s)
- Yue Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Qian Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingyu Yang
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China
- Hubei Ecology Polytechnic College, Wuhan 430200, China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinming Chen
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Tao Shi
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
6
|
Hecht EE, Barton SA, Rogers Flattery CN, Meza Meza A. The evolutionary neuroscience of domestication. Trends Cogn Sci 2023; 27:553-567. [PMID: 37087363 DOI: 10.1016/j.tics.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/24/2023]
Abstract
How does domestication affect the brain? This question has broad relevance. Domesticated animals play important roles in human society, and substantial recent work has addressed the hypotheses that a domestication syndrome links phenotypes across species, including Homo sapiens. Surprisingly, however, neuroscience research on domestication remains largely disconnected from current knowledge about how and why brains change in evolution. This article aims to bridge that gap. Examination of recent research reveals some commonalities across species, but ultimately suggests that brain changes associated with domestication are complex and variable. We conclude that interactions between behavioral, metabolic, and life-history selection pressures, as well as the role the role of experience and environment, are currently largely overlooked and represent important directions for future research.
Collapse
Affiliation(s)
- Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02171, USA.
| | - Sophie A Barton
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02171, USA
| | | | - Araceli Meza Meza
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02171, USA
| |
Collapse
|
7
|
Chou JY, Hsu PC, Leu JY. Enforcement of Postzygotic Species Boundaries in the Fungal Kingdom. Microbiol Mol Biol Rev 2022; 86:e0009822. [PMID: 36098649 PMCID: PMC9769731 DOI: 10.1128/mmbr.00098-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Understanding the molecular basis of speciation is a primary goal in evolutionary biology. The formation of the postzygotic reproductive isolation that causes hybrid dysfunction, thereby reducing gene flow between diverging populations, is crucial for speciation. Using various advanced approaches, including chromosome replacement, hybrid introgression and transcriptomics, population genomics, and experimental evolution, scientists have revealed multiple mechanisms involved in postzygotic barriers in the fungal kingdom. These results illuminate both unique and general features of fungal speciation. Our review summarizes experiments on fungi exploring how Dobzhansky-Muller incompatibility, killer meiotic drive, chromosome rearrangements, and antirecombination contribute to postzygotic reproductive isolation. We also discuss possible evolutionary forces underlying different reproductive isolation mechanisms and the potential roles of the evolutionary arms race under the Red Queen hypothesis and epigenetic divergence in speciation.
Collapse
Affiliation(s)
- Jui-Yu Chou
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Po-Chen Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
8
|
Vernaz G, Hudson AG, Santos ME, Fischer B, Carruthers M, Shechonge AH, Gabagambi NP, Tyers AM, Ngatunga BP, Malinsky M, Durbin R, Turner GF, Genner MJ, Miska EA. Epigenetic divergence during early stages of speciation in an African crater lake cichlid fish. Nat Ecol Evol 2022; 6:1940-1951. [PMID: 36266459 PMCID: PMC9715432 DOI: 10.1038/s41559-022-01894-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/26/2022] [Indexed: 12/15/2022]
Abstract
Epigenetic variation can alter transcription and promote phenotypic divergence between populations facing different environmental challenges. Here, we assess the epigenetic basis of diversification during the early stages of speciation. Specifically, we focus on the extent and functional relevance of DNA methylome divergence in the very young radiation of Astatotilapia calliptera in crater Lake Masoko, southern Tanzania. Our study focuses on two lake ecomorphs that diverged approximately 1,000 years ago and a population in the nearby river from which they separated approximately 10,000 years ago. The two lake ecomorphs show no fixed genetic differentiation, yet are characterized by different morphologies, depth preferences and diets. We report extensive genome-wide methylome divergence between the two lake ecomorphs, and between the lake and river populations, linked to key biological processes and associated with altered transcriptional activity of ecologically relevant genes. Such genes differing between lake ecomorphs include those involved in steroid metabolism, hemoglobin composition and erythropoiesis, consistent with their divergent habitat occupancy. Using a common-garden experiment, we found that global methylation profiles are often rapidly remodeled across generations but ecomorph-specific differences can be inherited. Collectively, our study suggests an epigenetic contribution to the early stages of vertebrate speciation.
Collapse
Affiliation(s)
- Grégoire Vernaz
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Genetics, University of Cambridge, Cambridge, UK.
- Wellcome Sanger Institute, Hinxton, UK.
| | - Alan G Hudson
- School of Biological Sciences, University of Bristol, Bristol, UK
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Bettina Fischer
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | | | | | - Alexandra M Tyers
- School of Natural Sciences, Bangor University, Bangor, UK
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Milan Malinsky
- Wellcome Sanger Institute, Hinxton, UK
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | | | - Martin J Genner
- School of Biological Sciences, University of Bristol, Bristol, UK.
| | - Eric A Miska
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Genetics, University of Cambridge, Cambridge, UK.
- Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
9
|
Chapelle V, Silvestre F. Population Epigenetics: The Extent of DNA Methylation Variation in Wild Animal Populations. EPIGENOMES 2022; 6:31. [PMID: 36278677 PMCID: PMC9589984 DOI: 10.3390/epigenomes6040031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Population epigenetics explores the extent of epigenetic variation and its dynamics in natural populations encountering changing environmental conditions. In contrast to population genetics, the basic concepts of this field are still in their early stages, especially in animal populations. Epigenetic variation may play a crucial role in phenotypic plasticity and local adaptation as it can be affected by the environment, it is likely to have higher spontaneous mutation rate than nucleotide sequences do, and it may be inherited via non-mendelian processes. In this review, we aim to bring together natural animal population epigenetic studies to generate new insights into ecological epigenetics and its evolutionary implications. We first provide an overview of the extent of DNA methylation variation and its autonomy from genetic variation in wild animal population. Second, we discuss DNA methylation dynamics which create observed epigenetic population structures by including basic population genetics processes. Then, we highlight the relevance of DNA methylation variation as an evolutionary mechanism in the extended evolutionary synthesis. Finally, we suggest new research directions by highlighting gaps in the knowledge of the population epigenetics field. As for our results, DNA methylation diversity was found to reveal parameters that can be used to characterize natural animal populations. Some concepts of population genetics dynamics can be applied to explain the observed epigenetic structure in natural animal populations. The set of recent advancements in ecological epigenetics, especially in transgenerational epigenetic inheritance in wild animal population, might reshape the way ecologists generate predictive models of the capacity of organisms to adapt to changing environments.
Collapse
Affiliation(s)
- Valentine Chapelle
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth, and Environment, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | | |
Collapse
|
10
|
Planidin NP, de Carvalho CF, Feder JL, Gompert Z, Nosil P. Epigenetics and reproductive isolation: a commentary on Westram et al., 2022. J Evol Biol 2022; 35:1188-1194. [PMID: 36063158 PMCID: PMC9541925 DOI: 10.1111/jeb.14033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/23/2022]
Affiliation(s)
| | | | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | | | - Patrik Nosil
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
11
|
Penney CM, Tabh JK, Wilson CC, Burness G. Within- and transgenerational plasticity of a temperate salmonid in response to thermal acclimation and acute temperature stress. Physiol Biochem Zool 2022; 95:484-499. [DOI: 10.1086/721478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Greenspoon PB, Spencer HG, M'Gonigle LK. Epigenetic induction may speed up or slow down speciation with gene flow. Evolution 2022; 76:1170-1182. [PMID: 35482931 PMCID: PMC9321097 DOI: 10.1111/evo.14494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/09/2022] [Indexed: 01/21/2023]
Abstract
Speciation is less likely to occur when there is gene flow between nascent species. Natural selection can oppose gene flow and promote speciation if there is variation in ecological conditions among the nascent species' locations. Previous theory on ecological speciation with gene flow has focused primarily on the role of genetic variation in ecological traits, largely neglecting the role of nongenetic inheritance or transgenerational plasticity. Here, we build and analyze models incorporating both genetic and epigenetic inheritance, the latter representing a form of nongenetic inheritance. We investigate the rate of speciation for a population that inhabits two patches connected by migration, and find that adaptively biased epigenetic induction can speed up or slow down speciation, depending on the form of the map from genotype and epigenotype to phenotype. While adaptively relevant epigenetic variation can speed up speciation by reducing the fitness of migrants and hybrids, it can also slow down speciation. This latter effect occurs when the epialleles are able to achieve adaptation faster than the genetic alleles, thereby weakening selection on the latter.
Collapse
|
13
|
Sympatric speciation of the spiny mouse from Evolution Canyon in Israel substantiated genomically and methylomically. Proc Natl Acad Sci U S A 2022; 119:e2121822119. [PMID: 35320043 PMCID: PMC9060526 DOI: 10.1073/pnas.2121822119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceWhether sympatric speciation (SS) is rare or common is still debated. Two populations of the spiny mouse, Acomys cahirinus, from Evolution Canyon I (EC I) in Israel have been depicted earlier as speciating sympatrically by molecular markers and transcriptome. Here, we investigated SS both genomically and methylomically, demonstrating that the opposite populations of spiny mice are sister taxa and split from the common ancestor around 20,000 years ago without an allopatric history. Mate choice, olfactory receptors, and speciation genes contributed to prezygotic/postzygotic reproductive isolation. The two populations showed different methylation patterns, facilitating adaptation to their local environment. They cope with abiotic and biotic stresses, due to high solar interslope radiation differences. We conclude that our new genomic and methylomic data substantiated SS.
Collapse
|
14
|
Vogt G. Studying phenotypic variation and DNA methylation across development, ecology and evolution in the clonal marbled crayfish: a paradigm for investigating epigenotype-phenotype relationships in macro-invertebrates. Naturwissenschaften 2022; 109:16. [PMID: 35099618 DOI: 10.1007/s00114-021-01782-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022]
Abstract
Animals can produce different phenotypes from the same genome during development, environmental adaptation and evolution, which is mediated by epigenetic mechanisms including DNA methylation. The obligatory parthenogenetic marbled crayfish, Procambarus virginalis, whose genome and methylome are fully established, proved very suitable to study this issue in detail. Comparison between developmental stages and DNA methylation revealed low expression of Dnmt methylation and Tet demethylation enzymes from the spawned oocyte to the 256 cell embryo and considerably increased expression thereafter. The global 5-methylcytosine level was 2.78% at mid-embryonic development and decreased slightly to 2.41% in 2-year-old adults. Genetically identical clutch-mates raised in the same uniform laboratory setting showed broad variation in morphological, behavioural and life history traits and differences in DNA methylation. The invasion of diverse habitats in tropical to cold-temperate biomes in the last 20 years by the marbled crayfish was associated with the expression of significantly different phenotypic traits and DNA methylation patterns, despite extremely low genetic variation on the whole genome scale, suggesting the establishment of epigenetic ecotypes. The evolution of marbled crayfish from its parent species Procambarus fallax by autotriploidy a few decades ago was accompanied by a significant increase in body size, fertility and life span, a 20% reduction of global DNA methylation and alteration of methylation in hundreds of genes, suggesting that epigenetic mechanisms were involved in speciation and fitness enhancement. The combined analysis of phenotypic traits and DNA methylation across multiple biological contexts in the laboratory and field in marbled crayfish may serve as a blueprint for uncovering the role of epigenetic mechanisms in shaping of phenotypes in macro-invertebrates.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany.
| |
Collapse
|
15
|
Epigenomic Modifications in Modern and Ancient Genomes. Genes (Basel) 2022; 13:genes13020178. [PMID: 35205223 PMCID: PMC8872240 DOI: 10.3390/genes13020178] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/26/2022] Open
Abstract
Epigenetic changes have been identified as a major driver of fundamental metabolic pathways. More specifically, the importance of epigenetic regulatory mechanisms for biological processes like speciation and embryogenesis has been well documented and revealed the direct link between epigenetic modifications and various diseases. In this review, we focus on epigenetic changes in animals with special attention on human DNA methylation utilizing ancient and modern genomes. Acknowledging the latest developments in ancient DNA research, we further discuss paleoepigenomic approaches as the only means to infer epigenetic changes in the past. Investigating genome-wide methylation patterns of ancient humans may ultimately yield in a more comprehensive understanding of how our ancestors have adapted to the changing environment, and modified their lifestyles accordingly. We discuss the difficulties of working with ancient DNA in particular utilizing paleoepigenomic approaches, and assess new paleoepigenomic data, which might be helpful in future studies.
Collapse
|
16
|
Weiner AKM, Cerón-Romero MA, Yan Y, Katz LA. Phylogenomics of the Epigenetic Toolkit Reveals Punctate Retention of Genes across Eukaryotes. Genome Biol Evol 2021; 12:2196-2210. [PMID: 33049043 DOI: 10.1093/gbe/evaa198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Epigenetic processes in eukaryotes play important roles through regulation of gene expression, chromatin structure, and genome rearrangements. The roles of chromatin modification (e.g., DNA methylation and histone modification) and non-protein-coding RNAs have been well studied in animals and plants. With the exception of a few model organisms (e.g., Saccharomyces and Plasmodium), much less is known about epigenetic toolkits across the remainder of the eukaryotic tree of life. Even with limited data, previous work suggested the existence of an ancient epigenetic toolkit in the last eukaryotic common ancestor. We use PhyloToL, our taxon-rich phylogenomic pipeline, to detect homologs of epigenetic genes and evaluate their macroevolutionary patterns among eukaryotes. In addition to data from GenBank, we increase taxon sampling from understudied clades of SAR (Stramenopila, Alveolata, and Rhizaria) and Amoebozoa by adding new single-cell transcriptomes from ciliates, foraminifera, and testate amoebae. We focus on 118 gene families, 94 involved in chromatin modification and 24 involved in non-protein-coding RNA processes based on the epigenetics literature. Our results indicate 1) the presence of a large number of epigenetic gene families in the last eukaryotic common ancestor; 2) differential conservation among major eukaryotic clades, with a notable paucity of genes within Excavata; and 3) punctate distribution of epigenetic gene families between species consistent with rapid evolution leading to gene loss. Together these data demonstrate the power of taxon-rich phylogenomic studies for illuminating evolutionary patterns at scales of >1 billion years of evolution and suggest that macroevolutionary phenomena, such as genome conflict, have shaped the evolution of the eukaryotic epigenetic toolkit.
Collapse
Affiliation(s)
- Agnes K M Weiner
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Mario A Cerón-Romero
- Department of Biological Sciences, Smith College, Northampton, Massachusetts.,Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst
| | - Ying Yan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts.,Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst
| |
Collapse
|
17
|
Penney CM, Burness G, Tabh JKR, Wilson CC. Limited transgenerational effects of environmental temperatures on thermal performance of a cold-adapted salmonid. CONSERVATION PHYSIOLOGY 2021; 9:coab021. [PMID: 33959288 PMCID: PMC8071478 DOI: 10.1093/conphys/coab021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/03/2020] [Accepted: 04/20/2021] [Indexed: 05/30/2023]
Abstract
The capacity of ectotherms to cope with rising temperatures associated with climate change is a significant conservation concern as the rate of warming is likely too rapid to allow for adaptative responses in many populations. Transgenerational plasticity (TGP), if present, could potentially buffer some of the negative impacts of warming on future generations. We examined TGP in lake trout to assess their inter-generational potential to cope with anticipated warming. We acclimated adult lake trout to cold (10°C) or warm (17°C) temperatures for several months, then bred them to produce offspring from parents within a temperature treatment (cold-acclimated and warm-acclimated parents) and between temperature treatments (i.e. reciprocal crosses). At the fry stage, offspring were also acclimated to cold (11°C) or warm (15°C) temperatures. Thermal performance was assessed by measuring their critical thermal maximum (CTM) and the change in metabolic rate during an acute temperature challenge. From this dataset, we also determined their resting and peak (highest achieved, thermally induced) metabolic rates. There was little variation in offspring CTM or peak metabolic rate, although cold-acclimated offspring from warm-acclimated parents exhibited elevated resting metabolic rates without a corresponding increase in mass or condition factor, suggesting that transgenerational effects can be detrimental when parent and offspring environments mismatch. These results suggest that the limited TGP in thermal performance of lake trout is unlikely to significantly influence population responses to projected increases in environmental temperatures.
Collapse
Affiliation(s)
- Chantelle M Penney
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario K9J 7B8, Canada
| | - Gary Burness
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Joshua K R Tabh
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario K9J 7B8, Canada
| | - Chris C Wilson
- Ontario Ministry of Natural Resources and Forestry, Trent University, Peterborough, Ontario K9L 0G2, Canada
| |
Collapse
|
18
|
Breton S, Ghiselli F, Milani L. Mitochondrial Short-Term Plastic Responses and Long-Term Evolutionary Dynamics in Animal Species. Genome Biol Evol 2021; 13:6248094. [PMID: 33892508 PMCID: PMC8290114 DOI: 10.1093/gbe/evab084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
How do species respond or adapt to environmental changes? The answer to this depends partly on mitochondrial epigenetics and genetics, new players in promoting adaptation to both short- and long-term environmental changes. In this review, we explore how mitochondrial epigenetics and genetics mechanisms, such as mtDNA methylation, mtDNA-derived noncoding RNAs, micropeptides, mtDNA mutations, and adaptations, can contribute to animal plasticity and adaptation. We also briefly discuss the challenges in assessing mtDNA adaptive evolution. In sum, this review covers new advances in the field of mitochondrial genomics, many of which are still controversial, and discusses processes still somewhat obscure, and some of which are still quite speculative and require further robust experimentation.
Collapse
Affiliation(s)
- Sophie Breton
- Department of Biological Sciences, University of Montreal, Quebec, Canada
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| |
Collapse
|
19
|
Weiner AKM, Katz LA. Epigenetics as Driver of Adaptation and Diversification in Microbial Eukaryotes. Front Genet 2021; 12:642220. [PMID: 33796133 PMCID: PMC8007921 DOI: 10.3389/fgene.2021.642220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/15/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Agnes K M Weiner
- Department of Biological Sciences, Smith College, Northampton, MA, United States
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA, United States.,Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
20
|
Vogt G. Epigenetic variation in animal populations: Sources, extent, phenotypic implications, and ecological and evolutionary relevance. J Biosci 2021. [DOI: 10.1007/s12038-021-00138-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Fargeot L, Loot G, Prunier JG, Rey O, Veyssière C, Blanchet S. Patterns of Epigenetic Diversity in Two Sympatric Fish Species: Genetic vs. Environmental Determinants. Genes (Basel) 2021; 12:107. [PMID: 33467145 PMCID: PMC7830833 DOI: 10.3390/genes12010107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic components are hypothesized to be sensitive to the environment, which should permit species to adapt to environmental changes. In wild populations, epigenetic variation should therefore be mainly driven by environmental variation. Here, we tested whether epigenetic variation (DNA methylation) observed in wild populations is related to their genetic background, and/or to the local environment. Focusing on two sympatric freshwater fish species (Gobio occitaniae and Phoxinus phoxinus), we tested the relationships between epigenetic differentiation, genetic differentiation (using microsatellite and single nucleotide polymorphism (SNP) markers), and environmental distances between sites. We identify positive relationships between pairwise genetic and epigenetic distances in both species. Moreover, epigenetic marks better discriminated populations than genetic markers, especially in G. occitaniae. In G. occitaniae, both pairwise epigenetic and genetic distances were significantly associated to environmental distances between sites. Nonetheless, when controlling for genetic differentiation, the link between epigenetic differentiation and environmental distances was not significant anymore, indicating a noncausal relationship. Our results suggest that fish epigenetic variation is mainly genetically determined and that the environment weakly contributed to epigenetic variation. We advocate the need to control for the genetic background of populations when inferring causal links between epigenetic variation and environmental heterogeneity in wild populations.
Collapse
Affiliation(s)
- Laura Fargeot
- Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Station d’Ecologie Théorique et Expérimentale, UMR 5321, F-09200 Moulis, France;
| | - Géraldine Loot
- CNRS, UPS, École Nationale de Formation Agronomique (ENFA), UMR 5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse CEDEX 4, France; (G.L.); (C.V.)
- Université Paul Sabatier (UPS), Institut Universitaire de France (IUF), F-75231 Paris CEDEX 05, France
| | - Jérôme G. Prunier
- Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Station d’Ecologie Théorique et Expérimentale, UMR 5321, F-09200 Moulis, France;
| | - Olivier Rey
- CNRS, Interaction Hôtes-Parasites-Environnements (IHPE), UMR 5244, F-66860 Perpignan, France;
| | - Charlotte Veyssière
- CNRS, UPS, École Nationale de Formation Agronomique (ENFA), UMR 5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse CEDEX 4, France; (G.L.); (C.V.)
| | - Simon Blanchet
- Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Station d’Ecologie Théorique et Expérimentale, UMR 5321, F-09200 Moulis, France;
- CNRS, UPS, École Nationale de Formation Agronomique (ENFA), UMR 5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse CEDEX 4, France; (G.L.); (C.V.)
| |
Collapse
|
22
|
Watson H, Powell D, Salmón P, Jacobs A, Isaksson C. Urbanization is associated with modifications in DNA methylation in a small passerine bird. Evol Appl 2021; 14:85-98. [PMID: 33519958 PMCID: PMC7819559 DOI: 10.1111/eva.13160] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Urbanization represents a fierce driver of phenotypic change, yet the molecular mechanisms underlying observed phenotypic patterns are poorly understood. Epigenetic changes are expected to facilitate more rapid adaption to changing or novel environments, such as our towns and cities, compared with slow changes in gene sequence. A comparison of liver and blood tissue from great tits Parus major originating from an urban and a forest site demonstrated that urbanization is associated with variation in genome-wide patterns of DNA methylation. Combining reduced representation bisulphite sequencing with transcriptome data, we revealed habitat differences in DNA methylation patterns that suggest a regulated and coordinated response to the urban environment. In the liver, genomic sites that were differentially methylated between urban- and forest-dwelling birds were over-represented in regulatory regions of the genome and more likely to occur in expressed genes. DNA methylation levels were also inversely correlated with gene expression at transcription start sites. Furthermore, differentially methylated CpG sites, in liver, were over-represented in pathways involved in (i) steroid biosynthesis, (ii) superoxide metabolism, (iii) secondary alcohol metabolism, (iv) chylomicron remodelling, (v) cholesterol transport, (vi) reactive oxygen species (ROS) metabolic process and (vii) epithelial cell proliferation. This corresponds with earlier studies identifying diet and exposure to ROS as two of the main drivers of divergence between organisms in urban and nonurban environments. Conversely, in blood, sites that were differentially methylated between urban- and forest-dwelling birds were under-represented in regulatory regions, more likely to occur in nonexpressed genes and not over-represented in specific biological pathways. It remains to be determined whether diverging patterns of DNA methylation represent adaptive evolutionary responses and whether the conclusions can be more widely attributed to urbanization.
Collapse
Affiliation(s)
- Hannah Watson
- Evolutionary Ecology, Biology DepartmentLund UniversityLundSweden
| | - Daniel Powell
- Evolutionary Ecology, Biology DepartmentLund UniversityLundSweden
- Global Change Ecology, School of Science, Technology and EngineeringUniversity of the Sunshine CoastSippy DownsQLDAustralia
| | - Pablo Salmón
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Arne Jacobs
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
- Department of Natural ResourcesCornell UniversityIthacaNYUSA
| | | |
Collapse
|
23
|
Sundman AS, Pértille F, Lehmann Coutinho L, Jazin E, Guerrero-Bosagna C, Jensen P. DNA methylation in canine brains is related to domestication and dog-breed formation. PLoS One 2020; 15:e0240787. [PMID: 33119634 PMCID: PMC7595415 DOI: 10.1371/journal.pone.0240787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/02/2020] [Indexed: 11/19/2022] Open
Abstract
Epigenetic factors such as DNA methylation act as mediators in the interaction between genome and environment. Variation in the epigenome can both affect phenotype and be inherited, and epigenetics has been suggested to be an important factor in the evolutionary process. During domestication, dogs have evolved an unprecedented between-breed variation in morphology and behavior in an evolutionary short period. In the present study, we explore DNA methylation differences in brain, the most relevant tissue with respect to behavior, between wolf and dog breeds. We optimized a combined method of genotype-by-sequencing (GBS) and methylated DNA immunoprecipitation (MeDIP) for its application in canines. Genomic DNA from the frontal cortex of 38 dogs of 8 breeds and three wolves was used. GBS and GBS-MeDIP libraries were prepared and sequenced on Illuma HiSeq2500 platform. The reduced sample represented 1.18 ± 0.4% of the total dog genome (2,4 billion BP), while the GBS-MeDIP covered 11,250,788 ± 4,042,106 unique base pairs. We find substantial DNA methylation differences between wolf and dog and between the dog breeds. The methylation profiles of the different groups imply that epigenetic factors may have been important in the speciation from dog to wolf, but also in the divergence of different dog breeds. Specifically, we highlight methylation differences in genes related to behavior and morphology. We hypothesize that these differences are involved in the phenotypic variation found among dogs, whereas future studies will have to find the specific mechanisms. Our results not only add an intriguing new dimension to dog breeding but are also useful to further understanding of epigenetic involvement.
Collapse
Affiliation(s)
- Ann-Sofie Sundman
- AVIAN Behaviour Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - Fábio Pértille
- AVIAN Behaviour Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
- Animal Biotechnology Laboratory, Animal Science and Pastures Department, University of São Paulo (USP)/ Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | - Luiz Lehmann Coutinho
- Animal Biotechnology Laboratory, Animal Science and Pastures Department, University of São Paulo (USP)/ Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | - Elena Jazin
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
| | - Carlos Guerrero-Bosagna
- AVIAN Behaviour Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - Per Jensen
- AVIAN Behaviour Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
24
|
Sagonas K, Meyer BS, Kaufmann J, Lenz TL, Häsler R, Eizaguirre C. Experimental Parasite Infection Causes Genome-Wide Changes in DNA Methylation. Mol Biol Evol 2020; 37:2287-2299. [PMID: 32227215 PMCID: PMC7531312 DOI: 10.1093/molbev/msaa084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Parasites are arguably among the strongest drivers of natural selection, constraining hosts to evolve resistance and tolerance mechanisms. Although, the genetic basis of adaptation to parasite infection has been widely studied, little is known about how epigenetic changes contribute to parasite resistance and eventually, adaptation. Here, we investigated the role of host DNA methylation modifications to respond to parasite infections. In a controlled infection experiment, we used the three-spined stickleback fish, a model species for host-parasite studies, and their nematode parasite Camallanus lacustris. We showed that the levels of DNA methylation are higher in infected fish. Results furthermore suggest correlations between DNA methylation and shifts in key fitness and immune traits between infected and control fish, including respiratory burst and functional trans-generational traits such as the concentration of motile sperm. We revealed that genes associated with metabolic, developmental, and regulatory processes (cell death and apoptosis) were differentially methylated between infected and control fish. Interestingly, genes such as the neuropeptide FF receptor 2 and the integrin alpha 1 as well as molecular pathways including the Th1 and Th2 cell differentiation were hypermethylated in infected fish, suggesting parasite-mediated repression mechanisms of immune responses. Altogether, we demonstrate that parasite infection contributes to genome-wide DNA methylation modifications. Our study brings novel insights into the evolution of vertebrate immunity and suggests that epigenetic mechanisms are complementary to genetic responses against parasite-mediated selection.
Collapse
Affiliation(s)
- Kostas Sagonas
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Britta S Meyer
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Joshka Kaufmann
- School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Republic of Ireland
- Department for Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Tobias L Lenz
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
25
|
Chen C, Zheng Z, Bao Y, Zhang H, Richards CL, Li J, Chen Y, Zhao Y, Shen Z, Fu C. Comparisons of Natural and Cultivated Populations of Corydalis yanhusuo Indicate Divergent Patterns of Genetic and Epigenetic Variation. FRONTIERS IN PLANT SCIENCE 2020; 11:985. [PMID: 32719703 PMCID: PMC7347962 DOI: 10.3389/fpls.2020.00985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Epigenetic variation may contribute to traits that are important in domestication, but how patterns of genetic and epigenetic variation differ between cultivated and wild plants remains poorly understood. In particular, we know little about how selection may shape epigenetic variation in natural and cultivated populations. In this study, we investigated 11 natural populations and 6 major cultivated populations using amplified fragment length polymorphism (AFLP) and methylation-sensitive AFLP (MS-AFLP or MSAP) markers to identify patterns of genetic and epigenetic diversity among Corydalis yanhusuo populations. We further explored correlations among genetic, epigenetic, alkaloidal, and climatic factors in natural and cultivated C. yanhusuo. We found support for a single origin for all cultivated populations, from a natural population which was differentiated from the other natural populations. The magnitude of F ST based on AFLP was significantly correlated with that for MSAP in pairwise comparisons in both natural and cultivated populations, suggesting a relationship between genetic and epigenetic variation in C. yanhusuo. This relationship was further supported by dbRDA (distance-based redundancy analyses) where some of the epigenetic variation could be explained by genetic variation in natural and cultivated populations. Genetic variation was slightly higher in natural than cultivated populations, and exceeded epigenetic variation in both types of populations. However, epigenetic differentiation exceeded that of genetic differentiation among cultivated populations, while the reverse was observed among natural populations. The differences between wild and cultivated plants may be partly due to processes inherent to cultivation and in particular the differences in mode of reproduction. The importance of epigenetic compared to genetic modifications is thought to vary depending on reproductive strategies, and C. yanhusuo usually reproduces sexually in natural environments, while the cultivated C. yanhusuo are propagated clonally. In addition, alkaloid content of C. yanhusuo varied across cultivated populations, and alkaloid content was significantly correlated to climatic variation, but also to genetic (6.89%) and even more so to epigenetic (14.09%) variation in cultivated populations. Our study demonstrates that epigenetic variation could be important in cultivation of C. yanhusuo and serve as a source of variation for response to environmental conditions.
Collapse
Affiliation(s)
- Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhi Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yiqiong Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hanchao Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Christina L. Richards
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
- Plant Evolutionary Ecology Group, University of Tübingen, Tübingen, Germany
| | - Jinghui Li
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, and College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yunpeng Zhao
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, and College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Chengxin Fu
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, and College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Biwer C, Kawam B, Chapelle V, Silvestre F. The Role of Stochasticity in the Origin of Epigenetic Variation in Animal Populations. Integr Comp Biol 2020; 60:1544-1557. [PMID: 32470118 DOI: 10.1093/icb/icaa047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epigenetic mechanisms such as DNA methylation modulate gene expression in a complex fashion are consequently recognized as among the most important contributors to phenotypic variation in natural populations of plants, animals, and microorganisms. Interactions between genetics and epigenetics are multifaceted and epigenetic variation stands at the crossroad between genetic and environmental variance, which make these mechanisms prominent in the processes of adaptive evolution. DNA methylation patterns depend on the genotype and can be reshaped by environmental conditions, while transgenerational epigenetic inheritance has been reported in various species. On the other hand, DNA methylation can influence the genetic mutation rate and directly affect the evolutionary potential of a population. The origin of epigenetic variance can be attributed to genetic, environmental, or stochastic factors. Generally less investigated than the first two components, variation lacking any predictable order is nevertheless present in natural populations and stochastic epigenetic variation, also referred to spontaneous epimutations, can sustain phenotypic diversity. Here, potential sources of such stochastic epigenetic variability in animals are explored, with a focus on DNA methylation. To this day, quantifying the importance of stochasticity in epigenetic variability remains a challenge. However, comparisons between the mutation and the epimutation rates showed a high level of the latter, suggesting a significant role of spontaneous epimutations in adaptation. The implications of stochastic epigenetic variability are multifold: by affecting development and subsequently phenotype, random changes in epigenetic marks may provide additional phenotypic diversity, which can help natural populations when facing fluctuating environments. In isogenic lineages and asexually reproducing organisms, poor or absent genetic diversity can hence be tolerated. Further implication of stochastic epigenetic variability in adaptation is found in bottlenecked invasive species populations and populations using a bet-hedging strategy.
Collapse
Affiliation(s)
| | | | | | - F Silvestre
- Institute of Earth, Life and Environment (ILEE), University of Namur, 61 rue de Bruxelles, Namur, 5000, Belgium
| |
Collapse
|
27
|
Guerrero-Bosagna C. From epigenotype to new genotypes: Relevance of epigenetic mechanisms in the emergence of genomic evolutionary novelty. Semin Cell Dev Biol 2020; 97:86-92. [DOI: 10.1016/j.semcdb.2019.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 11/24/2022]
|
28
|
Laporte M, Le Luyer J, Rougeux C, Dion-Côté AM, Krick M, Bernatchez L. DNA methylation reprogramming, TE derepression, and postzygotic isolation of nascent animal species. SCIENCE ADVANCES 2019; 5:eaaw1644. [PMID: 31663013 PMCID: PMC6795504 DOI: 10.1126/sciadv.aaw1644] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 09/19/2019] [Indexed: 05/05/2023]
Abstract
The genomic shock hypothesis stipulates that the stress associated with divergent genome admixture can cause transposable element (TE) derepression, which could act as a postzygotic isolation mechanism. TEs affect gene structure, expression patterns, and chromosome organization and may have deleterious consequences when released. For these reasons, they are silenced by heterochromatin formation, which includes DNA methylation. Here, we show that a significant proportion of TEs are differentially methylated between the "dwarf" (limnetic) and the "normal" (benthic) whitefish, two nascent species that diverged some 15,000 generations ago within the Coregonus clupeaformis species complex. Moreover, TEs are overrepresented among loci that were demethylated in hybrids, indicative of their transcriptional derepression. These results are consistent with earlier studies in this system that revealed TE transcriptional derepression causes abnormal embryonic development and death of hybrids. Hence, this supports a role of DNA methylation reprogramming and TE derepression in postzygotic isolation of nascent animal species.
Collapse
|
29
|
Skúlason S, Parsons KJ, Svanbäck R, Räsänen K, Ferguson MM, Adams CE, Amundsen P, Bartels P, Bean CW, Boughman JW, Englund G, Guðbrandsson J, Hooker OE, Hudson AG, Kahilainen KK, Knudsen R, Kristjánsson BK, Leblanc CA, Jónsson Z, Öhlund G, Smith C, Snorrason SS. A way forward with eco evo devo: an extended theory of resource polymorphism with postglacial fishes as model systems. Biol Rev Camb Philos Soc 2019; 94:1786-1808. [PMID: 31215138 PMCID: PMC6852119 DOI: 10.1111/brv.12534] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/12/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
A major goal of evolutionary science is to understand how biological diversity is generated and altered. Despite considerable advances, we still have limited insight into how phenotypic variation arises and is sorted by natural selection. Here we argue that an integrated view, which merges ecology, evolution and developmental biology (eco evo devo) on an equal footing, is needed to understand the multifaceted role of the environment in simultaneously determining the development of the phenotype and the nature of the selective environment, and how organisms in turn affect the environment through eco evo and eco devo feedbacks. To illustrate the usefulness of an integrated eco evo devo perspective, we connect it with the theory of resource polymorphism (i.e. the phenotypic and genetic diversification that occurs in response to variation in available resources). In so doing, we highlight fishes from recently glaciated freshwater systems as exceptionally well-suited model systems for testing predictions of an eco evo devo framework in studies of diversification. Studies on these fishes show that intraspecific diversity can evolve rapidly, and that this process is jointly facilitated by (i) the availability of diverse environments promoting divergent natural selection; (ii) dynamic developmental processes sensitive to environmental and genetic signals; and (iii) eco evo and eco devo feedbacks influencing the selective and developmental environments of the phenotype. We highlight empirical examples and present a conceptual model for the generation of resource polymorphism - emphasizing eco evo devo, and identify current gaps in knowledge.
Collapse
Affiliation(s)
- Skúli Skúlason
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókur, 551Iceland
- Icelandic Museum of Natural History, Brynjólfsgata 5ReykjavíkIS‐107Iceland
| | - Kevin J. Parsons
- Institute of Biodiversity, Animal Health & Comparative MedicineUniversity of GlasgowGlasgow, G12 8QQU.K.
| | - Richard Svanbäck
- Animal Ecology, Department of Ecology and Genetics, Science for Life LaboratoryUppsala University, Norbyvägen 18DUppsala, SE‐752 36Sweden
| | - Katja Räsänen
- Department of Aquatic EcologyEAWAG, Swiss Federal Institute of Aquatic Science and Technology, and Institute of Integrative Biology, ETH‐Zurich, Ueberlandstrasse 133CH‐8600DübendorfSwitzerland
| | - Moira M. Ferguson
- Department of Integrative BiologyUniversity of GuelphGuelph, Ontario N1G 2W1Canada
| | - Colin E. Adams
- Scottish Centre for Ecology and the Natural Environment, IBAHCMUniversity of GlasgowGlasgow G12 8QQU.K.
| | - Per‐Arne Amundsen
- Freshwater Ecology Group, Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUniversity of TromsöTromsö, N‐9037Norway
| | - Pia Bartels
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Colin W. Bean
- Scottish Natural Heritage, Caspian House, Mariner Court, Clydebank Business ParkClydebank, G81 2NRU.K.
| | - Janette W. Boughman
- Department of Integrative BiologyMichigan State UniversityEast Lansing, MI 48824U.S.A.
| | - Göran Englund
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Jóhannes Guðbrandsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavik, 101Iceland
| | | | - Alan G. Hudson
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Kimmo K. Kahilainen
- Inland Norway University of Applied Sciences, Department of Forestry and Wildlife Management, Campus Evenstad, Anne Evenstadvei 80Koppang, NO‐2480Norway
| | - Rune Knudsen
- Freshwater Ecology Group, Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUniversity of TromsöTromsö, N‐9037Norway
| | | | - Camille A‐L. Leblanc
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókur, 551Iceland
| | - Zophonías Jónsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavik, 101Iceland
| | - Gunnar Öhlund
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Carl Smith
- School of BiologyUniversity of St Andrews, St. AndrewsFife, KY16 9AJU.K.
| | - Sigurður S. Snorrason
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavik, 101Iceland
| |
Collapse
|
30
|
Berbel‐Filho WM, Garcia de Leaniz C, Morán P, Cable J, Lima SMQ, Consuegra S. Local parasite pressures and host genotype modulate epigenetic diversity in a mixed-mating fish. Ecol Evol 2019; 9:8736-8748. [PMID: 31410276 PMCID: PMC6686343 DOI: 10.1002/ece3.5426] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/07/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022] Open
Abstract
Parasite-mediated selection is one of the main drivers of genetic variation in natural populations. The persistence of long-term self-fertilization, however, challenges the notion that low genetic variation and inbreeding compromise the host's ability to respond to pathogens. DNA methylation represents a potential mechanism for generating additional adaptive variation under low genetic diversity. We compared genetic diversity (microsatellites and AFLPs), variation in DNA methylation (MS-AFLPs), and parasite loads in three populations of Kryptolebias hermaphroditus, a predomintanly self-fertilizing fish, to analyze the potential adaptive value of DNA methylation in relation to genetic diversity and parasite loads. We found strong genetic population structuring, as well as differences in parasite loads and methylation levels among sampling sites and selfing lineages. Globally, the interaction between parasites and inbreeding with selfing lineages influenced DNA methylation, but parasites seemed more important in determining methylation levels at the local scale.
Collapse
Affiliation(s)
| | | | - Paloma Morán
- Facultad de BiologíaUniversity of Vigo. Campus Universitario Lagoas‐MarcosendeVigoSpain
| | - Joanne Cable
- School of BiosciencesCardiff UniversityCardiffUK
| | - Sergio M. Q. Lima
- Laboratório de Ictiologia Sistemática e Evolutiva, Departamento de Botânica e ZoologiaUniversidade Federal do Rio Grande do NorteNatalBrazil
| | | |
Collapse
|
31
|
Garcia MJ, Rodríguez-Brenes S, Kobisk A, Adler L, Ryan MJ, Taylor RC, Hunter KL. Epigenomic changes in the túngara frog (Physalaemus pustulosus): possible effects of introduced fungal pathogen and urbanization. Evol Ecol 2019. [DOI: 10.1007/s10682-019-10001-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Pértille F, Da Silva VH, Johansson AM, Lindström T, Wright D, Coutinho LL, Jensen P, Guerrero-Bosagna C. Mutation dynamics of CpG dinucleotides during a recent event of vertebrate diversification. Epigenetics 2019; 14:685-707. [PMID: 31070073 PMCID: PMC6557589 DOI: 10.1080/15592294.2019.1609868] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
DNA methylation in CpGs dinucleotides is associated with high mutability and disappearance of CpG sites during evolution. Although the high mutability of CpGs is thought to be relevant for vertebrate evolution, very little is known on the role of CpG-related mutations in the genomic diversification of vertebrates. Our study analysed genetic differences in chickens, between Red Junglefowl (RJF; the living closest relative to the ancestor of domesticated chickens) and domesticated breeds, to identify genomic dynamics that have occurred during the process of their domestication, focusing particularly on CpG-related mutations. Single nucleotide polymorphisms (SNPs) and copy number variations (CNVs) between RJF and these domesticated breeds were assessed in a reduced fraction of their genome. Additionally, DNA methylation in the same fraction of the genome was measured in the sperm of RJF individuals to identify possible correlations with the mutations found between RJF and the domesticated breeds. Our study shows that although the vast majority of CpG-related mutations found relate to CNVs, CpGs disproportionally associate to SNPs in comparison to CNVs, where they are indeed substantially under-represented. Moreover, CpGs seem to be hotspots of mutations related to speciation. We suggest that, on the one hand, CpG-related mutations in CNV regions would promote genomic ‘flexibility’ in evolution, i.e., the ability of the genome to expand its functional possibilities; on the other hand, CpG-related mutations in SNPs would relate to genomic ‘specificity’ in evolution, thus, representing mutations that would associate with phenotypic traits relevant for speciation.
Collapse
Affiliation(s)
- Fábio Pértille
- a Avian Behavioral Genomics and Physiology Group, IFM Biology , Linköping University , Linköping , Sweden.,b Animal Biotechnology Laboratory, Animal Science Department , University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ) , Piracicaba , São Paulo , Brazil
| | - Vinicius H Da Silva
- c Animal Breeding and Genomics Centre , Wageningen University & Research , Wageningen , The Netherlands.,d Department of Animal Ecology (AnE) , Netherlands Institute of Ecology (NIOO-KNAW) , Wageningen , The Netherlands.,e Department of Animal Breeding and Genetics , Swedish University of Agricultural Sciences , Uppsala , Sweden
| | - Anna M Johansson
- e Department of Animal Breeding and Genetics , Swedish University of Agricultural Sciences , Uppsala , Sweden
| | - Tom Lindström
- f Division of Theoretical Biology, IFM , Linköping University , Linköping , Sweden
| | - Dominic Wright
- a Avian Behavioral Genomics and Physiology Group, IFM Biology , Linköping University , Linköping , Sweden
| | - Luiz L Coutinho
- b Animal Biotechnology Laboratory, Animal Science Department , University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ) , Piracicaba , São Paulo , Brazil
| | - Per Jensen
- a Avian Behavioral Genomics and Physiology Group, IFM Biology , Linköping University , Linköping , Sweden
| | - Carlos Guerrero-Bosagna
- a Avian Behavioral Genomics and Physiology Group, IFM Biology , Linköping University , Linköping , Sweden
| |
Collapse
|
33
|
The methylation and telomere landscape in two families of marsupials with different rates of chromosome evolution. Chromosome Res 2018; 26:317-332. [PMID: 30539406 DOI: 10.1007/s10577-018-9593-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023]
Abstract
Two marsupial families exemplify divergent rates of karyotypic change. The Dasyurid family has an extremely conserved karyotype. In contrast, there is significant chromosomal variation within the Macropodidae family, best exemplified by members of the genus Petrogale (rock-wallabies). Both families are also distinguished by their telomere landscape (length and epigenetics), with the dasyurids having a unique telomere length dimorphism not observed in other marsupials and hypothesised to be regulated in a parent-of-origin fashion. Previous work has shown that proximal ends of chromosomes are enriched in cytosine methylation in dasyurids, but that the chromosomes of a macropod, the tammar wallaby, have DNA methylation enrichment of pericentric regions. Using a combination of telomere and 5-methylcytosine immunofluorescence staining, we investigated the telomere landscape of four dasyurid and three Petrogale species. As part of this study, we also further examined the parent-of-origin hypothesis for the regulation of telomere length dimorphism in dasyurids, using epigenetic modifications known to differentiate the active maternal X chromosome, including 5-methylcytosine methylation and histone modifications H3K4me2, H3K9ac and H4Kac. Our results give further support to the parent-of-origin hypothesis for the regulation of telomere length dimorphism in dasyurids, where the paternally derived X chromosome in females was associated with long telomeres and the maternally derived with short telomeres. In contrast to the tammar wallaby, rock-wallabies demonstrated a similar 5-methylcytosine staining pattern across all chromosomes to that of dasyurids, suggesting that DNA methylation of telomeric regions is not responsible for differences in the rates of chromosome evolution between these two families.
Collapse
|
34
|
Su-Keene EJ, Bonilla MM, Padua MV, Zeh DW, Zeh JA. Simulated climate warming and mitochondrial haplogroup modulate testicular small non-coding RNA expression in the neotropical pseudoscorpion, Cordylochernes scorpioides. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy027. [PMID: 30595847 PMCID: PMC6305488 DOI: 10.1093/eep/dvy027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/22/2018] [Accepted: 10/21/2018] [Indexed: 06/01/2023]
Abstract
Recent theory suggests that tropical terrestrial arthropods are at significant risk from climate warming. Metabolic rate in such ectothermic species increases exponentially with environmental temperature, and a small temperature increase in a hot environment can therefore have a greater physiological impact than a large temperature increase in a cool environment. In two recent studies of the neotropical pseudoscorpion, Cordylochernes scorpioides, simulated climate warming significantly decreased survival, body size and level of sexual dimorphism. However, these effects were minor compared with catastrophic consequences for male fertility and female fecundity, identifying reproduction as the life stage most vulnerable to climate warming. Here, we examine the effects of chronic high-temperature exposure on epigenetic regulation in C. scorpioides in the context of naturally occurring variation in mitochondrial DNA. Epigenetic mechanisms, including DNA methylation, histone modifications and small non-coding RNA (sncRNA) expression, are particularly sensitive to environmental factors such as temperature, which can induce changes in epigenetic states and phenotypes that may be heritable across generations. Our results indicate that exposure of male pseudoscorpions to elevated temperature significantly altered the expression of >60 sncRNAs in testicular tissue, specifically microRNAs and piwi-interacting RNAs. Mitochondrial haplogroup was also a significant factor influencing both sncRNAs and mitochondrial gene expression. These findings demonstrate that chronic heat stress causes changes in epigenetic profiles that may account for reproductive dysfunction in C. scorpioides males. Moreover, through its effects on epigenetic regulation, mitochondrial DNA polymorphism may provide the potential for an adaptive evolutionary response to climate warming.
Collapse
Affiliation(s)
- Eleanor J Su-Keene
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
- Department of Educational Leadership and Research Methodology, Florida Atlantic University, Boca Raton, FL, USA
| | - Melvin M Bonilla
- Graduate Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, Reno, NV, USA
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Michael V Padua
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
- University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - David W Zeh
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
- Graduate Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, Reno, NV, USA
| | - Jeanne A Zeh
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
- Graduate Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, Reno, NV, USA
| |
Collapse
|
35
|
Danchin E, Pocheville A, Rey O, Pujol B, Blanchet S. Epigenetically facilitated mutational assimilation: epigenetics as a hub within the inclusive evolutionary synthesis. Biol Rev Camb Philos Soc 2018. [PMCID: PMC6378602 DOI: 10.1111/brv.12453] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
After decades of debate about the existence of non‐genetic inheritance, the focus is now slowly shifting towards dissecting its underlying mechanisms. Here, we propose a new mechanism that, by integrating non‐genetic and genetic inheritance, may help build the long‐sought inclusive vision of evolution. After briefly reviewing the wealth of evidence documenting the existence and ubiquity of non‐genetic inheritance in a table, we review the categories of mechanisms of parent–offspring resemblance that underlie inheritance. We then review several lines of argument for the existence of interactions between non‐genetic and genetic components of inheritance, leading to a discussion of the contrasting timescales of action of non‐genetic and genetic inheritance. This raises the question of how the fidelity of the inheritance system can match the rate of environmental variation. This question is central to understanding the role of different inheritance systems in evolution. We then review and interpret evidence indicating the existence of shifts from inheritance systems with low to higher transmission fidelity. Based on results from different research fields we propose a conceptual hypothesis linking genetic and non‐genetic inheritance systems. According to this hypothesis, over the course of generations, shifts among information systems allow gradual matching between the rate of environmental change and the inheritance fidelity of the corresponding response. A striking conclusion from our review is that documented shifts between types of inherited non‐genetic information converge towards epigenetics (i.e. inclusively heritable molecular variation in gene expression without change in DNA sequence). We then interpret the well‐documented mutagenicity of epigenetic marks as potentially generating a final shift from epigenetic to genetic encoding. This sequence of shifts suggests the existence of a relay in inheritance systems from relatively labile ones to gradually more persistent modes of inheritance, a relay that could constitute a new mechanistic basis for the long‐proposed, but still poorly documented, hypothesis of genetic assimilation. A profound difference between the genocentric and the inclusive vision of heredity revealed by the genetic assimilation relay proposed here lies in the fact that a given form of inheritance can affect the rate of change of other inheritance systems. To explore the consequences of such inter‐connection among inheritance systems, we briefly review published theoretical models to build a model of genetic assimilation focusing on the shift in the engraving of environmentally induced phenotypic variation into the DNA sequence. According to this hypothesis, when environmental change remains stable over a sufficient number of generations, the relay among inheritance systems has the potential to generate a form of genetic assimilation. In this hypothesis, epigenetics appears as a hub by which non‐genetically inherited environmentally induced variation in traits can become genetically encoded over generations, in a form of epigenetically facilitated mutational assimilation. Finally, we illustrate some of the major implications of our hypothetical framework, concerning mutation randomness, the central dogma of molecular biology, concepts of inheritance and the curing of inherited disorders, as well as for the emergence of the inclusive evolutionary synthesis.
Collapse
Affiliation(s)
- Etienne Danchin
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174); Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1; 31062 Toulouse Cedex 9 France
| | - Arnaud Pocheville
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174); Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1; 31062 Toulouse Cedex 9 France
- Department of Philosophy and Charles Perkins Centre; University of Sydney; Sydney NSW 2006 Australia
| | - Olivier Rey
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), UMR5321; 09200 Moulis France
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier; F-66860 Perpignan France
| | - Benoit Pujol
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174); Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1; 31062 Toulouse Cedex 9 France
| | - Simon Blanchet
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174); Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1; 31062 Toulouse Cedex 9 France
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), UMR5321; 09200 Moulis France
| |
Collapse
|
36
|
The evolution of genomic and epigenomic features in two Pleurotus fungi. Sci Rep 2018; 8:8313. [PMID: 29844491 PMCID: PMC5974365 DOI: 10.1038/s41598-018-26619-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/23/2018] [Indexed: 12/17/2022] Open
Abstract
Pleurotus tuoliensis (Bailinggu, designated Pt) and P. eryngii var. eryngii (Xingbaogu, designated Pe) are highly valued edible mushrooms. We report de novo assemblies of high-quality genomes for both mushrooms based on PacBio RS II sequencing and annotation of all identified genes. A comparative genomics analysis between Pt and Pe with P. ostreatus as an outgroup taxon revealed extensive genomic divergence between the two mushroom genomes primarily due to the rapid gain of taxon-specific genes and disruption of synteny in either taxon. The re-appraised phylogenetic relationship between Pt and Pe at the genome-wide level validates earlier proposals to designate Pt as an independent species. Variation of the identified wood-decay-related gene content can largely explain the variable adaptation and host specificity of the two mushrooms. On the basis of the two assembled genome sequences, methylomes and the regulatory roles of DNA methylation in gene expression were characterized and compared. The genome, methylome and transcriptome data of these two important mushrooms will provide valuable information for advancing our understanding of the evolution of Pleurotus and related genera and for facilitating genome- and epigenome-based strategies for mushroom breeding.
Collapse
|
37
|
Colwell M, Drown M, Showel K, Drown C, Palowski A, Faulk C. Evolutionary conservation of DNA methylation in CpG sites within ultraconserved noncoding elements. Epigenetics 2018; 13:49-60. [PMID: 29372669 PMCID: PMC5836973 DOI: 10.1080/15592294.2017.1411447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/14/2017] [Accepted: 11/27/2017] [Indexed: 01/14/2023] Open
Abstract
Ultraconserved noncoding elements (UCNEs) constitute less than 1 Mb of vertebrate genomes and are impervious to accumulating mutations. About 4000 UCNEs exist in vertebrate genomes, each at least 200 nucleotides in length, sharing greater than 95% sequence identity between human and chicken. Despite extreme sequence conservation over 400 million years of vertebrate evolution, we show both ordered interspecies and within-species interindividual variation in DNA methylation in these regions. Here, we surveyed UCNEs with high CpG density in 56 species finding half to be intermediately methylated and the remaining near 0% or 100%. Intermediately methylated UCNEs displayed a greater range of methylation between mouse tissues. In a human population, most UCNEs showed greater variation than the LINE1 transposon, a frequently used epigenetic biomarker. Global methylation was found to be inversely correlated to hydroxymethylation across 60 vertebrates. Within UCNEs, DNA methylation is flexible, conserved between related species, and relaxed from the underlying sequence selection pressure, while remaining heritable through speciation.
Collapse
Affiliation(s)
- Mathia Colwell
- Department of Animal Sciences, University of Minnesota, College of Food, Agricultural, and Natural Resource Sciences, Saint Paul, MN, USA
| | - Melissa Drown
- Department of Animal Sciences, University of Minnesota, College of Food, Agricultural, and Natural Resource Sciences, Saint Paul, MN, USA
| | - Kelly Showel
- Department of Animal Sciences, University of Minnesota, College of Food, Agricultural, and Natural Resource Sciences, Saint Paul, MN, USA
| | - Chelsea Drown
- Department of Animal Sciences, University of Minnesota, College of Food, Agricultural, and Natural Resource Sciences, Saint Paul, MN, USA
| | - Amanda Palowski
- Department of Animal Sciences, University of Minnesota, College of Food, Agricultural, and Natural Resource Sciences, Saint Paul, MN, USA
| | - Christopher Faulk
- Department of Animal Sciences, University of Minnesota, College of Food, Agricultural, and Natural Resource Sciences, Saint Paul, MN, USA
| |
Collapse
|
38
|
Mendelson TC, Gumm JM, Martin MD, Ciccotto PJ. Preference for conspecifics evolves earlier in males than females in a sexually dimorphic radiation of fishes. Evolution 2017; 72:337-347. [PMID: 29265367 DOI: 10.1111/evo.13406] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/03/2017] [Accepted: 11/17/2017] [Indexed: 12/25/2022]
Abstract
Speciation by sexual selection is generally modeled as the coevolution of female preferences and elaborate male ornaments leading to behavioral (sexual) reproductive isolation. One prediction of these models is that female preference for conspecific males should evolve earlier than male preference for conspecific females in sexually dimorphic species with male ornaments. We tested that prediction in darters, a diverse group of freshwater fishes with sexually dimorphic ornamentation. Focusing on the earliest stages of divergence, we tested preference for conspecific mates in males and females of seven closely related species pairs. Contrary to expectation, male preference for conspecific females was significantly greater than female preference for conspecific males. Males in four of the 14 species significantly preferred conspecific females; whereas, females in no species significantly preferred conspecific males. Relationships between the strength of preference for conspecifics and genetic distance revealed no difference in slope between males and females, but a significant difference in intercept, also suggesting that male preference evolves earlier than females'. Our results are consistent with other recent studies in darters and suggest that the coevolution of female preferences and male ornaments may not best explain the earliest stages of behavioral isolation in this lineage.
Collapse
Affiliation(s)
- Tamra C Mendelson
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Jennifer M Gumm
- Department of Biological Sciences, Stephen F. Austin State University, Nacogdoches, Texas 75962
| | - Michael D Martin
- Department of Biology, Oxford College of Emory University, Oxford, Georgia 30054
| | - Patrick J Ciccotto
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
39
|
Charlesworth D, Barton NH, Charlesworth B. The sources of adaptive variation. Proc Biol Sci 2017; 284:rspb.2016.2864. [PMID: 28566483 DOI: 10.1098/rspb.2016.2864] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022] Open
Abstract
The role of natural selection in the evolution of adaptive phenotypes has undergone constant probing by evolutionary biologists, employing both theoretical and empirical approaches. As Darwin noted, natural selection can act together with other processes, including random changes in the frequencies of phenotypic differences that are not under strong selection, and changes in the environment, which may reflect evolutionary changes in the organisms themselves. As understanding of genetics developed after 1900, the new genetic discoveries were incorporated into evolutionary biology. The resulting general principles were summarized by Julian Huxley in his 1942 book Evolution: the modern synthesis Here, we examine how recent advances in genetics, developmental biology and molecular biology, including epigenetics, relate to today's understanding of the evolution of adaptations. We illustrate how careful genetic studies have repeatedly shown that apparently puzzling results in a wide diversity of organisms involve processes that are consistent with neo-Darwinism. They do not support important roles in adaptation for processes such as directed mutation or the inheritance of acquired characters, and therefore no radical revision of our understanding of the mechanism of adaptive evolution is needed.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Nicholas H Barton
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| |
Collapse
|
40
|
Huang X, Li S, Ni P, Gao Y, Jiang B, Zhou Z, Zhan A. Rapid response to changing environments during biological invasions: DNA methylation perspectives. Mol Ecol 2017; 26:6621-6633. [PMID: 29057612 DOI: 10.1111/mec.14382] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 10/01/2017] [Accepted: 10/07/2017] [Indexed: 12/14/2022]
Abstract
Dissecting complex interactions between species and their environments has long been a research hot spot in the fields of ecology and evolutionary biology. The well-recognized Darwinian evolution has well-explained long-term adaptation scenarios; however, "rapid" processes of biological responses to environmental changes remain largely unexplored, particularly molecular mechanisms such as DNA methylation that have recently been proposed to play crucial roles in rapid environmental adaptation. Invasive species, which have capacities to successfully survive rapidly changing environments during biological invasions, provide great opportunities to study molecular mechanisms of rapid environmental adaptation. Here, we used the methylation-sensitive amplified polymorphism (MSAP) technique in an invasive model ascidian, Ciona savignyi, to investigate how species interact with rapidly changing environments at the whole-genome level. We detected quite rapid DNA methylation response: significant changes of DNA methylation frequency and epigenetic differentiation between treatment and control groups occurred only after 1 hr of high-temperature exposure or after 3 hr of low-salinity challenge. In addition, we detected time-dependent hemimethylation changes and increased intragroup epigenetic divergence induced by environmental stresses. Interestingly, we found evidence of DNA methylation resilience, as most stress-induced DNA methylation variation maintained shortly (~48 hr) and quickly returned back to the control levels. Our findings clearly showed that invasive species could rapidly respond to acute environmental changes through DNA methylation modifications, and rapid environmental changes left significant epigenetic signatures at the whole-genome level. All these results provide fundamental background to deeply investigate the contribution of DNA methylation mechanisms to rapid contemporary environmental adaptation.
Collapse
Affiliation(s)
- Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ping Ni
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yangchun Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Bei Jiang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fishery Science Research Institute, Dalian, Liaoning, China
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fishery Science Research Institute, Dalian, Liaoning, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Abstract
Evolutionary theory has been extended almost continually since the evolutionary synthesis (ES), but except for the much greater importance afforded genetic drift, the principal tenets of the ES have been strongly supported. Adaptations are attributable to the sorting of genetic variation by natural selection, which remains the only known cause of increase in fitness. Mutations are not adaptively directed, but as principal authors of the ES recognized, the material (structural) bases of biochemistry and development affect the variety of phenotypic variations that arise by mutation and recombination. Against this historical background, I analyse major propositions in the movement for an 'extended evolutionary synthesis'. 'Niche construction' is a new label for a wide variety of well-known phenomena, many of which have been extensively studied, but (as with every topic in evolutionary biology) some aspects may have been understudied. There is no reason to consider it a neglected 'process' of evolution. The proposition that phenotypic plasticity may engender new adaptive phenotypes that are later genetically assimilated or accommodated is theoretically plausible; it may be most likely when the new phenotype is not truly novel, but is instead a slight extension of a reaction norm already shaped by natural selection in similar environments. However, evolution in new environments often compensates for maladaptive plastic phenotypic responses. The union of population genetic theory with mechanistic understanding of developmental processes enables more complete understanding by joining ultimate and proximate causation; but the latter does not replace or invalidate the former. Newly discovered molecular phenomena have been easily accommodated in the past by elaborating orthodox evolutionary theory, and it appears that the same holds today for phenomena such as epigenetic inheritance. In several of these areas, empirical evidence is needed to evaluate enthusiastic speculation. Evolutionary theory will continue to be extended, but there is no sign that it requires emendation.
Collapse
Affiliation(s)
- Douglas J. Futuyma
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
42
|
Anastasiadi D, Díaz N, Piferrer F. Small ocean temperature increases elicit stage-dependent changes in DNA methylation and gene expression in a fish, the European sea bass. Sci Rep 2017; 7:12401. [PMID: 28963513 PMCID: PMC5622125 DOI: 10.1038/s41598-017-10861-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 08/16/2017] [Indexed: 01/24/2023] Open
Abstract
In natural fish populations, temperature increases can result in shifts in important phenotypic traits. DNA methylation is an epigenetic mechanism mediating phenotypic changes. However, whether temperature increases of the magnitude predicted by the latest global warming models can affect DNA methylation is unknown. Here, we exposed European sea bass to moderate temperature increases in different periods within the first two months of age. We show that increases of even 2 °C in larvae significantly changed global DNA methylation and the expression of ecologically-relevant genes related to DNA methylation, stress response, muscle and organ formation, while 4 °C had no effect on juveniles. Furthermore, DNA methylation changes were more marked in larvae previously acclimated to a different temperature. The expression of most genes was also affected by temperature in the larvae but not in juveniles. In conclusion, this work constitutes the first study of DNA methylation in fish showing that temperature increases of the magnitude predicted by the latest global warming models result in stage-dependent alterations in global DNA methylation and gene expression levels. This study, therefore, provides insights on the possible consequences of climate change in fish mediated by genome-wide epigenetic modifications.
Collapse
Affiliation(s)
- Dafni Anastasiadi
- Institute of Marine Sciences (ICM-CSIC), Passeig Marítim, 37-49, 08003, Barcelona, Spain
| | - Noelia Díaz
- Institute of Marine Sciences (ICM-CSIC), Passeig Marítim, 37-49, 08003, Barcelona, Spain.,Max Planck Institute for Molecular Biomedicine, Regulatory Genomics Lab, Röntgenstraße 20, 48149, Münster, Germany
| | - Francesc Piferrer
- Institute of Marine Sciences (ICM-CSIC), Passeig Marítim, 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
43
|
Holt WV. Exploitation of Non-mammalian Model Organisms in Epigenetic Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1014:155-173. [DOI: 10.1007/978-3-319-62414-3_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
44
|
Dressino V. LA ONTOGENIA Y LA EVOLUCIÓN DESDE LA PERSPECTIVA DE LA TEORÍA DE LOS SISTEMAS DE DESARROLLO (TSD). ACTA BIOLÓGICA COLOMBIANA 2017. [DOI: 10.15446/abc.v22n3.63405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
La teoría de los sistemas de desarrollo (TSD) pretende realizar una síntesis conceptual que vincule el desarrollo ontogenético con la evolución. Sus antecedentes pueden ser encontrados básicamente en los trabajos de Waddington y de Bertalanffy quienes aportaron las bases de la canalización del desarrollo y la teoría de sistemas biológicos, respectivamente. El objetivo de este artículo es realizar un análisis conceptual preliminar de la TSD y reflexionar acerca de los aportes potenciales de la TSD como marco teórico para la biología del desarrollo en particular y la biología evolutiva en general. Para ello, se tendrán en cuenta algunos de los conceptos y propuestas que componen este marco y se trabajará sobre datos secundarios obtenidos de la bibliografía. Se concluye que la TSD: 1-logra argumentar en contra de la visión gen-centrista respecto de las explicaciones que pretenden justificar el desarrollo biológico y evolutivo; 2- argumenta de manera coherente a favor del rol de la epigenética en la ontogenia y la evolución; 3- en relación con lo anterior el rol de la selección natural se restringe a un segundo plano; 4- propone que la dicotomía naturaleza/cultura debe ser superada; y 5- constituye un posible programa de investigación metodológico compuesto de una diversidad de hipótesis y teorías no necesariamente relacionadas que pueden ser corroboradas de manera relativamente independientes del resto de la red teórica.
Collapse
|
45
|
Dimond JL, Gamblewood SK, Roberts SB. Genetic and epigenetic insight into morphospecies in a reef coral. Mol Ecol 2017; 26:5031-5042. [DOI: 10.1111/mec.14252] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/27/2022]
Affiliation(s)
- James L. Dimond
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
- Shannon Point Marine Center Western Washington University Anacortes WA USA
| | | | - Steven B. Roberts
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
| |
Collapse
|
46
|
Hu J, Barrett RDH. Epigenetics in natural animal populations. J Evol Biol 2017; 30:1612-1632. [PMID: 28597938 DOI: 10.1111/jeb.13130] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 06/01/2017] [Accepted: 06/03/2017] [Indexed: 12/22/2022]
Abstract
Phenotypic plasticity is an important mechanism for populations to buffer themselves from environmental change. While it has long been appreciated that natural populations possess genetic variation in the extent of plasticity, a surge of recent evidence suggests that epigenetic variation could also play an important role in shaping phenotypic responses. Compared with genetic variation, epigenetic variation is more likely to have higher spontaneous rates of mutation and a more sensitive reaction to environmental inputs. In our review, we first provide an overview of recent studies on epigenetically encoded thermal plasticity in animals to illustrate environmentally-mediated epigenetic effects within and across generations. Second, we discuss the role of epigenetic effects during adaptation by exploring population epigenetics in natural animal populations. Finally, we evaluate the evolutionary potential of epigenetic variation depending on its autonomy from genetic variation and its transgenerational stability. Although many of the causal links between epigenetic variation and phenotypic plasticity remain elusive, new data has explored the role of epigenetic variation in facilitating evolution in natural populations. This recent progress in ecological epigenetics will be helpful for generating predictive models of the capacity of organisms to adapt to changing climates.
Collapse
Affiliation(s)
- J Hu
- Redpath Museum and Department of Biology, McGill University, Montreal, QC, Canada
| | - R D H Barrett
- Redpath Museum and Department of Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
47
|
Banlaki Z, Cimarelli G, Viranyi Z, Kubinyi E, Sasvari-Szekely M, Ronai Z. DNA methylation patterns of behavior-related gene promoter regions dissect the gray wolf from domestic dog breeds. Mol Genet Genomics 2017; 292:685-697. [DOI: 10.1007/s00438-017-1305-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 03/02/2017] [Indexed: 12/26/2022]
|
48
|
Marín-Guirao L, Entrambasaguas L, Dattolo E, Ruiz JM, Procaccini G. Molecular Mechanisms behind the Physiological Resistance to Intense Transient Warming in an Iconic Marine Plant. FRONTIERS IN PLANT SCIENCE 2017; 8:1142. [PMID: 28706528 PMCID: PMC5489684 DOI: 10.3389/fpls.2017.01142] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/14/2017] [Indexed: 05/03/2023]
Abstract
The endemic Mediterranean seagrass Posidonia oceanica is highly threatened by the increased frequency and intensity of heatwaves. Meadows of the species offer a unique opportunity to unravel mechanisms marine plants activate to cope transient warming, since their wide depth distribution impose divergent heat-tolerance. Understanding these mechanisms is imperative for their conservation. Shallow and deep genotypes within the same population were exposed to a simulated heatwave in mesocosms, to analyze their transcriptomic and photo-physiological responses during and after the exposure. Shallow plants, living in a more unstable thermal environment, optimized phenotype variation in response to warming. These plants showed a pre-adaptation of genes in anticipation of stress. Shallow plants also showed a stronger activation of heat-responsive genes and the exclusive activation of genes involved in epigenetic mechanisms and in molecular mechanisms that are behind their higher photosynthetic stability and respiratory acclimation. Deep plants experienced higher heat-induced damage and activated metabolic processes for obtaining extra energy from sugars and amino acids, likely to support the higher protein turnover induced by heat. In this study we identify transcriptomic mechanisms that may facilitate persistence of seagrasses to anomalous warming events and we discovered that P. oceanica plants from above and below the mean depth of the summer thermocline have differential resilience to heat.
Collapse
Affiliation(s)
- Lazaro Marín-Guirao
- Integrative Marine Ecology, Stazione Zoologica Anton DohrnNaples, Italy
- *Correspondence: Lazaro Marín-Guirao
| | | | - Emanuela Dattolo
- Integrative Marine Ecology, Stazione Zoologica Anton DohrnNaples, Italy
| | - Juan M. Ruiz
- Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of OceanographyMurcia, Spain
| | | |
Collapse
|
49
|
Vogt G. Facilitation of environmental adaptation and evolution by epigenetic phenotype variation: insights from clonal, invasive, polyploid, and domesticated animals. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx002. [PMID: 29492304 PMCID: PMC5804542 DOI: 10.1093/eep/dvx002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/28/2017] [Accepted: 02/02/2017] [Indexed: 05/13/2023]
Abstract
There is increasing evidence, particularly from plants, that epigenetic mechanisms can contribute to environmental adaptation and evolution. The present article provides an overview on this topic for animals and highlights the special suitability of clonal, invasive, hybrid, polyploid, and domesticated species for environmental and evolutionary epigenetics. Laboratory and field studies with asexually reproducing animals have shown that epigenetically diverse phenotypes can be produced from the same genome either by developmental stochasticity or environmental induction. The analysis of invasions revealed that epigenetic phenotype variation may help to overcome genetic barriers typically associated with invasions such as bottlenecks and inbreeding. Research with hybrids and polyploids established that epigenetic mechanisms are involved in consolidation of speciation by contributing to reproductive isolation and restructuring of the genome in the neo-species. Epigenetic mechanisms may even have the potential to trigger speciation but evidence is still meager. The comparison of domesticated animals and their wild ancestors demonstrated heritability and selectability of phenotype modulating DNA methylation patterns. Hypotheses, model predictions, and empirical results are presented to explain how epigenetic phenotype variation could facilitate adaptation and speciation. Clonal laboratory lineages, monoclonal invaders, and adaptive radiations of different evolutionary age seem particularly suitable to empirically test the proposed ideas. A respective research agenda is presented.
Collapse
Affiliation(s)
- Günter Vogt
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| |
Collapse
|
50
|
Bernatchez L. On the maintenance of genetic variation and adaptation to environmental change: considerations from population genomics in fishes. JOURNAL OF FISH BIOLOGY 2016; 89:2519-2556. [PMID: 27687146 DOI: 10.1111/jfb.13145] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 08/23/2016] [Indexed: 05/18/2023]
Abstract
The first goal of this paper was to overview modern approaches to local adaptation, with a focus on the use of population genomics data to detect signals of natural selection in fishes. Several mechanisms are discussed that may enhance the maintenance of genetic variation and evolutionary potential, which have been overlooked and should be considered in future theoretical development and predictive models: the prevalence of soft sweeps, polygenic basis of adaptation, balancing selection and transient polymorphisms, parallel evolution, as well as epigenetic variation. Research on fish population genomics has provided ample evidence for local adaptation at the genome level. Pervasive adaptive evolution, however, seems to almost never involve the fixation of beneficial alleles. Instead, adaptation apparently proceeds most commonly by soft sweeps entailing shifts in frequencies of alleles being shared between differentially adapted populations. One obvious factor contributing to the maintenance of standing genetic variation in the face of selective pressures is that adaptive phenotypic traits are most often highly polygenic, and consequently the response to selection should derive mostly from allelic co-variances among causative loci rather than pronounced allele frequency changes. Balancing selection in its various forms may also play an important role in maintaining adaptive genetic variation and the evolutionary potential of species to cope with environmental change. A large body of literature on fishes also shows that repeated evolution of adaptive phenotypes is a ubiquitous evolutionary phenomenon that seems to occur most often via different genetic solutions, further adding to the potential options of species to cope with a changing environment. Moreover, a paradox is emerging from recent fish studies whereby populations of highly reduced effective population sizes and impoverished genetic diversity can apparently retain their adaptive potential in some circumstances. Although more empirical support is needed, several recent studies suggest that epigenetic variation could account for this apparent paradox. Therefore, epigenetic variation should be fully integrated with considerations pertaining to role of soft sweeps, polygenic and balancing selection, as well as repeated adaptation involving different genetic basis towards improving models predicting the evolutionary potential of species to cope with a changing world.
Collapse
Affiliation(s)
- L Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1Y 2T8, Canada
| |
Collapse
|