1
|
Bhendarkar M, Rodriguez-Ezpeleta N. Exploring uncharted territory: new frontiers in environmental DNA for tropical fisheries management. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:617. [PMID: 38874640 DOI: 10.1007/s10661-024-12788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Tropical ecosystems host a significant share of global fish diversity contributing substantially to the global fisheries sector. Yet their sustainable management is challenging due to their complexity, diverse life history traits of tropical fishes, and varied fishing techniques involved. Traditional monitoring techniques are often costly, labour-intensive, and/or difficult to apply in inaccessible sites. These limitations call for the adoption of innovative, sensitive, and cost-effective monitoring solutions, especially in a scenario of climate change. Environmental DNA (eDNA) emerges as a potential game changer for biodiversity monitoring and conservation, especially in aquatic ecosystems. However, its utility in tropical settings remains underexplored, primarily due to a series of challenges, including the need for a comprehensive barcode reference library, an understanding of eDNA behaviour in tropical aquatic environments, standardized procedures, and supportive biomonitoring policies. Despite these challenges, the potential of eDNA for sensitive species detection across varied habitats is evident, and its global use is accelerating in biodiversity conservation efforts. This review takes an in-depth look at the current state and prospects of eDNA-based monitoring in tropical fisheries management research. Additionally, a SWOT analysis is used to underscore the opportunities and threats, with the aim of bridging the knowledge gaps and guiding the more extensive and effective use of eDNA-based monitoring in tropical fisheries management. Although the discussion applies worldwide, some specific experiences and insights from Indian tropical fisheries are shared to illustrate the practical application and challenges of employing eDNA in a tropical context.
Collapse
Affiliation(s)
- Mukesh Bhendarkar
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), 48395, Sukarrieta, Bizkaia, Spain.
- ICAR-National Institute of Abiotic Stress Management, Baramati, 413 115, Maharashtra, India.
| | - Naiara Rodriguez-Ezpeleta
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), 48395, Sukarrieta, Bizkaia, Spain
| |
Collapse
|
2
|
Wang S, Wu D, Song Y, Wang T, Fan S, Wu E, Chen N, Xia W, Xu MN, Chen Z, Wen J, Zhang Y, Mo L, Xiang L. Application of environmental DNA metabarcoding to identify fish community characteristics in subtropical river systems. Ecol Evol 2024; 14:e11214. [PMID: 38725828 PMCID: PMC11079634 DOI: 10.1002/ece3.11214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 05/12/2024] Open
Abstract
Fish are vital in river ecosystems; however, traditional investigations of fish usually cause ecological damage. Extracting DNA from aquatic environments and identifying DNA sequences offer an alternative, noninvasive approach for detecting fish species. In this study, the effects of environmental DNA (eDNA), coupled with PCR and next-generation sequencing, and electrofishing for identifying fish community composition and diversity were compared. In three subtropical rivers of southern China, fish specimens and eDNA in water were collected along the longitudinal (upstream-downstream) gradient of the rivers. Both fish population parameters, including species abundance and biomass, and eDNA OTU richness grouped 38 sampling sites into eight spatial zones with significant differences in local fish community composition. Compared with order-/family-level grouping, genus-/species-level grouping could more accurately reveal the differences between upstream zones I-III, midstream zones IV-V, and downstream zones VI-VIII. From the headwaters to the estuary, two environmental gradients significantly influenced the longitudinal distribution of the fish species, including the first gradient composed of habitat and physical water parameters and the second gradient composed of chemical water parameters. The high regression coefficient of alpha diversity between eDNA and electrofishing methods as well as the accurate identification of dominant, alien, and biomarker species in each spatial zone indicated that eDNA could characterize fish community attributes at a level similar to that of traditional approaches. Overall, our results demonstrated that eDNA metabarcoding can be used as an effective tool for revealing fish composition and diversity, which is important for using the eDNA technique in aquatic field monitoring.
Collapse
Affiliation(s)
- Sai Wang
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikouChina
| | - Dong‐Hai Wu
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikouChina
- College of Ecology and EnvironmentHainan UniversityHaikouChina
| | - Yong‐Duo Song
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikouChina
| | - Tuan‐Tuan Wang
- College of Ecology and EnvironmentHainan UniversityHaikouChina
- Key Laboratory of Agro‐Forestry Environmental Processes and Ecological Regulation of Hainan ProvinceHainan UniversityHaikouChina
| | - Shi‐Di Fan
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikouChina
| | - En‐Ni Wu
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikouChina
| | - Nan‐Lin Chen
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikouChina
| | - Wen‐Tong Xia
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikouChina
| | - Min N. Xu
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikouChina
| | - Zhong‐Bing Chen
- Department of Applied·Ecology, Faculty of Environmental SciencesCzech University of Life Sciences PraguePraha‐SuchdolCzech Republic
| | - Jing Wen
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikouChina
- Hainan Qingxiao Environmental Testing Co., Ltd.SanyaChina
- Hainan Qianchao Ecological Technology Co., Ltd.SanyaChina
| | - Yang Zhang
- Shenzhen Guanghuiyuan Environment Water Co., Ltd.ShenzhenChina
| | - Ling Mo
- Hainan Research Academy of Environmental SciencesHaikouChina
| | - Lei Xiang
- Department of EcologyJinan UniversityGuangzhouChina
| |
Collapse
|
3
|
Yonago T, Kawakami T, Kasai A. Linkage between spatiotemporal distribution of environmental DNA and phenological activity in an amphidromous fish, ayu Plecoglossus altivelis altivelis, in a river located in its northernmost distributional area. JOURNAL OF FISH BIOLOGY 2024; 104:1468-1482. [PMID: 38369621 DOI: 10.1111/jfb.15687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024]
Abstract
Environmental DNA (eDNA) is a promising tool for the continuous monitoring of fish ecology and diversity. However, its potential for describing the phenological activity of fish has rarely been examined. This study aimed to elucidate a linkage between the spatiotemporal distribution of eDNA and the phenology of an amphidromous fish, ayu Plecoglossus altivelis altivelis, in a river in Hokkaido, Japan, which is its northernmost distributional area. A significant positive correlation between eDNA concentration and catch per unit effort of P. a. altivelis in the river confirmed the use of eDNA as a surrogate for the abundance of P. a. altivelis. eDNA of P. a. altivelis was first detected in late April on a sandy beach adjacent to the river mouth. Subsequent to its first detection at the lowest site in the river in early May, eDNA spread throughout the river, indicating the upstream migration of P. a. altivelis. Spawning activity was also represented by a rapid increase in eDNA concentration and its surge at night in the lowest reaches of the river during September and October. These results suggest that upstream migration and spawning primarily commenced when the water temperature reached 10°C and decreased below 20°C, respectively. This observation is consistent with the behavioral responses observed in P. a. altivelis populations from other regions of Japan. Consequently, this study demonstrated that eDNA distribution was closely linked to the phenological activity of P. a. altivelis and that eDNA is a powerful tool for studying the phenology of migratory fishes.
Collapse
Affiliation(s)
- Takuma Yonago
- Division of Marine Bioresource and Environmental Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Tatsuya Kawakami
- Division of Marine Bioresource and Environmental Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Akihide Kasai
- Division of Marine Bioresource and Environmental Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| |
Collapse
|
4
|
Duarte S, Simões L, Costa FO. Current status and topical issues on the use of eDNA-based targeted detection of rare animal species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166675. [PMID: 37647964 DOI: 10.1016/j.scitotenv.2023.166675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Animal detection through DNA present in environmental samples (eDNA) is a valuable tool for detecting rare species, that are difficult to observe and monitor. eDNA-based tools are underpinned by molecular evolutionary principles, key to devising tools to efficiently single out a targeted species from an environmental sample. Here, we present a comprehensive review of the use of eDNA-based methods for the detection of targeted animal species, such as rare, endangered, or invasive species, through the analysis of 549 publications (2008-2022). Aquatic ecosystems have been the most surveyed, in particular, freshwaters (74 %), and to a less extent marine (14 %) and terrestrial systems (10 %). Vertebrates, in particular, fish (38 %), and endangered species, have been the focus of most of these studies, and Cytb and COI are the most employed markers. Among invertebrates, assays have been mainly designed for Mollusca and Crustacea species (21 %), in particular, to target invasive species, and COI the most employed marker. Targeted molecular approaches, in particular qPCR, have been the most adopted (75 %), while eDNA metabarcoding has been rarely used to target single or few species (approx. 6 %). However, less attention has been given in these studies to the effects of environmental factors on the amount of shed DNA, the differential amount of shed DNA among species, or the sensitivity of the markers developed, which may impact the design of the assays, particularly to warrant the required detection level and avoid false negatives and positives. The accuracy of the assays will also depend on the availability of genetic data and vouchered tissue or DNA samples from closely related species to assess both marker and primers' specificity. In addition, eDNA-based assays developed for a particular species may have to be refined for use in a new geographic area taking into account site-specific populations, as well as any intraspecific variation.
Collapse
Affiliation(s)
- Sofia Duarte
- Centre of Molecular and Environmental Biology (CBMA) and ARNET-Aquatic Research Network, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Luara Simões
- Centre of Molecular and Environmental Biology (CBMA) and ARNET-Aquatic Research Network, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Filipe O Costa
- Centre of Molecular and Environmental Biology (CBMA) and ARNET-Aquatic Research Network, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
5
|
Wei XY, Liu L, Hu H, Jia HJ, Bu LK, Pei DS. Ultra-sensitive detection of ecologically rare fish from eDNA samples based on the RPA-CRISPR/Cas12a technology. iScience 2023; 26:107519. [PMID: 37636063 PMCID: PMC10448165 DOI: 10.1016/j.isci.2023.107519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/04/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Environmental DNA (eDNA) research holds great promise for improving biodiversity science and conservation efforts by enabling worldwide species censuses in near real-time. Current eDNA methods face challenges in detecting low-abundance ecologically important species. In this study, we used isothermal recombinase polymerase amplification (RPA)-CRISPR/Cas detection to test Ctenopharyngodon idella. RPA-CRISPR-Cas12a detected 6.0 eDNA copies/μL within 35 min. Ecologically rare species were identified in the Three Gorges Reservoir Area (TGRA) using functional distinctiveness and geographical restrictiveness, with seven fish species (9%) classified as potentially ecologically rare including three species in this investigation. RPA-CRISPR/Cas12a-FQ outperformed high-throughput sequencing (HTS) and qPCR in detecting low-abundance eDNA (AUC = 0.883∗∗). A significant linear correlation (R2 = 0.682∗∗) between RPA-CRISPR/Cas12a-FQ and HTS quantification suggests its potential for predicting species abundance and enhancing eDNA-based fish biodiversity monitoring. This study highlights the value of RPA-CRISPR/Cas12a-FQ as a tool for advancing eDNA research and conservation efforts.
Collapse
Affiliation(s)
- Xing-Yi Wei
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing 400714, China
| | - Li Liu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing 400714, China
| | - Huan Hu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing 400714, China
| | - Huang-Jie Jia
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing 400714, China
| | - Ling-Kang Bu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing 400714, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
6
|
Van Driessche C, Everts T, Neyrinck S, Halfmaerten D, Haegeman A, Ruttink T, Bonte D, Brys R. Using environmental DNA metabarcoding to monitor fish communities in small rivers and large brooks: Insights on the spatial scale of information. ENVIRONMENTAL RESEARCH 2023; 228:115857. [PMID: 37059322 DOI: 10.1016/j.envres.2023.115857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023]
Abstract
Monitoring fish communities is central to the evaluation of ecological health of rivers. Both presence/absence of fish species and their relative quantity in local fish assemblages are crucial parameters to measure. Fish communities in lotic systems are traditionally monitored via electrofishing, characterized by a known limited efficiency and high survey costs. Analysis of environmental DNA could serve as a non-destructive alternative for detection and quantification of lotic fish communities, but this approach still requires further insights in practical sampling schemes incorporating transport and dilution of the eDNA particles; optimization of predictive power and quality assurance of the molecular detection method. Via a controlled cage experiment, we aim to extend the knowledge on streamreach of eDNA in small rivers and large brooks, as laid out in the European Water Framework Directive's water typology. Using a high and low source biomass in two river transects of a species-poor river characterized by contrasting river discharge rates, we found strong and significant correlations between the eDNA relative species abundances and the relative biomass per species in the cage community. Despite a decreasing correlation over distance, the underlying community composition remained stable from 25 to 300 m, or up to 1 km downstream of the eDNA source, depending on the river discharge rate. Such decrease in similarity between relative source biomass and the corresponding eDNA-based community profile with increasing distance downstream from the source, might be attributed to variation in species-specific eDNA persistence. Our findings offer crucial insights on eDNA behaviour and characterization of riverine fish communities. We conclude that water sampled from a relatively small river offers an adequate eDNA snapshot of the total fish community in the 300-1000 m upstream transect. The potential application for other river systems is further discussed.
Collapse
Affiliation(s)
- Charlotte Van Driessche
- Research Institute for Nature and Forest (INBO), Genetic Diversity, Geraardsbergen, Belgium; Ghent University, Department of Biology, Terrestrial Ecology Unit, Ghent, Belgium.
| | - Teun Everts
- Research Institute for Nature and Forest (INBO), Genetic Diversity, Geraardsbergen, Belgium; KU Leuven, Department of Biology, Plant Conservation and Population Biology, Leuven, Belgium
| | - Sabrina Neyrinck
- Research Institute for Nature and Forest (INBO), Genetic Diversity, Geraardsbergen, Belgium
| | - David Halfmaerten
- Research Institute for Nature and Forest (INBO), Genetic Diversity, Geraardsbergen, Belgium
| | - Annelies Haegeman
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Melle, Belgium
| | - Tom Ruttink
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Melle, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Dries Bonte
- Ghent University, Department of Biology, Terrestrial Ecology Unit, Ghent, Belgium
| | - Rein Brys
- Research Institute for Nature and Forest (INBO), Genetic Diversity, Geraardsbergen, Belgium
| |
Collapse
|
7
|
Pragmatic applications of DNA barcoding markers in identification of fish species – a review. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
DNA barcoding and mini barcoding involve Cytochrome Oxidase Subunit I (COI) gene in mitochondrial genome and is used for accurate identification of species and biodiversity. The basic goal of the current study is to develop a complete reference database of fishes. It also evaluates the applicability of COI gene to identify fish at the species level with other aspects i.e., as Kimura 2 parameter (K2P) distance. The mean observed length of the sequence was ranging between 500 to 700 base pairs for fish species in DNA barcoding and 80 to 650 base pairs for DNA mini barcoding. This method describes the status of known to unknown samples but it also facilitates the detection of previously un-sampled species at distinct level. So, mini-barcoding is a method focuses on the analysis of short-length DNA markers has been demonstrated to be effective for species identification of processed food containing degraded DNA. While DNA meta-barcoding refers to the automated identification of multiple species from a single bulk sample. The may contain entire organisms or a single environmental sample containing degraded DNA. Despite DNA barcoding, mini barcoding and meta-barcoding are efficient methods for species identification which are helpful in conservation and proper management of biodiversity. It aids researchers to take an account of genetic as well as evolutionary relationships by collecting their morphological, distributional and molecular data. Overall, this paper discusses DNA barcoding technology and how it has been used to various fish species, as well as its universality, adaptability, and novel approach to DNA-based species identification.
Collapse
|
8
|
DNA Barcoding of Trichobilharzia (Trematoda: Schistosomatidae) Species and Their Detection in eDNA Water Samples. DIVERSITY 2023. [DOI: 10.3390/d15010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We designed and tested species-specific PCR primers to detect Trichobilharzia species via environmental DNA (eDNA) barcoding in selected Austrian water bodies. Tests were performed with eDNA samples from the field as well as with artificial samples from the lab, where snails releasing cercariae were kept in aquariums. From two localities, Trichobilharzia was documented based on the release of cercariae from snails, enabling morphological species identification. In both cases, the corresponding species were detected via eDNA: Trichobilharzia szidati and Trichobilharzia physellae. Nonetheless, the stochasticity was high in the replicates. PCR tests with aquarium water into which the cercariae had been released allowed eDNA detection even after 44 days. As in the PCRs with eDNA samples from the field, positive results of these experiments were not obtained for all samples and replicates. PCR sensitivity tests with dilution series of T. szidati genomic DNA as well as of PCR amplification products yielded successful amplification down to concentrations of 0.83 pg/µL and 0.008 pg/µL, respectively. Our results indicate that the presumed species specificity of PCR primers may not be guaranteed, even if primers were designed for specific species. This entails misidentification risks, particularly in areas with incomplete species inventories.
Collapse
|
9
|
Huang S, Yoshitake K, Watabe S, Asakawa S. Environmental DNA study on aquatic ecosystem monitoring and management: Recent advances and prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116310. [PMID: 36261997 DOI: 10.1016/j.jenvman.2022.116310] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Environmental DNA (eDNA) is organismal DNA that can be detected in the environment and is derived from cellular material of organisms shed into aquatic or terrestrial environments. It can be sampled and monitored using molecular methods, which is important for the early detection of invasive and native species as well as the discovery of rare and cryptic species. While few reviews have summarized the latest findings on eDNA for most aquatic animal categories in the aquatic ecosystem, especially for aquatic eDNA processing and application. In the present review, we first performed a bibliometric network analysis of eDNA studies on aquatic animals. Subsequently, we summarized the abiotic and biotic factors affecting aquatic eDNA occurrence. We also systematically discussed the relevant experiments and analyses of aquatic eDNA from various aquatic organisms, including fish, molluscans, crustaceans, amphibians, and reptiles. Subsequently, we discussed the major achievements of eDNA application in studies on the aquatic ecosystem and environment. The application of eDNA will provide an entirely new paradigm for biodiversity conservation, environment monitoring, and aquatic species management at a global scale.
Collapse
Affiliation(s)
- Songqian Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 200120, China; Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, 113-8657, Japan.
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa, 252-0313, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
10
|
Littlefair JE, Rennie MD, Cristescu ME. Environmental nucleic acids: A field-based comparison for monitoring freshwater habitats using eDNA and eRNA. Mol Ecol Resour 2022; 22:2928-2940. [PMID: 35730338 PMCID: PMC9796649 DOI: 10.1111/1755-0998.13671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/03/2022] [Accepted: 06/01/2022] [Indexed: 01/01/2023]
Abstract
Nucleic acids released by organisms and isolated from environmental substrates are increasingly being used for molecular biomonitoring. While environmental DNA (eDNA) has received much attention, the potential of environmental RNA as a biomonitoring tool remains under-explored. Several recent studies using paired DNA and RNA metabarcoding of bulk samples suggest that RNA might better reflect "metabolically active" parts of the community. However, such studies mainly capture organismal eDNA and eRNA. For larger eukaryotes, isolation of extra-organismal RNA will be important, but viability needs to be examined in a field-based setting. In this study we evaluate (a) whether extra-organismal eRNA release from macroeukaryotes can be detected given its supposedly rapid degradation, and (b) if the same field collection methods for eDNA can be applied to eRNA. We collected eDNA and eRNA from water in lakes where fish community composition is well documented, enabling a comparison between the two nucleic acids in two different seasons with monitoring using conventional methods. We found that eRNA is released from macroeukaryotes and can be filtered from water and metabarcoded in a similar manner as eDNA to reliably provide species composition information. eRNA had a small but significantly greater true positive rate than eDNA, indicating that it correctly detects more species known to exist in the lakes. Given relatively small differences between the two molecules in describing fish community composition, we conclude that if eRNA provides significant advantages in terms of lability, it is a strong candidate to add to the suite of molecular monitoring tools.
Collapse
Affiliation(s)
- Joanne E. Littlefair
- Department of BiologyMcGill UniversityMontréalQuebecCanada,Queen Mary University of LondonLondonUK
| | - Michael D. Rennie
- IISD Experimental Lakes AreaWinnipegManitobaCanada,Department of BiologyLakehead UniversityThunder BayOntarioCanada
| | | |
Collapse
|
11
|
Wang X, Zhang H, Lu G, Gao T. Detection of an invasive species through an environmental DNA approach: The example of the red drum Sciaenops ocellatus in the East China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152865. [PMID: 34995612 DOI: 10.1016/j.scitotenv.2021.152865] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Biological invasions are among the most critical threats to local species diversity and ecosystem ecology. The red drum was introduced for marine aquaculture circa 1991 and has become a commercially important maricultural fish species in China and was widely cultured across the coastal areas in mainland China. However, after two decades of maricultural activities, the red drum has been consecutively recorded as escapees along the entire coastal waters of China. Due to the lack of effective monitoring methods, there are not many reports on its distribution in natural seas. In current study, the environmental DNA (eDNA) method was applied. A set of red drum-specific primers and probe were designed, and the distribution and biomass of the red drum were conducted in the East China Sea. The results showed that a total of 47 samples (26.40% of 178 samples) in 27 stations (61.36%) were found to be positive for red drum eDNA. The hotspot was found around the central areas of the East China Sea, especially around the Jiaojiang Estuary and Sanmen Bay area. Significant eDNA concentration differences were found among different stations. Moreover, the presence/absence was also found significantly different among stations. Vertical distribution differences of eDNA presence/absence and concentrations were also found. This study can provide technical support for the monitoring, evaluation, and eradication of invasive species in the future.
Collapse
Affiliation(s)
- Xiaoyan Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316004, PR China.
| | - Haobo Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316004, PR China
| | - Guoqing Lu
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan 316004, PR China.
| |
Collapse
|
12
|
Challenges in eDNA detection of the invasive European green crab, Carcinus maenas. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02757-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractThe early detection of invasive species is essential to cease the spread of the species before it can cause irreversible damage to the environment. The analysis of environmental DNA (eDNA) has emerged as a non-harmful method to detect the presence of a species before visual detection and is a promising approach to monitor invasive species. Few studies have investigated the use of eDNA for arthropods, as their exoskeleton is expected to limit the release of eDNA into the environment. We tested published primers for the invasive European green crab, Carcinus maenas, in the Gulf of Maine and found them not species-specific enough for reliable use outside of the area for which they were designed for. We then designed new primers, tested them against a broad range of local faunal species, and validated these primers in a field study. We demonstrate that eDNA analyses can be used for crustaceans with an exoskeleton and suggest that primers and probe sequences must be tested on local fauna at each location of use to ensure no positive amplification of these other species.
Collapse
|
13
|
Myers BJE, Weiskopf SR, Shiklomanov AN, Ferrier S, Weng E, Casey KA, Harfoot M, Jackson ST, Leidner AK, Lenton TM, Luikart G, Matsuda H, Pettorelli N, Rosa IMD, Ruane AC, Senay GB, Serbin SP, Tittensor DP, Beard TD. A New Approach to Evaluate and Reduce Uncertainty of Model-Based Biodiversity Projections for Conservation Policy Formulation. Bioscience 2021. [DOI: 10.1093/biosci/biab094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Biodiversity projections with uncertainty estimates under different climate, land-use, and policy scenarios are essential to setting and achieving international targets to mitigate biodiversity loss. Evaluating and improving biodiversity predictions to better inform policy decisions remains a central conservation goal and challenge. A comprehensive strategy to evaluate and reduce uncertainty of model outputs against observed measurements and multiple models would help to produce more robust biodiversity predictions. We propose an approach that integrates biodiversity models and emerging remote sensing and in-situ data streams to evaluate and reduce uncertainty with the goal of improving policy-relevant biodiversity predictions. In this article, we describe a multivariate approach to directly and indirectly evaluate and constrain model uncertainty, demonstrate a proof of concept of this approach, embed the concept within the broader context of model evaluation and scenario analysis for conservation policy, and highlight lessons from other modeling communities.
Collapse
Affiliation(s)
- Bonnie J E Myers
- National Climate Adaptation Science Center, Reston, Virginia, United States
| | - Sarah R Weiskopf
- National Climate Adaptation Science Center, Reston, Virginia, United States
| | | | - Simon Ferrier
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Canberra, Australia
| | - Ensheng Weng
- NASA Goddard Institute for Space Studies and Columbia University, New York, New York, United States
| | - Kimberly A Casey
- US Geological Survey's National Land Imaging Program, Reston, Virginia, United States
| | - Mike Harfoot
- UN Environment Programme World Conservation Monitoring Centre, Cambridge, England, United Kingdom
| | | | - Allison K Leidner
- NASA Headquarters/Biological Diversity Program, Washington, DC, United States
| | - Timothy M Lenton
- Global Systems Institute, University of Exeter, Exeter, England, United Kingdom
| | - Gordon Luikart
- University of Montana Flathead Lake Biological Station, Polson, Montana, United States
| | | | - Nathalie Pettorelli
- Institute for Zoology, Zoological Society of London, Regent's Park, England, United Kingdom
| | - Isabel M D Rosa
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom
| | - Alex C Ruane
- NASA Goddard Institute for Space Studies, New York, New York, United States
| | - Gabriel B Senay
- US Geological Survey Earth Resources Observation Science Center, North Central Climate Adaptation Science Center, Fort Collins, Colorado, United States
| | - Shawn P Serbin
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, United States
| | - Derek P Tittensor
- UN Environment Programme World Conservation Monitoring Centre, Cambridge, England, United Kingdom
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - T Douglas Beard
- National Climate Adaptation Science Center, Reston, Virginia, United States
| |
Collapse
|
14
|
Balasubramanian VK, Joseph Maran MI, Ramteke D, Vijaykumar DS, Kottarathail Rajendran A, Ramachandran P, Ramachandran R. Environmental DNA reveals aquatic biodiversity of an urban backwater area, southeast coast of India. MARINE POLLUTION BULLETIN 2021; 171:112786. [PMID: 34371435 DOI: 10.1016/j.marpolbul.2021.112786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 07/07/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Strong conservation management needs comprehensive data on biodiversity. Rapid methods that document aquatic biodiversity or assess the health condition of an ecosystem remain scarce. Herein, we have performed a metagenomics study on environmental DNA (eDNA) collected from an urban backwater area - Muttukadu, located in the southeast coast of India. Shotgun metagenomics approach using Illumina®NextSeq500 sequencing yielded 88.4 million raw reads. The processed data was assigned as 80% prokaryotes, 0.4% eukaryotes, ~2% viruses, and ~17% remain unknown. This approach has the potential to identify small micro-eukaryote, unseen species from both estuarine and marine environments. We have identified 156 eukaryote organisms represented from 21 phyla and 112 families, including those that are of conservational significance and ecological importance. Furthermore, our data also demonstrated the presence of pathogenic microorganisms due to sewage mixing with the backwaters. Given its sensitivity, we suggest this approach for an initial assessment of biodiversity structure in an ecosystem for the biomonitoring program.
Collapse
Affiliation(s)
- Vignesh Kumar Balasubramanian
- Conservation of Coastal and Marine Resources Division (CMR), National Centre for Sustainable Coastal Management (NCSCM), India
| | - Midhuna Immaculate Joseph Maran
- Conservation of Coastal and Marine Resources Division (CMR), National Centre for Sustainable Coastal Management (NCSCM), India
| | - Darwin Ramteke
- Conservation of Coastal and Marine Resources Division (CMR), National Centre for Sustainable Coastal Management (NCSCM), India
| | - Deepak Samuel Vijaykumar
- Conservation of Coastal and Marine Resources Division (CMR), National Centre for Sustainable Coastal Management (NCSCM), India.
| | - Abhilash Kottarathail Rajendran
- Conservation of Coastal and Marine Resources Division (CMR), National Centre for Sustainable Coastal Management (NCSCM), India
| | - Purvaja Ramachandran
- Conservation of Coastal and Marine Resources Division (CMR), National Centre for Sustainable Coastal Management (NCSCM), India
| | - Ramesh Ramachandran
- Conservation of Coastal and Marine Resources Division (CMR), National Centre for Sustainable Coastal Management (NCSCM), India
| |
Collapse
|
15
|
Wang S, Yan Z, Hänfling B, Zheng X, Wang P, Fan J, Li J. Methodology of fish eDNA and its applications in ecology and environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142622. [PMID: 33059148 DOI: 10.1016/j.scitotenv.2020.142622] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Fish environmental DNA (eDNA) studies have made substantial progress during the past decade, and significant advances in monitoring fishes have been gained by taking advantage of this technology. Although a number of reviews concerning eDNA are available and some recent fish eDNA reviews focused on fisheries or standard method have been published, a systematic review of methodology of fish eDNA and its applications in ecology and environment has not yet been published. To our knowledge, this is the first review of fish eDNA for solving ecological and environmental issues. First, the most comprehensive literature analysis of fish eDNA was presented and analyzed. Then, we systematically discuss the relevant experiments and analyses of fish eDNA, and infers that standard workflow is on the way to consensus. We additionally provide reference sequence databases and the primers used to amplify the reference sequences or detecting fish eDNA. The abiotic and biotic conditions affecting fish eDNA persistence are also summarized in a schematic diagram. Subsequently, we focus on the major achievements of fish eDNA in ecology and environment. We additionally highlight the exciting new tools, including in situ autonomous monitoring devices, CRISPR nucleic acid detection technology, and meta-omics technology for fish eDNA detection in future. Ultimately, methodology of fish eDNA will provide a wholly new paradigm for conservation actions of fishes, ecological and environmental management at a global scale.
Collapse
Affiliation(s)
- Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Bernd Hänfling
- School of Environmental Sciences, University of Hull, Hull HU6 7RX, UK
| | - Xin Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Pengyuan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Juntao Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jianlong Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
16
|
Tarof SA, Crookes S, Moxley K, Hathaway J, Cameron G, Hanner RH. Environmental DNA bioassays corroborate field data for detection of overwintering species at risk Blanding's turtles ( Emydoidea blandingii). Genome 2021; 64:299-310. [PMID: 33538216 DOI: 10.1139/gen-2020-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Environmental DNA (eDNA) is gaining traction in conservation ecology as a powerful tool for detecting species at risk. We developed a quantitative polymerase chain reaction assay to detect a DNA amplicon fragment of the mitochondrial nicotinamide adenine dinucleotide locus of the Blanding's turtle (Emydoidea blandingii) for detecting overwintering individuals. Seventy-eight water samples were collected from 17 wetland sites in Ontario, Canada. We used traditional field data to identify a priori positive and negative control sites. Fifty percent of positive control sites amplified. Detection was related to the number of individuals estimated from field observations in at least one region surveyed. Positive control sites had lower total dissolved solids and electrical conductivity in relation to negative control sites. Shedding rates were within the same order of magnitude for brumating and active turtles. We recommend collecting additional samples at a larger number of locations to maximize detection. Recommended sampling design changes may overshadow the additional effects of water chemistry and low eDNA shedding rates. eDNA offers tremendous potential to practitioners conducting species at risk assessments in environmental consulting by providing a faster, more efficient method of detection compared with traditional surveys.
Collapse
Affiliation(s)
- Scott A Tarof
- Azimuth Environmental Consulting, Inc., 642 Welham Road, Barrie, ON L4N 9A1, Canada
| | - Steven Crookes
- Precision Biomonitoring Inc., Orchard Park, Suite #226, 5420 Highway 6 North, Guelph, ON N1H 6J2, Canada
| | - Kelsey Moxley
- Scales Nature Park, 82 Line 15 South, Oro-Medonte, ON L3V 8H9, Canada
| | - Jeff Hathaway
- Scales Nature Park, 82 Line 15 South, Oro-Medonte, ON L3V 8H9, Canada
| | - Graham Cameron
- Ministry of Natural Resources and Forestry (Bancroft District), 106 Monck Street, Bancroft, ON K0L 1C0, Canada
| | - Robert H Hanner
- Biodiversity Institute of Ontario, Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
17
|
Osathanunkul M, Minamoto T. A molecular survey based on eDNA to assess the presence of a clown featherback ( Chitala ornata) in a confined environment. PeerJ 2020; 8:e10338. [PMID: 33362954 PMCID: PMC7749998 DOI: 10.7717/peerj.10338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/20/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The importance of the inland fisheries sector in food security as a provider of much-needed protein and income supplier has been highlighted. This is especially the case in poor rural communities in developing countries. Inland capture fisheries in Thailand are in place nationwide in rivers, lakes, swamps and reservoirs. The clown featherback (Chitala ornata) is popularly consumed and is an economically important fish in Thailand which is often used in food products such as fish balls and fish cakes. Along with other fish species, the clown featherback is one of fish of inland fisheries at Phayao Lake. Recent fish surveys from 2016-2018 at Phayao Lake using netting and electrofishing found that the number of clown featherback have been reducing since 2016 and could not be detected at all by 2018. This is despite the fact that there are still reports of their presence in the lake from locals. METHODS We developed an eDNA-based method for detection of the clown featherback in Phayao Lake as an alternative tool. Water samples were collected in three different sampling months (February, June and September) at six sites located in the lake. Species-specific primers and the probe were designed to amplify a 183 bp fragment of the cytB region of the clown featherback. RESULTS eDNA of the clown featherback can be detected in all different sampling months and sites. Concentration of the clown featherback found in Prayao Lake showed no difference over sampling month but between collecting sites. This proves that eDNA based survey is a sensitive and useful tool for monitoring and surveying the clown featherback at any time of the year.
Collapse
Affiliation(s)
- Maslin Osathanunkul
- Research Center in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Amphur Muang, Chiang Mai, Thailand
| | - Toshifumi Minamoto
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| |
Collapse
|
18
|
Loeza-Quintana T, Crookes S, Li PY, Reid DP, Smith M, Hanner RH. Environmental DNA detection of endangered and invasive species in Kejimkujik National Park and Historic Site. Genome 2020; 64:172-180. [PMID: 33186067 DOI: 10.1139/gen-2020-0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The use of environmental DNA (eDNA) allows the early detection of aquatic species at low densities (e.g., elusive and invasive species), which otherwise could be challenging to monitor using conventional techniques. Here, we assess the ability of eDNA sampling to detect the presence or absence of one species at risk (Blanding's turtle) and two invasive species (chain pickerel and smallmouth bass) in Kejimkujik National Park and National Historic Site, Nova Scotia, where the aquatic system is highly acidic and rich in organic compounds. Five replicates of 1 L water samples were taken per sampling site. Water filtration and eDNA extractions were performed on-site, while qPCR reactions were performed in the laboratory using species-specific assays. Samples were treated with an inhibition removal kit and analyzed pre- and post-inhibition removal. Despite the low pH and PCR inhibitors in water samples, our results showed positive eDNA detections in almost all expected positive sites (except in one site for Blanding's turtle). Detections of the target species were also observed at sites where their presence was previously unknown. Our study supports the advantage of eDNA to monitor species at low densities, revealing new distributions or recently invaded areas. We also demonstrate how eDNA can directly instruct management strategies in Kejimkujik.
Collapse
Affiliation(s)
- Tzitziki Loeza-Quintana
- Biodiversity Institute of Ontario and Department of Integrative Biology, University of Guelph, Ontario, Canada
| | - Steven Crookes
- Biodiversity Institute of Ontario and Department of Integrative Biology, University of Guelph, Ontario, Canada
| | - Pei Yuan Li
- Biodiversity Institute of Ontario and Department of Integrative Biology, University of Guelph, Ontario, Canada
| | - Darrin P Reid
- Kejimkujik National Park and National Historic Site of Canada, Parks Canada, Nova Scotia, Canada
| | - Matthew Smith
- Kejimkujik National Park and National Historic Site of Canada, Parks Canada, Nova Scotia, Canada
| | - Robert H Hanner
- Biodiversity Institute of Ontario and Department of Integrative Biology, University of Guelph, Ontario, Canada
| |
Collapse
|
19
|
Edmunds RC, Burrows D. Got Glycogen?: Development and Multispecies Validation of the Novel Preserve, Precipitate, Lyse, Precipitate, Purify (PPLPP) Workflow for Environmental DNA Extraction from Longmire's Preserved Water Samples. J Biomol Tech 2020; 31:125-150. [PMID: 33100918 DOI: 10.7171/jbt.20-3104-003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Unfiltered and filtered water samples can be used to collect environmental DNA (eDNA). We developed the novel "Preserve, Precipitate, Lyse, Precipitate, Purify" (PPLPP) workflow to efficiently extract eDNA from Longmire's preserved unfiltered and filtered water samples (44-100% recovery). The PPLPP workflow includes initial glycogen-aided isopropanol precipitation, guanidium hypochlorite and Triton X-100-based lysis, terminal glycogen-aided polyethylene glycol precipitation, and inhibitor purification. Three novel eDNA assays that exclusively target species invasive to Australia were also developed: Tilapia_v2_16S concurrently targets Oreochromis mossambicus (Mozambique tilapia) and Tilapia mariae (spotted tilapia) while R.marina_16S and C.caroliniana_matK discretely target Rhinella marina (cane toad) and Cabomba caroliniana (fanwort), respectively. All 3 assays were validated in silico before in vitro and in situ validations using PPLPP workflow extracted samples. PPLPP workflow was concurrently validated in vitro and in situ using all 3 assays. In vitro validations demonstrated that 1) glycogen inclusion increased extracellular DNA recovery by ∼48-fold compared with glycogen exclusion, 2) swinging-bucket centrifugation for 90 min at 3270 g is equivalent to fixed-angle centrifugation for 5-20 min at 6750 g, and 3) Zymo OneStep Inhibitor Removal Kit, Qiagen DNeasy PowerClean Pro Cleanup Kit, and silica-Zymo double purification provide effective inhibitor removal. In situ validation demonstrated 95.8 ± 2.8% (mean ± SEM) detectability across all 3 target species in Longmire's preserved unfiltered and filtered water samples extracted using the PPLPP workflow (without phenol:chloroform:isoamyl alcohol purification) after 39 d of incubation at room temperature and 50°C. PPLPP workflow is recommended for future temperate and tropical eDNA studies that use Longmire's to preserve unfiltered or filtered water samples.
Collapse
Affiliation(s)
- Richard C Edmunds
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University, Townsville 4811, Queensland, Australia
| | - Damien Burrows
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University, Townsville 4811, Queensland, Australia
| |
Collapse
|
20
|
Zhang S, Zhao J, Yao M. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13485] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shan Zhang
- School of Life Sciences Peking University Beijing China
- Institute of Ecology College of Urban and Environmental Sciences Peking University Beijing China
| | - Jindong Zhao
- School of Life Sciences Peking University Beijing China
- Institute of Ecology College of Urban and Environmental Sciences Peking University Beijing China
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology Chinese Academy of Sciences Wuhan China
| | - Meng Yao
- School of Life Sciences Peking University Beijing China
- Institute of Ecology College of Urban and Environmental Sciences Peking University Beijing China
| |
Collapse
|
21
|
|
22
|
McElroy ME, Dressler TL, Titcomb GC, Wilson EA, Deiner K, Dudley TL, Eliason EJ, Evans NT, Gaines SD, Lafferty KD, Lamberti GA, Li Y, Lodge DM, Love MS, Mahon AR, Pfrender ME, Renshaw MA, Selkoe KA, Jerde CL. Calibrating Environmental DNA Metabarcoding to Conventional Surveys for Measuring Fish Species Richness. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00276] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
23
|
Qualitative and quantitative detection using eDNA technology: A case study of Fenneropenaeus chinensis in the Bohai Sea. AQUACULTURE AND FISHERIES 2020. [DOI: 10.1016/j.aaf.2020.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Crookes S, Heer T, Castañeda RA, Mandrak NE, Heath DD, Weyl OLF, MacIsaac HJ, Foxcroft LC. Monitoring the silver carp invasion in Africa: a case study using environmental DNA (eDNA) in dangerous watersheds. NEOBIOTA 2020. [DOI: 10.3897/neobiota.56.47475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Biodiverse habitats are increasingly subject to an intensification of anthropogenic stressors that may severely diminish species richness. Invasive species pose a dominant threat to biodiversity and biosecurity, particularly in biodiversity hotspots like Kruger National Park, South Africa. The invasive silver carp, Hypophthalmichthys molitrix, was introduced into the Olifants River and may experience range spread owing to favorable environmental conditions. Intensive monitoring protocols are necessary to effectively manage invasions of species like silver carp. Unfortunately, tropical and sub-tropical aquatic systems are difficult to monitor using conventional methods (e.g., netting, electrofishing and snorkeling) owing to a range of factors including the presence of dangerous megafauna. Conservation of such systems may be advanced by the adoption of novel methods, including environmental DNA (eDNA) detection. Here, we explore the utility of environmental DNA (eDNA) to conduct safe, reliable and repeatable surveys in dangerous watersheds using silver carp as a case study. We conducted eDNA surveys at 12 sites in two neighbouring watersheds, and determined that the species has expanded its range within the Olifants River and to the south in the Sabie River. Expansion in the former is consistent with the presence of suitable spawning conditions. We discuss the implications of this survey for biodiversity monitoring in similar aquatic systems in the tropics and advocate an integrative approach to biomonitoring in these ecosystems.
Collapse
|
25
|
Edge TA, Baird DJ, Bilodeau G, Gagné N, Greer C, Konkin D, Newton G, Séguin A, Beaudette L, Bilkhu S, Bush A, Chen W, Comte J, Condie J, Crevecoeur S, El-Kayssi N, Emilson EJS, Fancy DL, Kandalaft I, Khan IUH, King I, Kreutzweiser D, Lapen D, Lawrence J, Lowe C, Lung O, Martineau C, Meier M, Ogden N, Paré D, Phillips L, Porter TM, Sachs J, Staley Z, Steeves R, Venier L, Veres T, Watson C, Watson S, Macklin J. The Ecobiomics project: Advancing metagenomics assessment of soil health and freshwater quality in Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:135906. [PMID: 31926407 DOI: 10.1016/j.scitotenv.2019.135906] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Transformative advances in metagenomics are providing an unprecedented ability to characterize the enormous diversity of microorganisms and invertebrates sustaining soil health and water quality. These advances are enabling a better recognition of the ecological linkages between soil and water, and the biodiversity exchanges between these two reservoirs. They are also providing new perspectives for understanding microorganisms and invertebrates as part of interacting communities (i.e. microbiomes and zoobiomes), and considering plants, animals, and humans as holobionts comprised of their own cells as well as diverse microorganisms and invertebrates often acquired from soil and water. The Government of Canada's Genomics Research and Development Initiative (GRDI) launched the Ecobiomics Project to coordinate metagenomics capacity building across federal departments, and to apply metagenomics to better characterize microbial and invertebrate biodiversity for advancing environmental assessment, monitoring, and remediation activities. The Project has adopted standard methods for soil, water, and invertebrate sampling, collection and provenance of metadata, and nucleic acid extraction. High-throughput sequencing is located at a centralized sequencing facility. A centralized Bioinformatics Platform was established to enable a novel government-wide approach to harmonize metagenomics data collection, storage and bioinformatics analyses. Sixteen research projects were initiated under Soil Microbiome, Aquatic Microbiome, and Invertebrate Zoobiome Themes. Genomic observatories were established at long-term environmental monitoring sites for providing more comprehensive biodiversity reference points to assess environmental change.
Collapse
Affiliation(s)
- Thomas A Edge
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Donald J Baird
- Environment and Climate Change Canada @ Canadian Rivers Institute, Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada.
| | | | - Nellie Gagné
- Fisheries and Oceans Canada, Moncton, New Brunswick, Canada
| | - Charles Greer
- National Research Council Canada, Montreal, Quebec, Canada
| | - David Konkin
- National Research Council Canada, Saskatoon, Saskatchewan, Canada
| | - Glen Newton
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | | | - Lee Beaudette
- Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Satpal Bilkhu
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Alexander Bush
- Environment and Climate Change Canada @ Canadian Rivers Institute, Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Wen Chen
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Jérôme Comte
- Environment and Climate Change Canada, Burlington, Ontario, Canada; Institut National de la Recherche Scientifique, Québec, Québec, Canada
| | - Janet Condie
- National Research Council Canada, Saskatoon, Saskatchewan, Canada
| | | | | | - Erik J S Emilson
- Natural Resources Canada, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | - Donna-Lee Fancy
- National Research Council Canada, Saskatoon, Saskatchewan, Canada
| | - Iyad Kandalaft
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Izhar U H Khan
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Ian King
- Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - David Kreutzweiser
- Natural Resources Canada, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | - David Lapen
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - John Lawrence
- Environment and Climate Change Canada, Saskatoon, Saskatchewan, Canada
| | - Christine Lowe
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Oliver Lung
- Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | | | - Matthew Meier
- Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Nicholas Ogden
- Public Health Agency of Canada, St. Hyacinthe, Quebec, Canada
| | - David Paré
- Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Lori Phillips
- Agriculture and Agri-Food Canada, Harrow, Ontario, Canada
| | - Teresita M Porter
- Natural Resources Canada, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada; Biodiversity Institute of Ontario, University of Guelph, Ontario, Canada
| | - Joel Sachs
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Zachery Staley
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Royce Steeves
- Fisheries and Oceans Canada, Moncton, New Brunswick, Canada
| | - Lisa Venier
- Natural Resources Canada, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | - Teodor Veres
- National Research Council Canada, Ottawa, Ontario, Canada
| | - Cynthia Watson
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Susan Watson
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - James Macklin
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| |
Collapse
|
26
|
Wang P, Yan Z, Yang S, Wang S, Zheng X, Fan J, Zhang T. Environmental DNA: An Emerging Tool in Ecological Assessment. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:651-656. [PMID: 31583422 DOI: 10.1007/s00128-019-02720-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Environmental DNA (eDNA), as a recent research hotspot in environmental science, the use of eDNA in biological monitoring has the advantages of sensitivity and time/labor saving. The eDNA technology combined with scientific advancement has been applied in investigations of target species (such as invasive species, endangered species and other rare species), biomass, and biodiversity. In addition, ecotoxicology studies and environmental pollution impact assessments based on the development of eDNA technology have gradually emerged in recent years. In this article, we summarizes the application of eDNA in ecological assessment, include species diversity assessment and chemical contamination impacts assessment, provide guiding questions for study design. We additionally discuss current challenges associated with eDNA. Finally, looking to the future, we discuss the opportunities of eDNA technology in environmental protein, environmental sample processor and ecogenomic sensors.
Collapse
Affiliation(s)
- Pengyuan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China.
| | - Suwen Yang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Xin Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Juntao Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Tianxu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| |
Collapse
|
27
|
Lamothe KA, Dextrase AJ, Drake DAR. Aggregation of two imperfectly detected imperilled freshwater fishes: understanding community structure and co-occurrence for multispecies conservation. ENDANGER SPECIES RES 2019. [DOI: 10.3354/esr00982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Monitoring spawning migrations of potamodromous fish species via eDNA. Sci Rep 2019; 9:15388. [PMID: 31659232 PMCID: PMC6817844 DOI: 10.1038/s41598-019-51398-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/17/2019] [Indexed: 11/15/2022] Open
Abstract
Potamodromous fish are considered important indicators of habitat connectivity in freshwater ecosystems, but they are globally threatened by anthropogenic impacts. Hence, non-invasive techniques are necessary for monitoring during spawning migrations. The use of environmental DNA (eDNA) potentially facilitates these efforts, albeit quantitative examinations of spawning migrations remain so far mostly uncharted. Here, we investigated spawning migrations of Danube bleak, Alburnus mento, and Vimba bream, Vimba vimba, and found a strong correlation between daily visual fish counts and downstream eDNA signals obtained from filtered water samples analysed with digital PCR and end-point PCR coupled with capillary electrophoresis. By accounting for daily discharge fluctuations, it was possible to predict eDNA signal strength from the number of migrating fish: first, the whole spawning reach was taken into account. Second, the model was validated using eDNA signals and fish counts obtained from the upper half of the examined river stretch. Consequently, fish counts and their day-to-day changes could be described via an eDNA-based time series model for the whole migration period. Our findings highlight the capability of eDNA beyond delivering simple presence/absence data towards efficient and informative monitoring of highly dynamic aquatic processes such as spawning migrations of potamodromous fish species.
Collapse
|
29
|
Nanomaterials as efficient platforms for sensing DNA. Biomaterials 2019; 214:119215. [DOI: 10.1016/j.biomaterials.2019.05.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
|
30
|
McDevitt AD, Sales NG, Browett SS, Sparnenn AO, Mariani S, Wangensteen OS, Coscia I, Benvenuto C. Environmental DNA metabarcoding as an effective and rapid tool for fish monitoring in canals. JOURNAL OF FISH BIOLOGY 2019; 95:679-682. [PMID: 31183856 DOI: 10.1111/jfb.14053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
We focus on a case study along an English canal comparing environmental DNA (eDNA) metabarcoding with two types of electrofishing techniques (wade-and-reach and boom-boat). In addition to corroborating data obtained by electrofishing, eDNA provided a wider snapshot of fish assemblages. Given the semi-lotic nature of canals, we encourage the use of eDNA as a fast and cost-effective tool to detect and monitor whole fish communities.
Collapse
Affiliation(s)
- Allan D McDevitt
- Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Naiara Guimarães Sales
- Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Samuel S Browett
- Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Abbie O Sparnenn
- Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Stefano Mariani
- Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Owen S Wangensteen
- Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| | - Ilaria Coscia
- Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Chiara Benvenuto
- Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford, Salford, UK
| |
Collapse
|
31
|
Lavender TM, Schamp BS, Arnott SE, Rusak JA. A comparative evaluation of five common pairwise tests of species association. Ecology 2019; 100:e02640. [DOI: 10.1002/ecy.2640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/05/2019] [Accepted: 01/16/2019] [Indexed: 11/08/2022]
Affiliation(s)
| | - Brandon S. Schamp
- Department of Biology Algoma University Sault Ste. Marie Ontario P6A 2G4 Canada
| | - Shelley E. Arnott
- Department of Biological Sciences Queen's University Kingston Ontario K7L 3N6 Canada
| | - James A. Rusak
- Department of Biological Sciences Queen's University Kingston Ontario K7L 3N6 Canada
- Dorset Environmental Science Centre Dorset Ontario P0A 1E0 Canada
| |
Collapse
|
32
|
Jerde CL, Wilson EA, Dressler TL. Measuring global fish species richness with eDNA metabarcoding. Mol Ecol Resour 2019; 19:19-22. [PMID: 30701707 DOI: 10.1111/1755-0998.12929] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 06/26/2018] [Indexed: 11/30/2022]
Abstract
Despite mounting threats to global freshwater and marine biodiversity, including climate change, habitat alteration, overharvesting and pollution, we struggle to know which species are present below the water's surface that are suffering from these stressors. However, the idea that a water sample containing environmental DNA (eDNA) can be screened using high-throughput sequencing and bioinformatics to reveal the identity of aquatic species is a revolutionary advance for studying the patterns of species extirpation, invasive species establishment and the dynamics of species richness. To date, many of the critical tests of fisheries diversity using this metabarcoding approach have been conducted in lower diversity systems (<40 fish species), but in this issue of Molecular Ecology Resources, Cilleros et al. (2018) described their eDNA application in the species-rich French Guiana fishery (>200 fish species) and showed the greater potential and some limitations of using eDNA in species-rich environments.
Collapse
Affiliation(s)
- Christopher L Jerde
- Marine Science Institute, University of California, Santa Barbara, California
| | - Emily A Wilson
- Marine Science Institute, University of California, Santa Barbara, California
| | - Terra L Dressler
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California
| |
Collapse
|
33
|
Jo T, Murakami H, Yamamoto S, Masuda R, Minamoto T. Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution. Ecol Evol 2019; 9:1135-1146. [PMID: 30805147 PMCID: PMC6374661 DOI: 10.1002/ece3.4802] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/22/2022] Open
Abstract
Environmental DNA (eDNA) analysis has successfully detected organisms in various aquatic environments. However, there is little basic information on eDNA, including the eDNA shedding and degradation processes. This study focused on water temperature and fish biomass and showed that eDNA shedding, degradation, and size distribution varied depending on water temperature and fish biomass. The tank experiments consisted of four temperature levels and three fish biomass levels. The total eDNA and size-fractioned eDNA from Japanese Jack Mackerels (Trachurus japonicus) were quantified before and after removing the fish. The results showed that the eDNA shedding rate increased at higher water temperature and larger fish biomass, and the eDNA decay rate also increased at higher temperature and fish biomass. In addition, the small-sized eDNA fractions were proportionally larger at higher temperatures, and these proportions varied among fish biomass. After removing the fish from the tanks, the percentage of eDNA temporally decreased when the eDNA size fraction was >10 µm, while the smaller size fractions increased. These results have the potential to make the use of eDNA analysis more widespread in the future.
Collapse
Affiliation(s)
- Toshiaki Jo
- Graduate School of Human Development and EnvironmentKobe UniversityKobe CityJapan
| | | | - Satoshi Yamamoto
- Graduate School of Human Development and EnvironmentKobe UniversityKobe CityJapan
- Department of Zoology, Graduate School of ScienceKyoto UniversityKyotoJapan
| | - Reiji Masuda
- Maizuru Fisheries Research StationKyoto UniversityKyotoJapan
| | - Toshifumi Minamoto
- Graduate School of Human Development and EnvironmentKobe UniversityKobe CityJapan
| |
Collapse
|
34
|
Cornman RS, McKenna JE, Fike J, Oyler-McCance SJ, Johnson R. An experimental comparison of composite and grab sampling of stream water for metagenetic analysis of environmental DNA. PeerJ 2018; 6:e5871. [PMID: 30568849 PMCID: PMC6286662 DOI: 10.7717/peerj.5871] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/03/2018] [Indexed: 11/20/2022] Open
Abstract
Use of environmental DNA (eDNA) to assess distributions of aquatic and semi-aquatic macroorganisms is promising, but sampling schemes may need to be tailored to specific objectives. Given the potentially high variance in aquatic eDNA among replicate grab samples, compositing smaller water volumes collected over a period of time may be more effective for some applications. In this study, we compared eDNA profiles from composite water samples aggregated over three hours with grab water samples. Both sampling patterns were performed with identical autosamplers paired at two different sites in a headwater stream environment, augmented with exogenous fish eDNA from an upstream rearing facility. Samples were filtered through 0.8 μm cellulose nitrate filters and DNA was extracted with a cetyl trimethylammonium bromide procedure. Eukaryotic and bacterial community profiles were derived by amplicon sequencing of 12S ribosomal, 16S ribosomal, and cytochrome oxidase I loci. Operational taxa were assigned to genus with a lowest common ancestor approach for eukaryotes and to family with the RDP Classifier software for prokaryotes. Eukaryotic community profiles were more consistent with composite sampling than grab sampling. Downstream, rarefaction curves suggested faster taxon accumulation for composite samples, and estimated richness was higher for composite samples as a set than for grab samples. Upstream, composite sampling produced lower estimated richness than grab samples, but with overlapping standard errors. Furthermore, a bimodal pattern of richness as a function of sequence counts suggested the impact of clumped particles on upstream samples. Bacterial profiles were insensitive to sample method, consistent with the more even dispersion expected for bacteria compared with eukaryotic eDNA. Overall, samples composited over 3 h performed equal to or better than triplicate grab sampling for quantitative community metrics, despite the higher total sequencing effort provided to grab replicates. On the other hand, taxon-specific detection rates did not differ appreciably and the two methods gave similar estimates of the ratio of the common fish genera Salmo and Coregonus at each site. Unexpectedly, Salmo eDNA dropped out substantially faster than Coregonus eDNA between the two sites regardless of sampling method, suggesting that differential settling affects the estimation of relative abundance. We identified bacterial patterns that were associated with eukaryotic diversity, suggesting potential roles as biomarkers of sample representativeness.
Collapse
Affiliation(s)
- Robert S. Cornman
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, CO, USA
| | - James E. McKenna
- Great Lakes Science Center, Tunison Aquatic Laboratory, U.S. Geological Survey, Cortland, NY, USA
| | - Jennifer Fike
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, CO, USA
| | | | | |
Collapse
|
35
|
Kandlikar GS, Gold ZJ, Cowen MC, Meyer RS, Freise AC, Kraft NJB, Moberg-Parker J, Sprague J, Kushner DJ, Curd EE. ranacapa: An R package and Shiny web app to explore environmental DNA data with exploratory statistics and interactive visualizations. F1000Res 2018; 7:1734. [PMID: 30613396 PMCID: PMC6305237 DOI: 10.12688/f1000research.16680.1] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/23/2018] [Indexed: 11/29/2022] Open
Abstract
Environmental DNA (eDNA) metabarcoding is becoming a core tool in ecology and conservation biology, and is being used in a growing number of education, biodiversity monitoring, and public outreach programs in which professional research scientists engage community partners in primary research. Results from eDNA analyses can engage and educate natural resource managers, students, community scientists, and naturalists, but without significant training in bioinformatics, it can be difficult for this diverse audience to interact with eDNA results. Here we present the R package ranacapa, at the core of which is a Shiny web app that helps perform exploratory biodiversity analyses and visualizations of eDNA results. The app requires a taxonomy-by-sample matrix and a simple metadata file with descriptive information about each sample. The app enables users to explore the data with interactive figures and presents results from simple community ecology analyses. We demonstrate the value of ranacapa to two groups of community partners engaging with eDNA metabarcoding results.
Collapse
Affiliation(s)
- Gaurav S Kandlikar
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zachary J Gold
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Madeline C Cowen
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Rachel S Meyer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Amanda C Freise
- Department of Microbiology and Microbial Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Nathan J B Kraft
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jordan Moberg-Parker
- Department of Microbiology and Microbial Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Joshua Sprague
- Channel Islands National Park, National Park Service, Ventura, CA, USA
| | - David J Kushner
- Channel Islands National Park, National Park Service, Ventura, CA, USA
| | - Emily E Curd
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
36
|
Cornman RS, McKenna JE, Fike J, Oyler-McCance SJ, Johnson R. An experimental comparison of composite and grab sampling of stream water for metagenetic analysis of environmental DNA. PeerJ 2018; 6:e5871. [PMID: 30568849 DOI: 10.7717/peerj] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/03/2018] [Indexed: 05/20/2023] Open
Abstract
Use of environmental DNA (eDNA) to assess distributions of aquatic and semi-aquatic macroorganisms is promising, but sampling schemes may need to be tailored to specific objectives. Given the potentially high variance in aquatic eDNA among replicate grab samples, compositing smaller water volumes collected over a period of time may be more effective for some applications. In this study, we compared eDNA profiles from composite water samples aggregated over three hours with grab water samples. Both sampling patterns were performed with identical autosamplers paired at two different sites in a headwater stream environment, augmented with exogenous fish eDNA from an upstream rearing facility. Samples were filtered through 0.8 μm cellulose nitrate filters and DNA was extracted with a cetyl trimethylammonium bromide procedure. Eukaryotic and bacterial community profiles were derived by amplicon sequencing of 12S ribosomal, 16S ribosomal, and cytochrome oxidase I loci. Operational taxa were assigned to genus with a lowest common ancestor approach for eukaryotes and to family with the RDP Classifier software for prokaryotes. Eukaryotic community profiles were more consistent with composite sampling than grab sampling. Downstream, rarefaction curves suggested faster taxon accumulation for composite samples, and estimated richness was higher for composite samples as a set than for grab samples. Upstream, composite sampling produced lower estimated richness than grab samples, but with overlapping standard errors. Furthermore, a bimodal pattern of richness as a function of sequence counts suggested the impact of clumped particles on upstream samples. Bacterial profiles were insensitive to sample method, consistent with the more even dispersion expected for bacteria compared with eukaryotic eDNA. Overall, samples composited over 3 h performed equal to or better than triplicate grab sampling for quantitative community metrics, despite the higher total sequencing effort provided to grab replicates. On the other hand, taxon-specific detection rates did not differ appreciably and the two methods gave similar estimates of the ratio of the common fish genera Salmo and Coregonus at each site. Unexpectedly, Salmo eDNA dropped out substantially faster than Coregonus eDNA between the two sites regardless of sampling method, suggesting that differential settling affects the estimation of relative abundance. We identified bacterial patterns that were associated with eukaryotic diversity, suggesting potential roles as biomarkers of sample representativeness.
Collapse
Affiliation(s)
- Robert S Cornman
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, CO, USA
| | - James E McKenna
- Great Lakes Science Center, Tunison Aquatic Laboratory, U.S. Geological Survey, Cortland, NY, USA
| | - Jennifer Fike
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, CO, USA
| | | | | |
Collapse
|
37
|
Muha TP, Rodríguez-Rey M, Rolla M, Tricarico E. Using Environmental DNA to Improve Species Distribution Models for Freshwater Invaders. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|