1
|
Sparks MM, Schraidt CE, Yin X, Seeb LW, Christie MR. Rapid genetic adaptation to a novel ecosystem despite a large founder event. Mol Ecol 2024; 33:e17121. [PMID: 37668092 DOI: 10.1111/mec.17121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023]
Abstract
Introduced and invasive species make excellent natural experiments for investigating rapid evolution. Here, we describe the effects of genetic drift and rapid genetic adaptation in pink salmon (Oncorhynchus gorbuscha) that were accidentally introduced to the Great Lakes via a single introduction event 31 generations ago. Using whole-genome resequencing for 134 fish spanning five sample groups across the native and introduced range, we estimate that the source population's effective population size was 146,886 at the time of introduction, whereas the founding population's effective population size was just 72-a 2040-fold decrease. As expected with a severe founder event, we show reductions in genome-wide measures of genetic diversity, specifically a 37.7% reduction in the number of SNPs and an 8.2% reduction in observed heterozygosity. Despite this decline in genetic diversity, we provide evidence for putative selection at 47 loci across multiple chromosomes in the introduced populations, including missense variants in genes associated with circadian rhythm, immunological response and maturation, which match expected or known phenotypic changes in the Great Lakes. For one of these genes, we use a species-specific agent-based model to rule out genetic drift and conclude our results support a strong response to selection occurring in a period gene (per2) that plays a predominant role in determining an organism's daily clock, matching large day length differences experienced by introduced salmon during important phenological periods. Together, these results inform how populations might evolve rapidly to new environments, even with a small pool of standing genetic variation.
Collapse
Affiliation(s)
- Morgan M Sparks
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Claire E Schraidt
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Xiaoshen Yin
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lisa W Seeb
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Mark R Christie
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
2
|
Kobayashi KM, Bond RM, Reid K, Garza JC, Kiernan JD, Palkovacs EP. Genetic divergence and one-way gene flow influence contemporary evolution and ecology of a partially migratory fish. Evol Appl 2024; 17:e13712. [PMID: 38911264 PMCID: PMC11192968 DOI: 10.1111/eva.13712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/05/2024] [Accepted: 04/14/2024] [Indexed: 06/25/2024] Open
Abstract
Recent work has revealed the importance of contemporary evolution in shaping ecological outcomes. In particular, rapid evolutionary divergence between populations has been shown to impact the ecology of populations, communities, and ecosystems. While studies have focused largely on the role of adaptive divergence in generating ecologically important variation among populations, much less is known about the role of gene flow in shaping ecological outcomes. After divergence, populations may continue to interact through gene flow, which may influence evolutionary and ecological processes. Here, we investigate the role of gene flow in shaping the contemporary evolution and ecology of recently diverged populations of anadromous steelhead and resident rainbow trout (Oncorhynchus mykiss). Results show that resident rainbow trout introduced above waterfalls have diverged evolutionarily from downstream anadromous steelhead, which were the source of introductions. However, the movement of fish from above to below the waterfalls has facilitated gene flow, which has reshaped genetic and phenotypic variation in the anadromous source population. In particular, gene flow has led to an increased frequency of residency, which in turn has altered population density, size structure, and sex ratio. This result establishes gene flow as a contemporary evolutionary process that can have important ecological outcomes. From a management perspective, anadromous steelhead are generally regarded as a higher conservation priority than resident rainbow trout, even when found within the same watershed. Our results show that anadromous and resident O. mykiss populations may be connected via gene flow, with important ecological consequences. Such eco-evolutionary processes should be considered when managing recently diverged populations connected by gene flow.
Collapse
Affiliation(s)
- Katie M. Kobayashi
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
- Fisheries Collaborative Program, Institute of Marine SciencesUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Rosealea M. Bond
- Fisheries Collaborative Program, Institute of Marine SciencesUniversity of CaliforniaSanta CruzCaliforniaUSA
- Southwest Fisheries Science CenterNational Marine Fisheries ServiceSanta CruzCaliforniaUSA
| | - Kerry Reid
- Area of Ecology and Biodiversity, School of Biological SciencesUniversity of Hong KongHong KongHong Kong, SAR
| | - J. Carlos Garza
- Fisheries Collaborative Program, Institute of Marine SciencesUniversity of CaliforniaSanta CruzCaliforniaUSA
- Southwest Fisheries Science CenterNational Marine Fisheries ServiceSanta CruzCaliforniaUSA
- Department of Ocean SciencesUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Joseph D. Kiernan
- Fisheries Collaborative Program, Institute of Marine SciencesUniversity of CaliforniaSanta CruzCaliforniaUSA
- Southwest Fisheries Science CenterNational Marine Fisheries ServiceSanta CruzCaliforniaUSA
| | - Eric P. Palkovacs
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
- Fisheries Collaborative Program, Institute of Marine SciencesUniversity of CaliforniaSanta CruzCaliforniaUSA
| |
Collapse
|
3
|
Dai JX, Cao LJ, Chen JC, Yang F, Shen XJ, Ma LJ, Hoffmann AA, Chen M, Wei SJ. Testing for adaptive changes linked to range expansion following a single introduction of the fall webworm. Mol Ecol 2024; 33:e17038. [PMID: 37277936 DOI: 10.1111/mec.17038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Adaptive evolution following colonization can affect the impact of invasive species. The fall webworm (FWW) invaded China 40 years ago through a single introduction event involving a severe bottleneck and subsequently diverged into two genetic groups. The well-recorded invasion history of FWW, coupled with a clear pattern of genetic divergence, provides an opportunity to investigate whether there is any sign of adaptive evolution following the invasion. Based on genome-wide SNPs, we identified genetically separated western and eastern groups of FWW and correlated spatial variation in SNPs with geographical and climatic factors. Geographical factors explained a similar proportion of the genetic variation across all populations compared with climatic factors. However, when the two population groups were analysed separately, environmental factors explained more variation than geographical factors. SNP outliers in populations of the western group had relatively stronger response to precipitation than temperature-related variables. Functional annotation of SNP outliers identified genes associated with insect cuticle protein potentially related to desiccation adaptation in the western group and genes associated with lipase biosynthesis potentially related to temperature adaptation in the eastern group. Our study suggests that invasive species may maintain the evolutionary potential to adapt to heterogeneous environments despite a single invasion event. The molecular data suggest that quantitative trait comparisons across environments would be worthwhile.
Collapse
Affiliation(s)
- Jin-Xu Dai
- Beijing Key Laboratory for Forest Pests Control, Beijing Forestry University, Beijing, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fangyuan Yang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiu-Jing Shen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Jun Ma
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ary Anthony Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Min Chen
- Beijing Key Laboratory for Forest Pests Control, Beijing Forestry University, Beijing, China
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
4
|
Ara MG, McCulloch GA, Dutoit L, Wallis GP, Ingram T. Genomics reveals repeated landlocking of diadromous fish on an isolated island. Ecol Evol 2024; 14:e10987. [PMID: 38371863 PMCID: PMC10870334 DOI: 10.1002/ece3.10987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 02/20/2024] Open
Abstract
Landlocking of diadromous fish in freshwater systems can have significant genomic consequences. For instance, the loss of the migratory life stage can dramatically reduce gene flow across populations, leading to increased genetic structuring and stronger effects of local adaptation. These genomic consequences have been well-studied in some mainland systems, but the evolutionary impacts of landlocking in island ecosystems are largely unknown. In this study, we used a genotyping-by-sequencing (GBS) approach to examine the evolutionary history of landlocking in common smelt (Retropinna retropinna) on Chatham Island, a small isolated oceanic island 800 kilometres east of mainland New Zealand. We examined the relationship between Chatham Island and mainland smelt and used coalescent analyses to test the number and timing of landlocking events on Chatham Island. Our genomic analysis, based on 21,135 SNPs across 169 individuals, revealed that the Chatham Island smelt was genomically distinct from the mainland New Zealand fish, consistent with a single ancestral colonisation event of Chatham Island in the Pleistocene. Significant genetic structure was also evident within the Chatham Island smelt, with a diadromous Chatham Island smelt group, along with three geographically structured landlocked groups. Coalescent demographic analysis supported three independent landlocking events, with this loss of diadromy significantly pre-dating human colonisation. Our results illustrate how landlocking of diadromous fish can occur repeatedly across a narrow spatial scale, and highlight a unique system to study the genomic basis of repeated adaptation.
Collapse
Affiliation(s)
- Motia G. Ara
- Department of ZoologyUniversity of OtagoDunedinNew Zealand
- Department of Marine Fisheries and OceanographyPatuakhali Science and Technology UniversityPatuakhaliBangladesh
| | | | - Ludovic Dutoit
- Department of ZoologyUniversity of OtagoDunedinNew Zealand
| | | | - Travis Ingram
- Department of ZoologyUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
5
|
Sidlauskas BL, Mathur S, Aydoğan H, Monzyk FR, Black AN. Genetic approaches reveal a healthy population and an unexpectedly recent origin for an isolated desert spring fish. BMC Ecol Evol 2024; 24:2. [PMID: 38177987 PMCID: PMC10765885 DOI: 10.1186/s12862-023-02191-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024] Open
Abstract
Foskett Spring in Oregon's desert harbors a historically threatened population of Western Speckled Dace (Rhinichthys klamathensis). Though recently delisted, the dace's recruitment depends upon regular removal of encroaching vegetation. Previous studies assumed that Foskett Dace separated from others in the Warner Valley about 10,000 years ago, thereby framing an enigma about the population's surprising ability to persist for so long in a tiny habitat easily overrun by plants. To investigate that persistence and the effectiveness of interventions to augment population size, we assessed genetic diversity among daces inhabiting Foskett Spring, a refuge at Dace Spring, and three nearby streams. Analysis revealed a robust effective population size (Ne) of nearly 5000 within Foskett Spring, though Ne in the Dace Spring refuge is just 10% of that value. Heterozygosity is slightly lower than expected based on random mating at all five sites, indicating mild inbreeding, but not at a level of concern. These results confirm the genetic health of Foskett Dace. Unexpectedly, genetic differentiation reveals closer similarity between Foskett Dace and a newly discovered population from Nevada's Coleman Creek than between Foskett Dace and dace elsewhere in Oregon. Demographic modeling inferred Coleman Creek as the ancestral source of Foskett Dace fewer than 1000 years ago, much more recently than previously suspected and possibly coincident with the arrival of large herbivores whose grazing may have maintained open water suitable for reproduction. These results solve the enigma of persistence by greatly shortening the duration over which Foskett Dace have inhabited their isolated spring.
Collapse
Affiliation(s)
- Brian L Sidlauskas
- Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, 104 Nash Hall, Corvallis, OR, 97331, USA.
| | - Samarth Mathur
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, 318 W 12th Ave, Columbus, OH, 43210, USA
| | - Hakan Aydoğan
- Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, 104 Nash Hall, Corvallis, OR, 97331, USA
| | - Fred R Monzyk
- Oregon Department of Fish and Wildlife, Corvallis Research Lab, 28655 OR-34, Corvallis, OR, 97333, USA
| | - Andrew N Black
- Center for Quantitative Life Sciences, Oregon State University, 2750 SW Campus Way, Corvallis, OR, 97331, USA
| |
Collapse
|
6
|
Cheek RG, McLaughlin JF, Gamboa MP, Marshall CA, Johnson BM, Silver DB, Mauro AA, Ghalambor CK. A lack of genetic diversity and minimal adaptive evolutionary divergence in introduced Mysis shrimp after 50 years. Evol Appl 2024; 17:e13637. [PMID: 38283609 PMCID: PMC10818135 DOI: 10.1111/eva.13637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/17/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024] Open
Abstract
The successes of introduced populations in novel habitats often provide powerful examples of evolution and adaptation. In the 1950s, opossum shrimp (Mysis diluviana) individuals from Clearwater Lake in Minnesota, USA were transported and introduced to Twin Lakes in Colorado, USA by fisheries managers to supplement food sources for trout. Mysis were subsequently introduced from Twin Lakes into numerous lakes throughout Colorado. Because managers kept detailed records of the timing of the introductions, we had the opportunity to test for evolutionary divergence within a known time interval. Here, we used reduced representation genomic data to investigate patterns of genetic diversity, test for genetic divergence between populations, and for evidence of adaptive evolution within the introduced populations in Colorado. We found very low levels of genetic diversity across all populations, with evidence for some genetic divergence between the Minnesota source population and the introduced populations in Colorado. There was little differentiation among the Colorado populations, consistent with the known provenance of a single founding population, with the exception of the population from Gross Reservoir, Colorado. Demographic modeling suggests that at least one undocumented introduction from an unknown source population hybridized with the population in Gross Reservoir. Despite the overall low genetic diversity we observed, F ST outlier and environmental association analyses identified multiple loci exhibiting signatures of selection and adaptive variation related to elevation and lake depth. The success of introduced species is thought to be limited by genetic variation, but our results imply that populations with limited genetic variation can become established in a wide range of novel environments. From an applied perspective, the observed patterns of divergence between populations suggest that genetic analysis can be a useful forensic tool to determine likely sources of invasive species.
Collapse
Affiliation(s)
- Rebecca G. Cheek
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
| | - Jessica F. McLaughlin
- Department of Environmental Science, Policy, and ManagementUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Maybellene P. Gamboa
- Department of Organismal Biology and EcologyColorado CollegeColorado SpringsColoradoUSA
| | - Craig A. Marshall
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Council on Science and TechnologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Brett M. Johnson
- Department of Fish, Wildlife and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Douglas B. Silver
- Department of Fish, Wildlife and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Alexander A. Mauro
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
- Department of Biology, Centre for Biodiversity Dynamics (CBD)Norwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Cameron K. Ghalambor
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
- Department of Biology, Centre for Biodiversity Dynamics (CBD)Norwegian University of Science and Technology (NTNU)TrondheimNorway
| |
Collapse
|
7
|
DeHaan LM, Burns MD, Egan JP, Bloom DD. Diadromy Drives Elevated Rates of Trait Evolution and Ecomorphological Convergence in Clupeiformes (Herring, Shad, and Anchovies). Am Nat 2023; 202:830-850. [PMID: 38033182 DOI: 10.1086/726894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AbstractMigration can have a profound influence on rates and patterns of phenotypic evolution. Diadromy is the migration between marine and freshwater habitats for feeding and reproduction that can require individuals to travel tens to thousands of kilometers. The high energetic demands of diadromy are predicted to select for ecomorphological traits that maximize swimming and locomotor efficiency. Intraspecific studies have shown repeated instances of divergence among diadromous and nondiadromous populations in locomotor and foraging traits, which suggests that at a macroevolutionary scale diadromous lineages may experience convergent evolution onto one or multiple adaptive optima. We tested for differences in rates and patterns of phenotypic evolution among diadromous and nondiadromous lineages in Clupeiformes, a clade that has evolved diadromy more than 10 times. Our results show that diadromous clupeiforms show convergent evolution for some locomotor traits and faster rates of evolution, which we propose are adaptive responses to the locomotor demands of migration. We also find evidence that diadromous lineages show convergence into multiple regions of multivariate trait space and suggest that these respective trait spaces are associated with differences in migration and trophic ecology. However, not all locomotor traits and no trophic traits show evidence of convergence or elevated rates of evolution associated with diadromy. Our results show that long-distance migration influences the tempo and patterns of phenotypic evolution at macroevolutionary scales, but there is not a single diadromous syndrome.
Collapse
|
8
|
Dussex N, Kurland S, Olsen RA, Spong G, Ericsson G, Ekblom R, Ryman N, Dalén L, Laikre L. Range-wide and temporal genomic analyses reveal the consequences of near-extinction in Swedish moose. Commun Biol 2023; 6:1035. [PMID: 37848497 PMCID: PMC10582009 DOI: 10.1038/s42003-023-05385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
Ungulate species have experienced severe declines over the past centuries through overharvesting and habitat loss. Even if many game species have recovered thanks to strict hunting regulation, the genome-wide impacts of overharvesting are still unclear. Here, we examine the temporal and geographical differences in genome-wide diversity in moose (Alces alces) over its whole range in Sweden by sequencing 87 modern and historical genomes. We found limited impact of the 1900s near-extinction event but local variation in inbreeding and load in modern populations, as well as suggestion of a risk of future reduction in genetic diversity and gene flow. Furthermore, we found candidate genes for local adaptation, and rapid temporal allele frequency shifts involving coding genes since the 1980s, possibly due to selective harvesting. Our results highlight that genomic changes potentially impacting fitness can occur over short time scales and underline the need to track both deleterious and selectively advantageous genomic variation.
Collapse
Affiliation(s)
- Nicolas Dussex
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden.
- Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05, Stockholm, Sweden.
- Norwegian University of Science and Technology, University Museum, Trondheim, NO-7491, Norway.
| | - Sara Kurland
- Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Remi-André Olsen
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE-171 21, Solna, Sweden
| | - Göran Spong
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Göran Ericsson
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Robert Ekblom
- Wildlife Analysis Unit, Swedish Environmental Protection Agency, SE-106 48, Stockholm, Sweden
| | - Nils Ryman
- Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden
- Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05, Stockholm, Sweden
| | - Linda Laikre
- Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
9
|
Tian F, Zhou B, Li X, Zhang Y, Qi D, Qi H, Jiang H, Zhao K, Liu S. Population genomics analysis to identify ion and water transporter genes involved in the adaptation of Tibetan naked carps to brackish water. Int J Biol Macromol 2023; 247:125605. [PMID: 37392922 DOI: 10.1016/j.ijbiomac.2023.125605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
Understanding how evolutionary processes shape the genetic variations and influence the response of species to environmental alterations is critical for biodiversity conservation and molecular breeding. Gymnocypris przewalskii przewalskii is the only known cyprinid fish that dwells in the brackish water of Lake Qinghai on the Qinghai-Tibetan Plateau. To reveal the genetic basis of its adaptation to high salinity and alkalinity, whole-genome sequencing was performed in G. p. przewalskii and its freshwater relatives Gymnocypris eckloni and Gymnocypris przewalskii ganzihonensis. Compared with freshwater species, lower genetic diversity and higher linkage disequilibrium were observed in G. p. przewalskii. Selective sweep analysis identified 424 core-selective genes enriched in transport activities. Transfection analysis showed that genetic changes in the positively selected gene aquaporin 3 (AQP3) improved cell viability after salt treatment, suggesting its involvement in brackish water adaptation. Our analysis indicates that ion and water transporter genes experienced intensive selection, which might have contributed to the maintenance of high osmolality and ion content in G. p. przewalskii. The current study identified key molecules involved in the adaptation of fish to brackish water, providing valuable genomic resources for the molecular breeding of salt-tolerant fish.
Collapse
Affiliation(s)
- Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bingzheng Zhou
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohuan Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Yu Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Hongfang Qi
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris przewalskii, The rescue center of Qinghai Lake Naked Carp, Xining, Qinghai, China
| | - Huamin Jiang
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris przewalskii, The rescue center of Qinghai Lake Naked Carp, Xining, Qinghai, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Sijia Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China.
| |
Collapse
|
10
|
Theissinger K, Fernandes C, Formenti G, Bista I, Berg PR, Bleidorn C, Bombarely A, Crottini A, Gallo GR, Godoy JA, Jentoft S, Malukiewicz J, Mouton A, Oomen RA, Paez S, Palsbøll PJ, Pampoulie C, Ruiz-López MJ, Secomandi S, Svardal H, Theofanopoulou C, de Vries J, Waldvogel AM, Zhang G, Jarvis ED, Bálint M, Ciofi C, Waterhouse RM, Mazzoni CJ, Höglund J. How genomics can help biodiversity conservation. Trends Genet 2023:S0168-9525(23)00020-3. [PMID: 36801111 DOI: 10.1016/j.tig.2023.01.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/08/2022] [Accepted: 01/19/2023] [Indexed: 02/18/2023]
Abstract
The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species. We review case studies to illustrate how reference genomes can facilitate biodiversity research and conservation across the tree of life. We conclude that the time is ripe to view reference genomes as fundamental resources and to integrate their use as a best practice in conservation genomics.
Collapse
Affiliation(s)
- Kathrin Theissinger
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325 Frankfurt/Main, Germany
| | - Carlos Fernandes
- CE3C - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Faculdade de Psicologia, Universidade de Lisboa, Alameda da Universidade, 1649-013 Lisboa, Portugal
| | - Giulio Formenti
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Iliana Bista
- Naturalis Biodiversity Center, Darwinweg 2, 2333, CR, Leiden, The Netherlands; Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Paul R Berg
- NIVA - Norwegian Institute for Water Research, Økernveien, 94, 0579 Oslo, Norway; Centre for Coastal Research, University of Agder, Gimlemoen 25j, 4630 Kristiansand, Norway; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO BOX 1066 Blinderm, 0316 Oslo, Norway
| | - Christoph Bleidorn
- University of Göttingen, Department of Animal Evolution and Biodiversity, Untere Karspüle, 2, 37073, Göttingen, Germany
| | | | - Angelica Crottini
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Rua Padre Armando Quintas, 7, 4485-661, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Guido R Gallo
- Department of Biosciences, University of Milan, Milan, Italy
| | - José A Godoy
- Estación Biológica de Doñana, CSIC, Calle Americo Vespucio 26, 41092, Sevillle, Spain
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO BOX 1066 Blinderm, 0316 Oslo, Norway
| | - Joanna Malukiewicz
- Primate Genetics Laborator, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| | - Alice Mouton
- InBios - Conservation Genetics Lab, University of Liege, Chemin de la Vallée 4, 4000, Liege, Belgium
| | - Rebekah A Oomen
- Centre for Coastal Research, University of Agder, Gimlemoen 25j, 4630 Kristiansand, Norway; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO BOX 1066 Blinderm, 0316 Oslo, Norway
| | - Sadye Paez
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Per J Palsbøll
- Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh, 9747, AG, Groningen, The Netherlands; Center for Coastal Studies, 5 Holway Avenue, Provincetown, MA 02657, USA
| | - Christophe Pampoulie
- Marine and Freshwater Research Institute, Fornubúðir, 5,220, Hanafjörður, Iceland
| | - María J Ruiz-López
- Estación Biológica de Doñana, CSIC, Calle Americo Vespucio 26, 41092, Sevillle, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Hannes Svardal
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Constantina Theofanopoulou
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA; Hunter College, City University of New York, NY, USA
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goettingen Center for Molecular Biosciences (GZMB), Campus Institute Data Science (CIDAS), Goldschmidtstr. 1, 37077, Goettingen, Germany
| | - Ann-Marie Waldvogel
- Institute of Zoology, University of Cologne, Zülpicherstrasse 47b, D-50674, Cologne, Germany
| | - Guojie Zhang
- Evolutionary & Organismal Biology Research Center, Zhejiang University School of Medicine, Hangzhou, 310058, China; Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Denmark; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Erich D Jarvis
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Miklós Bálint
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325 Frankfurt/Main, Germany
| | - Claudio Ciofi
- University of Florence, Department of Biology, Via Madonna del Piano 6, Sesto Fiorentino, (FI) 50019, Italy
| | - Robert M Waterhouse
- University of Lausanne, Department of Ecology and Evolution, Le Biophore, UNIL-Sorge, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Camila J Mazzoni
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str 17, 10315 Berlin, Germany; Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Koenigin-Luise-Str 6-8, 14195 Berlin, Germany
| | - Jacob Höglund
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75246, Uppsala, Sweden.
| | | |
Collapse
|
11
|
Global invasion history and native decline of the common starling: insights through genetics. Biol Invasions 2023. [DOI: 10.1007/s10530-022-02982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AbstractFew invasive birds are as globally successful as the Common or European Starling (Sturnus vulgaris). Native to the Palearctic, the starling has been intentionally introduced to North and South America, South Africa, Australia, and the Pacific Islands, enabling us to explore species traits that may contribute to its invasion success. Coupling the rich studies of life history and more recent explorations of genomic variation among invasions, we illustrate how eco-evolutionary dynamics shape the invasion success of this long-studied and widely distributed species. Especially informative is the comparison between Australian and North American invasions, because these populations colonized novel ranges concurrently and exhibit shared signals of selection despite distinct population histories. In this review, we describe population dynamics across the native and invasive ranges, identify putatively selected traits that may influence the starling’s spread, and suggest possible determinants of starling success world-wide. We also identify future opportunities to utilize this species as a model for avian invasion research, which will inform our understanding of species’ rapid evolution in response to environmental change.
Collapse
|
12
|
Milarska SE, Androsiuk P, Bednarek PT, Larson K, Giełwanowska I. Genetic variation of Cerastium alpinum L. from Babia Góra, a critically endangered species in Poland. J Appl Genet 2023; 64:37-53. [PMID: 36322376 PMCID: PMC9837003 DOI: 10.1007/s13353-022-00731-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Babia Góra massif is the only site of occurrence of the Cerastium alpinum L. in Poland, an arctic-alpine perennial plant with a wide distribution in North America, northwestern Asia, and Europe. To determine whether the isolated Polish populations are genetically distinct, we have performed an evaluation of C. alpinum from Babia Góra with the use of iPBS markers. A total number of 133 individuals of C. alpinum from seven populations representing four localizations of the species were analyzed, i.e., from Babia Góra (Poland), Alps (Switzerland), Nuolja massif (Sweden), and Kaffiøyra (Svalbard, Norway). Genetic analysis of all C. alpinum samples using eight PBS primers identified 262 bands, 79.4% of which were polymorphic. iPBS markers revealed low genetic diversity (average He = 0.085) and high population differentiation (FST = 0.617). AMOVA results confirmed that the majority of the genetic variation (62%) was recorded among populations. The grouping revealed by PCoA showed that C. alpinum from Svalbard is the most diverged population, C. alpinum from Switzerland and Sweden form a pair of similar populations, whereas C. alpinum from the Babia Góra form a heterogeneous group of four populations. Results of isolation by distance analysis suggested that the spatial distance is the most probable cause of the observed differentiation among populations. Although significant traces of a bottleneck effect were noted for all populations of C. alpinum from Babia Góra, the populations still maintain a low but significant level of genetic polymorphism. These results are of great importance for developing conservation strategies for this species in Poland.
Collapse
Affiliation(s)
- Sylwia Eryka Milarska
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Piotr Tomasz Bednarek
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870, Błonie, Poland
| | - Keith Larson
- Climate Impacts Research Centre, Department of Ecology and Environmental Sciences, Umeå University, 901 87, Umeå, Sweden
| | - Irena Giełwanowska
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| |
Collapse
|
13
|
Tibihika PD, Meimberg H, Curto M. Understanding the translocation dynamics of Nile tilapia ( Oreochromis niloticus) and its ecological consequences in East Africa. AFRICAN ZOOLOGY 2022. [DOI: 10.1080/15627020.2022.2154169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Papius Dias Tibihika
- National Fisheries Resources Research Institute, National Agricultural Research Organization, Kampala, Uganda
- Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences Vienna (BOKU), Wien, Austria
| | - Harald Meimberg
- Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences Vienna (BOKU), Wien, Austria
| | - Manuel Curto
- Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences Vienna (BOKU), Wien, Austria
- MARE−Marine and Environmental Sciences Centre, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
14
|
Holt WV, Comizzoli P. Conservation Biology and Reproduction in a Time of Developmental Plasticity. Biomolecules 2022; 12:1297. [PMID: 36139136 PMCID: PMC9496186 DOI: 10.3390/biom12091297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
The objective of this review is to ask whether, and how, principles in conservation biology may need to be revisited in light of new knowledge about the power of epigenetics to alter developmental pathways. Importantly, conservation breeding programmes, used widely by zoological parks and aquariums, may appear in some cases to reduce fitness by decreasing animals' abilities to cope when confronted with the 'wild side' of their natural habitats. Would less comfortable captive conditions lead to the selection of individuals that, despite being adapted to life in a captive environment, be better able to thrive if relocated to a more natural environment? While threatened populations may benefit from advanced reproductive technologies, these may actually induce undesirable epigenetic changes. Thus, there may be inherent risks to the health and welfare of offspring (as is suspected in humans). Advanced breeding technologies, especially those that aim to regenerate the rarest species using stem cell reprogramming and artificial gametes, may also lead to unwanted epigenetic modifications. Current knowledge is still incomplete, and therefore ethical decisions about novel breeding methods remain controversial and difficult to resolve.
Collapse
Affiliation(s)
- William V. Holt
- Department of Oncology & Metabolism, The Medical School Beech Hill Road, Sheffield S10 2RX, UK
| | - Pierre Comizzoli
- Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC 20008, USA
| |
Collapse
|
15
|
Wang Z, Cai X, Jiang X, Xia Q, Li L, Lu B. Sympatric genetic divergence between early- and late-season weedy rice populations. THE NEW PHYTOLOGIST 2022; 235:2066-2080. [PMID: 35637631 PMCID: PMC9544748 DOI: 10.1111/nph.18288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Sympatric genetic divergence is the most appealing and controversial pattern in the theory of ecological speciation. Examples that support sympatric genetic divergence in plant species are extremely rare. Solid evidence of sympatric genetic divergence will provide deep insights for revealing the underlying mechanisms of ecological speciation. We analysed the total genomic DNA sequences of 120 weedy rice (WR; Oryza sativa f. spontanea) plants, representing three WR population pairs separately from three early- and late-season rice fields, in comparison with those of the co-occurring rice cultivars and other rice materials. We detected substantial genetic divergence within the pairs of the sympatric early- and late-season WR populations, although genetic divergence was unevenly distributed across the genomes. Restricted gene flow was determined between the sympatric WR populations, resulting in their distinct genetic structures. We also detected relatively low genetic diversity that was likely to be associated with stronger selection in early-season WR populations. Our findings provide strong evidence for sympatric genetic divergence between the WR populations in the same fields but in different seasons. We conclude that temporal isolation plays an important role in creating genetic divergence between sympatric populations/species in plants.
Collapse
Affiliation(s)
- Zhi Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary BiologyFudan UniversitySonghu Road 2005Shanghai200438China
| | - Xingxing Cai
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary BiologyFudan UniversitySonghu Road 2005Shanghai200438China
| | - Xiao‐Qi Jiang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary BiologyFudan UniversitySonghu Road 2005Shanghai200438China
| | - Qi‐Yu Xia
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off‐Season Reproduction RegionsInstitute of Tropical Bioscience and Biotechnology, CATASHaikou571101China
| | - Lin‐Feng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary BiologyFudan UniversitySonghu Road 2005Shanghai200438China
| | - Bao‐Rong Lu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary BiologyFudan UniversitySonghu Road 2005Shanghai200438China
| |
Collapse
|
16
|
Kurland S, Rafati N, Ryman N, Laikre L. Genomic dynamics of brown trout populations released to a novel environment. Ecol Evol 2022; 12:e9050. [PMID: 35813906 PMCID: PMC9251865 DOI: 10.1002/ece3.9050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 11/15/2022] Open
Abstract
Population translocations occur for a variety of reasons, from displacement due to climate change to human-induced transfers. Such actions have adverse effects on genetic variation and understanding their microevolutionary consequences requires monitoring. Here, we return to an experimental release of brown trout (Salmo trutta) in order to monitor the genomic effects of population translocations. In 1979, fish from each of two genetically (F ST = 0.16) and ecologically separate populations were simultaneously released, at one point in time, to a lake system previously void of brown trout. Here, whole-genome sequencing of pooled DNA (Pool-seq) is used to characterize diversity within and divergence between the introduced populations and fish inhabiting two lakes downstream of the release sites, sampled 30 years later (c. 5 generations). Present results suggest that while extensive hybridization has occurred, the two introduced populations are unequally represented in the lakes downstream of the release sites. One population, which is ecologically resident in its original habitat, mainly contributes to the lake closest to the release site. The other population, migratory in its natal habitat, is genetically more represented in the lake further downstream. Genomic regions putatively under directional selection in the new habitat are identified, where allele frequencies in both established populations are more similar to the introduced population stemming from a resident population than the migratory one. Results suggest that the microevolutionary consequences of population translocations, for example, hybridization and adaptation, can be rapid and that Pool-seq can be used as an initial tool to monitor genome-wide effects.
Collapse
Affiliation(s)
- Sara Kurland
- Department of Zoology, Division of Population GeneticsStockholm UniversityStockholmSweden
| | - Nima Rafati
- Department of Medical Biochemistry and MicrobiologyNational Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Nils Ryman
- Department of Zoology, Division of Population GeneticsStockholm UniversityStockholmSweden
| | - Linda Laikre
- Department of Zoology, Division of Population GeneticsStockholm UniversityStockholmSweden
| |
Collapse
|
17
|
Tamagawa K, Yoshida K, Ohrui S, Takahashi Y. Population transcriptomics reveals the effect of gene flow on the evolution of range limits. Sci Rep 2022; 12:1318. [PMID: 35079049 PMCID: PMC8789792 DOI: 10.1038/s41598-022-05248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
One of the most important questions in evolutionary biology is how the spatial distribution of species is limited. Asymmetric gene flow from core populations is suggested to increase the number of poorly adapted immigrants in the populations at the range edge. Genetic load due to migration, i.e., migration load, should prevent adaptation to the local habitat, leading to decreases in distribution range via local extinction or the limiting range expansion. However, few experimental studies have examined the effects of immigration on fitness and natural selection within recipient populations. To investigate the influence of migration load on the evolution of distribution range, we performed field and laboratory observations as well as population transcriptomics for the common river snail, Semisulcospira reiniana. This species meets the conditions that migration from source populations can prevent local adaptation in a sink population because they inhabit the broader range of environments, including middle/upper reaches of a river and estuaries within a single river and they may be more vulnerable to being swept away by water currents due to lowered spontaneous (upward) locomotion activity. We found that river steepness was related to the lower distribution limit of S. reiniana, with a narrower distribution range in the steeper river. Population transcriptomic analysis showed that gene flow was heavily asymmetric from the upstream populations to downstream ones in the steep river, suggesting a greater migration load in the steep river. The number of genes putatively involved in adaptation to the local habitat was lower in the steep river than in the gentle river. Gene expression profiles suggested that individuals achieve better local adaptation in the gentle river. Laboratory experiments suggested that evolutionary differences in salinity tolerance among local populations were only found in the gentle river. Our results consistent with the hypothesis that migration load owing to asymmetric gene flow disturbs local adaptation and restricts the distribution range of river snails.
Collapse
Affiliation(s)
- Katsunori Tamagawa
- Graduate School of Science, Chiba University, 1-33, Yayoi, Inage, Chiba, 263-8522, Japan.
- Graduate School of Life Sciences, Tohoku University, 6-3, Aoba, Aramaki, Sendai, Miyagi, 980-8578, Japan.
| | - Kotone Yoshida
- Graduate School of Science and Engineering, Chiba University, 1-33, Yayoi, Inage, Chiba, 263-8522, Japan
| | - Shiori Ohrui
- Graduate School of Science and Engineering, Chiba University, 1-33, Yayoi, Inage, Chiba, 263-8522, Japan
| | - Yuma Takahashi
- Graduate School of Science, Chiba University, 1-33, Yayoi, Inage, Chiba, 263-8522, Japan.
| |
Collapse
|
18
|
Chen Y, Hou G, Jing M, Teng H, Liu Q, Yang X, Wang Y, Qu J, Shi C, Lu L, Zhang J, Zhang Y. Genomic analysis unveils mechanisms of northward invasion and signatures of plateau adaptation in the Asian house rat. Mol Ecol 2021; 30:6596-6610. [PMID: 34564921 DOI: 10.1111/mec.16194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/21/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
The Asian house rat (AHR), Rattus tanezumi, has recently invaded the northern half of China. The AHR is a highly adaptive rat species that has also successfully conquered the Qinghai-Tibet Plateau (QTP) and replaced the brown rat (BR), R. norvegicus, at the edge of the QTP. Here, we assembled a draft genome of the AHR and explored the mechanisms of its northward invasion and the genetic basis underlying plateau adaptation in this species. Population genomic analyses revealed that the northwardly invasive AHRs consisted of two independent and genetically distinct populations which might result from multiple independent primary invasion events. One invasive population exhibited reduced genetic diversity and distinct population structure compared with its source population, while the other displayed preserved genetic polymorphisms and little genetic differentiation from its source population. Genes involved in G-protein coupled receptors and carbohydrate metabolism may contribute to the local adaptation of northern AHRs. In particular, RTN4 was identified as a key gene for AHRs in the QTP that favours adaptation to high-altitude hypoxia. Coincidently, the physiological performance and transcriptome profiles of hypoxia-exposed rats both showed better hypoxia adaptation in AHRs than in BRs that failed to colonize the heart of the QTP, which may have facilitated the replacement of the BR population by the invading AHRs at the edge of the QTP. This study provides profound insights into the multiple origins of the northwardly invasive AHR and the great tolerance to hypoxia in this species.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guanmei Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Meidong Jing
- School of Life Sciences, Nantong University, Nantong, China
| | - Huajing Teng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Quansheng Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xingen Yang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Yong Wang
- Dongting Lake Station for Wetland Ecosystem Research, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jiapeng Qu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, China
| | - Chengmin Shi
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Liang Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianxu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yaohua Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Smith SR, Normandeau E, Djambazian H, Nawarathna PM, Berube P, Muir AM, Ragoussis J, Penney CM, Scribner KT, Luikart G, Wilson CC, Bernatchez L. A chromosome-anchored genome assembly for Lake Trout (Salvelinus namaycush). Mol Ecol Resour 2021; 22:679-694. [PMID: 34351050 PMCID: PMC9291852 DOI: 10.1111/1755-0998.13483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 01/23/2023]
Abstract
Here, we present an annotated, chromosome‐anchored, genome assembly for Lake Trout (Salvelinus namaycush) – a highly diverse salmonid species of notable conservation concern and an excellent model for research on adaptation and speciation. We leveraged Pacific Biosciences long‐read sequencing, paired‐end Illumina sequencing, proximity ligation (Hi‐C) sequencing, and a previously published linkage map to produce a highly contiguous assembly composed of 7378 contigs (contig N50 = 1.8 Mb) assigned to 4120 scaffolds (scaffold N50 = 44.975 Mb). Long read sequencing data were generated using DNA from a female double haploid individual. 84.7% of the genome was assigned to 42 chromosome‐sized scaffolds and 93.2% of Benchmarking Universal Single Copy Orthologues were recovered, putting this assembly on par with the best currently available salmonid genomes. Estimates of genome size based on k‐mer frequency analysis were highly similar to the total size of the finished genome, suggesting that the entirety of the genome was recovered. A mitochondrial genome assembly was also produced. Self‐versus‐self synteny analysis allowed us to identify homeologs resulting from the salmonid specific autotetraploid event (Ss4R) as well as regions exhibiting delayed rediploidization. Alignment with three other salmonid genomes and the Northern Pike (Esox lucius) genome also allowed us to identify homologous chromosomes in related taxa. We also generated multiple resources useful for future genomic research on Lake Trout, including a repeat library and a sex‐averaged recombination map. A novel RNA sequencing data set for liver tissue was also generated in order to produce a publicly available set of annotations for 49,668 genes and pseudogenes. Potential applications of these resources to population genetics and the conservation of native populations are discussed.
Collapse
Affiliation(s)
- Seth R Smith
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.,Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada
| | - Haig Djambazian
- McGill Genome Centre, Department of Human Genetics, Montreal, QC, Canada
| | - Pubudu M Nawarathna
- Department of Human Genetics, Canadian Centre for Computational Genomics (C3G, McGill University, Montréal, QC, Canada
| | - Pierre Berube
- McGill Genome Centre, Department of Human Genetics, Montreal, QC, Canada
| | | | - Jiannis Ragoussis
- McGill Genome Centre, Department of Human Genetics, Montreal, QC, Canada
| | - Chantelle M Penney
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Kim T Scribner
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.,Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA.,Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Gordon Luikart
- Fish and Wildlife Genomics Group, University of Montana, Missoula, MT, USA.,Flathead Lake Biological Station, Division of Biological Sciences, University of Montana, Polson, MT, USA
| | - Chris C Wilson
- Aquatic Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Peterborough, ON, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada
| |
Collapse
|
20
|
Mathur S, DeWoody JA. Genetic load has potential in large populations but is realized in small inbred populations. Evol Appl 2021; 14:1540-1557. [PMID: 34178103 PMCID: PMC8210801 DOI: 10.1111/eva.13216] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Populations with higher genetic diversity and larger effective sizes have greater evolutionary capacity (i.e., adaptive potential) to respond to ecological stressors. We are interested in how the variation captured in protein-coding genes fluctuates relative to overall genomic diversity and whether smaller populations suffer greater costs due to their genetic load of deleterious mutations compared with larger populations. We analyzed individual whole-genome sequences (N = 74) from three different populations of Montezuma quail (Cyrtonyx montezumae), a small ground-dwelling bird that is sustainably harvested in some portions of its range but is of conservation concern elsewhere. Our historical demographic results indicate that Montezuma quail populations in the United States exhibit low levels of genomic diversity due in large part to long-term declines in effective population sizes over nearly a million years. The smaller and more isolated Texas population is significantly more inbred than the large Arizona and the intermediate-sized New Mexico populations we surveyed. The Texas gene pool has a significantly smaller proportion of strongly deleterious variants segregating in the population compared with the larger Arizona gene pool. Our results demonstrate that even in small populations, highly deleterious mutations are effectively purged and/or lost due to drift. However, we find that in small populations the realized genetic load is elevated because of inbreeding coupled with a higher frequency of slightly deleterious mutations that are manifested in homozygotes. Overall, our study illustrates how population genomics can be used to proactively assess both neutral and functional aspects of contemporary genetic diversity in a conservation framework while simultaneously considering deeper demographic histories.
Collapse
Affiliation(s)
- Samarth Mathur
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
- Present address:
Department of Evolution, Ecology and Organismal BiologyThe Ohio State UniversityColumbusOhioUSA
| | - J. Andrew DeWoody
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
- Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
21
|
Yin X, Martinez AS, Sepúlveda MS, Christie MR. Rapid genetic adaptation to recently colonized environments is driven by genes underlying life history traits. BMC Genomics 2021; 22:269. [PMID: 33853517 PMCID: PMC8048285 DOI: 10.1186/s12864-021-07553-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Background Uncovering the mechanisms underlying rapid genetic adaptation can provide insight into adaptive evolution and shed light on conservation, invasive species control, and natural resource management. However, it can be difficult to experimentally explore rapid adaptation due to the challenges associated with propagating and maintaining species in captive environments for long periods of time. By contrast, many introduced species have experienced strong selection when colonizing environments that differ substantially from their native range and thus provide a “natural experiment” for studying rapid genetic adaptation. One such example occurred when sea lamprey (Petromyzon marinus), native to the northern Atlantic, naturally migrated into Lake Champlain and expanded their range into the Great Lakes via man-made shipping canals. Results Utilizing 368,886 genome-wide single nucleotide polymorphisms (SNPs), we calculated genome-wide levels of genetic diversity (i.e., heterozygosity and π) for sea lamprey collected from native (Connecticut River), native but recently colonized (Lake Champlain), and invasive (Lake Michigan) populations, assessed genetic differentiation between all populations, and identified candidate genes that responded to selection imposed by the novel environments. We observed a 14 and 24% reduction in genetic diversity in Lake Michigan and Lake Champlain populations, respectively, compared to individuals from the Connecticut River, suggesting that sea lamprey populations underwent a genetic bottleneck during colonization. Additionally, we identified 121 and 43 outlier genes in comparisons between Lake Michigan and Connecticut River and between Lake Champlain and Connecticut River, respectively. Six outlier genes that contained synonymous SNPs in their coding regions and two genes that contained nonsynonymous SNPs may underlie the rapid evolution of growth (i.e., GHR), reproduction (i.e., PGR, TTC25, STARD10), and bioenergetics (i.e., OXCT1, PYGL, DIN4, SLC25A15). Conclusions By identifying the genomic basis of rapid adaptation to novel environments, we demonstrate that populations of invasive species can be a useful study system for understanding adaptive evolution. Furthermore, the reduction in genome-wide levels of genetic diversity associated with colonization coupled with the identification of outlier genes underlying key life history traits known to have changed in invasive sea lamprey populations (e.g., growth, reproduction) illustrate the utility in applying genomic approaches for the successful management of introduced species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07553-x.
Collapse
Affiliation(s)
- Xiaoshen Yin
- Department of Biological Sciences, Purdue University, 915 W. State St., West Lafayette, Indiana, 47907-2054, USA
| | - Alexander S Martinez
- Department of Biological Sciences, Purdue University, 915 W. State St., West Lafayette, Indiana, 47907-2054, USA
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, 715 W. State St., West Lafayette, Indiana, 47907-2054, USA
| | - Mark R Christie
- Department of Biological Sciences, Purdue University, 915 W. State St., West Lafayette, Indiana, 47907-2054, USA. .,Department of Forestry and Natural Resources, Purdue University, 715 W. State St., West Lafayette, Indiana, 47907-2054, USA.
| |
Collapse
|
22
|
Teixeira JC, Huber CD. The inflated significance of neutral genetic diversity in conservation genetics. Proc Natl Acad Sci U S A 2021; 118:e2015096118. [PMID: 33608481 PMCID: PMC7958437 DOI: 10.1073/pnas.2015096118] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The current rate of species extinction is rapidly approaching unprecedented highs, and life on Earth presently faces a sixth mass extinction event driven by anthropogenic activity, climate change, and ecological collapse. The field of conservation genetics aims at preserving species by using their levels of genetic diversity, usually measured as neutral genome-wide diversity, as a barometer for evaluating population health and extinction risk. A fundamental assumption is that higher levels of genetic diversity lead to an increase in fitness and long-term survival of a species. Here, we argue against the perceived importance of neutral genetic diversity for the conservation of wild populations and species. We demonstrate that no simple general relationship exists between neutral genetic diversity and the risk of species extinction. Instead, a better understanding of the properties of functional genetic diversity, demographic history, and ecological relationships is necessary for developing and implementing effective conservation genetic strategies.
Collapse
Affiliation(s)
- João C Teixeira
- School of Biological Sciences, The University of Adelaide, Adelaide, 5005 SA, Australia;
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The University of Adelaide, Adelaide, 5005 SA, Australia
| | - Christian D Huber
- School of Biological Sciences, The University of Adelaide, Adelaide, 5005 SA, Australia;
| |
Collapse
|
23
|
Yin X, Martinez AS, Perkins A, Sparks MM, Harder AM, Willoughby JR, Sepúlveda MS, Christie MR. Incipient resistance to an effective pesticide results from genetic adaptation and the canalization of gene expression. Evol Appl 2021; 14:847-859. [PMID: 33767757 PMCID: PMC7980271 DOI: 10.1111/eva.13166] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
The resistance of pest species to chemical controls has vast ecological, economic, and societal costs. In most cases, resistance is only detected after spreading throughout an entire population. Detecting resistance in its incipient stages, by comparison, provides time to implement preventative strategies. Incipient resistance can be detected by coupling standard toxicology assays with large-scale gene expression experiments. We apply this approach to a system where an invasive parasite, sea lamprey (Petromyzon marinus), has been treated with the highly effective pesticide 3-trifluoromethyl-4-nitrophenol (TFM) for 60 years. Toxicological experiments revealed that lamprey from treated populations did not have higher survival to TFM exposure than lamprey from untreated populations, demonstrating that full-fledged resistance has not yet evolved. In contrast, we find hundreds of genes differentially expressed in response to TFM in the population with the longest history of exposure, many of which relate to TFM's primary mode of action, the uncoupling of oxidative phosphorylation, and subsequent depletion of ATP. Three genes critical to oxidative phosphorylation, ATP5PB, PLCB1, and NDUFA9, were nearly fixed for alternative alleles in comparisons of SNPs between treated and untreated populations (FST > 5 SD from the mean). ATP5PB encodes subunit b of ATP synthase and an additional subunit, ATP5F1B, was canalized for high expression in treated populations, but remained plastic in response to TFM treatment in individuals from the untreated population. These combined genomic and transcriptomic results demonstrate that an adaptive, genetic response to TFM is likely driving incipient resistance in a damaging pest species.
Collapse
Affiliation(s)
- Xiaoshen Yin
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
| | | | - Abigail Perkins
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
- Department of Anatomy, Cell Biology & PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | - Morgan M. Sparks
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
| | - Avril M. Harder
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
| | - Janna R. Willoughby
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
- School of Forestry and Wildlife SciencesAuburn UniversityAuburnALUSA
| | - Maria S. Sepúlveda
- Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteINUSA
| | - Mark R. Christie
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
- Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteINUSA
| |
Collapse
|
24
|
Chen Y, Zhao L, Teng H, Shi C, Liu Q, Zhang J, Zhang Y. Population genomics reveal rapid genetic differentiation in a recently invasive population of Rattus norvegicus. Front Zool 2021; 18:6. [PMID: 33499890 PMCID: PMC7836188 DOI: 10.1186/s12983-021-00387-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 01/17/2021] [Indexed: 12/19/2022] Open
Abstract
Background Invasive species bring a serious effect on local biodiversity, ecosystems, and even human health and safety. Although the genetic signatures of historical range expansions have been explored in an array of species, the genetic consequences of contemporary range expansions have received little attention, especially in mammal species. In this study, we used whole-genome sequencing to explore the rapid genetic change and introduction history of a newly invasive brown rat (Rattus norvegicus) population which invaded Xinjiang Province, China in the late 1970s. Results Bayesian clustering analysis, principal components analysis, and phylogenetic analysis all showed clear genetic differentiation between newly introduced and native rat populations. Reduced genetic diversity and high linkage disequilibrium suggested a severe population bottleneck in this colonization event. Results of TreeMix analyses revealed that the introduced rats were derived from an adjacent population in geographic region (Northwest China). Demographic analysis indicated that a severe bottleneck occurred in XJ population after the split off from the source population, and the divergence of XJ population might have started before the invasion of XJ. Moreover, we detected 42 protein-coding genes with allele frequency shifts throughout the genome for XJ rats and they were mainly associated with lipid metabolism and immunity, which could be seen as a prelude to future selection analyses in the novel environment of XJ. Conclusions This study presents the first genomic evidence on genetic differentiation which developed rapidly, and deepens the understanding of invasion history and evolutionary processes of this newly introduced rat population. This would add to our understanding of how invasive species become established and aid strategies aimed at the management of this notorious pest that have spread around the world with humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-021-00387-z.
Collapse
Affiliation(s)
- Yi Chen
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhao
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Huajing Teng
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Chengmin Shi
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Quansheng Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jianxu Zhang
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| | - Yaohua Zhang
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
25
|
Abstract
Diadromy, the predictable movements of individuals between marine and freshwater environments, is biogeographically and phylogenetically widespread across fishes. Thus, despite the high energetic and potential fitness costs involved in moving between distinct environments, diadromy appears to be an effective life history strategy. Yet, the origin and molecular mechanisms that underpin this migratory behavior are not fully understood. In this review, we aim first to summarize what is known about diadromy in fishes; this includes the phylogenetic relationship among diadromous species, a description of the main hypotheses regarding its origin, and a discussion of the presence of non-migratory populations within diadromous species. Second, we discuss how recent research based on -omics approaches (chiefly genomics, transcriptomics, and epigenomics) is beginning to provide answers to questions on the genetic bases and origin(s) of diadromy. Finally, we suggest future directions for -omics research that can help tackle questions on the evolution of diadromy.
Collapse
Affiliation(s)
- M. Lisette Delgado
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Daniel E. Ruzzante
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
26
|
Smith SE, Palkovacs EP, Weidel BC, Bunnell DB, Jones AW, Bloom DD. A century of intermittent eco-evolutionary feedbacks resulted in novel trait combinations in invasive Great Lakes alewives ( Alosa pseudoharengus). Evol Appl 2020; 13:2630-2645. [PMID: 33294013 PMCID: PMC7691454 DOI: 10.1111/eva.13063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 01/17/2023] Open
Abstract
Species introductions provide opportunities to quantify rates and patterns of evolutionary change in response to novel environments. Alewives (Alosa pseudoharengus) are native to the East Coast of North America where they ascend coastal rivers to spawn in lakes and then return to the ocean. Some populations have become landlocked within the last 350 years and diverged phenotypically from their ancestral marine population. More recently, alewives were introduced to the Laurentian Great Lakes (~150 years ago), but these populations have not been compared to East Coast anadromous and landlocked populations. We quantified 95 years of evolution in foraging traits and overall body shape of Great Lakes alewives and compared patterns of phenotypic evolution of Great Lakes alewives to East Coast anadromous and landlocked populations. Our results suggest that gill raker spacing in Great Lakes alewives has evolved in a dynamic pattern that is consistent with responses to strong but intermittent eco-evolutionary feedbacks with zooplankton size. Following their initial colonization of Lakes Ontario and Michigan, dense alewife populations likely depleted large-bodied zooplankton, which drove a decrease in alewife gill raker spacing. However, the introduction of large, non-native zooplankton to the Great Lakes in later decades resulted in an increase in gill raker spacing, and present-day Great Lakes alewives have gill raker spacing patterns that are similar to the ancestral East Coast anadromous population. Conversely, contemporary Great Lakes alewife populations possess a gape width consistent with East Coast landlocked populations. Body shape showed remarkable parallel evolution with East Coast landlocked populations, likely due to a shared response to the loss of long-distance movement or migrations. Our results suggest the colonization of a new environment and cessation of migration can result in rapid parallel evolution in some traits, but contingency also plays a role, and a dynamic ecosystem can also yield novel trait combinations.
Collapse
Affiliation(s)
- Shelby E. Smith
- Department of Biological SciencesWestern Michigan UniversityKalamazooMIUSA
| | - Eric P. Palkovacs
- Department of Ecology & Evolutionary BiologyUniversity of CaliforniaSanta CruzCAUSA
| | - Brian C. Weidel
- United States Geological Survey (USGS) at the Great Lakes Science CenterLake Ontario Biological StationOswegoNYUSA
| | - David B. Bunnell
- United States Geological Survey (USGS) at the Great Lakes Science CenterAnn ArborMIUSA
| | - Andrew W. Jones
- National Oceanic and Atmospheric Administration (NOAA) FisheriesNortheast Fisheries Science CenterNarragansettRIUSA
| | - Devin D. Bloom
- Department of Biological SciencesWestern Michigan UniversityKalamazooMIUSA
- Institute of the Environment and SustainabilityWestern Michigan UniversityKalamazooMIUSA
| |
Collapse
|
27
|
Chen Z, Narum SR. Whole genome resequencing reveals genomic regions associated with thermal adaptation in redband trout. Mol Ecol 2020; 30:162-174. [PMID: 33135227 DOI: 10.1111/mec.15717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022]
Abstract
Adaptation to local environments involves evolution of ecologically important traits and underlying physiological processes. Here, we used low coverage whole-genome resequencing (lcWGR) on individuals to identify genome regions involved in thermal adaptation in wild redband trout Oncorhynchus mykiss gairdneri, a subspecies of rainbow trout that inhabits ecosystems ranging from cold montane forests to high elevation deserts. This study includes allele frequency-based analyses for selective sweeps among populations, followed by multiple association tests for specific sets of phenotypes measured under thermal stress (acute and chronic survival/mortality; high or low cardiac performance groups). Depending on the groups in each set of analyses, sequencing reads covered 43%-75% of the genome at ≥15× and each analysis included millions of SNPs across the genome. In tests for selective sweeps among populations, a total of six chromosomal regions were significant. The further association tests for specific phenotypes revealed that the region on chromosome 4 was consistently the most significant and contains the cerk gene (ceramide kinase). This study provides insight into a potential genetic mechanism of local thermal adaptation and suggests cerk may be an important candidate gene. However, further validation of this cerk gene is necessary to determine if the association with cardiac performance results in a functional role to influence thermal performance when exposed to high water temperatures and hypoxic conditions.
Collapse
Affiliation(s)
- Zhongqi Chen
- Aquaculture Research Institute, University of Idaho, Hagerman, ID, USA
| | - Shawn R Narum
- Aquaculture Research Institute, University of Idaho, Hagerman, ID, USA.,Columbia River Inter-Tribal Fish Commission, Hagerman, ID, USA
| |
Collapse
|
28
|
Lehnert SJ, Kess T, Bentzen P, Clément M, Bradbury IR. Divergent and linked selection shape patterns of genomic differentiation between European and North American Atlantic salmon (Salmo salar). Mol Ecol 2020; 29:2160-2175. [PMID: 32432380 DOI: 10.1111/mec.15480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/17/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
As populations diverge many processes can shape genomic patterns of differentiation. Regions of high differentiation can arise due to divergent selection acting on selected loci, genetic hitchhiking of nearby loci, or through repeated selection against deleterious alleles (linked background selection); this divergence may then be further elevated in regions of reduced recombination. Atlantic salmon (Salmo salar) from Europe and North America diverged >600,000 years ago and despite some evidence of secondary contact, the majority of genetic data indicate substantial divergence between lineages. This deep divergence with potential gene flow provides an opportunity to investigate the role of different mechanisms that shape the genomic landscape during early speciation. Here, using 184,295 single nucleotide polymorphisms (SNPs) and 80 populations, we investigate the genomic landscape of differentiation across the Atlantic Ocean with a focus on highly differentiated regions and the processes shaping them. We found evidence of high (mean FST = 0.26) and heterogeneous genomic differentiation between continents. Genomic regions associated with high trans-Atlantic differentiation ranged in size from single loci (SNPs) within important genes to large regions (1-3 Mbp) on four chromosomes (Ssa06, Ssa13, Ssa16 and Ssa19). These regions showed signatures consistent with selection, including high linkage disequilibrium, despite no significant reduction in recombination. Genes and functional enrichment of processes associated with differentiated regions may highlight continental differences in ocean navigation and parasite resistance. Our results provide insight into potential mechanisms underlying differences between continents, and evidence of near-fixed and potentially adaptive trans-Atlantic differences concurrent with a background of high genome-wide differentiation supports subspecies designation in Atlantic salmon.
Collapse
Affiliation(s)
- Sarah J Lehnert
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, NL, Canada
| | - Tony Kess
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, NL, Canada
| | - Paul Bentzen
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Marie Clément
- Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute, Memorial University of Newfoundland, St. John's, NL, Canada.,Labrador Institute, Memorial University of Newfoundland, Happy Valley-Goose Bay, NL, Canada
| | - Ian R Bradbury
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, NL, Canada.,Department of Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
29
|
Lehnert SJ, Baillie SM, MacMillan J, Paterson IG, Buhariwalla CF, Bradbury IR, Bentzen P. Multiple decades of stocking has resulted in limited hatchery introgression in wild brook trout ( Salvelinus fontinalis) populations of Nova Scotia. Evol Appl 2020; 13:1069-1089. [PMID: 32431753 PMCID: PMC7232767 DOI: 10.1111/eva.12923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/06/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
Many populations of freshwater fishes are threatened with losses, and increasingly, the release of hatchery individuals is one strategy being implemented to support wild populations. However, stocking of hatchery individuals may pose long-term threats to wild populations, particularly if genetic interactions occur between wild and hatchery individuals. One highly prized sport fish that has been heavily stocked throughout its range is the brook trout (Salvelinus fontinalis). In Nova Scotia, Canada, hatchery brook trout have been stocked since the early 1900s, and despite continued stocking efforts, populations have suffered declines in recent decades. Before this study, the genetic structure of brook trout populations in the province was unknown; however, given the potential negative consequences associated with hatchery stocking, it is possible that hatchery programs have adversely affected the genetic integrity of wild populations. To assess the influence of hatchery supplementation on wild populations, we genotyped wild brook trout from 12 river systems and hatchery brook trout from two major hatcheries using 100 microsatellite loci. Genetic analyses of wild trout revealed extensive population genetic structure among and within river systems and significant isolation-by-distance. Hatchery stocks were genetically distinct from wild populations, and most populations showed limited to no evidence of hatchery introgression (<5% hatchery ancestry). Only a single location had a substantial number of hatchery-derived trout and was located in the only river where a local strain is used for supplementation. The amount of hatchery stocking within a watershed did not influence the level of hatchery introgression. Neutral genetic structure of wild populations was influenced by geography with some influence of climate and stocking indices. Overall, our study suggests that long-term stocking has not significantly affected the genetic integrity of wild trout populations, highlighting the variable outcomes of stocking and the need to evaluate the consequences on a case-by-case basis.
Collapse
Affiliation(s)
- Sarah J. Lehnert
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt. John'sNLCanada
| | - Shauna M. Baillie
- Marine Gene Probe LabBiology DepartmentDalhousie UniversityHalifaxNSCanada
| | - John MacMillan
- Inland Fisheries DivisionNova Scotia Department of Fisheries and AquaculturePictouNSCanada
| | - Ian G. Paterson
- Marine Gene Probe LabBiology DepartmentDalhousie UniversityHalifaxNSCanada
| | - Colin F. Buhariwalla
- Inland Fisheries DivisionNova Scotia Department of Fisheries and AquaculturePictouNSCanada
| | - Ian R. Bradbury
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt. John'sNLCanada
- Marine Gene Probe LabBiology DepartmentDalhousie UniversityHalifaxNSCanada
| | - Paul Bentzen
- Marine Gene Probe LabBiology DepartmentDalhousie UniversityHalifaxNSCanada
| |
Collapse
|
30
|
Biedrzycka A, Konopiński M, Hoffman E, Trujillo A, Zalewski A. Comparing raccoon major histocompatibility complex diversity in native and introduced ranges: Evidence for the importance of functional immune diversity for adaptation and survival in novel environments. Evol Appl 2020; 13:752-767. [PMID: 32211065 PMCID: PMC7086054 DOI: 10.1111/eva.12898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 09/27/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022] Open
Abstract
The adaptive potential of invasive species is related to the genetic diversity of the invader, which is influenced by genetic drift and natural selection. Typically, the genetic diversity of invaders is studied with neutral genetic markers; however, the expectation of reduced diversity has not been consistently supported by empirical studies. Here, we describe and interpret genetic diversity at both neutral microsatellite loci and the immune-related MHC-DRB locus of native and invasive populations of raccoon to better understand of how drift and selection impact patterns of genetic diversity during the invasion process. We found that despite the loss of many MHC (major histocompatibility complex) alleles in comparison with native populations, functional MHC supertypes are preserved in the invasive region. In the native raccoon population, the number of supertypes within individuals was higher than expected under a neutral model. The high level of individual functional divergence may facilitate the adaptation to local conditions in the invasive range. In the invasive populations, we also detected increased population structure at microsatellites compared to the MHC locus, further suggesting that balancing selection is acting on adaptively important regions of the raccoon genome. Finally, we found that alleles known to exhibit resistance to rabies in the native range, Prlo-DRB*4, Prlo-DRB*16 and Prlo-DRB*102, were the most common alleles in the European populations, suggesting directional selection is acting on this locus. Our research shows empirical support for the importance of functional immune diversity for adaptation and survival in novel environments.
Collapse
Affiliation(s)
| | - Maciej Konopiński
- Institute of Nature ConservationPolish Academy of SciencesKrakówPoland
| | - Eric Hoffman
- Department of BiologyUniversity of Central FloridaOrlandoFLUSA
| | - Alexa Trujillo
- Department of BiologyUniversity of Central FloridaOrlandoFLUSA
| | - Andrzej Zalewski
- Mammal Research InstitutePolish Academy of SciencesBiałowieżaPoland
| |
Collapse
|
31
|
Bernard B, Leguen I, Mandiki SNM, Cornet V, Redivo B, Kestemont P. Impact of temperature shift on gill physiology during smoltification of Atlantic salmon smolts (Salmo salar L.). Comp Biochem Physiol A Mol Integr Physiol 2020; 244:110685. [PMID: 32165323 DOI: 10.1016/j.cbpa.2020.110685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 11/15/2022]
Abstract
Exposure to a temperature increase may disrupt smoltification and delay or stop the downstream migration of smolts. Thermal regimes are often different between a river and its tributaries, but the effects of a relative temperature shift are not well described. We used expression of smoltification genes coupled with gill Na+/K+-ATPase activity (NKA) and plasma cortisol and growth hormone (GH) levels to investigate the impact of a 5 °C difference between tributary and river on salmon juveniles. Responses to a temperature challenge were examined at four time points during the smoltification period, with juveniles reared under three regimes including control, early and late temperature increase. The temperature shifts reduced gill NKA, plasma GH and cortisol levels which indicate hypo-osmoregulation impairment and may reduce the survival of smolts. Out of the 22 genes examined, the expression of six genes was influenced by the temperature treatments, while changes in further eleven genes were influenced by the date of sampling. Genes usually known to be upregulated during smoltification were downregulated after the temperature increase, notably nkaα1b, nkcc1a and igf1r. Upregulation of some genes involved in the hormonal regulation and acid-base equilibrium in early June may indicate a switch towards desmoltification. This study gives further insights about the impact of temperature increase on the molecular processes underlying smoltification and possible responses to human-related water temperature increase. The data also suggest dual roles in the smoltification and desmoltification for GH and IGF1 and points to the implication of genes in the smoltification process, that have previously been unstudied (nbc) or with little data available (igf2).
Collapse
Affiliation(s)
- Benoît Bernard
- University of Namur, Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles, 61, B-5000 Namur, Belgium..
| | - Isabelle Leguen
- Fish Physiology and Genomics Institute, Campus of Beaulieu, Building 16A, 35042 Rennes Cedex, France.
| | - Syaghalirwa N M Mandiki
- University of Namur, Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles, 61, B-5000 Namur, Belgium..
| | - Valerie Cornet
- University of Namur, Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles, 61, B-5000 Namur, Belgium..
| | - Baptiste Redivo
- University of Namur, Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles, 61, B-5000 Namur, Belgium..
| | - Patrick Kestemont
- University of Namur, Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles, 61, B-5000 Namur, Belgium..
| |
Collapse
|
32
|
Ma L, Cao L, Hoffmann AA, Gong Y, Chen J, Chen H, Wang X, Zeng A, Wei S, Zhou Z. Rapid and strong population genetic differentiation and genomic signatures of climatic adaptation in an invasive mealybug. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Ling Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
- Institute of Insect Science Hunan Agriculture University Changsha China
| | - Li‐Jun Cao
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Ary A. Hoffmann
- School of BioSciences Bio21 Institute The University of Melbourne Melbourne Victoria Australia
| | - Ya‐Jun Gong
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Jin‐Cui Chen
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Hong‐Song Chen
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests Institute of Plant Protection Guangxi Academy of Agricultural Sciences Nanning China
| | - Xu‐Bo Wang
- Yunnan Academy of Biodiversity, Southwest Forestry University Kunming China
| | - Ai‐Ping Zeng
- Institute of Insect Science Hunan Agriculture University Changsha China
| | - Shu‐Jun Wei
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Zhong‐Shi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
33
|
Auteri GG, Knowles LL. Decimated little brown bats show potential for adaptive change. Sci Rep 2020; 10:3023. [PMID: 32080246 PMCID: PMC7033193 DOI: 10.1038/s41598-020-59797-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/04/2020] [Indexed: 11/25/2022] Open
Abstract
The degree to which species can rapidly adapt is key to survival in the face of climatic and other anthropogenic changes. For little brown bats (Myotis lucifugus), whose populations have experienced declines of over 90% because of the introduced fungal pathogen that causes white-nose syndrome (WNS), survival of the species may ultimately depend upon its capacity for adaptive change. Here, we present evidence of selectively driven change (adaptation), despite dramatic nonadaptive genomic shifts (genetic drift) associated with population declines. We compared the genetic makeups of wild survivors versus non-survivors of WNS, and found significant shifts in allele frequencies of genes associated with regulating arousal from hibernation (GABARB1), breakdown of fats (cGMP-PK1), and vocalizations (FOXP2). Changes at these genes are suggestive of evolutionary adaptation, given that WNS causes bats to arouse with unusual frequency from hibernation, contributing to premature depletion of fat reserves. However, whether these putatively adaptive shifts in allele frequencies translate into sufficient increases in survival for the species to rebound in the face of WNS is unknown.
Collapse
Affiliation(s)
- Giorgia G Auteri
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - L Lacey Knowles
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
34
|
Harder AM, Willoughby JR, Ardren WR, Christie MR. Among-family variation in survival and gene expression uncovers adaptive genetic variation in a threatened fish. Mol Ecol 2019; 29:1035-1049. [PMID: 31837181 DOI: 10.1111/mec.15334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/15/2019] [Accepted: 12/04/2019] [Indexed: 12/29/2022]
Abstract
Variation in among-family transcriptional responses to different environmental conditions can help to identify adaptive genetic variation, even prior to a selective event. Coupling differential gene expression with formal survival analyses allows for the disentanglement of treatment effects, required for understanding how individuals plastically respond to environmental stressors, from the adaptive genetic variation responsible for differential survival. We combined these two approaches to investigate responses to an emerging conservation issue, thiamine (vitamin B1 ) deficiency, in a threatened population of Atlantic salmon (Salmo salar). Thiamine is an essential vitamin that is increasingly limited in many ecosystems. In Lake Champlain, Atlantic salmon cannot acquire thiamine in sufficient quantities to support natural reproduction; fertilized eggs must be reared in hatcheries and treated with supplemental thiamine. We evaluated transcriptional responses (via RNA sequencing) to thiamine treatment across families and found 3,616 genes differentially expressed between control (no supplemental thiamine) and treatment individuals. Fewer genes changed expression equally across families (i.e., additively) than exhibited genotype × environment interactions in response to thiamine. Differentially expressed genes were related to known physiological effects of thiamine deficiency, including oxidative stress, cardiovascular irregularities and neurological abnormalities. We also identified 1,446 putatively adaptive genes that were strongly associated with among-family survival in the absence of thiamine treatment, many of which related to neurogenesis and visual perception. Our results highlight the utility of coupling RNA sequencing with formal survival analyses to identify candidate genes that underlie the among-family variation in survival required for an adaptive response to natural selection.
Collapse
Affiliation(s)
- Avril M Harder
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Janna R Willoughby
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA.,School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, USA
| | | | - Mark R Christie
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.,Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
35
|
Selechnik D, Richardson MF, Shine R, DeVore JL, Ducatez S, Rollins LA. Increased Adaptive Variation Despite Reduced Overall Genetic Diversity in a Rapidly Adapting Invader. Front Genet 2019; 10:1221. [PMID: 31850072 PMCID: PMC6901984 DOI: 10.3389/fgene.2019.01221] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/05/2019] [Indexed: 01/26/2023] Open
Abstract
Invasive species often evolve rapidly following introduction despite genetic bottlenecks that may result from small numbers of founders; however, some invasions may not fit this “genetic paradox”. The invasive cane toad (Rhinella marina) displays high phenotypic variation across its introduced Australian range. Here, we used three genome-wide datasets to characterize their population structure and genetic diversity. We found that toads form three genetic clusters: 1) native range toads, 2) toads from the source population in Hawaii and long-established areas near introduction sites in Australia, and 3) toads from more recently established northern Australian sites. Although we find an overall reduction in genetic diversity following introduction, we do not see this reduction in loci putatively under selection, suggesting that genetic diversity may have been maintained at ecologically relevant traits, or that mutation rates were high enough to maintain adaptive potential. Nonetheless, toads encounter novel environmental challenges in Australia, and the transition between genetic clusters occurs at a point along the invasion transect where temperature rises and rainfall decreases. We identify environmentally associated loci known to be involved in resistance to heat and dehydration. This study highlights that natural selection occurs rapidly and plays a vital role in shaping the structure of invasive populations.
Collapse
Affiliation(s)
- Daniel Selechnik
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia.,Evolution and Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mark F Richardson
- Deakin Genomics Centre, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Richard Shine
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia
| | - Jayna L DeVore
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia
| | - Simon Ducatez
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia
| | - Lee A Rollins
- Evolution and Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
36
|
Delgado ML, Górski K, Habit E, Ruzzante DE. The effects of diadromy and its loss on genomic divergence: The case of amphidromous
Galaxias maculatus
populations. Mol Ecol 2019; 28:5217-5231. [DOI: 10.1111/mec.15290] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 12/30/2022]
Affiliation(s)
| | - Konrad Górski
- Departamento de Ecología Facultad de Ciencias y Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS) Universidad Católica de la Santísima Concepción Concepción Chile
| | - Evelyn Habit
- Centro de Ciencias Ambientales EULA Universidad de Concepción Concepción Chile
| | | |
Collapse
|
37
|
Janjic A. Assisted Evolution in Astrobiology-Convergence of Ecology and Evolutionary Biology within the Context of Planetary Colonization. ASTROBIOLOGY 2019; 19:1410-1417. [PMID: 31657949 DOI: 10.1089/ast.2019.2061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In ecology and conservation biology, the concept of assisted evolution aims at the optimization of the resilience of organisms and populations to changing environmental conditions. What has hardly been considered so far is that this concept is also relevant for future astrobiological research, since in artificial extraterrestrial habitats (e.g., plants and insects in martian greenhouses) novel environmental conditions will also affect the survival and performance of organisms. The question therefore arises whether and how space-relevant organisms can be artificially adapted to the desired circumstances in advance. Based on several adaptation and acclimatization strategies in wild ecosystems of Earth, I discuss which methods can be considered for assisted evolution in the context of astrobiological research. This includes enhanced selective breeding, induction of epigenetic inheritance, and genetic engineering, as well as possible problems of these applications. This short overview article aims to stimulate an emerging discussion as to whether humans, which are already prominent drivers of Earth's evolution, should consider such interventions for future planetary colonization as well.
Collapse
Affiliation(s)
- Aleksandar Janjic
- Technical University of Munich, School of Life Sciences Weihenstephan, Freising, Germany
| |
Collapse
|
38
|
Houde ALS, Günther OP, Strohm J, Ming TJ, Li S, Kaukinen KH, Patterson DA, Farrell AP, Hinch SG, Miller KM. Discovery and validation of candidate smoltification gene expression biomarkers across multiple species and ecotypes of Pacific salmonids. CONSERVATION PHYSIOLOGY 2019; 7:coz051. [PMID: 31620289 PMCID: PMC6788492 DOI: 10.1093/conphys/coz051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/27/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Early marine survival of juvenile salmon is intimately associated with their physiological condition during smoltification and ocean entry. Smoltification (parr-smolt transformation) is a developmental process that allows salmon to acquire seawater tolerance in preparation for marine living. Traditionally, this developmental process has been monitored using gill Na+/K+-ATPase (NKA) activity or plasma hormones, but gill gene expression offers the possibility of another method. Here, we describe the discovery of candidate genes from gill tissue for staging smoltification using comparisons of microarray studies with particular focus on the commonalities between anadromous Rainbow trout and Sockeye salmon datasets, as well as a literature comparison encompassing more species. A subset of 37 candidate genes mainly from the microarray analyses was used for TaqMan quantitative PCR assay design and their expression patterns were validated using gill samples from four groups, representing three species and two ecotypes: Coho salmon, Sockeye salmon, stream-type Chinook salmon and ocean-type Chinook salmon. The best smoltification biomarkers, as measured by consistent changes across these four groups, were genes involved in ion regulation, oxygen transport and immunity. Smoltification gene expression patterns (using the top 10 biomarkers) were confirmed by significant correlations with NKA activity and were associated with changes in body brightness, caudal fin darkness and caudal peduncle length. We incorporate gene expression patterns of pre-smolt, smolt and de-smolt trials from acute seawater transfers from a companion study to develop a preliminary seawater tolerance classification model for ocean-type Chinook salmon. This work demonstrates the potential of gene expression biomarkers to stage smoltification and classify juveniles as pre-smolt, smolt or de-smolt.
Collapse
Affiliation(s)
- Aimee Lee S Houde
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, V9T 6N7, Canada
| | - Oliver P Günther
- Günther Analytics, 402-5775 Hampton Place, Vancouver, British Columbia, V6T 2G6, Canada
| | - Jeffrey Strohm
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, V9T 6N7, Canada
| | - Tobi J Ming
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, V9T 6N7, Canada
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, V9T 6N7, Canada
| | - Karia H Kaukinen
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, V9T 6N7, Canada
| | - David A Patterson
- School of Resource and Environmental Management, Fisheries and Oceans Canada, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Anthony P Farrell
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Scott G Hinch
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, V9T 6N7, Canada
| |
Collapse
|
39
|
Doyle JM, Willoughby JR, Bell DA, Bloom PH, Bragin EA, Fernandez NB, Katzner TE, Leonard K, DeWoody JA. Elevated Heterozygosity in Adults Relative to Juveniles Provides Evidence of Viability Selection on Eagles and Falcons. J Hered 2019; 110:696-706. [DOI: 10.1093/jhered/esz048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
AbstractViability selection yields adult populations that are more genetically variable than those of juveniles, producing a positive correlation between heterozygosity and survival. Viability selection could be the result of decreased heterozygosity across many loci in inbred individuals and a subsequent decrease in survivorship resulting from the expression of the deleterious alleles. Alternatively, locus-specific differences in genetic variability between adults and juveniles may be driven by forms of balancing selection, including heterozygote advantage, frequency-dependent selection, or selection across temporal and spatial scales. We use a pooled-sequencing approach to compare genome-wide and locus-specific genetic variability between 74 golden eagle (Aquila chrysaetos), 62 imperial eagle (Aquila heliaca), and 69 prairie falcon (Falco mexicanus) juveniles and adults. Although genome-wide genetic variability is comparable between juvenile and adult golden eagles and prairie falcons, imperial eagle adults are significantly more heterozygous than juveniles. This evidence of viability selection may stem from a relatively smaller imperial eagle effective population size and potentially greater genetic load. We additionally identify ~2000 single-nucleotide polymorphisms across the 3 species with extreme differences in heterozygosity between juveniles and adults. Many of these markers are associated with genes implicated in immune function or olfaction. These loci represent potential targets for studies of how heterozygote advantage, frequency-dependent selection, and selection over spatial and temporal scales influence survivorship in avian species. Overall, our genome-wide data extend previous studies that used allozyme or microsatellite markers and indicate that viability selection may be a more common evolutionary phenomenon than often appreciated.
Collapse
Affiliation(s)
- Jacqueline M Doyle
- Department of Biological Sciences, Towson University, Baltimore, MD
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN
| | - Janna R Willoughby
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama
- Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Douglas A Bell
- Department of Biological Sciences, Towson University, Baltimore, MD
- East Bay Regional Park District, Oakland, CA
- Department of Ornithology and Mammalogy, California Academy of Sciences, San Francisco, CA
| | - Peter H Bloom
- Department of Biological Sciences, Towson University, Baltimore, MD
- Bloom Research Inc., Los Angeles, CA
| | - Evgeny A Bragin
- Department of Biological Sciences, Towson University, Baltimore, MD
- Faculty of Natural Science, Kostanay State Pedagogical University, Kostanay, Kazakhstan
- The Peregrine Fund, Boise, ID
- Science Department, Naurzum National Nature Reserve, Kostanay Oblast, Naurzumski Raijon, Karamendy, Kazakhstan
| | - Nadia B Fernandez
- Department of Biological Sciences, Towson University, Baltimore, MD
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA
| | - Todd E Katzner
- Department of Biological Sciences, Towson University, Baltimore, MD
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, ID
| | - Kolbe Leonard
- Department of Biological Sciences, Towson University, Baltimore, MD
- Department of Computer and Information Sciences, Towson University, Baltimore, MD
| | - J Andrew DeWoody
- Department of Biological Sciences, Towson University, Baltimore, MD
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN
- Department of Biological Sciences, Purdue University, West Lafayette, IN
| |
Collapse
|
40
|
Li YL, Xue DX, Zhang BD, Liu JX. Population Genomic Signatures of Genetic Structure and Environmental Selection in the Catadromous Roughskin Sculpin Trachidermus fasciatus. Genome Biol Evol 2019; 11:1751-1764. [PMID: 31173074 PMCID: PMC6601870 DOI: 10.1093/gbe/evz118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2019] [Indexed: 12/24/2022] Open
Abstract
Understanding the patterns of genetic diversity and adaptation across species' range is crucial to assess its long-term persistence and determine appropriate conservation measures. The impacts of human activities on the genetic diversity and genetic adaptation to heterogeneous environments remain poorly understood in the marine realm. The roughskin sculpin (Trachidermus fasciatus) is a small catadromous fish, and has been listed as a second-class state protected aquatic animal since 1988 in China. To elucidate the underlying mechanism of population genetic structuring and genetic adaptations to local environments, RAD tags were sequenced for 202 individuals in nine populations across the range of T. fasciatus in China. The pairwise FST values over 9,271 filtered SNPs were significant except that between Dongying and Weifang. All the genetic clustering analysis revealed significant population structure with high support for eight distinct genetic clusters. Both the minor allele frequency spectra and Ne estimations suggested extremely small Ne in some populations (e.g., Qinhuangdao, Rongcheng, Wendeng, and Qingdao), which might result from recent population bottleneck. The strong genetic structure can be partly attributed to genetic drift and habitat fragmentation, likely due to the anthropogenic activities. Annotations of candidate adaptive loci suggested that genes involved in metabolism, development, and osmoregulation were critical for adaptation to spatially heterogenous environment of local populations. In the context of anthropogenic activities and environmental change, results of the present population genomic work provided important contributions to the understanding of genetic differentiation and adaptation to changing environments.
Collapse
Affiliation(s)
- Yu-Long Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Dong-Xiu Xue
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Bai-Dong Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jin-Xian Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
41
|
Seeb LW, McKinney GJ, Seeb JE. "Chromosomes and genes, spawned these fateful scenes": Rapid adaptation in an introduced fish. Mol Ecol 2019; 27:3965-3967. [PMID: 30353598 DOI: 10.1111/mec.14797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/14/2018] [Indexed: 01/17/2023]
Abstract
Humans by their very nature alter the distribution of species. Be it introduction of exotic species, habitat alterations or construction of barriers, anthropogenic changes provide novel experimental systems for the molecular ecologist to study evolutionary change. These events often provide a contradiction. Effective population sizes are generally low, and introduced populations are typically characterized by reduced diversity consistent with theoretical predictions of population bottlenecks and founder effects. However, despite reduced diversity, rapid change sometimes occurs. Identification of genomic regions associated with these rapid adaptive responses to novel selection pressures provides a window into genomic regions important in adaptive diversity, both in the novel and native ranges. These studies also provide an important means to estimate the pace of evolutionary change. In this issue, Willoughby et al. () compared the heterozygosity of steelhead (the anadromous form of rainbow trout Oncorhynchus mykiss) introduced into Lake Michigan in the late 1880s to the putative source population from the ancestral California range. After 25 generations of isolation in Lake Michigan, Willoughby et al. () found consistent genomewide reductions in genetic diversity as estimated by a measure of pooled heterozygosity. Despite this overall reduction in heterozygosity, three chromosomal regions showed signals of rapid adaptation and contained genes associated with osmoregulatory and wound-healing functions.
Collapse
Affiliation(s)
- Lisa W Seeb
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington
| | - Garrett J McKinney
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington
| | - James E Seeb
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
42
|
Willoughby JR, Christie MR. Long-term demographic and genetic effects of releasing captive-born individuals into the wild. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2019; 33:377-388. [PMID: 30168872 DOI: 10.1111/cobi.13217] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/20/2018] [Accepted: 08/28/2018] [Indexed: 05/20/2023]
Abstract
Because of continued habitat destruction and species extirpations, the need to use captive breeding for conservation purposes has been increasing steadily. However, the long-term demographic and genetic effects associated with releasing captive-born individuals with varied life histories into the wild remain largely unknown. To address this question, we developed forward-time, agent-based models for 4 species with long-running captive-breeding and release programs: coho salmon (Oncorhynchus kisutch), golden lion tamarin (Leontopithecus rosalia), western toad (Anaxyrus boreas), and Whooping Crane (Grus americana). We measured the effects of supplementation by comparing population size and neutral genetic diversity in supplemented populations to the same characteristics in unaltered populations 100 years after supplementation ended. Releasing even slightly less fit captive-born individuals to supplement wild populations typically resulted in reductions in population sizes and genetic diversity over the long term when the fitness reductions were heritable (i.e., due to genetic adaptation to captivity) and populations continued to be regulated by density-dependent mechanisms over time. Negative effects for species with longer life spans and lower rates of population replacement were smaller than for species with shorter life spans and higher rates of population replacement. Programs that released captive-born individuals over fewer years or that avoided breeding individuals with captive ancestry had smaller reductions in population size and genetic diversity over the long term. Relying on selection in the wild to remove individuals with reduced fitness mitigated some negative demographic effects, but at a substantial cost to neutral genetic diversity. Our results suggest that conservation-focused captive-breeding programs should take measures to prevent even small amounts of genetic adaptation to captivity, quantitatively determine the minimum number of captive-born individuals to release each year, and fully account for the interactions among genetic adaptation to captivity, population regulation, and life-history variation.
Collapse
Affiliation(s)
- Janna R Willoughby
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, U.S.A
| | - Mark R Christie
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, U.S.A
- Department of Forestry and Natural Resources, Purdue University, 715 W. State Street, West Lafayette, IN 47907-2054, U.S.A
| |
Collapse
|
43
|
Mable BK. Conservation of adaptive potential and functional diversity: integrating old and new approaches. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1129-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
44
|
Sylvester EVA, Beiko RG, Bentzen P, Paterson I, Horne JB, Watson B, Lehnert S, Duffy S, Clément M, Robertson MJ, Bradbury IR. Environmental extremes drive population structure at the northern range limit of Atlantic salmon in North America. Mol Ecol 2018; 27:4026-4040. [PMID: 30152128 DOI: 10.1111/mec.14849] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 08/16/2018] [Accepted: 08/22/2018] [Indexed: 12/18/2022]
Abstract
Conservation of exploited species requires an understanding of both genetic diversity and the dominant structuring forces, particularly near range limits, where climatic variation can drive rapid expansions or contractions of geographic range. Here, we examine population structure and landscape associations in Atlantic salmon (Salmo salar) across a heterogeneous landscape near the northern range limit in Labrador, Canada. Analysis of two amplicon-based data sets containing 101 microsatellites and 376 single nucleotide polymorphisms (SNPs) from 35 locations revealed clear differentiation between populations spawning in rivers flowing into a large marine embayment (Lake Melville) compared to coastal populations. The mechanisms influencing the differentiation of embayment populations were investigated using both multivariate and machine-learning landscape genetic approaches. We identified temperature as the strongest correlate with genetic structure, particularly warm temperature extremes and wider annual temperature ranges. The genomic basis of this divergence was further explored using a subset of locations (n = 17) and a 220K SNP array. SNPs associated with spatial structuring and temperature mapped to a diverse set of genes and molecular pathways, including regulation of gene expression, immune response, and cell development and differentiation. The results spanning molecular marker types and both novel and established methods clearly show climate-associated, fine-scale population structure across an environmental gradient in Atlantic salmon near its range limit in North America, highlighting valuable approaches for predicting population responses to climate change and managing species sustainability.
Collapse
Affiliation(s)
- Emma V A Sylvester
- Science Branch, Department of Fisheries and Oceans Canada, St. John's, NL, Canada
| | - Robert G Beiko
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| | - Paul Bentzen
- Marine Gene Probe Laboratory, Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Ian Paterson
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| | - John B Horne
- University of Southern Mississippi Gulf Coast Research Laboratory, Ocean Springs, MS, Canada
| | - Beth Watson
- Marine Gene Probe Laboratory, Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Sarah Lehnert
- Science Branch, Department of Fisheries and Oceans Canada, St. John's, NL, Canada
| | - Steven Duffy
- Science Branch, Department of Fisheries and Oceans Canada, St. John's, NL, Canada
| | - Marie Clément
- Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute, Memorial University of Newfoundland, St. John's, NL, Canada.,Labrador Institute, Memorial University of Newfoundland, Happy Valley-Goose Bay, NL, Canada
| | - Martha J Robertson
- Science Branch, Department of Fisheries and Oceans Canada, St. John's, NL, Canada
| | - Ian R Bradbury
- Science Branch, Department of Fisheries and Oceans Canada, St. John's, NL, Canada.,Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada.,Marine Gene Probe Laboratory, Department of Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
45
|
McCallum E. A fish out of saltwater. J Exp Biol 2018. [DOI: 10.1242/jeb.170134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|