1
|
González-Varo JP, Albrecht J, Arroyo JM, Bueno RS, Burgos T, Escribano-Ávila G, Farwig N, García D, Illera JC, Jordano P, Kurek P, Rösner S, Virgós E, Sutherland WJ. Frugivore-mediated seed dispersal in fragmented landscapes: Compositional and functional turnover from forest to matrix. Proc Natl Acad Sci U S A 2023; 120:e2302440120. [PMID: 37871198 PMCID: PMC10622928 DOI: 10.1073/pnas.2302440120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/01/2023] [Indexed: 10/25/2023] Open
Abstract
Seed dispersal by frugivores is a fundamental function for plant community dynamics in fragmented landscapes, where forest remnants are typically embedded in a matrix of anthropogenic habitats. Frugivores can mediate both connectivity among forest remnants and plant colonization of the matrix. However, it remains poorly understood how frugivore communities change from forest to matrix due to the loss or replacement of species with traits that are less advantageous in open habitats and whether such changes ultimately influence the composition and traits of dispersed plants via species interactions. Here, we close this gap by using a unique dataset of seed-dispersal networks that were sampled in forest patches and adjacent matrix habitats of seven fragmented landscapes across Europe. We found a similar diversity of frugivores, plants, and interactions contributing to seed dispersal in forest and matrix, but a high turnover (replacement) in all these components. The turnover of dispersed seeds was smaller than that of frugivore communities because different frugivore species provided complementary seed dispersal in forest and matrix. Importantly, the turnover involved functional changes toward larger and more mobile frugivores in the matrix, which dispersed taller, larger-seeded plants with later fruiting periods. Our study provides a trait-based understanding of frugivore-mediated seed dispersal through fragmented landscapes, uncovering nonrandom shifts that can have cascading consequences for the composition of regenerating plant communities. Our findings also highlight the importance of forest remnants and frugivore faunas for ecosystem resilience, demonstrating a high potential for passive forest restoration of unmanaged lands in the matrix.
Collapse
Affiliation(s)
- Juan P. González-Varo
- Departamento de Biología, Instituto de Investigación Vitivinícola y Agroalimentaria, Universidad de Cádiz, Puerto Real11510, Spain
| | - Jörg Albrecht
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main60325, Germany
| | - Juan M. Arroyo
- Integrative Ecology Group, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Sevilla41092, Spain
| | - Rafael S. Bueno
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo90128, Italy
| | - Tamara Burgos
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Madrid28933, Spain
| | - Gema Escribano-Ávila
- Biodiversity, Ecology and Evolution Department, Complutense University Madrid, Madrid28040, Spain
| | - Nina Farwig
- Conservation Ecology, Department of Biology, Philipps-Universität Marburg, Marburg35032, Germany
| | - Daniel García
- Biodiversity Research Institute (University of Oviedo – Consejo Superior de Investigaciones Científicas – Principado de Asturias), Mieres33600, Spain
| | - Juan C. Illera
- Biodiversity Research Institute (University of Oviedo – Consejo Superior de Investigaciones Científicas – Principado de Asturias), Mieres33600, Spain
| | - Pedro Jordano
- Integrative Ecology Group, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Sevilla41092, Spain
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla41012, Spain
| | - Przemysław Kurek
- Department of Plant Ecology and Environmental Protection, Adam Mickiewicz University, Poznań61-712, Poland
| | - Sascha Rösner
- Conservation Ecology, Department of Biology, Philipps-Universität Marburg, Marburg35032, Germany
| | - Emilio Virgós
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Madrid28933, Spain
| | - William J. Sutherland
- Conservation Science Group, Department of Zoology, University of Cambridge, CambridgeCB2 3QZ, United Kingdom
| |
Collapse
|
2
|
Quintero E, Rodríguez-Sánchez F, Jordano P. Reciprocity and interaction effectiveness in generalised mutualisms among free-living species. Ecol Lett 2023; 26:132-146. [PMID: 36450595 PMCID: PMC10099531 DOI: 10.1111/ele.14141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/12/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022]
Abstract
Mutualistic interactions among free-living species generally involve low-frequency interactions and highly asymmetric dependence among partners, yet our understanding of factors behind their emergence is still limited. Using individual-based interactions of a super-generalist fleshy-fruited plant with its frugivore assemblage, we estimated the Resource Provisioning Effectiveness (RPE) and Seed Dispersal Effectiveness (SDE) to assess the balance in the exchange of resources. Plants were highly dependent on a few frugivore species, while frugivores interacted with most individual plants, resulting in strong asymmetries of mutual dependence. Interaction effectiveness was mainly driven by interaction frequency. Despite highly asymmetric dependences, the strong reliance on quantity of fruit consumed determined high reciprocity in rewards between partners (i.e. higher energy provided by the plant, more seedlings recruited), which was not obscured by minor variations in the quality of animal or plant service. We anticipate reciprocity will emerge in low-intimacy mutualisms where the mutualistic outcome largely relies upon interaction frequency.
Collapse
Affiliation(s)
- Elena Quintero
- Integrative Ecology Group, Estación Biológica de Doñana, Sevilla, Spain
| | - Francisco Rodríguez-Sánchez
- Integrative Ecology Group, Estación Biológica de Doñana, Sevilla, Spain.,Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Pedro Jordano
- Integrative Ecology Group, Estación Biológica de Doñana, Sevilla, Spain.,Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
3
|
Differentiation and seasonality in suitable microsites of seed dispersal by an assemblage of omnivorous mammals. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
4
|
Vukeya LR, Mokotjomela TM, Malebo NJ, Saheed O. Seed dispersal phenology of encroaching woody species in the Free State National Botanical Garden, South Africa. Afr J Ecol 2022. [DOI: 10.1111/aje.13013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Loyd R. Vukeya
- South Africa National Biodiversity Institute Free State National Botanical Garden Bloemfontein South Africa
- Faculty of Health and Environmental Science Central University of Technology Bloemfontein South Africa
| | - Thabiso M. Mokotjomela
- Centre for Invasion Biology, South Africa National Biodiversity Institute Free State National Botanical Garden Bloemfontein South Africa
- School of Life Sciences University of KwaZulu‐Natal Pietermaritzburg South Africa
| | - Ntsoaki J. Malebo
- Faculty of Health and Environmental Science Central University of Technology Bloemfontein South Africa
| | - Oke Saheed
- Faculty of Health and Environmental Science Central University of Technology Bloemfontein South Africa
| |
Collapse
|
5
|
Population models reveal synergistic fitness effects of climate change and urbanization on poison ivy (Toxicodendron radicans) via disruption of seed dispersal interactions. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Zhang Y, Su T, Ma Y, Wang Y, Wang W, Zha N, Shao M. Forest ecosystem service functions and their associations with landscape patterns in Renqiu City. PLoS One 2022; 17:e0265015. [PMID: 35385484 PMCID: PMC8985963 DOI: 10.1371/journal.pone.0265015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/21/2022] [Indexed: 12/02/2022] Open
Abstract
Forest ecosystems are crucial to the survival and development of human societies. Urbanization is expected to impact forest landscape patterns and consequently the supply of forest ecosystem services. However, the specific ways by which such impacts manifest are unclear. Therefore, to discuss the relationship between them is of great significance for realizing regional sustainable development. Here, we quantitatively assess the intensity of forest ecosystem service functions and forest landscape patterns in Renqiu City of China's Hebei Province in 2019 using ArcGIS and FRAGSTATS. We characterize the relationships between forest ecosystem service capacity and landscape patterns, and identify strategies for the spatial optimization of forests. We find that the ecosystem service intensity of forests are significantly correlated with their spatial distribution, forest area ratio, and landscape patterns. Specifically, the percentage of landscape (PLAND) index, landscape shape index (LSI), and contagion (CONTAG) index indices display second-order polynomial relationships with various forest ecosystem service functions, with critical values of 80, 5, and 70, respectively. We propose that forest ecosystem functions can be optimized by optimizing forest landscape patterns. Specifically, to maximize the function of forest ecosystem services, managers should consider the integrity of forest ecosystems, optimize their ability to self-succession, repair service functions of key nodes within forests, enhance forests' structural stability, optimize forest quality and community structure, and strengthen the efficiency of functional transformation per unit area. Finally, we propose a strategy for the spatial optimization of forests in Renqiu to optimize their associated ecosystem services. This involves protecting important areas for forest ecosystems, rationally organizing different ecological patches such as forests and water bodies to maximize their functions, strengthening the connectivity of scattered forests, and supplementing woodland areas.
Collapse
Affiliation(s)
- Yunlu Zhang
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tingting Su
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yue Ma
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yanyinuo Wang
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Weiqi Wang
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Niyi Zha
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Ming Shao
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
7
|
García‐Rodríguez A, Selva N. Constant gardeners: Endozoochory promotes repeated seedling recruitment in clonal plants. Ecosphere 2021. [DOI: 10.1002/ecs2.3861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Alberto García‐Rodríguez
- Institute of Nature Conservation Polish Academy of Sciences Al. Adama Mickiewicza 33 Kraków 31‐120 Poland
| | - Nuria Selva
- Institute of Nature Conservation Polish Academy of Sciences Al. Adama Mickiewicza 33 Kraków 31‐120 Poland
| |
Collapse
|
8
|
González-Varo JP, Rumeu B, Albrecht J, Arroyo JM, Bueno RS, Burgos T, da Silva LP, Escribano-Ávila G, Farwig N, García D, Heleno RH, Illera JC, Jordano P, Kurek P, Simmons BI, Virgós E, Sutherland WJ, Traveset A. Limited potential for bird migration to disperse plants to cooler latitudes. Nature 2021; 595:75-79. [PMID: 34163068 DOI: 10.1038/s41586-021-03665-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
Climate change is forcing the redistribution of life on Earth at an unprecedented velocity1,2. Migratory birds are thought to help plants to track climate change through long-distance seed dispersal3,4. However, seeds may be consistently dispersed towards cooler or warmer latitudes depending on whether the fruiting period of a plant species coincides with northward or southward migrations. Here we assess the potential of plant communities to keep pace with climate change through long-distance seed dispersal by migratory birds. To do so, we combine phenological and migration information with data on 949 seed-dispersal interactions between 46 bird and 81 plant species from 13 woodland communities across Europe. Most of the plant species (86%) in these communities are dispersed by birds migrating south, whereas only 35% are dispersed by birds migrating north; the latter subset is phylogenetically clustered in lineages that have fruiting periods that overlap with the spring migration. Moreover, the majority of this critical dispersal service northwards is provided by only a few Palaearctic migrant species. The potential of migratory birds to assist a small, non-random sample of plants to track climate change latitudinally is expected to strongly influence the formation of novel plant communities, and thus affect their ecosystem functions and community assembly at higher trophic levels.
Collapse
Affiliation(s)
| | - Beatriz Rumeu
- Departamento de Biología, IVAGRO, Universidad de Cádiz, Puerto Real, Spain
| | - Jörg Albrecht
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
| | - Juan M Arroyo
- Integrative Ecology Group, Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain
| | - Rafael S Bueno
- Dipartimento Scienze Agrarie, Alimentari e Forestali e Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy
| | - Tamara Burgos
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Luís P da Silva
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Gema Escribano-Ávila
- Global Change Research Group, Mediterranean Institute of Advanced Studies (CSIC-UIB), Esporles, Spain
| | - Nina Farwig
- Conservation Ecology, Department of Biology, University of Marburg, Marburg, Germany
| | - Daniel García
- Research Unit of Biodiversity (UO-CSIC-PA), Oviedo University, Mieres, Spain
| | - Ruben H Heleno
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Juan C Illera
- Research Unit of Biodiversity (UO-CSIC-PA), Oviedo University, Mieres, Spain
| | - Pedro Jordano
- Integrative Ecology Group, Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain
| | - Przemysław Kurek
- Department of Plant Ecology and Environmental Protection, Adam Mickiewicz University, Poznań, Poland
| | - Benno I Simmons
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - Emilio Virgós
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Spain
| | - William J Sutherland
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Anna Traveset
- Global Change Research Group, Mediterranean Institute of Advanced Studies (CSIC-UIB), Esporles, Spain
| |
Collapse
|
9
|
Campagnoli ML, Christianini AV. Temporal consistency in interactions among birds, ants, and plants in a neotropical savanna. OIKOS 2021. [DOI: 10.1111/oik.08231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mariana L. Campagnoli
- Programa de Pós‐graduação em Ecologia e Recursos Naturais, Univ. Federal de São Carlos (UFSCar) São Carlos São Paulo Brazil
| | | |
Collapse
|
10
|
Palacio FX, Cataudela JF, Montalti D, Ordano M. Do frugivores exert selection on fruiting phenology? Potential scenarios across three plant populations of a Neotropical vine, Passiflora caerulea. Evol Ecol 2021. [DOI: 10.1007/s10682-021-10121-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Schlautmann J, Rehling F, Albrecht J, Jaroszewicz B, Schabo DG, Farwig N. Observing frugivores or collecting scats: a method comparison to construct quantitative seed dispersal networks. OIKOS 2021. [DOI: 10.1111/oik.08175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jan Schlautmann
- Conservation Ecology, Dept of Biology, Univ. of Marburg Germany
| | - Finn Rehling
- Conservation Ecology, Dept of Biology, Univ. of Marburg Germany
| | - Jörg Albrecht
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F) Frankfurt/Main Germany
| | - Bogdan Jaroszewicz
- Białowieża Geobotanical Station, Faculty of Biology, Univ. of Warsaw Białowieża Poland
| | - Dana G. Schabo
- Conservation Ecology, Dept of Biology, Univ. of Marburg Germany
| | - Nina Farwig
- Conservation Ecology, Dept of Biology, Univ. of Marburg Germany
| |
Collapse
|
12
|
González‐Varo JP, Onrubia A, Pérez‐Méndez N, Tarifa R, Illera JC. Fruit abundance and trait matching determine diet type and body condition across frugivorous bird populations. OIKOS 2021. [DOI: 10.1111/oik.08106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Juan P. González‐Varo
- Depto de Biología, IVAGRO, Univ. de Cádiz, Campus Río San Pedro Puerto Real Cádiz Spain
| | - Alejandro Onrubia
- Migres Foundation, International Bird Migration Center (CIMA) Tarifa Cádiz Spain
| | - Néstor Pérez‐Méndez
- Inst. de Recerca i Tecnologia Agroalimentaries (IRTA), Estació Experimental de l'Ebre Amposta Tarragona Spain
| | - Rubén Tarifa
- Depto de Biología Animal, Vegetal y Ecología, Univ. de Jaén Jaén Spain
| | - Juan C. Illera
- Research Unit of Biodiversity (UO‐CSIC‐PA), Depto de Biología de Organismos y Sistemas, Unidad Mixta de Investigación en Biodiversidad, Univ. de Oviedo, Campus of Mieres Mieres Asturias Spain
| |
Collapse
|
13
|
Sethi ML, Theobald EJ, Breckheimer I, Hille Ris Lambers J. Early snowmelt and warmer, drier summers shrink postflowering transition times in subalpine wildflowers. Ecology 2020; 101:e03171. [PMID: 32852790 DOI: 10.1002/ecy.3171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/11/2020] [Accepted: 06/28/2020] [Indexed: 12/26/2022]
Abstract
Plant reproductive phenology-the timing of reproduction-is shifting rapidly with global climate change. Many studies focus on flowering responses to climate, but few investigate how postflowering processes, such as how quickly plants develop from flowering to seed dispersal, respond to environmental factors. We examined the climatic drivers of postflowering phenology in 28 species of western North American subalpine meadow plants over large spatial and temporal climate gradients. We took a Bayesian hierarchical approach to address whether and how climate influences the time it takes for wildflower populations to transition from flower to seed. Our previous work on the same species demonstrated that the initiation of flowering depends on snowmelt timing, with warmer temperatures and soil moisture also playing a role. Here, we found that for the majority of the flowering community, the same climate drivers also affected the time it takes to move from flowering to seed dispersal. Climate-sensitive species shortened flower-seed transitions when snow melted earlier, temperatures were warmer, and/or soil dried down more quickly-conditions we expect with higher frequency under climate change. Our work underscores the fact that predicting the impact of climate change on plant reproductive phenology demands empirical data on phases beyond flowering. Additionally, it suggests that some species face a future in which multiple environmental factors will push them towards more rapid transitions from flowering to postflowering phases, with potential effects on plants themselves and the many animal associates that rely on them, including frugivores and seed predators.
Collapse
Affiliation(s)
- Meera Lee Sethi
- Department of Biology, University of Washington, Box 351800 Seattle, Seattle, Washington, 98195-1800, USA
| | - Elli J Theobald
- Department of Biology, University of Washington, Box 351800 Seattle, Seattle, Washington, 98195-1800, USA
| | - Ian Breckheimer
- Harvard University Herbaria, 22 Divinity Avenue, Cambridge, Massachusetts, 02138, USA.,Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, Colorado, 81224, USA
| | - Janneke Hille Ris Lambers
- Department of Biology, University of Washington, Box 351800 Seattle, Seattle, Washington, 98195-1800, USA
| |
Collapse
|
14
|
Stanley A, Arceo-Gómez G. Urbanization increases seed dispersal interaction diversity but decreases dispersal success in Toxicodendron radicans. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
15
|
Zanette EM, Fuzessy LF, Hack ROE, Monteiro-Filho ELA. Potential role in seed dispersal revealed by experimental trials with captive southern muriquis (Brachyteles arachnoides). Primates 2020; 61:495-505. [PMID: 32026150 DOI: 10.1007/s10329-020-00796-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/14/2020] [Indexed: 03/21/2023]
Abstract
Primates are great fruit consumers and disperse intact seeds from most of the plants they consume, but effective seed dispersal depends, amongst other factors, on handling behavior. Likewise, the treatment in gut and mouth may alter seed fate. Overall, frugivore and folivore-frugivore primates are recognized to provide beneficial gut treatment for Neotropical plant species, but this effect might be overlooked at species-specific levels. In this study, we assessed the role of the southern muriqui (Brachyteles arachnoides), an endangered and endemic primate living in restricted fragments of the Brazilian Atlantic Forest, on potential quality of seed dispersal of native plants. Our main goals were to understand the effect of seed ingestion by this large-bodied atelid on germination of defecated seeds and in seed recovery by offering wild fruits of native species to captive individuals. We found that seven out of nine plant species were defecated intact and were able to germinate. Of those seven, one species showed enhanced and another showed decreased germination potential after defecation, while three species germinated faster after being defecated. The remaining species showed no differences from control seeds. The two non-germinating species were heavily predated, and average seed recovery was lower than expected, suggesting high levels of seed predation. The largest species offered (Inga vulpina) showed the highest dispersal potential. Our data support an overall neutral or potentially positive role of southern muriquis in seed dispersal quality for seven out of nine Atlantic Forest plant species, highlighting these primates' potential to produce an effective seed rain.
Collapse
Affiliation(s)
- E M Zanette
- Zoology Department, Setor de Ciências Biológicas, Universidade Federal Do Paraná (UFPR), Curitiba, PR, Brazil.
| | - L F Fuzessy
- Zoology Department, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - R O E Hack
- Environment Department, Institute of Technology for Development (LACTEC), Curitiba, PR, Brazil
| | - E L A Monteiro-Filho
- Zoology Department, Setor de Ciências Biológicas, Universidade Federal Do Paraná (UFPR), Curitiba, PR, Brazil.,Instituto de Pesquisas Cananéia, IPeC, Cananéia, SP, Brazil
| |
Collapse
|
16
|
Song C, Von Ahn S, Rohr RP, Saavedra S. Towards a Probabilistic Understanding About the Context-Dependency of Species Interactions. Trends Ecol Evol 2020; 35:384-396. [PMID: 32007296 DOI: 10.1016/j.tree.2019.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/11/2019] [Accepted: 12/20/2019] [Indexed: 01/10/2023]
Abstract
Observational and experimental studies have shown that an interaction class between two species (be it mutualistic, competitive, antagonistic, or neutral) may switch to a different class, depending on the biotic and abiotic factors within which species are observed. This complexity arising from the evidence of context-dependencies has underscored a difficulty in establishing a systematic analysis about the extent to which species interactions are expected to switch in nature and experiments. Here, we propose an overarching theoretical framework, by integrating probabilistic and structural approaches, to establish null expectations about switches of interaction classes across environmental contexts. This integration provides a systematic platform upon which it is possible to establish new hypotheses, clear predictions, and quantifiable expectations about the context-dependency of species interactions.
Collapse
Affiliation(s)
- Chuliang Song
- Department of Civil and Environmental Engineering, MIT, 77 Massachusetts Av., Cambridge 02139, MA, USA
| | - Sarah Von Ahn
- Department of Mathematics, MIT, 77 Massachusetts Av., Cambridge 02139, MA, USA
| | - Rudolf P Rohr
- Department of Biology - Ecology and Evolution, University of Fribourg Chemin du Musée 10, Fribourg CH-1700, Switzerland
| | - Serguei Saavedra
- Department of Civil and Environmental Engineering, MIT, 77 Massachusetts Av., Cambridge 02139, MA, USA.
| |
Collapse
|
17
|
Rieseberg L, Geraldes A, Taberlet P. Editorial 2020. Mol Ecol 2020; 29:1-19. [DOI: 10.1111/mec.15328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 11/27/2022]
|
18
|
Schupp EW, Zwolak R, Jones LR, Snell RS, Beckman NG, Aslan C, Cavazos BR, Effiom E, Fricke EC, Montaño-Centellas F, Poulsen J, Razafindratsima OH, Sandor ME, Shea K. Intrinsic and extrinsic drivers of intraspecific variation in seed dispersal are diverse and pervasive. AOB PLANTS 2019; 11:plz067. [PMID: 31857875 PMCID: PMC6914678 DOI: 10.1093/aobpla/plz067] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/09/2019] [Indexed: 05/23/2023]
Abstract
There is growing realization that intraspecific variation in seed dispersal can have important ecological and evolutionary consequences. However, we do not have a good understanding of the drivers or causes of intraspecific variation in dispersal, how strong an effect these drivers have, and how widespread they are across dispersal modes. As a first step to developing a better understanding, we present a broad, but not exhaustive, review of what is known about the drivers of intraspecific variation in seed dispersal, and what remains uncertain. We start by decomposing 'drivers of intraspecific variation in seed dispersal' into intrinsic drivers (i.e. variation in traits of individual plants) and extrinsic drivers (i.e. variation in ecological context). For intrinsic traits, we further decompose intraspecific variation into variation among individuals and variation of trait values within individuals. We then review our understanding of the major intrinsic and extrinsic drivers of intraspecific variation in seed dispersal, with an emphasis on variation among individuals. Crop size is the best-supported and best-understood intrinsic driver of variation across dispersal modes; overall, more seeds are dispersed as more seeds are produced, even in cases where per seed dispersal rates decline. Fruit/seed size is the second most widely studied intrinsic driver, and is also relevant to a broad range of seed dispersal modes. Remaining intrinsic drivers are poorly understood, and range from effects that are probably widespread, such as plant height, to drivers that are most likely sporadic, such as fruit or seed colour polymorphism. Primary extrinsic drivers of variation in seed dispersal include local environmental conditions and habitat structure. Finally, we present a selection of outstanding questions as a starting point to advance our understanding of individual variation in seed dispersal.
Collapse
Affiliation(s)
- Eugene W Schupp
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, USA
| | - Rafal Zwolak
- Department of Systematic Zoology, Adam Mickiewicz University, Poznań, Poland
| | - Landon R Jones
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Rebecca S Snell
- Environmental and Plant Biology, Ohio University, Athens, OH, USA
| | - Noelle G Beckman
- Department of Biology and Ecology Center, Utah State University, Logan, UT, USA
| | - Clare Aslan
- Landscape Conservation Initiative, Northern Arizona University, Flagstaff, AZ, USA
| | - Brittany R Cavazos
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Edu Effiom
- REDD & Biodiversity Unit, Cross River State Forestry Commission, Calabar, Nigeria
| | - Evan C Fricke
- National Socio-Environmental Synthesis Center, University of Maryland, Annapolis, MD, USA
| | | | - John Poulsen
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Onja H Razafindratsima
- Department of Natural Resource Management, South Dakota State University, Brookings, SD, USA
| | - Manette E Sandor
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
- Center for Biodiversity and Conservation, American Museum of Natural History, New York, NY, USA
| | | |
Collapse
|
19
|
Roslin T, Traugott M, Jonsson M, Stone GN, Creer S, Symondson WOC. Introduction: Special issue on species interactions, ecological networks and community dynamics - Untangling the entangled bank using molecular techniques. Mol Ecol 2019; 28:157-164. [PMID: 30548494 DOI: 10.1111/mec.14974] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/23/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Michael Traugott
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Mattias Jonsson
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Graham N Stone
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Gwynedd, UK
| | | |
Collapse
|
20
|
González-Varo JP, Díaz-García S, Arroyo JM, Jordano P. Seed dispersal by dispersing juvenile animals: a source of functional connectivity in fragmented landscapes. Biol Lett 2019; 15:20190264. [PMID: 31288682 DOI: 10.1098/rsbl.2019.0264] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Juvenile animals generally disperse from their birthplace to their future breeding territories. In fragmented landscapes, habitat-specialist species must disperse through the anthropogenic matrix where remnant habitats are embedded. Here, we test the hypothesis that dispersing juvenile frugivores leave a footprint in the form of seed deposition through the matrix of fragmented landscapes. We focused on the Sardinian warbler ( Sylvia melanocephala), a resident frugivorous passerine. We used data from field sampling of bird-dispersed seeds in the forest and matrix of a fragmented landscape, subsequent disperser identification through DNA-barcoding analysis, and data from a national bird-ringing programme. Seed dispersal by Sardinian warblers was confined to the forest most of the year, but warblers contributed a peak of seed-dispersal events in the matrix between July and October, mainly attributable to dispersing juveniles. Our study uniquely connects animal and plant dispersal, demonstrating that juveniles of habitat-specialist frugivores can provide mobile-link functions transiently, but in a seasonally predictable way.
Collapse
Affiliation(s)
- Juan P González-Varo
- 1 Integrative Ecology Group, Estación Biológica de Doñana (EBD-CSIC) , Sevilla , Spain.,2 Terrestrial Ecology Group, IMEDEA (UIB-CSIC) , Esporles , Spain.,3 Research Unit of Biodiversity (CSIC-UO-PA), Universidad de Oviedo , Mieres , Spain
| | - Sarah Díaz-García
- 1 Integrative Ecology Group, Estación Biológica de Doñana (EBD-CSIC) , Sevilla , Spain
| | - Juan M Arroyo
- 1 Integrative Ecology Group, Estación Biológica de Doñana (EBD-CSIC) , Sevilla , Spain
| | - Pedro Jordano
- 1 Integrative Ecology Group, Estación Biológica de Doñana (EBD-CSIC) , Sevilla , Spain
| |
Collapse
|
21
|
Aslan C, Beckman NG, Rogers HS, Bronstein J, Zurell D, Hartig F, Shea K, Pejchar L, Neubert M, Poulsen J, HilleRisLambers J, Miriti M, Loiselle B, Effiom E, Zambrano J, Schupp G, Pufal G, Johnson J, Bullock JM, Brodie J, Bruna E, Cantrell RS, Decker R, Fricke E, Gurski K, Hastings A, Kogan O, Razafindratsima O, Sandor M, Schreiber S, Snell R, Strickland C, Zhou Y. Employing plant functional groups to advance seed dispersal ecology and conservation. AOB PLANTS 2019; 11:plz006. [PMID: 30895154 PMCID: PMC6420810 DOI: 10.1093/aobpla/plz006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/05/2019] [Indexed: 05/06/2023]
Abstract
Seed dispersal enables plants to reach hospitable germination sites and escape natural enemies. Understanding when and how much seed dispersal matters to plant fitness is critical for understanding plant population and community dynamics. At the same time, the complexity of factors that determine if a seed will be successfully dispersed and subsequently develop into a reproductive plant is daunting. Quantifying all factors that may influence seed dispersal effectiveness for any potential seed-vector relationship would require an unrealistically large amount of time, materials and financial resources. On the other hand, being able to make dispersal predictions is critical for predicting whether single species and entire ecosystems will be resilient to global change. Building on current frameworks, we here posit that seed dispersal ecology should adopt plant functional groups as analytical units to reduce this complexity to manageable levels. Functional groups can be used to distinguish, for their constituent species, whether it matters (i) if seeds are dispersed, (ii) into what context they are dispersed and (iii) what vectors disperse them. To avoid overgeneralization, we propose that the utility of these functional groups may be assessed by generating predictions based on the groups and then testing those predictions against species-specific data. We suggest that data collection and analysis can then be guided by robust functional group definitions. Generalizing across similar species in this way could help us to better understand the population and community dynamics of plants and tackle the complexity of seed dispersal as well as its disruption.
Collapse
Affiliation(s)
- Clare Aslan
- Landscape Conservation Initiative, Northern Arizona University, Flagstaff, AZ, USA
| | | | - Haldre S Rogers
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Judie Bronstein
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Damaris Zurell
- Dynamic Macroecology, Landscape Dynamics, Swiss Federal Research Institute WSL, Zürcherstrasse, Birmensdorf, Switzerland
| | - Florian Hartig
- Faculty of Biology and Pre-Clinical Medicine, University of Regensburg, Universitätsstraße, Regensburg, Germany
| | - Katriona Shea
- Department of Biology, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, USA
| | - Liba Pejchar
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, USA
| | - Mike Neubert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - John Poulsen
- Nicholas School of the Environment, Duke University, Durham, USA
| | | | - Maria Miriti
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Bette Loiselle
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Edu Effiom
- CRS Forestry Commission, Calabar, Nigeria
| | - Jenny Zambrano
- National Socio-Environmental Synthesis Center, 1 Park Place, Annapolis, MD, USA
| | - Geno Schupp
- Department of Biology, Utah State University, Logan, UT, USA
| | - Gesine Pufal
- Naturschutz & Landschaftsökologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Jeremy Johnson
- Department of Geography, Texas A&M University, College Station, TX, USA
| | | | - Jedediah Brodie
- Wildlife Biology Program, University of Montana, Missoula, MT, USA
| | - Emilio Bruna
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | | | | | - Evan Fricke
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Katie Gurski
- Department of Mathematics, Howard University, Washington, DC, USA
| | | | - Oleg Kogan
- Physics Department, California Polytechnic State University, San Luis Obispo, CA, USA
| | | | - Manette Sandor
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | | | - Rebecca Snell
- Environmental and Plant Biology, Ohio University, Athens, OH, USA
| | | | - Ying Zhou
- Department of Mathematics, Lafayette College, Easton, PA, USA
| |
Collapse
|
22
|
González-Varo JP, Arroyo JM, Jordano P. The timing of frugivore-mediated seed dispersal effectiveness. Mol Ecol 2018; 28:219-231. [PMID: 30151871 PMCID: PMC6905405 DOI: 10.1111/mec.14850] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/08/2018] [Accepted: 08/15/2018] [Indexed: 12/01/2022]
Abstract
The seed dispersal effectiveness framework allows assessing mutualistic services from frugivorous animals in terms of quantity and quality. Quantity accounts for the number of seeds dispersed and quality for the probability of recruitment of dispersed seeds. Research on this topic has largely focused on the spatial patterns of seed deposition because seed fates often vary between microhabitats due to differences in biotic and abiotic factors. However, the temporal dimension has remained completely overlooked despite these factors-and even local disperser assemblages-can change dramatically during long fruiting periods. Here, we test timing effects on seed dispersal effectiveness, using as study case a keystone shrub species dispersed by frugivorous birds and with a fruiting period of 9 months. We evaluated quantity and quality in different microhabitats of a Mediterranean forest and different periods of the fruiting phenophase. We identified the bird species responsible for seed deposition through DNA barcoding and evaluated the probability of seedling recruitment through a series of field experiments on sequential demographic processes. We found that timing matters: The disperser assemblage was temporally structured, seed viability decreased markedly during the plant's fruiting phenophase, and germination was lower for viable seeds dispersed in the fruiting peak. We show how small contributions to seed deposition by transient migratory species can result in a relevant effectiveness if they disperse seeds in a high-quality period for seedling recruitment. This study expands our understanding of seed dispersal effectiveness, highlighting the importance of timing and infrequent interactions for population and community dynamics.
Collapse
Affiliation(s)
- Juan P González-Varo
- Integrative Ecology Group, Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain.,Terrestrial Ecology Group, Instituto Mediterráneo de Estudios Avanzados, UIB-CSIC, Esporles, Spain
| | - Juan M Arroyo
- Integrative Ecology Group, Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain
| | - Pedro Jordano
- Integrative Ecology Group, Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain
| |
Collapse
|