1
|
Zhu YX, Wang XY, Yang TY, Zhang HH, Li TP, Du YZ. Mechanisms of bacterial and fungal community assembly in leaf miners during transition from natural to laboratory environments. Front Microbiol 2024; 15:1424568. [PMID: 39091307 PMCID: PMC11291455 DOI: 10.3389/fmicb.2024.1424568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
Environmental heterogeneity partly drives microbial succession in arthropods, while the microbial assembly mechanisms during environmental changes remain largely unknown. Here, we explored the temporal dynamics and assembly mechanisms within both bacterial and fungal communities in Liriomyza huidobrensis (Blanchard) during the transition from field to laboratory conditions. We observed a decrease in bacterial diversity and complexity of bacterial-fungal co-occurrence networks in leaf miners transitioning from wild to captive environments. Both neutral and null models revealed that stochastic processes, particularly drift (contributing over 70%), play a crucial role in governing bacterial and fungal community assembly. The relative contribution of ecological processes such as dispersal, drift, and selection varied among leaf miners transitioning from wild to captive states. Furthermore, we propose a hypothetical scenario for the assembly and succession of microbial communities in the leaf miner during the short- and long-term transition from the wild to captivity. Our findings suggest that environmental heterogeneity determines the ecological processes governing bacterial and fungal community assembly in leaf miners, offering new insights into microbiome and mycobiome assembly mechanisms in invasive pests amidst environmental change.
Collapse
Affiliation(s)
- Yu-Xi Zhu
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Xin-Yu Wang
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Tian-Yue Yang
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Huan-Huan Zhang
- Institute of Vegetable, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Tong-Pu Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Yu-Zhou Du
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Bovay B, Descombes P, Chittaro Y, Glauser G, Nomoto H, Rasmann S. Adapting to change: Exploring the consequences of climate-induced host plant shifts in two specialist Lepidoptera species. Ecol Evol 2024; 14:e11596. [PMID: 38932969 PMCID: PMC11199125 DOI: 10.1002/ece3.11596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Asynchronous migration of insect herbivores and their host plants towards higher elevations following climate warming is expected to generate novel plant-insect interactions. While the disassociation of specialised interactions can challenge species' persistence, consequences for specialised low-elevation insect herbivores encountering novel high-elevation plants under climate change remain largely unknown. To explore the ability of two low-elevation Lepidoptera species, Melitaea celadussa and Zygaena filipendulae, to undergo shifts from low- to high-elevation host plants, we combined a translocation experiment performed at two elevations in the Swiss Alps with experiments conducted under controlled conditions. Specifically, we exposed M. celadussa and Z. filipendulae to current low- and congeneric high-elevation host plants, to test how shifts in host plant use impact oviposition probability, number of eggs clutches laid, caterpillar feeding preference and growth, pupation rate and wing size. While our study shows that both M. celadussa and Z. filipendulae can oviposit and feed on novel high-elevation host plants, we reveal strong preferences towards ovipositing and feeding on current low-elevation host plants. In addition, shifts from current low- to novel high-elevation host plants reduced pupation rates as well as wing size for M. celadussa, while caterpillar growth was unaffected by host plant identity for both species. Our study suggests that populations of M. celadussa and Z. filipendulae have the ability to undergo host plant shifts under climate change. However, these shifts may impact the ability of populations to respond to rapid climate change by altering developmental processes and morphology. Our study highlights the importance of considering altered biotic interactions when predicting consequences for natural populations facing novel abiotic and biotic environments.
Collapse
Affiliation(s)
- Baptiste Bovay
- Faculty of Science, Institute of BiologyUniversity of NeuchâtelNeuchatelSwitzerland
| | - Patrice Descombes
- Département de BotaniqueMuséum cantonal des sciences naturellesLausanneSwitzerland
| | | | - Gaëtan Glauser
- Faculty of Science, Neuchâtel Platform of Analytical ChemistryUniversity of NeuchâtelNeuchatelSwitzerland
| | - Hanna Nomoto
- Faculty of Science, Institute of BiologyUniversity of NeuchâtelNeuchatelSwitzerland
| | - Sergio Rasmann
- Faculty of Science, Institute of BiologyUniversity of NeuchâtelNeuchatelSwitzerland
| |
Collapse
|
3
|
Su C, Xie T, Jiang L, Wang Y, Wang Y, Nie R, Zhao Y, He B, Ma J, Yang Q, Hao J. Host genetics and larval host plant modulate microbiome structure and evolution underlying the intimate insect-microbe-plant interactions in Parnassius species on the Qinghai-Tibet Plateau. Ecol Evol 2024; 14:e11218. [PMID: 38606343 PMCID: PMC11007261 DOI: 10.1002/ece3.11218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/09/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Insects harbor a remarkable diversity of gut microbiomes critical for host survival, health, and fitness, but the mechanism of this structured symbiotic community remains poorly known, especially for the insect group consisting of many closely related species that inhabit the Qinghai-Tibet Plateau. Here, we firstly analyzed population-level 16S rRNA microbial dataset, comprising 11 Parnassius species covering 5 subgenera, from 14 populations mostly sampled in mountainous regions across northwestern-to-southeastern China, and meanwhile clarified the relative importance of multiple factors on gut microbial community structure and evolution. Our findings indicated that both host genetics and larval host plant modulated gut microbial diversity and community structure. Moreover, the effect analysis of host genetics and larval diet on gut microbiomes showed that host genetics played a critical role in governing the gut microbial beta diversity and the symbiotic community structure, while larval host plant remarkably influenced the functional evolution of gut microbiomes. These findings of the intimate insect-microbe-plant interactions jointly provide some new insights into the correlation among the host genetic background, larval host plant, the structure and evolution of gut microbiome, as well as the mechanisms of high-altitude adaptation in closely related species of this alpine butterfly group.
Collapse
Affiliation(s)
- Chengyong Su
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Tingting Xie
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Lijun Jiang
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Yunliang Wang
- College of Life SciencesAnhui Normal UniversityWuhuChina
- College of Physical EducationAnhui Normal UniversityWuhuChina
| | - Ying Wang
- College of Life SciencesAnhui Normal UniversityWuhuChina
- College of Physical EducationAnhui Normal UniversityWuhuChina
| | - Ruie Nie
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Youjie Zhao
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Bo He
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Junye Ma
- Key Laboratory of Palaeobiology and Petroleum Stratigraphy, Center for Excellence in Life and Palaeoenvironment, Nanjing Institute of Geology and PaleontologyChinese Academy of SciencesNanjingChina
| | - Qun Yang
- Key Laboratory of Palaeobiology and Petroleum Stratigraphy, Center for Excellence in Life and Palaeoenvironment, Nanjing Institute of Geology and PaleontologyChinese Academy of SciencesNanjingChina
- Nanjing CollegeUniversity of Chinese Academy of SciencesNanjingChina
| | - Jiasheng Hao
- College of Life SciencesAnhui Normal UniversityWuhuChina
| |
Collapse
|
4
|
Dai J, Cai X, Liu L, Lin Y, Huang Y, Lin J, Shu B. The comparison of gut gene expression and bacterial community in Diaphorina citri (Hemiptera: Liviidae) adults fed on Murraya exotica and 'Shatangju' mandarin (Citrus reticulate cv. Shatangju). BMC Genomics 2023; 24:416. [PMID: 37488494 PMCID: PMC10364414 DOI: 10.1186/s12864-023-09308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/12/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Diaphorina citri Kuwayama is an important citrus pest. It serves as the vector for the transmission of Candidatus Liberibacter asiaticus (CLas), which induced a destructive disease, Huanglongbing, and caused huge economic losses. During the interaction between insects and plants, insects have evolved a series of mechanisms to adapt to various host plants. Murraya exotica and 'Shatangju' mandarin (Citrus reticulate cv. Shatangju) are the Rutaceae species from different genera that have been discovered as suitable hosts for D. citri adults. While the adaptation mechanism of this pest to these two host plants is unclear. RESULTS In this study, RNA-seq and 16 S rDNA amplification sequencing were performed on the gut of D. citri adults reared on M. exotica and 'Shatangju' mandarin. RNA-seq results showed that a total of 964 differentially expressed genes were found in different gut groups with two host plant treatments. The impacted genes include those that encode ribosomal proteins, cathepsins, and mitochondrial respiratory chain complexes. According to 16 S rDNA sequencing, the compositions of the gut bacterial communities were altered by different treatments. The α and β diversity analyses confirmed that the host plant changes influenced the gut microbial diversity. The functional classification analysis by Tax4Fun revealed that 27 KEGG pathways, mostly those related to metabolism, including those for nucleotide metabolism, energy metabolism, metabolism of cofactors and vitamins, amino acid metabolism, carbohydrate metabolism, xenbiotics biodegradation and metabolism, lipid metabolism, and biosynthesis of other secondary metabolites, were significantly altered. CONCLUSION Our preliminary findings shed light on the connection between D. citri and host plants by showing that host plants alter the gene expression profiles and bacterial community composition of D. citri adults.
Collapse
Affiliation(s)
- Jinghua Dai
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong Teaching Building, Guangzhou, 510225, China
| | - Xueming Cai
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong Teaching Building, Guangzhou, 510225, China
| | - Luyang Liu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong Teaching Building, Guangzhou, 510225, China
| | - Yanzheng Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong Teaching Building, Guangzhou, 510225, China
| | - Yuting Huang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong Teaching Building, Guangzhou, 510225, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong Teaching Building, Guangzhou, 510225, China.
| | - Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong Teaching Building, Guangzhou, 510225, China.
| |
Collapse
|
5
|
Roy A, Houot B, Kushwaha S, Anderson P. Impact of transgenerational host switch on gut bacterial assemblage in generalist pest, Spodoptera littoralis (Lepidoptera: Noctuidae). Front Microbiol 2023; 14:1172601. [PMID: 37520373 PMCID: PMC10374326 DOI: 10.3389/fmicb.2023.1172601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/15/2023] [Indexed: 08/01/2023] Open
Abstract
Diet composition is vital in shaping gut microbial assemblage in many insects. Minimal knowledge is available about the influence of transgenerational diet transition on gut microbial community structure and function in polyphagous pests. This study investigated transgenerational diet-induced changes in Spodoptera littoralis larval gut bacteriome using 16S ribosomal sequencing. Our data revealed that 88% of bacterial populations in the S. littoralis larval gut comprise Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. The first diet transition experiment from an artificial diet (F0) to a plant diet (F1), cabbage and cotton, caused an alteration of bacterial communities in the S. littoralis larval gut. The second transgenerational diet switch, where F1 larvae feed on the same plant in the F2 generation, displayed a significant variation suggesting further restructuring of the microbial communities in the Spodoptera larval gut. F1 larvae were also challenged with the plant diet transition at the F2 generation (cabbage to cotton or cotton to cabbage). After feeding on different plant diets, the microbial assemblage of F2 larvae pointed to considerable differences from other F2 larvae that continued on the same diet. Our results showed that S. littoralis larval gut bacteriome responds rapidly and inexplicably to different diet changes. Further experiments must be conducted to determine the developmental and ecological consequences of such changes. Nevertheless, this study improves our perception of the impact of transgenerational diet switches on the resident gut bacteriome in S. littoralis larvae and could facilitate future research to understand the importance of symbiosis in lepidopteran generalists better.
Collapse
Affiliation(s)
- Amit Roy
- Faculty of Forestry and Wood Sciences, EXTEMIT-K and EVA.4.0 Unit, Czech University of Life Sciences, Suchdol, Czechia
| | - Benjamin Houot
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sandeep Kushwaha
- Department of Bioinformatics, National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Peter Anderson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
6
|
Merlin BL, Moraes GJ, Cônsoli FL. The Microbiota of a Mite Prey-Predator System on Different Host Plants Are Characterized by Dysbiosis and Potential Functional Redundancy. MICROBIAL ECOLOGY 2023; 85:1590-1607. [PMID: 35543735 DOI: 10.1007/s00248-022-02032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/02/2022] [Indexed: 05/10/2023]
Abstract
Microbiota has diverse roles in the life cycles of their hosts, affecting their growth, development, behavior, and reproduction. Changes in physiological conditions of the host can also impact the assemblage of host-associated microorganisms. However, little is known of the effects of host plant-prey-predatory mite interactions on mite microbiota. We compared the microbial communities of eggs and adult females of the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), and of adult females of the predatory mite Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) on four different host plants (cotton, maize, pinto bean, and tomato) by metabarcoding sequencing of the V3-V4 region of the 16S ribosomal RNA gene (16S rRNA), using the Illumina MiSeq platform. Only the egg microbiota of T. urticae was affected by the host plant. The microbiota of the predatory mite N. californicus was very different from that of its prey, and the predator microbiota was unaffected by the different host plant-prey systems tested. Only the microbiota of the eggs of T. urticae carried Serratia as a high fidelity-biomarker, but their low abundance in T. urticae adult females suggests that the association between Serratia and T. urticae is accidental. Biomarker bacteria were also detected in the microbiota of adult females of T. urticae and N. californicus, with different biomarkers in each host plant species. The microbiota associated with eggs and adult females of T. urticae and adult females of N. californicus differed in their functional potential contributions to the host mite.
Collapse
Affiliation(s)
- Bruna Laís Merlin
- Department of Entomology and Acarology, College of Agriculture Luiz de Queiroz, University of São Paulo, Piracicaba, SP, Brazil.
| | - Gilberto J Moraes
- Department of Entomology and Acarology, College of Agriculture Luiz de Queiroz, University of São Paulo, Piracicaba, SP, Brazil
- CNPq, Federal District, Brazil
| | - Fernando L Cônsoli
- Department of Entomology and Acarology, College of Agriculture Luiz de Queiroz, University of São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
7
|
Höök L, Näsvall K, Vila R, Wiklund C, Backström N. High-density linkage maps and chromosome level genome assemblies unveil direction and frequency of extensive structural rearrangements in wood white butterflies (Leptidea spp.). Chromosome Res 2023; 31:2. [PMID: 36662301 PMCID: PMC9859909 DOI: 10.1007/s10577-023-09713-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023]
Abstract
Karyotypes are generally conserved between closely related species and large chromosome rearrangements typically have negative fitness consequences in heterozygotes, potentially driving speciation. In the order Lepidoptera, most investigated species have the ancestral karyotype and gene synteny is often conserved across deep divergence, although examples of extensive genome reshuffling have recently been demonstrated. The genus Leptidea has an unusual level of chromosome variation and rearranged sex chromosomes, but the extent of restructuring across the rest of the genome is so far unknown. To explore the genomes of the wood white (Leptidea) species complex, we generated eight genome assemblies using a combination of 10X linked reads and HiC data, and improved them using linkage maps for two populations of the common wood white (L. sinapis) with distinct karyotypes. Synteny analysis revealed an extensive amount of rearrangements, both compared to the ancestral karyotype and between the Leptidea species, where only one of the three Z chromosomes was conserved across all comparisons. Most restructuring was explained by fissions and fusions, while translocations appear relatively rare. We further detected several examples of segregating rearrangement polymorphisms supporting a highly dynamic genome evolution in this clade. Fusion breakpoints were enriched for LINEs and LTR elements, which suggests that ectopic recombination might be an important driver in the formation of new chromosomes. Our results show that chromosome count alone may conceal the extent of genome restructuring and we propose that the amount of genome evolution in Lepidoptera might still be underestimated due to lack of taxonomic sampling.
Collapse
Affiliation(s)
- L Höök
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.
| | - K Näsvall
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.
| | - R Vila
- Butterfly Diversity and Evolution Lab, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - C Wiklund
- Department of Zoology, Division of Ecology, Stockholm University, Stockholm, Sweden
| | - N Backström
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| |
Collapse
|
8
|
Lohse K, Höök L, Näsvall K, Backström N. The genome sequence of the wood white butterfly, Leptidea sinapis (Linnaeus, 1758). Wellcome Open Res 2022; 7:254. [PMID: 37025368 PMCID: PMC10071140 DOI: 10.12688/wellcomeopenres.18118.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
We present a genome assembly from an individual male Leptidea sinapis (the wood white; Arthropoda; Insecta; Lepidoptera; Pieridae). The genome sequence is 686 megabases in span. The majority (99.99%) of the assembly is scaffolded into 48 chromosomal pseudomolecules, with three Z sex chromosomes assembled. Gene annotation of this assembly on Ensembl has identified 14,800 protein coding genes.
Collapse
Affiliation(s)
- Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Lars Höök
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| | - Karin Näsvall
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| | - Niclas Backström
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| | | | | | - Tree of Life Core Informatics collective
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
9
|
Guo Z, Jin R, Guo Z, Cai T, Zhang Y, Gao J, Huang G, Wan H, He S, Xie Y, Li J, Ma K. Insecticide Susceptibility and Mechanism of Spodoptera frugiperda on Different Host Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11367-11376. [PMID: 36053555 DOI: 10.1021/acs.jafc.2c04189] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spodoptera frugiperda (J. E. Smith) is a worldwide economically important crop pest. Although the individuals of S. frugiperda that invaded China have been characterized as the corn strain, they also have the ability to damage other crops in China. The physiological and behavioral responses of S. frugiperda to different host plants are poorly understood. In the present study, we investigated the host plant preference, fitness costs, and differences in detoxification gene expression and microbiome composition between two S. frugiperda strains that fed on different crop plant diets. The results showed that S. frugiperda larvae exhibited no obvious preference for corn or rice, but significant suppression of development was observed in the rice-fed strain. In addition, the corn-fed strain showed higher insecticide tolerance and detoxification enzyme activities than the rice-fed strain. Moreover, multiple detoxification genes were upregulated in the corn-fed strain, and microbiome composition variation was observed between the two strains. Together, the results suggest that population-specific plasticity is related to host plant diets in S. frugiperda. These results provide a theoretical basis for the evolution of resistance differences in S. frugiperda and are helpful for designing resistance management strategies for S. frugiperda aimed at different crops.
Collapse
Affiliation(s)
- Zhimin Guo
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Ruoheng Jin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Ziping Guo
- Hubei Provincial General Station of Plant Protection, Wuhan, Hubei 430070, People's Republic of China
| | - Tingwei Cai
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yunhua Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Jingyao Gao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Guoyu Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Hu Wan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Shun He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yuanli Xie
- Hubei Provincial General Station of Plant Protection, Wuhan, Hubei 430070, People's Republic of China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Kangsheng Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
10
|
The bacterial and fungal communities of the larval midgut of Spodoptera frugiperda (Lepidoptera: Noctuidae) varied by feeding on two cruciferous vegetables. Sci Rep 2022; 12:13063. [PMID: 35906471 PMCID: PMC9338029 DOI: 10.1038/s41598-022-17278-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
Spodoptera frugiperda is a highly polyphagous pest worldwide with a wide host range that causes serious losses to many economically important crops. Recently, insect-microbe associations have become a hot spot in current entomology research, and the midgut microbiome of S. frugiperda has been investigated, while the effects of cruciferous vegetables remain unknown. In this study, the growth of S. frugiperda larvae fed on an artificial diet, Brassica campestris and Brassica oleracea for 7 days was analyzed. Besides, the microbial community and functional prediction analyses of the larval midguts of S. frugiperda fed with different diets were performed by high-throughput sequencing. Our results showed that B. oleracea inhibited the growth of S. frugiperda larvae. The larval midgut microbial community composition and structure were significantly affected by different diets. Linear discriminant analysis effect size (LEfSe) suggested 20 bacterial genera and 2 fungal genera contributed to different gut microbial community structures. The functional classification of the midgut microbiome analyzed by PICRUSt and FUNGuild showed that the most COG function categories of midgut bacterial function were changed by B. oleracea, while the guilds of fungal function were altered by B. campestris significantly. These results showed that the diversity and structure of the S. frugiperda midgut microbial community were affected by cruciferous vegetable feeding. Our study provided a preliminary understanding of the role of midgut microbes in S. frugiperda larvae in response to cruciferous vegetables.
Collapse
|
11
|
Bras A, Roy A, Heckel DG, Anderson P, Karlsson Green K. Pesticide resistance in arthropods: Ecology matters too. Ecol Lett 2022; 25:1746-1759. [PMID: 35726578 PMCID: PMC9542861 DOI: 10.1111/ele.14030] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 12/22/2022]
Abstract
Pesticide resistance development is an example of rapid contemporary evolution that poses immense challenges for agriculture. It typically evolves due to the strong directional selection that pesticide treatments exert on herbivorous arthropods. However, recent research suggests that some species are more prone to evolve pesticide resistance than others due to their evolutionary history and standing genetic variation. Generalist species might develop pesticide resistance especially rapidly due to pre‐adaptation to handle a wide array of plant allelochemicals. Moreover, research has shown that adaptation to novel host plants could lead to increased pesticide resistance. Exploring such cross‐resistance between host plant range evolution and pesticide resistance development from an ecological perspective is needed to understand its causes and consequences better. Much research has, however, been devoted to the molecular mechanisms underlying pesticide resistance while both the ecological contexts that could facilitate resistance evolution and the ecological consequences of cross‐resistance have been under‐studied. Here, we take an eco‐evolutionary approach and discuss circumstances that may facilitate cross‐resistance in arthropods and the consequences cross‐resistance may have for plant–arthropod interactions in both target and non‐target species and species interactions. Furthermore, we suggest future research avenues and practical implications of an increased ecological understanding of pesticide resistance evolution.
Collapse
Affiliation(s)
- Audrey Bras
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.,Faculty of Forestry and Wood Sciences, EXTEMIT-K and EVA.4.0 Unit, Czech University of Life Sciences, Suchdol, Czech Republic
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, EXTEMIT-K and EVA.4.0 Unit, Czech University of Life Sciences, Suchdol, Czech Republic
| | - David G Heckel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Peter Anderson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Kristina Karlsson Green
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
12
|
Wei J, Yang XK, Zhang SK, Segraves KA, Xue HJ. Parallel meta-transcriptome analysis reveals degradation of plant secondary metabolites by beetles and their gut symbionts. Mol Ecol 2022; 31:3999-4016. [PMID: 35665559 DOI: 10.1111/mec.16557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 03/10/2022] [Accepted: 04/14/2022] [Indexed: 11/28/2022]
Abstract
Switching to a new host plant is a driving force for divergence and speciation in herbivorous insects. This process of incorporating a novel host plant into the diet may require a number of adaptations in the insect herbivores that allow them to consume host plant tissue that may contain toxic secondary chemicals. As a result, herbivorous insects are predicted to have evolved efficient ways to detoxify major plant defenses and increase fitness by either relying on their own genomes or by recruiting other organisms such as microbial gut symbionts. In the present study we used parallel meta-transcriptomic analyses of Altica flea beetles and their gut symbionts to explore the contributions of beetle detoxification mechanisms versus detoxification by their gut consortium. We compared the gut meta-transcriptomes of two sympatric Altica species that feed exclusively on different host plant species as well as their F1 hybrids that were fed one of the two host plant species. These comparisons revealed that gene expression patterns of Altica are dependent on both beetle species identity and diet. The community structure of gut symbionts was also dependent on the identity of the beetle species, and the gene expression patterns of the gut symbionts were significantly correlated with beetle species and plant diet. Some of the enriched genes identified in the beetles and gut symbionts are involved in the degradation of secondary metabolites produced by plants, suggesting that Altica flea beetles may use their gut microbiota to help them feed on and adapt to their host plants.
Collapse
Affiliation(s)
- Jing Wei
- School of Life Sciences, Chongqing University, Chongqing 400044, China.,Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Ke Yang
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Ke Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.,School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Kari A Segraves
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA.,Archbold Biological Station, 123 Main Drive, Venus, FL 33960, USA
| | - Huai-Jun Xue
- College of Life Sciences, Nankai University, Tianjin 300071, China.,Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
13
|
Piccini I, Di Pietro V, Bonelli S. Zerynthia polyxena Locally Monophagous on Aristolochia pallida in the Susa Valley. ENVIRONMENTAL ENTOMOLOGY 2021; 50:1425-1431. [PMID: 34414424 DOI: 10.1093/ee/nvab082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Indexed: 06/13/2023]
Abstract
In insect-plant biology, oviposition choices and larval development on different host plants are crucial factors to be investigated. To design conservation strategies for protected Lepidoptera, which are overall oligophagous but locally monophagous, it is important to understand which host plant species is locally preferred. We thus investigated oviposition choices and larval development of the protected butterfly Zerynthia polyxena in controlled laboratory conditions, using three possible host plant species which are present in the Piedmont region: Aristolochia pallida, A. clematitis, and A. rotunda. We found that laboratory conditions are not favorable for Z. polyxena oviposition, even if the fertility of the females was in normal range for Papilionidae. However, we were able to understand the local monophagy of the species on A. pallida in the Susa Valley through larval survival and development stages. Egg hatching was similar among the three host plant species; however, even if larvae eat and grow similarly on the different host plant species until the third larval stage, the only larvae that reached the pupal stage were those fed with A. pallida. In conclusion, whereas Z. polyxena is oligophagous in the rest of Europe for the genus Aristolochia, the species is locally monophagous on A. pallida in the Susa Valley.
Collapse
Affiliation(s)
- Irene Piccini
- Department of Life Sciences and System Biology, University of Turin, Via Accademia Albertina 13, Turin, Italy
| | - Viviana Di Pietro
- Department of Life Sciences and System Biology, University of Turin, Via Accademia Albertina 13, Turin, Italy
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Simona Bonelli
- Department of Life Sciences and System Biology, University of Turin, Via Accademia Albertina 13, Turin, Italy
| |
Collapse
|
14
|
Kurnia D, Dahelmi F, Herwina H, Wandi Y. Effect of Artificial Diet on Immature Stage of the Great Eggfly, Hypolimnas bolina (Lepidoptera: Nymphalidae). Pak J Biol Sci 2021; 24:1110-1118. [PMID: 34842382 DOI: 10.3923/pjbs.2021.1110.1118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> One of the Nymphalidae butterfly species found in West Sumatra in <i>Hypolimnas bolina</i>. Currently, research on the artificial diet for the Nymphalidae butterfly is relatively rare in Padang, West Sumatra. The objectives of this study were to analyze the preferences of <i>H. bolina</i> larvae, duration of the immature stage and mortality of <i>H. bolina</i> in artificial diet treatment. <b>Materials and Methods:</b> Some biological aspects of <i>H. bolina</i> in corresponding to artificial diet and its effect were investigated in the laboratory. <b>Results:</b> The result showed that there was no significant difference in the frequency of visits of the larvae in the two diet treatments namely natural (<i>Laportea interrupta</i> leaves) and artificial diets (Sig = 0.289, p>0.05) but the duration of the visit of <i>H. bolina</i> larvae was significantly different (Sig = 0.000, p<0.05). The visit duration of the immature stage of <i>H. bolina </i>was significantly different, except the prepupa and pupal stage. There was no mortality of instar larvae and prepupa stage observed in both of the two-diet treatments. However, the mortality of pupae in an artificial diet was 4%. Of the total of 24 individual larvae fed with artificial diet, all of them successfully emerged, consisted of 12 males and 12 females but there was one male with abnormal wings. The average living period in the artificial diet of imago was 14.82 days for males and 16.77 days for a female. The average larval weight was no significant difference (Sig = 0.981, p>0.05) but the average pupal weight of the natural diet was slightly higher than the artificial diet. <b>Conclusion:</b> The formulation of an artificial diet is suitable for <i>H. bolina</i> larvae based on the results of immature mortality and adult emergences. Therefore, the formulation of an artificial diet is suitable for <i>H. bolina</i> with its composition almost similar to <i>L. interrupta</i> leaves (natural diet).
Collapse
|
15
|
Mackay-Smith A, Dornon MK, Lucier R, Okimoto A, Mendonca de Sousa F, Rodriguero M, Confalonieri V, Lanteri AA, Sequeira AS. Host-specific gene expression as a tool for introduction success in Naupactus parthenogenetic weevils. PLoS One 2021; 16:e0248202. [PMID: 34329290 PMCID: PMC8323892 DOI: 10.1371/journal.pone.0248202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/13/2021] [Indexed: 11/22/2022] Open
Abstract
Food resource access can mediate establishment success in invasive species, and generalist herbivorous insects are thought to rely on mechanisms of transcriptional plasticity to respond to dietary variation. While asexually reproducing invasives typically have low genetic variation, the twofold reproductive capacity of asexual organisms is a marked advantage for colonization. We studied host-related transcriptional acclimation in parthenogenetic, invasive, and polyphagous weevils: Naupactus cervinus and N. leucoloma. We analyzed patterns of gene expression in three gene categories that can mediate weevil-host plant interactions through identification of suitable host plants, short-term acclimation to host plant defenses, and long-term adaptation to host plant defenses and their pathogens. This approach employed comparative transcriptomic methods to investigate differentially expressed host detection, detoxification, immune defense genes, and pathway-level gene set enrichment. Our results show that weevil gene expression responses can be host plant-specific, and that elements of that response can be maintained in the offspring. Some host plant groups, such as legumes, appear to be more taxing as they elicit a complex gene expression response which is both strong in intensity and specific in identity. However, the weevil response to taxing host plants shares many differentially expressed genes with other stressful situations, such as host plant cultivation conditions and transition to novel host, suggesting that there is an evolutionarily favorable shared gene expression regime for responding to different types of stressful situations. Modulating gene expression in the absence of other avenues for phenotypic adaptation may be an important mechanism of successful colonization for these introduced insects.
Collapse
Affiliation(s)
- Ava Mackay-Smith
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, United States of America
| | - Mary Kate Dornon
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, United States of America
| | - Rosalind Lucier
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, United States of America
| | - Anna Okimoto
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, United States of America
| | - Flavia Mendonca de Sousa
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, United States of America
| | - Marcela Rodriguero
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Viviana Confalonieri
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analia A. Lanteri
- Facultad de Ciencias Naturales y Museo, Universidad de La Plata, La Plata, Argentina
| | - Andrea S. Sequeira
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, United States of America
| |
Collapse
|