1
|
Matthews JL, Ueland M, Bartels N, Lawson CA, Lockwood TE, Wu Y, Camp EF. Multi-Chemical Omics Analysis of the Symbiodiniaceae Durusdinium trenchii under Heat Stress. Microorganisms 2024; 12:317. [PMID: 38399721 PMCID: PMC10893086 DOI: 10.3390/microorganisms12020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The urgency of responding to climate change for corals necessitates the exploration of innovative methods to swiftly enhance our understanding of crucial processes. In this study, we employ an integrated chemical omics approach, combining elementomics, metabolomics, and volatilomics methodologies to unravel the biochemical pathways associated with the thermal response of the coral symbiont, Symbiodiniaceae Durusdinium trenchii. We outline the complimentary sampling approaches and discuss the standardised data corrections used to allow data integration and comparability. Our findings highlight the efficacy of individual methods in discerning differences in the biochemical response of D. trenchii under both control and stress-inducing temperatures. However, a deeper insight emerges when these methods are integrated, offering a more comprehensive understanding, particularly regarding oxidative stress pathways. Employing correlation network analysis enhanced the interpretation of volatile data, shedding light on the potential metabolic origins of volatiles with undescribed functions and presenting promising candidates for further exploration. Elementomics proves to be less straightforward to integrate, likely due to no net change in elements but rather elements being repurposed across compounds. The independent and integrated data from this study informs future omic profiling studies and recommends candidates for targeted research beyond Symbiodiniaceae biology. This study highlights the pivotal role of omic integration in advancing our knowledge, addressing critical gaps, and guiding future research directions in the context of climate change and coral reef preservation.
Collapse
Affiliation(s)
- Jennifer L. Matthews
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Maiken Ueland
- Centre for Forensic Sciences, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Natasha Bartels
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Caitlin A. Lawson
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia
| | - Thomas E. Lockwood
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Yida Wu
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Emma F. Camp
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
2
|
Klepac CN, Petrik CG, Karabelas E, Owens J, Hall ER, Muller EM. Assessing acute thermal assays as a rapid screening tool for coral restoration. Sci Rep 2024; 14:1898. [PMID: 38253660 PMCID: PMC10803358 DOI: 10.1038/s41598-024-51944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Escalating environmental threats to coral reefs coincides with global advancements in coral restoration programs. To improve long-term efficacy, practitioners must consider incorporating genotypes resilient to ocean warming and disease while maintaining genetic diversity. Identifying such genotypes typically occurs under long-term exposures that mimic natural stressors, but these experiments can be time-consuming, costly, and introduce tank effects, hindering scalability for hundreds of nursery genotypes used for outplanting. Here, we evaluated the efficacy of the acute Coral Bleaching Automated Stress System (CBASS) against long-term exposures on the bleaching response of Acropora cervicornis, the dominant restoration species in Florida's Coral Reef. Comparing bleaching metrics, Fv/Fm, chlorophyll, and host protein, we observed similar responses between the long-term heat and the CBASS treatment of 34.3 °C, which was also the calculated bleaching threshold. This suggests the potential of CBASS as a rapid screening tool, with 90% of restoration genotypes exhibiting similar bleaching tolerances. However, variations in acute bleaching phenotypes arose from measurement timing and experiment heat accumulation, cautioning against generalizations solely based on metrics like Fv/Fm. These findings identify the need to better refine the tools necessary to quickly and effectively screen coral restoration genotypes and determine their relative tolerance for restoration interventions.
Collapse
Affiliation(s)
- C N Klepac
- Mote Marine Laboratory, International Center for Coral Reef Research and Restoration, Summerland Key, FL, USA.
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA.
| | - C G Petrik
- Mote Marine Laboratory, International Center for Coral Reef Research and Restoration, Summerland Key, FL, USA
- National Coral Reef Institute, Nova Southeastern University, Dania Beach, FL, USA
| | - E Karabelas
- Mote Marine Laboratory, International Center for Coral Reef Research and Restoration, Summerland Key, FL, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - J Owens
- Mote Marine Laboratory, International Center for Coral Reef Research and Restoration, Summerland Key, FL, USA
- Tufts University, Worcester, MA, USA
| | - E R Hall
- Mote Marine Laboratory, International Center for Coral Reef Research and Restoration, Summerland Key, FL, USA
- Mote Marine Laboratory, Sarasota, FL, USA
| | - E M Muller
- Mote Marine Laboratory, International Center for Coral Reef Research and Restoration, Summerland Key, FL, USA
- Mote Marine Laboratory, Sarasota, FL, USA
| |
Collapse
|
3
|
Škaloud P, Jadrná I, Dvořák P, Škvorová Z, Pusztai M, Čertnerová D, Bestová H, Rengefors K. Rapid diversification of a free-living protist is driven by adaptation to climate and habitat. Curr Biol 2024; 34:92-105.e6. [PMID: 38103550 DOI: 10.1016/j.cub.2023.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/27/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
Microbial eukaryotes (protists) have major functional roles in aquatic ecosystems, including the biogeochemical cycling of elements as well as occupying various roles in the food web. Despite their importance for ecosystem function, the factors that drive diversification in protists are not known. Here, we aimed to identify the factors that drive differentiation and, subsequently, speciation in a free-living protist, Synura petersenii (Chrysophyceae). We sampled five different geographic areas and utilized population genomics and quantitative trait analyses. Habitat and climate were the major drivers of diversification on the local geographical scale, while geography played a role over longer distances. In addition to conductivity and temperature, precipitation was one of the most important environmental drivers of differentiation. Our results imply that flushing episodes (floods) drive microalgal adaptation to different niches, highlighting the potential for rapid diversification in protists.
Collapse
Affiliation(s)
- Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic.
| | - Iva Jadrná
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic
| | - Petr Dvořák
- Department of Botany, Faculty of Science, Palacký University Olomouc, 78371 Olomouc, Czech Republic.
| | - Zuzana Škvorová
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic
| | - Martin Pusztai
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic; Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 46117 Liberec, Czech Republic
| | - Dora Čertnerová
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic
| | - Helena Bestová
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic; Biodiversity, Macroecology and Biogeography, University of Göttingen, 37077 Göttingen, Germany
| | | |
Collapse
|
4
|
Roussel A, Mériot V, Jauffrais T, Berteaux-Lecellier V, Lebouvier N. OMICS Approaches to Assess Dinoflagellate Responses to Chemical Stressors. BIOLOGY 2023; 12:1234. [PMID: 37759633 PMCID: PMC10525455 DOI: 10.3390/biology12091234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 09/29/2023]
Abstract
Dinoflagellates are important primary producers known to form Harmful Algae Blooms (HABs). In water, nutrient availability, pH, salinity and anthropogenic contamination constitute chemical stressors for them. The emergence of OMICs approaches propelled our understanding of dinoflagellates' responses to stressors. However, in dinoflagellates, these approaches are still biased, as transcriptomic approaches are largely conducted compared to proteomic and metabolomic approaches. Furthermore, integrated OMICs approaches are just emerging. Here, we report recent contributions of the different OMICs approaches to the investigation of dinoflagellates' responses to chemical stressors and discuss the current challenges we need to face to push studies further despite the lack of genomic resources available for dinoflagellates.
Collapse
Affiliation(s)
- Alice Roussel
- ISEA, EA7484, Campus de Nouville, Université de la Nouvelle Calédonie, Noumea 98851, New Caledonia; (A.R.); (V.M.)
| | - Vincent Mériot
- ISEA, EA7484, Campus de Nouville, Université de la Nouvelle Calédonie, Noumea 98851, New Caledonia; (A.R.); (V.M.)
- Ifremer, IRD, CNRS, Univ. de la Réunion, Univ. de la Nouvelle Calédonie, UMR 9220 ENTROPIE, 101 Promenade Roger Laroque, Noumea 98897, New Caledonia;
| | - Thierry Jauffrais
- Ifremer, IRD, CNRS, Univ. de la Réunion, Univ. de la Nouvelle Calédonie, UMR 9220 ENTROPIE, 101 Promenade Roger Laroque, Noumea 98897, New Caledonia;
| | - Véronique Berteaux-Lecellier
- CNRS, Ifremer, IRD, Univ. de la Réunion, Univ. de la Nouvelle Calédonie, UMR 9220 ENTROPIE, 101 Promenade Roger Laroque, Noumea 98897, New Caledonia;
| | - Nicolas Lebouvier
- ISEA, EA7484, Campus de Nouville, Université de la Nouvelle Calédonie, Noumea 98851, New Caledonia; (A.R.); (V.M.)
| |
Collapse
|
5
|
Shah S, Dougan KE, Chen Y, Bhattacharya D, Chan CX. Gene duplication is the primary driver of intraspecific genomic divergence in coral algal symbionts. Open Biol 2023; 13:230182. [PMID: 37751888 PMCID: PMC10522408 DOI: 10.1098/rsob.230182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Dinoflagellates in the order Suessiales include the family Symbiodiniaceae, which have essential roles as photosymbionts in corals, and their cold-adapted sister group, Polarella glacialis. These diverse taxa exhibit extensive genomic divergence, although their genomes are relatively small (haploid size < 3 Gbp) when compared with most other free-living dinoflagellates. Different strains of Symbiodiniaceae form symbiosis with distinct hosts and exhibit different regimes of gene expression, but intraspecific whole-genome divergence is poorly understood. Focusing on three Symbiodiniaceae species (the free-living Effrenium voratum and the symbiotic Symbiodinium microadriaticum and Durusdinium trenchii) and the free-living outgroup P. glacialis, for which whole-genome data from multiple isolates are available, we assessed intraspecific genomic divergence with respect to sequence and structure. Our analysis, based on alignment and alignment-free methods, revealed a greater extent of intraspecific sequence divergence in Symbiodiniaceae than in P. glacialis. Our results underscore the role of gene duplication in generating functional innovation, with a greater prevalence of tandemly duplicated single-exon genes observed in the genomes of free-living species than in symbionts. These results demonstrate the remarkable intraspecific genomic divergence in dinoflagellates under the constraint of reduced genome sizes, shaped by genetic duplications and symbiogenesis events during the diversification of Symbiodiniaceae.
Collapse
Affiliation(s)
- Sarah Shah
- School of Chemistry and Molecular Biosciences, and Australian Centre for Ecogenomics, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Katherine E. Dougan
- School of Chemistry and Molecular Biosciences, and Australian Centre for Ecogenomics, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Yibi Chen
- School of Chemistry and Molecular Biosciences, and Australian Centre for Ecogenomics, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Cheong Xin Chan
- School of Chemistry and Molecular Biosciences, and Australian Centre for Ecogenomics, The University of Queensland, Brisbane, 4072 Queensland, Australia
| |
Collapse
|
6
|
Elder H, Million WC, Bartels E, Krediet CJ, Muller EM, Kenkel CD. Long-term maintenance of a heterologous symbiont association in Acropora palmata on natural reefs. THE ISME JOURNAL 2023; 17:486-489. [PMID: 36510006 PMCID: PMC9938269 DOI: 10.1038/s41396-022-01349-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
The sensitivity of reef-building coral to elevated temperature is a function of their symbiosis with dinoflagellate algae in the family Symbiodiniaceae. Changes in the composition of the endosymbiont community in response to thermal stress can increase coral thermal tolerance. Consequently, this mechanism is being investigated as a human-assisted intervention for rapid acclimation of coral in the face of climate change. Successful establishment of novel symbioses that increase coral thermal tolerance have been demonstrated in laboratory conditions; however, it is unclear how long these heterologous relationships persist in nature. Here, we test the persistence of a novel symbiosis between Acropora palmata and Durusdinium spp. from Mote Marine Laboratory's ex situ nursery by outplanting clonal replicates (ramets) of five A. palmata host genotypes to natural reefs in the lower Florida Keys. Amplicon sequencing analysis of ITS2-type profiles revealed that the majority of surviving ramets remained dominated by Durusdinium spp. two years after transplantation. However, 15% of ramets, including representatives of all genotypes, exhibited some degree of symbiont shuffling or switching at six of eight sites, including complete takeover by site-specific strains of the native symbiont, Symbiodinium fitti. The predominant long-term stability of the novel symbiosis supports the potential effectiveness of symbiont modification as a management tool. Although, the finding that 6-7 year-old coral can alter symbiont community composition in the absence of bleaching indicates that Symbiodiniaceae communities are indeed capable of great flexibility under ambient conditions.
Collapse
Affiliation(s)
- Holland Elder
- University of Southern California, 3616 Trousdale Parkway, AHF 231, Los Angeles, CA, 90089, USA.
| | - Wyatt C Million
- University of Southern California, 3616 Trousdale Parkway, AHF 231, Los Angeles, CA, 90089, USA
| | - Erich Bartels
- Mote Marine Laboratory, 24244 Overseas Hwy, Summerland Key, FL, 33042, USA
| | - Cory J Krediet
- Eckerd College, 4200 54th Ave., St. Petersburg, FL, 33711, USA
| | - Erinn M Muller
- Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA
| | - Carly D Kenkel
- University of Southern California, 3616 Trousdale Parkway, AHF 231, Los Angeles, CA, 90089, USA
| |
Collapse
|
7
|
Davies SW, Gamache MH, Howe-Kerr LI, Kriefall NG, Baker AC, Banaszak AT, Bay LK, Bellantuono AJ, Bhattacharya D, Chan CX, Claar DC, Coffroth MA, Cunning R, Davy SK, del Campo J, Díaz-Almeyda EM, Frommlet JC, Fuess LE, González-Pech RA, Goulet TL, Hoadley KD, Howells EJ, Hume BCC, Kemp DW, Kenkel CD, Kitchen SA, LaJeunesse TC, Lin S, McIlroy SE, McMinds R, Nitschke MR, Oakley CA, Peixoto RS, Prada C, Putnam HM, Quigley K, Reich HG, Reimer JD, Rodriguez-Lanetty M, Rosales SM, Saad OS, Sampayo EM, Santos SR, Shoguchi E, Smith EG, Stat M, Stephens TG, Strader ME, Suggett DJ, Swain TD, Tran C, Traylor-Knowles N, Voolstra CR, Warner ME, Weis VM, Wright RM, Xiang T, Yamashita H, Ziegler M, Correa AMS, Parkinson JE. Building consensus around the assessment and interpretation of Symbiodiniaceae diversity. PeerJ 2023; 11:e15023. [PMID: 37151292 PMCID: PMC10162043 DOI: 10.7717/peerj.15023] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/17/2023] [Indexed: 05/09/2023] Open
Abstract
Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.
Collapse
Affiliation(s)
- Sarah W. Davies
- Department of Biology, Boston University, Boston, MA, United States
| | - Matthew H. Gamache
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| | | | | | - Andrew C. Baker
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States
| | - Anastazia T. Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Line Kolind Bay
- Australian Institute of Marine Science, Townsville, Australia
| | - Anthony J. Bellantuono
- Department of Biological Sciences, Florida International University, Miami, FL, United States
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Danielle C. Claar
- Nearshore Habitat Program, Washington State Department of Natural Resources, Olympia, WA, USA
| | | | - Ross Cunning
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL, United States
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Javier del Campo
- Institut de Biologia Evolutiva (CSIC - Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | | | - Jörg C. Frommlet
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Lauren E. Fuess
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Raúl A. González-Pech
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
- Department of Biology, Pennsylvania State University, State College, PA, United States
| | - Tamar L. Goulet
- Department of Biology, University of Mississippi, University, MS, United States
| | - Kenneth D. Hoadley
- Department of Biological Sciences, University of Alabama—Tuscaloosa, Tuscaloosa, AL, United States
| | - Emily J. Howells
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | | | - Dustin W. Kemp
- Department of Biology, University of Alabama—Birmingham, Birmingham, Al, United States
| | - Carly D. Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Sheila A. Kitchen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Todd C. LaJeunesse
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Mansfield, CT, United States
| | - Shelby E. McIlroy
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ryan McMinds
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, United States
| | | | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Raquel S. Peixoto
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Carlos Prada
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | | | - Hannah G. Reich
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - James Davis Reimer
- Department of Biology, Chemistry and Marine Sciences, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | | | - Stephanie M. Rosales
- The Cooperative Institute For Marine and Atmospheric Studies, Miami, FL, United States
| | - Osama S. Saad
- Department of Biological Oceanography, Red Sea University, Port-Sudan, Sudan
| | - Eugenia M. Sampayo
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Scott R. Santos
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Edward G. Smith
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Michael Stat
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Timothy G. Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| | - Marie E. Strader
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - David J. Suggett
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Timothy D. Swain
- Department of Marine and Environmental Science, Nova Southeastern University, Dania Beach, FL, United States
| | - Cawa Tran
- Department of Biology, University of San Diego, San Diego, CA, United States
| | - Nikki Traylor-Knowles
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States
| | | | - Mark E. Warner
- School of Marine Science and Policy, University of Delaware, Lewes, DE, United States
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Rachel M. Wright
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States
| | - Tingting Xiang
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Hiroshi Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Okinawa, Japan
| | - Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen (Germany), Giessen, Germany
| | | | - John Everett Parkinson
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
8
|
Bove CB, Ingersoll MV, Davies SW. Help Me, Symbionts, You're My Only Hope: Approaches to Accelerate our Understanding of Coral Holobiont Interactions. Integr Comp Biol 2022; 62:1756-1769. [PMID: 36099871 DOI: 10.1093/icb/icac141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 01/05/2023] Open
Abstract
Tropical corals construct the three-dimensional framework for one of the most diverse ecosystems on the planet, providing habitat to a plethora of species across taxa. However, these ecosystem engineers are facing unprecedented challenges, such as increasing disease prevalence and marine heatwaves associated with anthropogenic global change. As a result, major declines in coral cover and health are being observed across the world's oceans, often due to the breakdown of coral-associated symbioses. Here, we review the interactions between the major symbiotic partners of the coral holobiont-the cnidarian host, algae in the family Symbiodiniaceae, and the microbiome-that influence trait variation, including the molecular mechanisms that underlie symbiosis and the resulting physiological benefits of different microbial partnerships. In doing so, we highlight the current framework for the formation and maintenance of cnidarian-Symbiodiniaceae symbiosis, and the role that immunity pathways play in this relationship. We emphasize that understanding these complex interactions is challenging when you consider the vast genetic variation of the cnidarian host and algal symbiont, as well as their highly diverse microbiome, which is also an important player in coral holobiont health. Given the complex interactions between and among symbiotic partners, we propose several research directions and approaches focused on symbiosis model systems and emerging technologies that will broaden our understanding of how these partner interactions may facilitate the prediction of coral holobiont phenotype, especially under rapid environmental change.
Collapse
Affiliation(s)
- Colleen B Bove
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
9
|
Cowen LJ, Putnam HM. Bioinformatics of Corals: Investigating Heterogeneous Omics Data from Coral Holobionts for Insight into Reef Health and Resilience. Annu Rev Biomed Data Sci 2022; 5:205-231. [PMID: 35537462 DOI: 10.1146/annurev-biodatasci-122120-030732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Coral reefs are home to over two million species and provide habitat for roughly 25% of all marine animals, but they are being severely threatened by pollution and climate change. A large amount of genomic, transcriptomic, and other omics data is becoming increasingly available from different species of reef-building corals, the unicellular dinoflagellates, and the coral microbiome (bacteria, archaea, viruses, fungi, etc.). Such new data present an opportunity for bioinformatics researchers and computational biologists to contribute to a timely, compelling, and urgent investigation of critical factors that influence reef health and resilience. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lenore J Cowen
- Department of Computer Science, Tufts University, Medford, Massachusetts, USA;
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA;
| |
Collapse
|
10
|
Baker LJ, Reich HG, Kitchen SA, Grace Klinges J, Koch HR, Baums IB, Muller EM, Thurber RV. The coral symbiont Candidatus Aquarickettsia is variably abundant in threatened Caribbean acroporids and transmitted horizontally. THE ISME JOURNAL 2022; 16:400-411. [PMID: 34363004 PMCID: PMC8776821 DOI: 10.1038/s41396-021-01077-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/28/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
The symbiont "Candidatus Aquarickettsia rohweri" infects a diversity of aquatic hosts. In the threatened Caribbean coral, Acropora cervicornis, Aquarickettsia proliferates in response to increased nutrient exposure, resulting in suppressed growth and increased disease susceptibility and mortality of coral. This study evaluated the extent, as well as the ecology and evolution of Aquarickettsia infecting threatened corals, Ac. cervicornis, and Ac. palmata and their hybrid ("Ac. prolifera"). Aquarickettsia was found in all acroporids, with coral host and geographic location impacting the infection magnitude. Phylogenomic and genome-wide single-nucleotide variant analysis of Aquarickettsia found phylogenetic clustering by geographic region, not by coral taxon. Analysis of Aquarickettsia fixation indices suggests multiple sequential infections of the same coral colony are unlikely. Furthermore, relative to other Rickettsiales species, Aquarickettsia is undergoing positive selection, with Florida populations experiencing greater positive selection relative to other Caribbean locations. This may be due in part to Aquarickettsia proliferating in response to greater nutrient stress in Florida, as indicated by greater in situ replication rates in these corals. Aquarickettsia was not found to significantly codiversify with either the coral animal or the coral's algal symbiont (Symbiodinium "fitti"). Quantitative PCR analysis showed that gametes, larvae, recruits, and juveniles from susceptible, captive-reared coral genets were not infected with Aquarickettsia. Thus, horizontal transmission of Aquarickettsia via coral mucocytes or an unidentified host is more likely. The prevalence of Aquarickettsia in Ac. cervicornis and its high abundance in the Florida coral population suggests that coral disease mitigation efforts focus on preventing early infection via horizontal transmission.
Collapse
Affiliation(s)
- Lydia J Baker
- Department of Microbiology, Oregon State University, Corvallis, OR, USA.
| | - Hannah G Reich
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Sheila A Kitchen
- Division of Biology and Biological Engineering, California Institute of Science and Technology, Pasadena, CA, USA
| | - J Grace Klinges
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Hanna R Koch
- Coral Restoration Program, Mote Marine Laboratory, Summerland Key, FL, USA
| | - Iliana B Baums
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Erinn M Muller
- Coral Restoration Program, Mote Marine Laboratory, Summerland Key, FL, USA
| | | |
Collapse
|
11
|
Cunning R, Parker KE, Johnson-Sapp K, Karp RF, Wen AD, Williamson OM, Bartels E, D'Alessandro M, Gilliam DS, Hanson G, Levy J, Lirman D, Maxwell K, Million WC, Moulding AL, Moura A, Muller EM, Nedimyer K, Reckenbeil B, van Hooidonk R, Dahlgren C, Kenkel C, Parkinson JE, Baker AC. Census of heat tolerance among Florida's threatened staghorn corals finds resilient individuals throughout existing nursery populations. Proc Biol Sci 2021; 288:20211613. [PMID: 34666521 DOI: 10.1098/rspb.2021.1613] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The rapid loss of reef-building corals owing to ocean warming is driving the development of interventions such as coral propagation and restoration, selective breeding and assisted gene flow. Many of these interventions target naturally heat-tolerant individuals to boost climate resilience, but the challenges of quickly and reliably quantifying heat tolerance and identifying thermotolerant individuals have hampered implementation. Here, we used coral bleaching automated stress systems to perform rapid, standardized heat tolerance assays on 229 colonies of Acropora cervicornis across six coral nurseries spanning Florida's Coral Reef, USA. Analysis of heat stress dose-response curves for each colony revealed a broad range in thermal tolerance among individuals (approx. 2.5°C range in Fv/Fm ED50), with highly reproducible rankings across independent tests (r = 0.76). Most phenotypic variation occurred within nurseries rather than between them, pointing to a potentially dominant role of fixed genetic effects in setting thermal tolerance and widespread distribution of tolerant individuals throughout the population. The identification of tolerant individuals provides immediately actionable information to optimize nursery and restoration programmes for Florida's threatened staghorn corals. This work further provides a blueprint for future efforts to identify and source thermally tolerant corals for conservation interventions worldwide.
Collapse
Affiliation(s)
- Ross Cunning
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL, USA
| | - Katherine E Parker
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL, USA
| | - Kelsey Johnson-Sapp
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, USA
| | - Richard F Karp
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, USA
| | - Alexandra D Wen
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, USA
| | - Olivia M Williamson
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, USA
| | - Erich Bartels
- Elizabeth Moore International Center for Coral Reef Research and Restoration, Mote Marine Laboratory, Summerland Key, FL, USA
| | | | - David S Gilliam
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, USA
| | - Grace Hanson
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, USA
| | - Jessica Levy
- Coral Restoration Foundation, Key Largo, FL, USA
| | - Diego Lirman
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, USA
| | - Kerry Maxwell
- Florida Fish and Wildlife Conservation, Marathon, FL, USA
| | - Wyatt C Million
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Alison L Moulding
- Protected Resources Division, NOAA Fisheries Southeast Regional Office, St Petersburg, FL, USA
| | - Amelia Moura
- Coral Restoration Foundation, Key Largo, FL, USA
| | - Erinn M Muller
- Coral Health and Disease Program, Mote Marine Laboratory, Sarasota, FL, USA
| | | | | | - Ruben van Hooidonk
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.,Ocean Chemistry and Ecosystems Division, NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, USA
| | | | - Carly Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - John E Parkinson
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Andrew C Baker
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, USA
| |
Collapse
|