1
|
Lindsay RJ, Holder PJ, Hewlett M, Gudelj I. Experimental evolution of yeast shows that public-goods upregulation can evolve despite challenges from exploitative non-producers. Nat Commun 2024; 15:7810. [PMID: 39242624 PMCID: PMC11379824 DOI: 10.1038/s41467-024-52043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Microbial secretions, such as metabolic enzymes, are often considered to be cooperative public goods as they are costly to produce but can be exploited by others. They create incentives for the evolution of non-producers, which can drive producer and population productivity declines. In response, producers can adjust production levels. Past studies suggest that while producers lower production to reduce costs and exploitation opportunities when under strong selection pressure from non-producers, they overproduce secretions when these pressures are weak. We challenge the universality of this trend with the production of a metabolic enzyme, invertase, by Saccharomyces cerevisiae, which catalyses sucrose hydrolysis into two hexose molecules. Contrary to past studies, overproducers evolve during evolutionary experiments even when under strong selection pressure from non-producers. Phenotypic and competition assays with a collection of synthetic strains - engineered to have modified metabolic attributes - identify two mechanisms for suppressing the benefits of invertase to those who exploit it. Invertase overproduction increases extracellular hexose concentrations that suppresses the metabolic efficiency of competitors, due to the rate-efficiency trade-off, and also enhances overproducers' hexose capture rate by inducing transporter expression. Thus, overproducers are maintained in the environment originally thought to not support public goods production.
Collapse
Affiliation(s)
- Richard J Lindsay
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Philippa J Holder
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Mark Hewlett
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Ivana Gudelj
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK.
| |
Collapse
|
2
|
Chuang YC, Behringer MG, Patton G, Bird JT, Love CE, Dalia A, McKinlay JB. Bacterial cross-feeding can promote gene retention by lowering gene expression costs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608702. [PMID: 39229193 PMCID: PMC11370488 DOI: 10.1101/2024.08.19.608702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Gene loss is expected in microbial communities when the benefit of obtaining a biosynthetic precursor from a neighbor via cross-feeding outweighs the cost of retaining a biosynthetic gene. However, gene cost primarily comes from expression, and many biosynthetic genes are only expressed when needed. Thus, one can conversely expect cross-feeding to repress biosynthetic gene expression and promote gene retention by lowering gene cost. Here we examined long-term bacterial cocultures pairing Escherichia coli and Rhodopseudomonas palustris for evidence of gene loss or retention in response to cross-feeding of non-essential adenine. Although R. palustris continued to externalize adenine in long-term cultures, E. coli did not accumulate mutations in purine synthesis genes, even after 700 generations. E. coli purine synthesis gene expression was low in coculture, suggesting that gene repression removed selective pressure for gene loss. In support of this explanation, R. palustris also had low transcript levels for iron-scavenging siderophore genes in coculture, likely because E. coli facilitated iron acquisition by R. palustris. R. palustris siderophore gene mutations were correspondingly rare in long-term cocultures but were prevalent in monocultures where transcript levels were high. Our data suggests that cross-feeding does not always drive gene loss, but can instead promote gene retention by repressing costly expression.
Collapse
Affiliation(s)
- Ying-Chih Chuang
- Department of Biology, Indiana University, Bloomington, IN, USA
- Biochemistry Program, Indiana University, Bloomington, IN, USA
| | - Megan G. Behringer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Gillian Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Crystal E. Love
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Ankur Dalia
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | |
Collapse
|
3
|
Cheng H, Sysoeva L, Wang H, Yuan H, Zhang T, Meng X. Evolution of Cooperation in Spatio-Temporal Evolutionary Games with Public Goods Feedback. Bull Math Biol 2024; 86:67. [PMID: 38700758 DOI: 10.1007/s11538-024-01296-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/08/2024] [Indexed: 05/23/2024]
Abstract
In biology, evolutionary game-theoretical models often arise in which players' strategies impact the state of the environment, driving feedback between strategy and the surroundings. In this case, cooperative interactions can be applied to studying ecological systems, animal or microorganism populations, and cells producing or actively extracting a growth resource from their environment. We consider the framework of eco-evolutionary game theory with replicator dynamics and growth-limiting public goods extracted by population members from some external source. It is known that the two sub-populations of cooperators and defectors can develop spatio-temporal patterns that enable long-term coexistence in the shared environment. To investigate this phenomenon and unveil the mechanisms that sustain cooperation, we analyze two eco-evolutionary models: a well-mixed environment and a heterogeneous model with spatial diffusion. In the latter, we integrate spatial diffusion into replicator dynamics. Our findings reveal rich strategy dynamics, including bistability and bifurcations, in the temporal system and spatial stability, as well as Turing instability, Turing-Hopf bifurcations, and chaos in the diffusion system. The results indicate that effective mechanisms to promote cooperation include increasing the player density, decreasing the relative timescale, controlling the density of initial cooperators, improving the diffusion rate of the public goods, lowering the diffusion rate of the cooperators, and enhancing the payoffs to the cooperators. We provide the conditions for the existence, stability, and occurrence of bifurcations in both systems. Our analysis can be applied to dynamic phenomena in fields as diverse as human decision-making, microorganism growth factors secretion, and group hunting.
Collapse
Affiliation(s)
- Haihui Cheng
- College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1, Canada
| | - Liubov Sysoeva
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1, Canada
| | - Hao Wang
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1, Canada
| | - Hairui Yuan
- College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Tonghua Zhang
- Department of Mathematics, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Xinzhu Meng
- College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China.
| |
Collapse
|
4
|
Yang X, Zeng Q, Gou S, Wu Y, Ma X, Zou H, Zhao K. Phenotypic heterogeneity unveils a negative correlation between antibiotic resistance and quorum sensing in Pseudomonas aeruginosa clinical isolates. Front Microbiol 2024; 15:1327675. [PMID: 38410387 PMCID: PMC10895058 DOI: 10.3389/fmicb.2024.1327675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Colonization of Pseudomonas aeruginosa in the lung environments frequently leads to the enrichment of strains displaying enhanced antibiotic resistance and reduced production of quorum-sensing (QS) controlled products. However, the relationship between the emergence of QS deficient variants and antibiotic resistance remains less understood. In this study, 67 P. aeruginosa strains were isolated from the lungs of 14 patients with chronic obstructive pulmonary disease, followed by determining their genetic relationship, QS-related phenotypes and resistance to commonly used antibiotics. The integrity of P. aeruginosa QS system was checked by DNA sequencing. The relationship between the QS system and antibiotic resistance was then assessed by correlation analyses. The function of the LasR protein and bacterial virulence were evaluated through homology modeling and nematode-infection assay. The influence of antibiotic on the development of extracellular protease production ability of P. aeruginosa was tested by an evolutionary experiment. The results showed that P. aeruginosa clinical strains displayed abundant diversity in phenotype and genotype. The production of extracellular proteases was significantly negatively correlated with antibiotic resistance. The strains with enhanced antibiotic resistance also showed a notable overlap with the mutation of lasR gene, which is the core regulatory gene of P. aeruginosa QS system. Molecular docking and Caenorhabditis elegans infection assays further suggested that P. aeruginosa with impaired LasR protein could also have varying pathogenicity. Moreover, in vitro evolution experiments demonstrated that antibiotic-mediated selective pressure, particularly from Levofloxacin contributed to the emergence of extracellular protease-negative strains. Therefore, this study provides evidence for the connection of P. aeruginosa QS system and antibiotic resistance, and holds significance for developing targeted strategies to address antibiotic resistance and improving the management of antibiotic-resistant infections in chronic respiratory diseases.
Collapse
Affiliation(s)
- Xiting Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Qianglin Zeng
- Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, China
| | - Shiyi Gou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Yi Wu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Xiaoling Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Hang Zou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
O'Brien S, Culbert CT, Barraclough TG. Community composition drives siderophore dynamics in multispecies bacterial communities. BMC Ecol Evol 2023; 23:45. [PMID: 37658316 PMCID: PMC10472669 DOI: 10.1186/s12862-023-02152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/17/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Intraspecific public goods are commonly shared within microbial populations, where the benefits of public goods are largely limited to closely related conspecifics. One example is the production of iron-scavenging siderophores that deliver iron to cells via specific cell envelope receptor and transport systems. Intraspecific social exploitation of siderophore producers is common, since non-producers avoid the costs of production but retain the cell envelope machinery for siderophore uptake. However, little is known about how interactions between species (i.e., interspecific interactions) can shape intraspecific public goods exploitation. Here, we predicted that strong competition for iron between species in diverse communities will increase costs of siderophore cooperation, and hence drive intraspecific exploitation. We examined how increasing microbial community species diversity shapes intraspecific social dynamics by monitoring the growth of siderophore producers and non-producers of the plant-growth promoting bacterium Pseudomonas fluorescens, embedded within tree-hole microbial communities ranging from 2 to 15 species. RESULTS We find, contrary to our prediction, that siderophore production is favoured at higher levels of community species richness, driven by increased likelihood of encountering key species that reduce the growth of siderophore non-producing (but not producing) strains of P. fluorescens. CONCLUSIONS Our results suggest that maintaining a diverse soil microbiota could partly contribute to the maintenance of siderophore production in natural communities.
Collapse
Affiliation(s)
- Siobhán O'Brien
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Christopher T Culbert
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
| | - Timothy G Barraclough
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| |
Collapse
|
6
|
Lee IPA, Eldakar OT, Gogarten JP, Andam CP. Recombination as an enforcement mechanism of prosocial behavior in cooperating bacteria. iScience 2023; 26:107344. [PMID: 37554437 PMCID: PMC10405257 DOI: 10.1016/j.isci.2023.107344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/11/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
Prosocial behavior is ubiquitous in nature despite the relative fitness costs carried by cooperative individuals. However, the stability of cooperation in populations is fragile and often maintained through enforcement. We propose that homologous recombination provides such a mechanism in bacteria. Using an agent-based model of recombination in bacteria playing a public goods game, we demonstrate how changes in recombination rates affect the proportion of cooperating cells. In our model, recombination converts cells to a different strategy, either freeloading (cheaters) or cooperation, based on the strategies of neighboring cells and recombination rate. Increasing the recombination rate expands the parameter space in which cooperators outcompete freeloaders. However, increasing the recombination rate alone is neither sufficient nor necessary. Intermediate benefits of cooperation, lower population viscosity, and greater population size can promote the evolution of cooperation from within populations of cheaters. Our findings demonstrate how recombination influences the persistence of cooperative behavior in bacteria.
Collapse
Affiliation(s)
- Isaiah Paolo A. Lee
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
- National Institute of Molecular Biology and Biotechnology, University of the Philippines–Diliman, Quezon City 1101, Philippines
| | - Omar Tonsi Eldakar
- Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - J. Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Cheryl P. Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
7
|
Alverdy JC. "It Is Not Necessary to Kill Them in Order to Make Them Relatively Harmless": Molecular Diplomacy in the Pathogen-Host Interaction. Surg Infect (Larchmt) 2023; 24:1-3. [PMID: 36521176 PMCID: PMC9894596 DOI: 10.1089/sur.2022.345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- John C. Alverdy
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
8
|
Lear L, Hesse E, Buckling A, Vos M. Copper selects for siderophore-mediated virulence in Pseudomonas aeruginosa. BMC Microbiol 2022; 22:303. [PMID: 36510131 PMCID: PMC9745993 DOI: 10.1186/s12866-022-02720-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/30/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Iron is essential for almost all bacterial pathogens and consequently it is actively withheld by their hosts. However, the production of extracellular siderophores enables iron sequestration by pathogens, increasing their virulence. Another function of siderophores is extracellular detoxification of non-ferrous metals. Here, we experimentally link the detoxification and virulence roles of siderophores by testing whether the opportunistic pathogen Pseudomonas aeruginosa displays greater virulence after exposure to copper. To do this, we incubated P. aeruginosa under different environmentally relevant copper regimes for either two or twelve days. Subsequent growth in a copper-free environment removed phenotypic effects, before we quantified pyoverdine production (the primary siderophore produced by P. aeruginosa), and virulence using the Galleria mellonella infection model. RESULTS Copper selected for increased pyoverdine production, which was positively correlated with virulence. This effect increased with time, such that populations incubated with high copper for twelve days were the most virulent. Replication of the experiment with a non-pyoverdine producing strain of P. aeruginosa demonstrated that pyoverdine production was largely responsible for the change in virulence. CONCLUSIONS We here show a direct link between metal stress and bacterial virulence, highlighting another dimension of the detrimental effects of metal pollution on human health.
Collapse
Affiliation(s)
- Luke Lear
- grid.8391.30000 0004 1936 8024European Centre for Environment and Human Health, University of Exeter Medical School, Penryn, Cornwall, TR10 9FE UK
| | - Elze Hesse
- grid.8391.30000 0004 1936 8024College of Life and Environmental Science, University of Exeter, Penryn, Cornwall, TR10 9FE UK
| | - Angus Buckling
- grid.8391.30000 0004 1936 8024College of Life and Environmental Science, University of Exeter, Penryn, Cornwall, TR10 9FE UK
| | - Michiel Vos
- grid.8391.30000 0004 1936 8024European Centre for Environment and Human Health, University of Exeter Medical School, Penryn, Cornwall, TR10 9FE UK
| |
Collapse
|
9
|
Iron acquisition strategies in pseudomonads: mechanisms, ecology, and evolution. Biometals 2022:10.1007/s10534-022-00480-8. [PMID: 36508064 PMCID: PMC10393863 DOI: 10.1007/s10534-022-00480-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
AbstractIron is important for bacterial growth and survival, as it is a common co-factor in essential enzymes. Although iron is very abundant in the earth crust, its bioavailability is low in most habitats because ferric iron is largely insoluble under aerobic conditions and at neutral pH. Consequently, bacteria have evolved a plethora of mechanisms to solubilize and acquire iron from environmental and host stocks. In this review, I focus on Pseudomonas spp. and first present the main iron uptake mechanisms of this taxa, which involve the direct uptake of ferrous iron via importers, the production of iron-chelating siderophores, the exploitation of siderophores produced by other microbial species, and the use of iron-chelating compounds produced by plants and animals. In the second part of this review, I elaborate on how these mechanisms affect interactions between bacteria in microbial communities, and between bacteria and their hosts. This is important because Pseudomonas spp. live in diverse communities and certain iron-uptake strategies might have evolved not only to acquire this essential nutrient, but also to gain relative advantages over competitors in the race for iron. Thus, an integrative understanding of the mechanisms of iron acquisition and the eco-evolutionary dynamics they drive at the community level might prove most useful to understand why Pseudomonas spp., in particular, and many other bacterial species, in general, have evolved such diverse iron uptake repertoires.
Collapse
|
10
|
Jayakumar P, Figueiredo ART, Kümmerli R. Evolution of Quorum Sensing in Pseudomonas aeruginosa Can Occur via Loss of Function and Regulon Modulation. mSystems 2022; 7:e0035422. [PMID: 36190124 PMCID: PMC9600717 DOI: 10.1128/msystems.00354-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa populations evolving in cystic fibrosis lungs, animal hosts, natural environments and in vitro undergo extensive genetic adaption and diversification. A common mutational target is the quorum sensing (QS) system, a three-unit regulatory system that controls the expression of virulence factors and secreted public goods. Three evolutionary scenarios have been advocated to explain selection for QS mutants: (i) disuse of the regulon, (ii) cheating through the exploitation of public goods, or (ii) modulation of the QS regulon. Here, we examine these scenarios by studying a set of 61 QS mutants from an experimental evolution study. We observed nonsynonymous mutations in all three QS systems: Las, Rhl, and Pseudomonas Quinolone Signal (PQS). The majority of the Las mutants had large deletions of the Las regulon, resulting in loss of QS function and the inability to produce QS-regulated traits, thus supporting the first or second scenarios. Conversely, phenotypic and gene expression analyses of Rhl mutants support network modulation (third scenario), as these mutants overexpressed the Las and Rhl receptors and showed an altered QS-regulated trait production profile. PQS mutants also showed patterns of regulon modulation leading to strain diversification and phenotypic tradeoffs, where the upregulation of certain QS traits is associated with the downregulation of others. Overall, our results indicate that mutations in the different QS systems lead to diverging effects on the QS trait profile in P. aeruginosa populations. These mutations might not only affect the plasticity and diversity of evolved populations but could also impact bacterial fitness and virulence in infections. IMPORTANCE Pseudomonas aeruginosa uses quorum sensing (QS), a three-unit multilayered network, to coordinate expression of traits required for growth and virulence in the context of infections. Despite its importance for bacterial fitness, the QS regulon appears to be a common mutational target during long-term adaptation of P. aeruginosa in the host, natural environments, and experimental evolutions. This raises questions of why such an important regulatory system is under selection and how mutations change the profile of QS-regulated traits. Here, we examine a set of 61 experimentally evolved QS mutants to address these questions. We found that mutations involving the master regulator, LasR, resulted in an almost complete breakdown of QS, while mutations in RhlR and PqsR resulted in modulations of the regulon, where both the regulon structure and the QS-regulated trait profile changed. Our work reveals that natural selection drives diversification in QS activity patterns in evolving populations.
Collapse
Affiliation(s)
- Priyanikha Jayakumar
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Alexandre R. T. Figueiredo
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Adaptation to an amoeba host leads to Pseudomonas aeruginosa isolates with attenuated virulence. Appl Environ Microbiol 2022; 88:e0232221. [PMID: 35020451 PMCID: PMC8904051 DOI: 10.1128/aem.02322-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is ubiquitous in the environment, and in humans, it is capable of causing acute or chronic infections. In the natural environment, predation by bacterivorous protozoa represents a primary threat to bacteria. Here, we determined the impact of long-term exposure of P. aeruginosa to predation pressure. P. aeruginosa persisted when coincubated with the bacterivorous Acanthamoeba castellanii for extended periods and produced genetic and phenotypic variants. Sequencing of late-stage amoeba-adapted P. aeruginosa isolates demonstrated single nucleotide polymorphisms within genes that encode known virulence factors, and this correlated with a reduction in expression of virulence traits. Virulence for the nematode Caenorhabditis elegans was attenuated in late-stage amoeba-adapted P. aeruginosa compared to early-stage amoeba-adapted and nonadapted counterparts. Further, late-stage amoeba-adapted P. aeruginosa showed increased competitive fitness and enhanced survival in amoebae as well as in macrophage and neutrophils. Interestingly, our findings indicate that the selection imposed by amoebae resulted in P. aeruginosa isolates with reduced virulence and enhanced fitness, similar to those recovered from chronic cystic fibrosis infections. Thus, predation by protozoa and long-term colonization of the human host may represent similar environments that select for similar losses of gene function. IMPORTANCEPseudomonas aeruginosa is an opportunistic pathogen that causes both acute infections in plants and animals, including humans, and chronic infections in immunocompromised and cystic fibrosis patients. This bacterium is commonly found in soils and water, where bacteria are constantly under threat of being consumed by bacterial predators, e.g., protozoa. To escape being killed, bacteria have evolved a suite of mechanisms that protect them from being consumed or digested. Here, we examined the effect of long-term predation on the genotypes and phenotypes expressed by P. aeruginosa. We show that long-term coincubation with protozoa gave rise to mutations that resulted in P. aeruginosa becoming less pathogenic. This is particularly interesting as similar mutations arise in bacteria associated with chronic infections. Importantly, the genetic and phenotypic traits possessed by late-stage amoeba-adapted P. aeruginosa are similar to those observed in isolates obtained from chronic cystic fibrosis infections. This notable overlap in adaptation to different host types suggests similar selection pressures among host cell types as well as similar adaptation strategies.
Collapse
|