1
|
Ma J, Awais M, Chen W, Zhang B, Li L, Turakulov KS, Egamberdieva D, Karimjonovich MS, Kang Z, Zhao J. Molecular Genotyping Analysis Suggested High Clonality and Simple Marker Loci in Puccinia striiformis f. sp. tritici Population in Uzbekistan, Central Asian Region. PLANT DISEASE 2024; 108:2958-2967. [PMID: 38885026 DOI: 10.1094/pdis-05-24-0972-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Puccinia striiformis f. sp. tritici (Pst) is a destructive pathogen that causes wheat stripe rust worldwide. Understanding the population structure and dynamic of pathogen spread is critical to fight against this disease. Limited information is available for the population genetic structure of Pst in Uzbekistan, Central Asia. In this study, we carried out surveillance from nine different regions (Andijan, Fergana, Jizzakh, Kashkadarya, Namangan, Samarkand, Sirdaryo, Surkhandarya, and Tashkent) of Uzbekistan to fill this gap. A total of 255 isolates were collected, which were genotyped using 17 polymorphic simple sequence repeat markers. The DAPC analysis results showed no population subdivision in these sample-collected regions except Surkhandarya. Multilocus genotype (MLG) analysis, FST, and Nei's genetic distance results indicated a clonal population (rBarD ≤ 0.12) and merely three MLGs accounting for 70% of the overall population. MLG-34 was predominant in all regions of Uzbekistan, followed by MLG-36 and MLG-42. Low genotypic diversity was observed in Andijan, Fergana, Jizzakh, Kashkadarya, Namangan, Sirdaryo, and Tashkent (0.56 to 0.76), compared with Samarkand (0.82) and Surkhandarya (0.97). No virulence against Yr5, Yr15, YrSp, and Yr26 was found, while resistance was overcome against Yr1, Yr2, Yr6, Yr9, Yr17, and Yr44 genes (virulence frequency ≥75%). Comparative study results of Uzbekistan with the previous Himalayan population showed divergence from China and Pakistan populations. Further studies need to be conducted in a worldwide context to understand migration patterns; for that purpose, collaborative work is essential because of the Pst long-distance migration capability.
Collapse
Affiliation(s)
- Jinbiao Ma
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830000 Urumqi, China
| | - Muhammad Awais
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, NWAFU, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenbin Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, NWAFU, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bingbing Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, NWAFU, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830000 Urumqi, China
| | - Khurshid S Turakulov
- Institute of Genetics and Plant Experimental Biology of Academy of Science of the Republic of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Dilfuza Egamberdieva
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
- Institute of Fundamental and Applied Research, National Research University TIIAME, Tashkent 100000, Uzbekistan
| | - Meliev Sodir Karimjonovich
- Institute of Genetics and Plant Experimental Biology of Academy of Science of the Republic of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, NWAFU, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, NWAFU, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
2
|
Riella V, Rodriguez-Algaba J, García R, Pereira F, Silva P, Hovmøller MS, Germán S. New Races with Wider Virulence Indicate Rapid Evolution of Puccinia striiformis f. sp. tritici in the Southern Cone of America. PLANT DISEASE 2024; 108:2454-2461. [PMID: 38537139 DOI: 10.1094/pdis-02-24-0320-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Wheat yellow (stripe) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat worldwide. Pst populations are composed of multiple genetic groups, each carrying one or more races characterized by different avirulence/virulence combinations. Since the severe epidemics in 2017, yellow rust has become the most economically important wheat foliar disease in Uruguay. A set of 124 Pst isolates collected from wheat fields in Uruguay between 2017 and 2021 were characterized phenotypically, and 27 of those isolates were subsequently investigated in-depth by additional molecular genotyping and race phenotyping analyses. Three genetic groups were identified, PstS7, PstS10, and PstS13, with the latter being the most prevalent. Two races previously reported in Europe, Warrior (PstS7) and Benchmark (PstS10), were detected in four and two isolates, respectively. A third race, known as Triticale2015 (PstS13), that was first detected in Europe in 2015 and in Argentina in 2017 was detected at several locations. Additional virulence to Yr3, Yr17, Yr25, Yr27, or Yr32 was detected in three new race variants within PstS13. The identification of these new races, which have not been reported outside South America, provides strong evidence of the local evolution of virulence in Pst during the recent epidemic years.
Collapse
Affiliation(s)
- Venancio Riella
- Instituto Nacional de Investigación Agropecuaria (INIA), 70000 Colonia, Uruguay
- Facultad de Agronomía, Universidad de la República, 12900 Montevideo, Uruguay
| | - Julian Rodriguez-Algaba
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200 Slagelse, Denmark
| | - Richard García
- Instituto Nacional de Investigación Agropecuaria (INIA), 70000 Colonia, Uruguay
| | - Fernando Pereira
- Instituto Nacional de Investigación Agropecuaria (INIA), 70000 Colonia, Uruguay
| | - Paula Silva
- Instituto Nacional de Investigación Agropecuaria (INIA), 70000 Colonia, Uruguay
| | - Mogens S Hovmøller
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200 Slagelse, Denmark
| | - Silvia Germán
- Instituto Nacional de Investigación Agropecuaria (INIA), 70000 Colonia, Uruguay
| |
Collapse
|
3
|
Luo Z, McTaggart A, Schwessinger B. Genome biology and evolution of mating-type loci in four cereal rust fungi. PLoS Genet 2024; 20:e1011207. [PMID: 38498573 PMCID: PMC10977897 DOI: 10.1371/journal.pgen.1011207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/28/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Permanent heterozygous loci, such as sex- or mating-compatibility regions, often display suppression of recombination and signals of genomic degeneration. In Basidiomycota, two distinct loci confer mating compatibility. These loci encode homeodomain (HD) transcription factors and pheromone receptor (Pra)-ligand allele pairs. To date, an analysis of genome level mating-type (MAT) loci is lacking for obligate biotrophic basidiomycetes in the Pucciniales, an order containing serious agricultural plant pathogens. Here, we focus on four species of Puccinia that infect oat and wheat, including P. coronata f. sp. avenae, P. graminis f. sp. tritici, P. triticina and P. striiformis f. sp. tritici. MAT loci are located on two separate chromosomes supporting previous hypotheses of a tetrapolar mating compatibility system in the Pucciniales. The HD genes are multiallelic in all four species while the PR locus appears biallelic, except for P. graminis f. sp. tritici, which potentially has multiple alleles. HD loci are largely conserved in their macrosynteny, both within and between species, without strong signals of recombination suppression. Regions proximal to the PR locus, however, displayed signs of recombination suppression and genomic degeneration in the three species with a biallelic PR locus. Our observations support a link between recombination suppression, genomic degeneration, and allele diversity of MAT loci that is consistent with recent mathematical modelling and simulations. Finally, we confirm that MAT genes are expressed during the asexual infection cycle, and we propose that this may support regulating nuclear maintenance and pairing during infection and spore formation. Our study provides insights into the evolution of MAT loci of key pathogenic Puccinia species. Understanding mating compatibility can help predict possible combinations of nuclear pairs, generated by sexual reproduction or somatic recombination, and the potential evolution of new virulent isolates of these important plant pathogens.
Collapse
Affiliation(s)
- Zhenyan Luo
- Research Biology School, Australian National University, Canberra, ACT, Australia
| | - Alistair McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, Queensland, Australia
| | | |
Collapse
|
4
|
Sun C, Liu YF, Liang YM, Wang L. Four new species of Puccinia from herbaceous plants in China. Mycologia 2024; 116:309-321. [PMID: 38252498 DOI: 10.1080/00275514.2023.2289697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 11/27/2023] [Indexed: 01/24/2024]
Abstract
Members of Puccinia (Pucciniaceae, Pucciniales) are known as plant pathogens worldwide, which are characterized by their morphology, host association, and molecular data of various genes. In the present study, 10 specimens of Puccinia were collected from four herbaceous plants (Anaphalis hancockii, Anthriscus sylvestris, Halenia elliptica, and Pilea pumila) in China and identified based on morphology and phylogeny. As a result, 10 samples represent four undescribed species of Puccinia, viz., P. apdensia, P. decidua, P. dermatis, and P. lianchengensis, spp. nov. P. apdensia is characterized by its smooth teliospores with thickened apex. P. decidua represents the first Puccinia species inhabiting the host Anaphalis hancockii and is distinguished from the other Puccinia species by its telia and uredinia surrounded by the epidermis. P. dermatis from Halenia elliptica differs from the other Puccinia species on the host genus Halenia by the telia that have epidermis and teliospores with sparsely irregular granulated protrusions. P. lianchengensis is characterized by its teliospore surface with fishnet ornamentation and urediniospores without prominent caps. All of the new species are described and illustrated in this study.
Collapse
Affiliation(s)
- Chang Sun
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yi-Fan Liu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Ying-Mei Liang
- Museum of Beijing Forestry University, Beijing Forestry University, Beijing 100083, China
| | - Lei Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Beijing Museum of Natural History, Beijing 100050, China
| |
Collapse
|
5
|
Gharekhani G, Salekebrahimi H, Chi H. Demography of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) reared on elicitor-treated tomato plants with an innovative comparison of projected population sizes and application of the multinomial theorem for population survival. PEST MANAGEMENT SCIENCE 2023; 79:4964-4976. [PMID: 37535824 DOI: 10.1002/ps.7698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/12/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Because of the considerable damage caused by tomato leafminer in tomato crops, the use of integrated methods is recommended. In this study, the effect of three different elicitors, methyl jasmonate, salicylic acid and ascorbic acid, on the life table parameters of Tuta absoluta was evaluated. A paired bootstrap test and different bootstrap percentiles were used to compare projected population sizes on specific dates. Survival probabilities were calculated by innovatively linking life tables and multinomial theorem. RESULTS Preadult duration and mortality significantly increased, and the net reproductive rate (R0 ), intrinsic rate of increase (r), and finite rate of increase (λ) significantly decreased in all elicitor treatments. The lowest fecundity (F = 71.89 eggs/female) was observed in the salicylic acid treatment, with an R0 value of 13.48 offspring/individual, r of 0.0932 d-1 , and λ of 1.0977 d-1 . The population projection revealed the stage structure of T. absoluta during population growth, which was significantly reduced by the elicitor treatments. The survival probability of bootstrap samples was significantly lowered, whereas the extinction probabilities increased in elicitor treatments compared with control when the survival criterion was set to two fertile pairs. CONCLUSION Our results demonstrated that the application of elicitors could reduce the risk of T. absoluta damage. Furthermore, population projection based on life tables is applicable to obtain the frequency distribution of the population size at different times. Combined application of life tables and multinomial theorem can be used to calculate the risk of pest emergence. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Hsin Chi
- College of Plant Protection, Shandong Agricultural University, Taian, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Mackenzie A, Norman M, Gessese M, Chen C, Sørensen C, Hovmøller M, Ma L, Forrest K, Hickey L, Bariana H, Bansal U, Periyannan S. Wheat stripe rust resistance locus YR63 is a hot spot for evolution of defence genes - a pangenome discovery. BMC PLANT BIOLOGY 2023; 23:590. [PMID: 38008766 PMCID: PMC10680240 DOI: 10.1186/s12870-023-04576-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/01/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), poses a threat to global wheat production. Deployment of widely effective resistance genes underpins management of this ongoing threat. This study focused on the mapping of stripe rust resistance gene YR63 from a Portuguese hexaploid wheat landrace AUS27955 of the Watkins Collection. RESULTS YR63 exhibits resistance to a broad spectrum of Pst races from Australia, Africa, Asia, Europe, Middle East and South America. It was mapped to the short arm of chromosome 7B, between two single nucleotide polymorphic (SNP) markers sunCS_YR63 and sunCS_67, positioned at 0.8 and 3.7 Mb, respectively, in the Chinese Spring genome assembly v2.1. We characterised YR63 locus using an integrated approach engaging targeted genotyping-by-sequencing (tGBS), mutagenesis, resistance gene enrichment and sequencing (MutRenSeq), RNA sequencing (RNASeq) and comparative genomic analysis with tetraploid (Zavitan and Svevo) and hexaploid (Chinese Spring) wheat genome references and 10+ hexaploid wheat genomes. YR63 is positioned at a hot spot enriched with multiple nucleotide-binding and leucine rich repeat (NLR) and kinase domain encoding genes, known widely for defence against pests and diseases in plants and animals. Detection of YR63 within these gene clusters is not possible through short-read sequencing due to high homology between members. However, using the sequence of a NLR member we were successful in detecting a closely linked SNP marker for YR63 and validated on a panel of Australian bread wheat, durum and triticale cultivars. CONCLUSIONS This study highlights YR63 as a valuable source for resistance against Pst in Australia and elsewhere. The closely linked SNP marker will facilitate rapid introgression of YR63 into elite cultivars through marker-assisted selection. The bottleneck of this study reinforces the necessity for a long-read sequencing such as PacBio or Oxford Nanopore based techniques for accurate detection of the underlying resistance gene when it is part of a large gene cluster.
Collapse
Affiliation(s)
- Amy Mackenzie
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, Canberra, Australian Capital Territory, 2601, Australia
- Centre for Crop Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Michael Norman
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, Canberra, Australian Capital Territory, 2601, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, New South Wales, 2570, Australia
| | - Mesfin Gessese
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, New South Wales, 2570, Australia
- Present address:, Wolaita sodo University, Sodo, Ethiopia
| | - Chunhong Chen
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, Canberra, Australian Capital Territory, 2601, Australia
| | - Chris Sørensen
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Mogens Hovmøller
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Lina Ma
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, Canberra, Australian Capital Territory, 2601, Australia
| | - Kerrie Forrest
- Agriculture Victoria, Department of Energy, Environment and Climate Action, AgriBio, Centre for AgriBioscience, 5 Ring Rd, Bundoora, Victoria, 3083, Australia
| | - Lee Hickey
- Centre for Crop Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Harbans Bariana
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, New South Wales, 2570, Australia
- School of Science, Western Sydney University, Bourke Road, Richmond, New South Wales, 2753, Australia
| | - Urmil Bansal
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, New South Wales, 2570, Australia.
| | - Sambasivam Periyannan
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, Canberra, Australian Capital Territory, 2601, Australia.
- Centre for Crop Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia.
- School of Agriculture and Environmental Science & Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia.
| |
Collapse
|
7
|
Holden S, Bakkeren G, Hubensky J, Bamrah R, Abbasi M, Qutob D, de Graaf ML, Kim SH, Kutcher HR, McCallum BD, Randhawa HS, Iqbal M, Uloth K, Burlakoti RR, Brar GS. Uncovering the history of recombination and population structure in western Canadian stripe rust populations through mating type alleles. BMC Biol 2023; 21:233. [PMID: 37880702 PMCID: PMC10601111 DOI: 10.1186/s12915-023-01717-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/27/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND The population structure of crop pathogens such as Puccinia striiformis f. sp. tritici (Pst), the cause of wheat stripe rust, is of interest to researchers looking to understand these pathogens on a molecular level as well as those with an applied focus such as disease epidemiology. Cereal rusts can reproduce sexually or asexually, and the emergence of novel lineages has the potential to cause serious epidemics such as the one caused by the 'Warrior' lineage in Europe. In a global context, Pst lineages in Canada were not well-characterized and the origin of foreign incursions was not known. Additionally, while some Pst mating type genes have been identified in published genomes, there has been no rigorous assessment of mating type diversity and distribution across the species. RESULTS We used a whole-genome/transcriptome sequencing approach for the Canadian Pst population to identify lineages in their global context and evidence tracing foreign incursions. More importantly: for the first time ever, we identified nine alleles of the homeodomain mating type locus in the worldwide Pst population and show that previously identified lineages exhibit a single pair of these alleles. Consistently with the literature, we find only two pheromone receptor mating type alleles. We show that the recent population shift from the 'PstS1' lineage to the 'PstS1-related' lineage is also associated with the introduction of a novel mating type allele (Pst-b3-HD) to the Canadian population. We also show evidence for high levels of mating type diversity in samples associated with the Himalayan center of diversity for Pst, including a single Canadian race previously identified as 'PstPr' (probable recombinant) which we identify as a foreign incursion, most closely related to isolates sampled from China circa 2015. CONCLUSIONS These data describe a recent shift in the population of Canadian Pst field isolates and characterize homeodomain-locus mating type alleles in the global Pst population which can now be utilized in testing several research questions and hypotheses around sexuality and hybridization in rust fungi.
Collapse
Affiliation(s)
- Samuel Holden
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, BC, Canada.
| | - Guus Bakkeren
- Agriculture and Agri-Food Canada (AAFC), Summerland Research and Development Center, Summerland, BC, Canada
| | - John Hubensky
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, BC, Canada
| | - Ramandeep Bamrah
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, BC, Canada
| | - Mehrdad Abbasi
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, BC, Canada
| | - Dinah Qutob
- Kent State University, Stark Campus, North Canton, OH, USA
| | - Mei-Lan de Graaf
- Agriculture and Agri-Food Canada (AAFC), Summerland Research and Development Center, Summerland, BC, Canada
| | - Sang Hu Kim
- Agriculture and Agri-Food Canada (AAFC), Summerland Research and Development Center, Summerland, BC, Canada
| | - Hadley R Kutcher
- Department of Plant Science/Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brent D McCallum
- Agriculture and Agri-Food Canada (AAFC), Brandon Research and Development Center, Brandon, MB, Canada
| | - Harpinder S Randhawa
- Agriculture and Agri-Food Canada (AAFC), Lethbridge Research and Development Center, Lethbridge, AB, Canada
| | - Muhammad Iqbal
- Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Keith Uloth
- British Columbia Pest Monitoring Network, Dawson Creek, BC, Canada
| | - Rishi R Burlakoti
- Agriculture and Agri-Food Canada (AAFC), Agassiz Research and Development Center, Agassiz, BC, Canada
| | - Gurcharn S Brar
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, BC, Canada.
| |
Collapse
|
8
|
Li Y, Dai J, Zhang T, Wang B, Zhang S, Wang C, Zhang J, Yao Q, Li M, Li C, Peng Y, Cao S, Zhan G, Tao F, Gao H, Huang W, Feng X, Bai Y, Qucuo Z, Shang H, Huang C, Liu W, Zhan J, Xu X, Chen X, Kang Z, Hu X. Genomic analysis, trajectory tracking, and field surveys reveal sources and long-distance dispersal routes of wheat stripe rust pathogen in China. PLANT COMMUNICATIONS 2023:100563. [PMID: 36809881 PMCID: PMC10363508 DOI: 10.1016/j.xplc.2023.100563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/08/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Identifying sources of phytopathogen inoculum and determining their contributions to disease outbreaks are essential for predicting disease development and establishing control strategies. Puccinia striiformis f. sp. tritici (Pst), the causal agent of wheat stripe rust, is an airborne fungal pathogen with rapid virulence variation that threatens wheat production through its long-distance migration. Because of wide variation in geographic features, climatic conditions, and wheat production systems, Pst sources and related dispersal routes in China are largely unclear. In the present study, we performed genomic analyses of 154 Pst isolates from all major wheat-growing regions in China to determine Pst population structure and diversity. Through trajectory tracking, historical migration studies, genetic introgression analyses, and field surveys, we investigated Pst sources and their contributions to wheat stripe rust epidemics. We identified Longnan, the Himalayan region, and the Guizhou Plateau, which contain the highest population genetic diversities, as the Pst sources in China. Pst from Longnan disseminates mainly to eastern Liupan Mountain, the Sichuan Basin, and eastern Qinghai; that from the Himalayan region spreads mainly to the Sichuan Basin and eastern Qinghai; and that from the Guizhou Plateau migrates mainly to the Sichuan Basin and the Central Plain. These findings improve our current understanding of wheat stripe rust epidemics in China and emphasize the need for managing stripe rust on a national scale.
Collapse
Affiliation(s)
- Yuxiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, China
| | - Jichen Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, China
| | - Taixue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, China
| | - Baotong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, China
| | - Siyue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, China
| | - Conghao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, China
| | - Jiguang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, China
| | - Qiang Yao
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Province, Academy of Agriculture and Forestry Science, Qinghai University, Xining, Qinghai, China
| | - Mingju Li
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resource Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yuelin Peng
- Department of Plant Pathology, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet, China
| | - Shiqin Cao
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Gangming Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, China
| | - Fei Tao
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Haifeng Gao
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Weili Huang
- Xi'an Huang's Bio-technology Company Ltd, Xi'an, Shaanxi, China
| | - Xiaojun Feng
- Shaanxi Plant Protection Extension Station, Xi'an, Shaanxi, China
| | - Yingwen Bai
- Baoji Plant Protection Extension Station, Baoji, Shaanxi, China
| | - Zhuoma Qucuo
- Department of Plant Pathology, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet, China
| | - Hongsheng Shang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, China
| | - Chong Huang
- National Agricultural Technology Extension and Service Center, Ministry of Agriculture, Beijing, China
| | - Wancai Liu
- National Agricultural Technology Extension and Service Center, Ministry of Agriculture, Beijing, China
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Xiangming Xu
- Pest & Pathogen Ecology, NIAB EMR, East Malling, West Malling, Kent, UK
| | - Xianming Chen
- Agricultural Research Service, United States Department of Agriculture and Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, China.
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, China.
| |
Collapse
|
9
|
Hovmøller MS, Thach T, Justesen AF. Global dispersal and diversity of rust fungi in the context of plant health. Curr Opin Microbiol 2023; 71:102243. [PMID: 36462410 DOI: 10.1016/j.mib.2022.102243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 12/02/2022]
Abstract
Long-distance dispersal of plant pathogens at the continental scale may have strong implications on plant health, in particular when incursions result in spread of disease to new territories where the disease was previously absent or insignificant. These dispersions may be caused by airborne transmission of spores or accidental spread via human travel and trade. Recent surveillance efforts of cereal rust fungi have demonstrated that incursion of new strains with superior fitness into areas where the disease is already established may have similar implications on plant health. Since dispersal events are highly stochastic, irrespective of transmission mechanism, critical mitigation efforts include preparedness by coordinated pathogen surveillance activities, host crop diversification, and breeding for disease resistance with low vulnerability to sudden changes in the pathogen population.
Collapse
Affiliation(s)
- Mogens S Hovmøller
- Aarhus University, Department of Agroecology, Global Rust Reference Center, Forsøgsvej 1, DK-4200 Slagelse, Denmark.
| | - Tine Thach
- Aarhus University, Department of Agroecology, Global Rust Reference Center, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Annemarie F Justesen
- Aarhus University, Department of Agroecology, Global Rust Reference Center, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| |
Collapse
|
10
|
Athiyannan N, Zhang P, McIntosh R, Chakraborty S, Hewitt T, Bhatt D, Forrest K, Upadhyaya N, Steuernagel B, Arora S, Huerta J, Hayden M, Wulff BBH, Ayliffe M, Hickey LT, Lagudah E, Periyannan S. Haplotype variants of the stripe rust resistance gene Yr28 in Aegilops tauschii. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4327-4336. [PMID: 36173416 DOI: 10.1007/s00122-022-04221-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Stripe rust resistance gene YrAet672 from Aegilops tauschii accession CPI110672 encodes a nucleotide-binding and leucine-rich repeat domain containing protein similar to YrAS2388 and both these members were haplotypes of Yr28. New sources of host resistance are required to counter the continued emergence of new pathotypes of the wheat stripe rust pathogen Puccinia striiformis Westend. f. sp. tritici Erikss. (Pst). Here, we show that CPI110672, an Aegilops tauschii accession from Turkmenistan, carries a single Pst resistance gene, YrAet672, that is effective against multiple Pst pathotypes, including the four predominant Pst lineages present in Australia. The YRAet672 locus was fine mapped to the short arm of chromosome 4D, and a nucleotide-binding and leucine-rich repeat gene was identified at the locus. A transgene encoding the YrAet672 genomic sequence, but lacking a copy of a duplicated sequence present in the 3' UTR, was transformed into wheat cultivar Fielder and Avocet S. This transgene conferred a weak resistance response, suggesting that the duplicated 3' UTR region was essential for function. Subsequent analyses demonstrated that YrAet672 is the same as two other Pst resistance genes described in Ae. tauschii, namely YrAS2388 and Yr28. They were identified as haplotypes encoding identical protein sequences but are polymorphic in non-translated regions of the gene. Suppression of resistance conferred by YrAet672 and Yr28 in synthetic hexaploid wheat lines (AABBDD) involving Langdon (AABB) as the tetraploid parent was associated with a reduction in transcript accumulation.
Collapse
Affiliation(s)
- Naveenkumar Athiyannan
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Canberra, Australia
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
- Biological and Environmental Science and Engineering Division, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Peng Zhang
- The University of Sydney Plant Breeding Institute, Cobbitty, Australia
| | - Robert McIntosh
- The University of Sydney Plant Breeding Institute, Cobbitty, Australia
| | - Soma Chakraborty
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Canberra, Australia
| | - Timothy Hewitt
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Canberra, Australia
| | - Dhara Bhatt
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Canberra, Australia
| | | | - Narayana Upadhyaya
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Canberra, Australia
| | | | - Sanu Arora
- Department of Crop Genetics, John Innes Centre, Norwich, UK
| | - Julio Huerta
- Campo Experimental Valle de Mexico-INIFAP, Carretera los Reyes-Texcoco, Km 13.5 Coatlinchan, C. P. 56250, Texcoco, Estado de Mexico, Mexico
| | | | - Brande B H Wulff
- Department of Crop Genetics, John Innes Centre, Norwich, UK
- Biological and Environmental Science and Engineering Division, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Michael Ayliffe
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Canberra, Australia
| | - Lee T Hickey
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Evans Lagudah
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Canberra, Australia.
| | - Sambasivam Periyannan
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Canberra, Australia.
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
11
|
Wu N, Ozketen AC, Cheng Y, Jiang W, Zhou X, Zhao X, Guan Y, Xiang Z, Akkaya MS. Puccinia striiformis f. sp. tritici effectors in wheat immune responses. FRONTIERS IN PLANT SCIENCE 2022; 13:1012216. [PMID: 36420019 PMCID: PMC9677129 DOI: 10.3389/fpls.2022.1012216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The obligate biotrophic fungus Puccinia striiformis f. sp. tritici, which causes yellow (stripe) rust disease, is among the leading biological agents resulting in tremendous yield losses on global wheat productions per annum. The combatting strategies include, but are not limited to, fungicide applications and the development of resistant cultivars. However, evolutionary pressure drives rapid changes, especially in its "effectorome" repertoire, thus allowing pathogens to evade and breach resistance. The extracellular and intracellular effectors, predominantly secreted proteins, are tactical arsenals aiming for many defense processes of plants. Hence, the identity of the effectors and the molecular mechanisms of the interactions between the effectors and the plant immune system have long been targeted in research. The obligate biotrophic nature of P. striiformis f. sp. tritici and the challenging nature of its host, the wheat, impede research on this topic. Next-generation sequencing and novel prediction algorithms in bioinformatics, which are accompanied by in vitro and in vivo validation approaches, offer a speedy pace for the discovery of new effectors and investigations of their biological functions. Here, we briefly review recent findings exploring the roles of P. striiformis f. sp. tritici effectors together with their cellular/subcellular localizations, host responses, and interactors. The current status and the challenges will be discussed. We hope that the overall work will provide a broader view of where we stand and a reference point to compare and evaluate new findings.
Collapse
Affiliation(s)
- Nan Wu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | | | - Yu Cheng
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Wanqing Jiang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xuan Zhou
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xinran Zhao
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yaorong Guan
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Zhaoxia Xiang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Mahinur S. Akkaya
- School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
12
|
Park RF, Boshoff WHP, Cabral AL, Chong J, Martinelli JA, McMullen MS, Fetch JWM, Paczos-Grzęda E, Prats E, Roake J, Sowa S, Ziems L, Singh D. Breeding oat for resistance to the crown rust pathogen Puccinia coronata f. sp. avenae: achievements and prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3709-3734. [PMID: 35665827 PMCID: PMC9729147 DOI: 10.1007/s00122-022-04121-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/01/2022] [Indexed: 05/05/2023]
Abstract
Crown rust, caused by Puccinia coronata f. sp. avenae (Pca), is a significant impediment to global oat production. Some 98 alleles at 92 loci conferring resistance to Pca in Avena have been designated; however, allelic relationships and chromosomal locations of many of these are unknown. Long-term monitoring of Pca in Australia, North America and elsewhere has shown that it is highly variable even in the absence of sexual recombination, likely due to large pathogen populations that cycle between wild oat communities and oat crops. Efforts to develop cultivars with genetic resistance to Pca began in the 1950s. Based almost solely on all all-stage resistance, this has had temporary benefits but very limited success. The inability to eradicate wild oats, and their common occurrence in many oat growing regions, means that future strategies to control Pca must be based on the assumption of a large and variable prevailing pathogen population with high evolutionary potential, even if cultivars with durable resistance are deployed and grown widely. The presence of minor gene, additive APR to Pca in hexaploid oat germplasm opens the possibility of pyramiding several such genes to give high levels of resistance. The recent availability of reference genomes for diploid and hexaploid oat will undoubtedly accelerate efforts to discover, characterise and develop high throughput diagnostic markers to introgress and pyramid resistance to Pca in high yielding adapted oat germplasm.
Collapse
Affiliation(s)
- R F Park
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia.
| | - W H P Boshoff
- Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - A L Cabral
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, Canada
| | - J Chong
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Canada
| | - J A Martinelli
- Department of Crop Science, Agronomy School, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves, 7712, Porto Alegre, RS, 91501-970, Brazil
| | - M S McMullen
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58105-5051, USA
| | - J W Mitchell Fetch
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, Canada
| | - E Paczos-Grzęda
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| | - E Prats
- CSIC-Institute for Sustainable Agriculture, Avda. Menéndez Pidal s/n. , 14004, Córdoba, Spain
| | - J Roake
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia
| | - S Sowa
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| | - L Ziems
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia
| | - D Singh
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia
| |
Collapse
|
13
|
Xia C, Qiu A, Wang M, Liu T, Chen W, Chen X. Current Status and Future Perspectives of Genomics Research in the Rust Fungi. Int J Mol Sci 2022; 23:9629. [PMID: 36077025 PMCID: PMC9456177 DOI: 10.3390/ijms23179629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Rust fungi in Pucciniales have caused destructive plant epidemics, have become more aggressive with new virulence, rapidly adapt to new environments, and continually threaten global agriculture. With the rapid advancement of genome sequencing technologies and data analysis tools, genomics research on many of the devastating rust fungi has generated unprecedented insights into various aspects of rust biology. In this review, we first present a summary of the main findings in the genomics of rust fungi related to variations in genome size and gene composition between and within species. Then we show how the genomics of rust fungi has promoted our understanding of the pathogen virulence and population dynamics. Even with great progress, many questions still need to be answered. Therefore, we introduce important perspectives with emphasis on the genome evolution and host adaptation of rust fungi. We believe that the comparative genomics and population genomics of rust fungi will provide a further understanding of the rapid evolution of virulence and will contribute to monitoring the population dynamics for disease management.
Collapse
Affiliation(s)
- Chongjing Xia
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Age Qiu
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA 99164-6430, USA
| |
Collapse
|
14
|
Schwessinger B, Jones A, Albekaa M, Hu Y, Mackenzie A, Tam R, Nagar R, Milgate A, Rathjen JP, Periyannan S. A Chromosome Scale Assembly of an Australian Puccinia striiformis f. sp. tritici Isolate of the PstS1 Lineage. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:293-296. [PMID: 35167331 DOI: 10.1094/mpmi-09-21-0236-a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
| | - Ashley Jones
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Mustafa Albekaa
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Yiheng Hu
- Research School of Biology, The Australian National University, Canberra, Australia
- Department of Microbial Interactions, IMIT/ZMBP, University of Tübingen, Tübingen, Germany
| | - Amy Mackenzie
- Research School of Biology, The Australian National University, Canberra, Australia
- CSIRO Agriculture and Food, Canberra, Australia
| | - Rita Tam
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Ramawatar Nagar
- Research School of Biology, The Australian National University, Canberra, Australia
- National Institute for Plant Biotechnology, Indian Council of Agricultural Research, New Delhi, India
| | - Andrew Milgate
- New South Wales Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - John P Rathjen
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Sambasivam Periyannan
- Research School of Biology, The Australian National University, Canberra, Australia
- CSIRO Agriculture and Food, Canberra, Australia
| |
Collapse
|