1
|
Soltanighias T, Umar A, Abdullahi M, Abdallah MAE, Orsini L. Combined toxicity of perfluoroalkyl substances and microplastics on the sentinel species Daphnia magna: Implications for freshwater ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125133. [PMID: 39419463 DOI: 10.1016/j.envpol.2024.125133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Persistent chemicals from industrial processes, particularly perfluoroalkyl substances (PFAS), have become pervasive in the environment due to their persistence, long half-lives, and bioaccumulative properties. Used globally for their thermal resistance and repellence to water and oil, PFAS have led to widespread environmental contamination. These compounds pose significant health risks with exposure through food, water, and dermal contact. Aquatic wildlife is particularly vulnerable as water bodies act as major transport and transformation mediums for PFAS. Their co-occurrence with microplastics may intensify the impact on aquatic species by influencing PFAS sorption and transport. Despite progress in understanding the occurrence and fate of PFAS and microplastics in aquatic ecosystems, the toxicity of PFAS mixtures and their co-occurrence with other high-concern compounds remains poorly understood, especially over organisms' life cycles. Our study investigates the chronic toxicity of PFAS and microplastics on the sentinel species Daphnia, a species central to aquatic foodwebs and an ecotoxicology model. We examined the effects of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and polyethylene terephthalate microplastics (PET) both individually and in mixtures on Daphnia ecological endpoints. Unlike conventional studies, we used two Daphnia genotypes with distinct histories of chemical exposure. This approach revealed that PFAS and microplastics cause developmental failures, delayed sexual maturity and reduced somatic growth, with historical exposure to environmental pollution reducing tolerance to these persistent chemicals due to cumulative fitness costs. We also observed that the combined effect of the persistent chemicals analysed was 59% additive and 41% synergistic, whereas no antagonistic interactions were observed. The genotype-specific responses observed highlight the complex interplay between genetic background and pollutant exposure, emphasizing the importance of incorporating multiple genotypes in environmental risk assessments to more accurately predict the ecological impact of chemical pollutants.
Collapse
Affiliation(s)
- Tayebeh Soltanighias
- School of Biosciences and Institute for Interdisciplinary Data Science and AI, University of Birmingham, Birmingham, B15 2TT, UK; College of Engineering and Physical Sciences Department of Civil Engineering, Aston University, Birmingham, B4 7ET, UK
| | - Abubakar Umar
- School of Biosciences and Institute for Interdisciplinary Data Science and AI, University of Birmingham, Birmingham, B15 2TT, UK; School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Muhammad Abdullahi
- School of Biosciences and Institute for Interdisciplinary Data Science and AI, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Luisa Orsini
- School of Biosciences and Institute for Interdisciplinary Data Science and AI, University of Birmingham, Birmingham, B15 2TT, UK; Centre for Environmental Research and Justice (CERJ), University of Birmingham, Birmingham, B15 2TT, UK; The Alan Turing Institute, British Library, 96 Euston Road, London, NW1 2DB, UK; Robust Nature Excellence Initiative, Max-von-Laue-Straße 13, 60438 Frankfurt Am Main, Germany.
| |
Collapse
|
2
|
Jeremias G, Muñiz-González AB, Mendes Gonçalves FJ, Martínez-Guitarte JL, Asselman J, Luísa Pereira J. History of exposure to copper influences transgenerational gene expression responses in Daphnia magna. Epigenetics 2024; 19:2296275. [PMID: 38154067 PMCID: PMC10761054 DOI: 10.1080/15592294.2023.2296275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023] Open
Abstract
The establishment of transgenerational effects following chemical exposure is a powerful phenomenon, capable of modulating ecosystem health beyond exposure periods. This study assessed the transgenerational effects occurring due to copper exposure in the invertebrate D. magna at the transcriptional level, while evaluating the role of exposure history on such responses. Thus, daphnids acclimated for several generations in a copper vs. clean medium were then exposed for one generation (F0) to this metal, and monitored for the following non-exposed generations (F1, F2 and F3). Organisms differing in exposure histories showed remarkably different transcriptional profiles at the F0, with naïve organisms being more profoundly affected. These trends were confirmed for F3 treatments, which presented different transcriptional patterns for genes involved in detoxification, oxidative stress, DNA damage repair, circadian clock functioning and epigenetic regulation. Furthermore, regardless of exposure history, a great number of histone modifier genes were always found transcriptionally altered, thus suggesting the involvement of histone modifications in the response of Daphnia to metal exposure. Lastly, remarkably distinct transgenerational transcriptional responses were found between naïve and non-naïve organisms, thereby highlighting the influence of exposure history on gene expression and confirming the capacity of metals to determine transgenerational transcriptional effects across non-exposed generations.
Collapse
Affiliation(s)
- Guilherme Jeremias
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Ana-Belén Muñiz-González
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
- Biology & Toxicology Group, Department of Mathematics, Physics, and Fluids, National Distance Education University (UNED), Madrid, Spain
| | | | - José-Luis Martínez-Guitarte
- Biology & Toxicology Group, Department of Mathematics, Physics, and Fluids, National Distance Education University (UNED), Madrid, Spain
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Ostend, Belgium
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
3
|
Gigl F, Abdullahi M, Barnard M, Hollert H, Orsini L. Interactions between phenanthrene exposure and historical chemical stress: Implications for fitness and ecological resilience of the sentinel species Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174963. [PMID: 39069192 DOI: 10.1016/j.scitotenv.2024.174963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) arise from incomplete combustion of oil, coal, and gasoline, with lipophilic properties facilitating their widespread distribution and persistence. Due to their biochemical attributes, PAHs can accumulate in animal tissues, potentially causing mutagenic and carcinogenic effects. Since the industrial revolution, PAH concentrations in the environment have risen, with lakes showing levels from 0.159 to 33,090 μg/kg sediment. Despite acute toxicity studies showing adverse effects on freshwater organisms, the long-term impacts and synergistic interactions with other pollutants remain largely unexplored. This study investigates the impact of phenanthrene (PHE), a prominent PAH found in aquatic environments, on Daphnia magna, a species of significant ecological importance in freshwater ecosystems globally, being both a sentinel species for chemical pollution and a keystone organism in freshwater aquatic ecosystems. Leveraging the dormancy of D. magna, which spans decades or even centuries, we exposed strains with diverse histories of chemical contaminant exposure to environmentally relevant concentrations of PHE. Initially, acute exposure experiments were conducted in accordance with OECD guidelines across 16 Daphnia strains, revealing substantial variation in acute toxic responses, with strains naïve to chemical pollutants showing the lowest toxicity. Utilizing the median effect concentration EC10 derived from acute exposures, we assessed the impacts of chronic PHE exposure on life history traits and ecological endpoints of the 16 strains. To elucidate how historical exposure to other environmental stressors may modulate the toxicity of PHE, temporal populations of D. magna resurrected from a lake with a well-documented century-spanning history of environmental impact were utilized. Our findings demonstrate that PHE exposure induces developmental failure, delays sexual maturation, and reduces adult size in Daphnia. Populations of Daphnia historically exposed to chemical stress exhibited significantly greater fitness impacts compared to naïve populations. This study provides crucial insights into the augmented effects of PAHs interacting with other environmental stressors.
Collapse
Affiliation(s)
- Florian Gigl
- Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Goethe University, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany; Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Muhammad Abdullahi
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Marianne Barnard
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Henner Hollert
- Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Goethe University, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Luisa Orsini
- Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Goethe University, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany; Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; Centre for Environmental Research and Justice (CERJ), University of Birmingham, Birmingham B15 2TT, UK; The Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB, UK
| |
Collapse
|
4
|
López-Valcárcel ME, Del Arco A, Parra G. Zooplankton vulnerability to glyphosate exacerbated by global change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169806. [PMID: 38181966 DOI: 10.1016/j.scitotenv.2023.169806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/11/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Anthropogenic activities generate a severe footprint at a global scale. Intensive agriculture is a global change driver that affects aquatic systems due to the discharge of pollutants. This situation can be modified or aggravated by other aspects, such as the disturbance history and other global change factors. Following our study line, it is necessary to evaluate how the disturbance history combined with temperature changes can affect the functioning of aquatic systems. The objectives of this study were divided into two phases. The objectives of phase 1 were to induce vulnerability in Daphnia magna populations through a disturbance history based on sublethal glyphosate concentration exposure under different temperature conditions (20 °C and 25 °C). In phase 2, vulnerability was assessed through the exposure to subsequent stressors (starvation, increased salinity and paracetamol) combined with changes in temperature. During the glyphosate exposure period in phase 1, differences were observed in the D. magna populations with respect to temperature, with lower abundance at 25 °C than at 20 °C. However, no differences were observed in abundance regarding glyphosate treatment. The results obtained in phase 2 with the new stressors combined with temperature changes in both directions, revealed stronger effects in vulnerable populations than in control populations. In addition, the temperature changes modulated the effects in the starvation and increased salinity tests. Agrochemical sublethal concentrations induce vulnerability in D. magna populations and inflicted temperature changes can act as a modulating factor for this vulnerability, showing the complexity in assessing the responses under the multiple scenarios associated with global change.
Collapse
Affiliation(s)
- María Eugenia López-Valcárcel
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus de Las Lagunillas S/n, E-23071 Jaén, Spain.
| | - Ana Del Arco
- Limnological Institute, University of Konstanz, Mainaustraße 252, 78464 Konstanz, Germany.
| | - Gema Parra
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus de Las Lagunillas S/n, E-23071 Jaén, Spain.
| |
Collapse
|
5
|
Abdullahi M, Stead I, Bennett S, Orozco R, Abdallah MAE, Jabbari S, Macaskie LE, Tzella A, Krause S, Al-Duri B, Lee RG, Herbert B, Thompson P, Schalkwyk M, Getahun S, Dearn KD, Orsini L. Harnessing water fleas for water reclamation: A nature-based tertiary wastewater treatment technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167224. [PMID: 37739075 DOI: 10.1016/j.scitotenv.2023.167224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Urbanisation, population growth, and climate change have put unprecedented pressure on water resources, leading to a global water crisis and the need for water reuse. However, water reuse is unsafe unless persistent chemical pollutants are removed from reclaimed water. State-of-the-art technologies for the reduction of persistent chemical pollutants in wastewater typically impose high operational and energy costs and potentially generate toxic by-products (e.g., bromate from ozonation). Nature-base solutions are preferred to these technologies for their lower environmental impact. However, so far, bio-based tertiary wastewater treatments have been inefficient for industrial-scale applications. Moreover, they often demand significant financial investment and large infrastructure, undermining sustainability objectives. Here, we present a scalable, low-cost, low-carbon, and retrofittable nature-inspired solution to remove persistent chemical pollutants (pharmaceutical, pesticides and industrial chemicals). We showed Daphnia's removal efficiency of individual chemicals and chemicals from wastewater at laboratory scale ranging between 50 % for PFOS and 90 % for diclofenac. We validated the removal efficiency of diclofenac at prototype scale, showing sustained performance over four weeks in outdoor seminatural conditions. A techno-commercial analysis on the Daphnia-based technology suggested several technical, commercial and sustainability advantages over established and emerging treatments at comparable removal efficiency, benchmarked on available data on individual chemicals. Further testing of the technology is underway in open flow environments holding real wastewater. The technology has the potential to improve the quality of wastewater effluent, meeting requirements to produce water appropriate for reuse in irrigation, industrial application, and household use. By preventing persistent chemicals from entering waterways, this technology has the potential to maximise the shift to clean growth, enabling water reuse, reducing resource depletion and preventing environmental pollution.
Collapse
Affiliation(s)
- Muhammad Abdullahi
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Iestyn Stead
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; Department of Mechanical Engineering, University of Birmingham, B15 2TT, UK; Daphne Water Solution Limited, B168JB Birmingham, UK.
| | - Sophie Bennett
- School of Mathematics, University of Birmingham, B15 2TT, UK
| | - Rafael Orozco
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | | | - Sara Jabbari
- School of Mathematics, University of Birmingham, B15 2TT, UK.
| | - Lynne E Macaskie
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | | | - Stefan Krause
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK; LEHNA - Laboratoire d'ecologie des hydrosystemes naturels et anthropises, University of Lyon, Darwin C & Forel, 3-6 Rue Raphaël Dubois, 69622 Villeurbanne, France.
| | - Bushra Al-Duri
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Robert G Lee
- Daphne Water Solution Limited, B168JB Birmingham, UK; Birmingham Law School, University of Birmingham, Birmingham B15 2TT, UK.
| | - Ben Herbert
- Stopford Ltd - Technology and Innovation Service Group, Mere Hall Farm Business Centre, Bucklow Hill Lane, Mere, Knutsford, Cheshire WA16 6LE, UK.
| | | | | | | | - Karl D Dearn
- Department of Mechanical Engineering, University of Birmingham, B15 2TT, UK; Daphne Water Solution Limited, B168JB Birmingham, UK.
| | - Luisa Orsini
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; Daphne Water Solution Limited, B168JB Birmingham, UK; The Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB, UK.
| |
Collapse
|
6
|
Chaturvedi A, Li X, Dhandapani V, Marshall H, Kissane S, Cuenca-Cambronero M, Asole G, Calvet F, Ruiz-Romero M, Marangio P, Guigó R, Rago D, Mirbahai L, Eastwood N, Colbourne J, Zhou J, Mallon E, Orsini L. The hologenome of Daphnia magna reveals possible DNA methylation and microbiome-mediated evolution of the host genome. Nucleic Acids Res 2023; 51:9785-9803. [PMID: 37638757 PMCID: PMC10570034 DOI: 10.1093/nar/gkad685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/07/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Properties that make organisms ideal laboratory models in developmental and medical research are often the ones that also make them less representative of wild relatives. The waterflea Daphnia magna is an exception, by both sharing many properties with established laboratory models and being a keystone species, a sentinel species for assessing water quality, an indicator of environmental change and an established ecotoxicology model. Yet, Daphnia's full potential has not been fully exploited because of the challenges associated with assembling and annotating its gene-rich genome. Here, we present the first hologenome of Daphnia magna, consisting of a chromosomal-level assembly of the D. magna genome and the draft assembly of its metagenome. By sequencing and mapping transcriptomes from exposures to environmental conditions and from developmental morphological landmarks, we expand the previously annotates gene set for this species. We also provide evidence for the potential role of gene-body DNA-methylation as a mutagen mediating genome evolution. For the first time, our study shows that the gut microbes provide resistance to commonly used antibiotics and virulence factors, potentially mediating Daphnia's environmental-driven rapid evolution. Key findings in this study improve our understanding of the contribution of DNA methylation and gut microbiota to genome evolution in response to rapidly changing environments.
Collapse
Affiliation(s)
- Anurag Chaturvedi
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Xiaojing Li
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Vignesh Dhandapani
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Hollie Marshall
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
- Department of Genetics and Genome Biology, the University of Leicester, Leicester LE1 7RH, UK
| | - Stephen Kissane
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Maria Cuenca-Cambronero
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
- Aquatic Ecology Group, University of Vic - Central University of Catalonia, 08500 Vic, Spain
| | - Giovanni Asole
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Ferriol Calvet
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Marina Ruiz-Romero
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Paolo Marangio
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Daria Rago
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Leda Mirbahai
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Niamh Eastwood
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - John K Colbourne
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Jiarui Zhou
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Eamonn Mallon
- Department of Genetics and Genome Biology, the University of Leicester, Leicester LE1 7RH, UK
| | - Luisa Orsini
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
- The Alan Turing Institute, British Library, London NW1 2DB, UK
| |
Collapse
|
7
|
Bundschuh M, Mesquita-Joanes F, Rico A, Camacho A. Understanding Ecological Complexity in a Chemical Stress Context: A Reflection on Recolonization, Recovery, and Adaptation of Aquatic Populations and Communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1857-1866. [PMID: 37204216 DOI: 10.1002/etc.5677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/17/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Recovery, recolonization, and adaptation in a chemical stress context are processes that regenerate local populations and communities as well as the functions these communities perform. Recolonization, either by species previously present or by new species able to occupy the niches left empty, refers to a metacommunity process with stressed ecosystems benefiting from the dispersal of organisms from other areas. A potential consequence of recolonization is a limited capacity of local populations to adapt to potentially repeating events of chemical stress exposure when their niches have been effectively occupied by the new colonizers or by new genetic lineages of the taxa previously present. Recovery, instead, is an internal process occurring within stressed ecosystems. More specifically, the impact of a stressor on a community benefits less sensitive individuals of a local population as well as less sensitive taxa within a community. Finally, adaptation refers to phenotypic and, sometimes, genetic changes at the individual and population levels, allowing the permanence of individuals of previously existing taxa without necessarily changing the community taxonomic composition (i.e., not replacing sensitive species). Because these processes are usually operating in parallel in nature, though at different degrees, it seems relevant to try to understand their relative importance for the regeneration of community structure and ecosystem functioning after chemical exposure. In the present critical perspective, we employed case studies supporting our understanding of the underlying processes with the hope to provide a theoretical framework to disentangle the relevance of the three processes for the regeneration of a biological community after chemical exposure. Finally, we provide some recommendations to experimentally compare their relative importance so that the net effects of these processes can be used to parameterize risk-assessment models and inform ecosystem management. Environ Toxicol Chem 2023;42:1857-1866. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Francesc Mesquita-Joanes
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, València, Spain
| | - Andreu Rico
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, València, Spain
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Madrid, Spain
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, València, Spain
| |
Collapse
|
8
|
Sigmund G, Ågerstrand M, Antonelli A, Backhaus T, Brodin T, Diamond ML, Erdelen WR, Evers DC, Hofmann T, Hueffer T, Lai A, Torres JPM, Mueller L, Perrigo AL, Rillig MC, Schaeffer A, Scheringer M, Schirmer K, Tlili A, Soehl A, Triebskorn R, Vlahos P, Vom Berg C, Wang Z, Groh KJ. Addressing chemical pollution in biodiversity research. GLOBAL CHANGE BIOLOGY 2023; 29:3240-3255. [PMID: 36943240 DOI: 10.1111/gcb.16689] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/12/2023] [Indexed: 05/16/2023]
Abstract
Climate change, biodiversity loss, and chemical pollution are planetary-scale emergencies requiring urgent mitigation actions. As these "triple crises" are deeply interlinked, they need to be tackled in an integrative manner. However, while climate change and biodiversity are often studied together, chemical pollution as a global change factor contributing to worldwide biodiversity loss has received much less attention in biodiversity research so far. Here, we review evidence showing that the multifaceted effects of anthropogenic chemicals in the environment are posing a growing threat to biodiversity and ecosystems. Therefore, failure to account for pollution effects may significantly undermine the success of biodiversity protection efforts. We argue that progress in understanding and counteracting the negative impact of chemical pollution on biodiversity requires collective efforts of scientists from different disciplines, including but not limited to ecology, ecotoxicology, and environmental chemistry. Importantly, recent developments in these fields have now enabled comprehensive studies that could efficiently address the manifold interactions between chemicals and ecosystems. Based on their experience with intricate studies of biodiversity, ecologists are well equipped to embrace the additional challenge of chemical complexity through interdisciplinary collaborations. This offers a unique opportunity to jointly advance a seminal frontier in pollution ecology and facilitate the development of innovative solutions for environmental protection.
Collapse
Affiliation(s)
- Gabriel Sigmund
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1090, Austria
| | - Marlene Ågerstrand
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Gothenburg, Sweden
- Department of Biology, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
- Gothenburg Global Biodiversity Centre, 40530, Gothenburg, Sweden
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, 90187, Umeå, Sweden
| | - Miriam L Diamond
- Department of Earth Sciences and School of the Environment, University of Toronto, Toronto, Ontario, M5S 3B1, Canada
| | | | - David C Evers
- Biodiversity Research Institute, Portland, Maine, 04103, USA
| | - Thilo Hofmann
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1090, Austria
| | - Thorsten Hueffer
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1090, Austria
| | - Adelene Lai
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 avenue du Swing, 4367, Belvaux, Luxembourg
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Lessing Strasse 8, 07743, Jena, Germany
| | - Joao P M Torres
- Laboratório de Micropoluentes Jan Japenga, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonie Mueller
- Institute for Environmental Research, RWTH Aachen University, 52074, Aachen, Germany
| | - Allison L Perrigo
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, 40530, Gothenburg, Sweden
- Lund University Botanical Garden, Lund, Sweden
| | - Matthias C Rillig
- Freie Universität Berlin, Institut für Biologie, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - Andreas Schaeffer
- Institute for Environmental Research, RWTH Aachen University, 52074, Aachen, Germany
- School of the Environment, State Key Laboratory of Pollution Control and Resource Reuse, 210023, Nanjing, China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, 400045, Chongqing, China
| | - Martin Scheringer
- RECETOX, Masaryk University, 62500, Brno, Czech Republic
- ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092, Zürich, Switzerland
| | - Kristin Schirmer
- ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092, Zürich, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering, EPF Lausanne, 1015, Lausanne, Switzerland
| | - Ahmed Tlili
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Anna Soehl
- International Panel on Chemical Pollution, 8092, Zürich, Switzerland
| | - Rita Triebskorn
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076, Tübingen, Germany
- Transfer Center Ecotoxicology and Ecophysiology, Blumenstr. 13, D-72108, Rottenburg, Germany
| | - Penny Vlahos
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| | - Colette Vom Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Zhanyun Wang
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, CH-9014, St. Gallen, Switzerland
| | - Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| |
Collapse
|
9
|
Reilly K, Ellis LJA, Davoudi HH, Supian S, Maia MT, Silva GH, Guo Z, Martinez DST, Lynch I. Daphnia as a model organism to probe biological responses to nanomaterials-from individual to population effects via adverse outcome pathways. FRONTIERS IN TOXICOLOGY 2023; 5:1178482. [PMID: 37124970 PMCID: PMC10140508 DOI: 10.3389/ftox.2023.1178482] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
The importance of the cladoceran Daphnia as a model organism for ecotoxicity testing has been well-established since the 1980s. Daphnia have been increasingly used in standardised testing of chemicals as they are well characterised and show sensitivity to pollutants, making them an essential indicator species for environmental stress. The mapping of the genomes of D. pulex in 2012 and D. magna in 2017 further consolidated their utility for ecotoxicity testing, including demonstrating the responsiveness of the Daphnia genome to environmental stressors. The short lifecycle and parthenogenetic reproduction make Daphnia useful for assessment of developmental toxicity and adaption to stress. The emergence of nanomaterials (NMs) and their safety assessment has introduced some challenges to the use of standard toxicity tests which were developed for soluble chemicals. NMs have enormous reactive surface areas resulting in dynamic interactions with dissolved organic carbon, proteins and other biomolecules in their surroundings leading to a myriad of physical, chemical, biological, and macromolecular transformations of the NMs and thus changes in their bioavailability to, and impacts on, daphnids. However, NM safety assessments are also driving innovations in our approaches to toxicity testing, for both chemicals and other emerging contaminants such as microplastics (MPs). These advances include establishing more realistic environmental exposures via medium composition tuning including pre-conditioning by the organisms to provide relevant biomolecules as background, development of microfluidics approaches to mimic environmental flow conditions typical in streams, utilisation of field daphnids cultured in the lab to assess adaption and impacts of pre-exposure to pollution gradients, and of course development of mechanistic insights to connect the first encounter with NMs or MPs to an adverse outcome, via the key events in an adverse outcome pathway. Insights into these developments are presented below to inspire further advances and utilisation of these important organisms as part of an overall environmental risk assessment of NMs and MPs impacts, including in mixture exposure scenarios.
Collapse
Affiliation(s)
- Katie Reilly
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Laura-Jayne A. Ellis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Hossein Hayat Davoudi
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Suffeiya Supian
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Marcella T. Maia
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Gabriela H. Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Diego Stéfani T. Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
10
|
Abdullahi M, Li X, Abdallah MAE, Stubbings W, Yan N, Barnard M, Guo LH, Colbourne JK, Orsini L. Daphnia as a Sentinel Species for Environmental Health Protection: A Perspective on Biomonitoring and Bioremediation of Chemical Pollution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14237-14248. [PMID: 36169655 PMCID: PMC9583619 DOI: 10.1021/acs.est.2c01799] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Indexed: 05/14/2023]
Abstract
Despite available technology and the knowledge that chemical pollution damages human and ecosystem health, chemical pollution remains rampant, ineffectively monitored, rarely prevented, and only occasionally mitigated. We present a framework that helps address current major challenges in the monitoring and assessment of chemical pollution by broadening the use of the sentinel species Daphnia as a diagnostic agent of water pollution. And where prevention has failed, we propose the application of Daphnia as a bioremediation agent to help reduce hazards from chemical mixtures in the environment. By applying "omics" technologies to Daphnia exposed to real-world ambient chemical mixtures, we show improvements at detecting bioactive components of chemical mixtures, determining the potential effects of untested chemicals within mixtures, and identifying targets of toxicity. We also show that using Daphnia strains that naturally adapted to chemical pollution as removal agents of ambient chemical mixtures can sustainably improve environmental health protection. Expanding the use of Daphnia beyond its current applications in regulatory toxicology has the potential to improve both the assessment and the remediation of environmental pollution.
Collapse
Affiliation(s)
- Muhammad Abdullahi
- Environmental
Genomics Group, School of Biosciences, the
University of Birmingham, Birmingham B15 2TT, U.K.
| | - Xiaojing Li
- Environmental
Genomics Group, School of Biosciences, the
University of Birmingham, Birmingham B15 2TT, U.K.
| | | | - William Stubbings
- School
of Geography, Earth and Environmental Sciences, the University of Birmingham, Birmingham B15 2TT, U.K.
| | - Norman Yan
- Department
of Biology, York University, and Friends of the Muskoka Watershed, Bracebridge, Ontario P1L 1T7, Canada
| | - Marianne Barnard
- Environmental
Genomics Group, School of Biosciences, the
University of Birmingham, Birmingham B15 2TT, U.K.
| | - Liang-Hong Guo
- Institute
of Environmental and Health Sciences, China
Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - John K. Colbourne
- Environmental
Genomics Group, School of Biosciences, the
University of Birmingham, Birmingham B15 2TT, U.K.
| | - Luisa Orsini
- Environmental
Genomics Group, School of Biosciences, the
University of Birmingham, Birmingham B15 2TT, U.K.
- The
Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB, U.K.
| |
Collapse
|