1
|
Crates R, von Takach B, Young CM, Stojanovic D, Neaves LE, Murphy L, Gautschi D, Hogg CJ, Heinsohn R, Bell P, Farquharson KA. Genomic insights into the critically endangered King Island scrubtit. J Hered 2024; 115:552-564. [PMID: 38814752 PMCID: PMC11334212 DOI: 10.1093/jhered/esae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024] Open
Abstract
Small, fragmented, or isolated populations are at risk of population decline due to fitness costs associated with inbreeding and genetic drift. The King Island scrubtit Acanthornis magna greeniana is a critically endangered subspecies of the nominate Tasmanian scrubtit A. m. magna, with an estimated population of <100 individuals persisting in three patches of swamp forest. The Tasmanian scrubtit is widespread in wet forests on mainland Tasmania. We sequenced the scrubtit genome using PacBio HiFi and undertook a population genomic study of the King Island and Tasmanian scrubtits using a double-digest restriction site-associated DNA (ddRAD) dataset of 5,239 SNP loci. The genome was 1.48 Gb long, comprising 1,518 contigs with an N50 of 7.715 Mb. King Island scrubtits formed one of four overall genetic clusters, but separated into three distinct subpopulations when analyzed independently of the Tasmanian scrubtit. Pairwise FST values were greater among the King Island scrubtit subpopulations than among most Tasmanian scrubtit subpopulations. Genetic diversity was lower and inbreeding coefficients were higher in the King Island scrubtit than all except one of the Tasmanian scrubtit subpopulations. We observed crown baldness in 8/15 King Island scrubtits, but 0/55 Tasmanian scrubtits. Six loci were significantly associated with baldness, including one within the DOCK11 gene which is linked to early feather development. Contemporary gene flow between King Island scrubtit subpopulations is unlikely, with further field monitoring required to quantify the fitness consequences of its small population size, low genetic diversity, and high inbreeding. Evidence-based conservation actions can then be implemented before the taxon goes extinct.
Collapse
Affiliation(s)
- Ross Crates
- Fenner School of Environment and Society, Australian National University, Canberra 2601, Australia
| | - Brenton von Takach
- School of Molecular and Life Sciences, Curtin University, Perth 6845, Australia
| | - Catherine M Young
- Fenner School of Environment and Society, Australian National University, Canberra 2601, Australia
| | - Dejan Stojanovic
- Fenner School of Environment and Society, Australian National University, Canberra 2601, Australia
| | - Linda E Neaves
- Fenner School of Environment and Society, Australian National University, Canberra 2601, Australia
| | - Liam Murphy
- Fenner School of Environment and Society, Australian National University, Canberra 2601, Australia
| | - Daniel Gautschi
- Fenner School of Environment and Society, Australian National University, Canberra 2601, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney 2050, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney 2050, Australia
| | - Robert Heinsohn
- Fenner School of Environment and Society, Australian National University, Canberra 2601, Australia
| | - Phil Bell
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Katherine A Farquharson
- School of Life and Environmental Sciences, The University of Sydney, Sydney 2050, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney 2050, Australia
| |
Collapse
|
2
|
Umbrello LS, Newton H, Baker AM, Travouillon KJ, Westerman M. Vicariant speciation resulting from biogeographic barriers in the Australian tropics: The case of the red-cheeked dunnart ( Sminthopsis virginiae). Ecol Evol 2024; 14:e70215. [PMID: 39206453 PMCID: PMC11349609 DOI: 10.1002/ece3.70215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Global biodiversity loss continues unabated, and in Australia, the rate of recent mammal extinctions is among the worst in the world. Meanwhile, the diversity among and within many endemic mammal species remains undescribed. This information is crucial to delineate species boundaries and thus inform decision-making for conservation. Sminthopsis virginiae (the red-cheeked dunnart) is a small, dasyurid marsupial found in four disjunct populations around the northern coast of Australia and New Guinea. There are three currently recognized subspecies, each occupying a distinct geographic location. Sminthopsis v. virginiae occurs in Queensland, S. v. rufigenis is distributed across New Guinea and the Aru Islands, and S. v. nitela has populations in the Top End of the Northern Territory and the Kimberley region of Western Australia. Previous molecular work has suggested the current subspecies definitions are not aligned with DNA sequence data, though the sampling was limited. We undertook a comprehensive genetic and morphological review of S. virginiae to clarify relationships within the species. This included mitochondrial (CR, 12S, and cytb) and nuclear (omega-globin, IRBP, and bfib7) loci, and morphometric analysis of skulls and whole wet-preserved specimens held in museums. Maximum Likelihood and Bayesian phylogenetic analyses resolved samples into two distinct clades, demarcated by the Gulf of Carpentaria in Australia's north. Sminthopsis. v. nitela was consistently separated from S. v. virginiae and S. v. rufigenis, based on the overall body and skull size and craniodental features, while S. v. virginiae and S. v. rufigenis were more difficult to distinguish from each other. Thus, we redescribed S. virginiae, recognizing two species, S. nitela (raised from subspecies) and S. virginiae (now comprising the subspecies S. v. virginiae and S. v. rufigenis). This study highlights the importance of recognizing cryptic mammal fauna to help address the gap in our knowledge about diagnosing diversity during a time of conservation crisis.
Collapse
Affiliation(s)
- Linette S. Umbrello
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
- Collections and ResearchWestern Australian MuseumWelshpoolWestern AustraliaAustralia
| | - Hayley Newton
- Collections and ResearchWestern Australian MuseumWelshpoolWestern AustraliaAustralia
- School of Environmental and Conservation SciencesMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Andrew M. Baker
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
- Biodiversity and Geosciences ProgramQueensland MuseumSouth BrisbaneQueenslandAustralia
| | - Kenny J. Travouillon
- Collections and ResearchWestern Australian MuseumWelshpoolWestern AustraliaAustralia
| | - Michael Westerman
- Department of Ecology and GeneticsLa Trobe UniversityBundooraVictoriaAustralia
| |
Collapse
|
3
|
Pili AN, Leroy B, Measey JG, Farquhar JE, Toomes A, Cassey P, Chekunov S, Grenié M, van Winkel D, Maria L, Diesmos MLL, Diesmos AC, Zurell D, Courchamp F, Chapple DG. Forecasting potential invaders to prevent future biological invasions worldwide. GLOBAL CHANGE BIOLOGY 2024; 30:e17399. [PMID: 39007251 DOI: 10.1111/gcb.17399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024]
Abstract
The ever-increasing and expanding globalisation of trade and transport underpins the escalating global problem of biological invasions. Developing biosecurity infrastructures is crucial to anticipate and prevent the transport and introduction of invasive alien species. Still, robust and defensible forecasts of potential invaders are rare, especially for species without known invasion history. Here, we aim to support decision-making by developing a quantitative invasion risk assessment tool based on invasion syndromes (i.e., generalising typical attributes of invasive alien species). We implemented a workflow based on 'Multiple Imputation with Chain Equation' to estimate invasion syndromes from imputed datasets of species' life-history and ecological traits and macroecological patterns. Importantly, our models disentangle the factors explaining (i) transport and introduction and (ii) establishment. We showcase our tool by modelling the invasion syndromes of 466 amphibians and reptile species with invasion history. Then, we project these models to amphibians and reptiles worldwide (16,236 species [c.76% global coverage]) to identify species with a risk of being unintentionally transported and introduced, and risk of establishing alien populations. Our invasion syndrome models showed high predictive accuracy with a good balance between specificity and generality. Unintentionally transported and introduced species tend to be common and thrive well in human-disturbed habitats. In contrast, those with established alien populations tend to be large-sized, are habitat generalists, thrive well in human-disturbed habitats, and have large native geographic ranges. We forecast that 160 amphibians and reptiles without known invasion history could be unintentionally transported and introduced in the future. Among them, 57 species have a high risk of establishing alien populations. Our reliable, reproducible, transferable, statistically robust and scientifically defensible quantitative invasion risk assessment tool is a significant new addition to the suite of decision-support tools needed for developing a future-proof preventative biosecurity globally.
Collapse
Affiliation(s)
- Arman N Pili
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, Victoria, Australia
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Boris Leroy
- Unité 8067 Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum National d'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, CNRS, IRD, Université des Antilles, Paris, France
| | - John G Measey
- Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- UMR7179 MECADEV CNRS/MNHN, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Bâtiment d'Anatomie Comparée, Paris, France
| | - Jules E Farquhar
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, Victoria, Australia
| | - Adam Toomes
- Invasion Science and Wildlife Ecology Group, The University of Adelaide, Adelaide, South Australia, Australia
| | - Phillip Cassey
- Invasion Science and Wildlife Ecology Group, The University of Adelaide, Adelaide, South Australia, Australia
| | - Sebastian Chekunov
- Invasion Science and Wildlife Ecology Group, The University of Adelaide, Adelaide, South Australia, Australia
| | - Matthias Grenié
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Dylan van Winkel
- Bioresearches (Babbage Consultants Limited), Auckland, New Zealand
| | - Lisa Maria
- Biosecurity New Zealand-Tiakitanga Pūtaiao Aotearoa, Ministry for Primary Industries-Manatū Ahu Matua, Upper Hutt, New Zealand
| | - Mae Lowe L Diesmos
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | | | - Damaris Zurell
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Gif Sur Yvette, France
| | - David G Chapple
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
4
|
Abstract
Genomic data are becoming increasingly affordable and easy to collect, and new tools for their analysis are appearing rapidly. Conservation biologists are interested in using this information to assist in management and planning but are typically limited financially and by the lack of genomic resources available for non-model taxa. It is therefore important to be aware of the pitfalls as well as the benefits of applying genomic approaches. Here, we highlight recent methods aimed at standardizing population assessments of genetic variation, inbreeding, and forms of genetic load and methods that help identify past and ongoing patterns of genetic interchange between populations, including those subjected to recent disturbance. We emphasize challenges in applying some of these methods and the need for adequate bioinformatic support. We also consider the promises and challenges of applying genomic approaches to understand adaptive changes in natural populations to predict their future adaptive capacity.
Collapse
Affiliation(s)
- Thomas L Schmidt
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia;
| | - Joshua A Thia
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia;
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia;
| |
Collapse
|
5
|
Beer MA, Proft KM, Veillet A, Kozakiewicz CP, Hamilton DG, Hamede R, McCallum H, Hohenlohe PA, Burridge CP, Margres MJ, Jones ME, Storfer A. Disease-driven top predator decline affects mesopredator population genomic structure. Nat Ecol Evol 2024; 8:293-303. [PMID: 38191839 DOI: 10.1038/s41559-023-02265-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/02/2023] [Indexed: 01/10/2024]
Abstract
Top predator declines are pervasive and often have dramatic effects on ecological communities via changes in food web dynamics, but their evolutionary consequences are virtually unknown. Tasmania's top terrestrial predator, the Tasmanian devil, is declining due to a lethal transmissible cancer. Spotted-tailed quolls benefit via mesopredator release, and they alter their behaviour and resource use concomitant with devil declines and increased disease duration. Here, using a landscape community genomics framework to identify environmental drivers of population genomic structure and signatures of selection, we show that these biotic factors are consistently among the top variables explaining genomic structure of the quoll. Landscape resistance negatively correlates with devil density, suggesting that devil declines will increase quoll genetic subdivision over time, despite no change in quoll densities detected by camera trap studies. Devil density also contributes to signatures of selection in the quoll genome, including genes associated with muscle development and locomotion. Our results provide some of the first evidence of the evolutionary impacts of competition between a top predator and a mesopredator species in the context of a trophic cascade. As top predator declines are increasing globally, our framework can serve as a model for future studies of evolutionary impacts of altered ecological interactions.
Collapse
Affiliation(s)
- Marc A Beer
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Kirstin M Proft
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Anne Veillet
- Hilo Core Genomics Facility, University of Hawaii at Hilo, Hilo, HI, USA
| | - Christopher P Kozakiewicz
- Department of Integrative Biology, Michigan State University, W.K. Kellogg Biological Station, Hickory Corners, MI, USA
| | - David G Hamilton
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
- CANECEV, Centre de Recherches Ecologiques et Evolutives sur le Cancer, Montpellier, France
| | - Hamish McCallum
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Paul A Hohenlohe
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, USA
| | | | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Menna E Jones
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, USA.
| |
Collapse
|
6
|
Cowan MA, Dunlop JA, Gibson LA, Moore HA, Setterfield SA, Nimmo DG. Movement ecology of an endangered mesopredator in a mining landscape. MOVEMENT ECOLOGY 2024; 12:5. [PMID: 38233871 PMCID: PMC10795371 DOI: 10.1186/s40462-023-00439-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/09/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Efficient movement and energy expenditure are vital for animal survival. Human disturbance can alter animal movement due to changes in resource availability and threats. Some animals can exploit anthropogenic disturbances for more efficient movement, while others face restricted or inefficient movement due to fragmentation of high-resource habitats, and risks associated with disturbed habitats. Mining, a major anthropogenic disturbance, removes natural habitats, introduces new landscape features, and alters resource distribution in the landscape. This study investigates the effect of mining on the movement of an endangered mesopredator, the northern quoll (Dasyurus hallucatus). Using GPS collars and accelerometers, we investigate their habitat selection and energy expenditure in an active mining landscape, to determine the effects of this disturbance on northern quolls. METHODS We fit northern quolls with GPS collars and accelerometers during breeding and non-breeding season at an active mine site in the Pilbara region of Western Australia. We investigated broad-scale movement by calculating the movement ranges of quolls using utilisation distributions at the 95% isopleth, and compared habitat types and environmental characteristics within observed movement ranges to the available landscape. We investigated fine-scale movement by quolls with integrated step selection functions, assessing the relative selection strength for each habitat covariate. Finally, we used piecewise structural equation modelling to analyse the influence of each habitat covariate on northern quoll energy expenditure. RESULTS At the broad scale, northern quolls predominantly used rugged, rocky habitats, and used mining habitats in proportion to their availability. However, at the fine scale, habitat use varied between breeding and non-breeding seasons. During the breeding season, quolls notably avoided mining habitats, whereas in the non-breeding season, they frequented mining habitats equally to rocky and riparian habitats, albeit at a higher energetic cost. CONCLUSION Mining impacts northern quolls by fragmenting favoured rocky habitats, increasing energy expenditure, and potentially impacting breeding dispersal. While mining habitats might offer limited resource opportunities in the non-breeding season, conservation efforts during active mining, including the creation of movement corridors and progressive habitat restoration would likely be useful. However, prioritising the preservation of natural rocky and riparian habitats in mining landscapes is vital for northern quoll conservation.
Collapse
Affiliation(s)
- M A Cowan
- Gulbali Institute, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, 386 Elizabeth Mitchell Drive, Thurgoona, NSW, 2640, Australia.
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia.
| | - J A Dunlop
- Gulbali Institute, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, 386 Elizabeth Mitchell Drive, Thurgoona, NSW, 2640, Australia
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| | - L A Gibson
- Department of Biodiversity, Conservation and Attractions, 17 Dick Perry Avenue, Kensington, WA, 6151, Australia
| | - H A Moore
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
- Department of Biodiversity, Conservation and Attractions, 17 Dick Perry Avenue, Kensington, WA, 6151, Australia
| | - S A Setterfield
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| | - D G Nimmo
- Gulbali Institute, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, 386 Elizabeth Mitchell Drive, Thurgoona, NSW, 2640, Australia
| |
Collapse
|
7
|
Umbrello LS, Cooper NK, Adams M, Travouillon KJ, Baker AM, Westerman M, Aplin KP. Hiding in plain sight: two new species of diminutive marsupial (Dasyuridae: Planigale) from the Pilbara, Australia. Zootaxa 2023; 5330:1-46. [PMID: 38220885 DOI: 10.11646/zootaxa.5330.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 01/16/2024]
Abstract
Many of Australias smaller marsupial species have been taxonomically described in just the past 50 years, and the Dasyuridae, a speciose family of carnivores, is known to harbour many cryptic taxa. Evidence from molecular studies is being increasingly utilised to help revise species boundaries and focus taxonomic efforts, and research over the past two decades has identified several undescribed genetic lineages within the dasyurid genus Planigale. Here, we describe two new species, Planigale kendricki sp. nov. (formerly known as Planigale 1) and P. tealei sp. nov. (formerly known as Planigale sp. Mt Tom Price). The two new species have broadly overlapping distributions in the Pilbara region of Western Australia. The new species are genetically distinct from each other and from all other members of the genus, at both mitochondrial and nuclear loci, and morphologically, in both external and craniodental characters. The new species are found in regional sympatry within the Pilbara but occupy different habitat types at local scales. This work makes a start at resolving the cryptic diversity within Planigale at a time when small mammals are continuing to decline throughout Australia.
Collapse
Affiliation(s)
- Linette S Umbrello
- School of Biology and Environmental Science; Queensland University of Technology; 2 George Street; Brisbane; QLD 4001; Australia; Collections and Research; Western Australian Museum; Locked Bag 49; Welshpool; WA 6986; Australia.
| | - Norah K Cooper
- Collections and Research; Western Australian Museum; Locked Bag 49; Welshpool; WA 6986; Australia.
| | - Mark Adams
- Department of Biological Sciences; University of Adelaide; Adelaide; SA 5000; Australia.; Evolutionary Biology Unit; South Australian Museum; Adelaide; SA 5000; Australia.
| | - Kenny J Travouillon
- Collections and Research; Western Australian Museum; Locked Bag 49; Welshpool; WA 6986; Australia.
| | - Andrew M Baker
- School of Biology and Environmental Science; Queensland University of Technology; 2 George Street; Brisbane; QLD 4001; Australia; Biodiversity and Geosciences Program; Queensland Museum; South Brisbane; QLD 4101; Australia.
| | - Mike Westerman
- Department of Environment and Genetics; La Trobe University; Bundoora; VIC 3086; Australia.
| | - Ken P Aplin
- Collections and Research; Western Australian Museum; Locked Bag 49; Welshpool; WA 6986; Australia; Australian Museum Research Institute; Australian Museum; 1 William Street; Sydney; NSW 2010; Australia.
| |
Collapse
|
8
|
von Takach B, Sargent H, Penton CE, Rick K, Murphy BP, Neave G, Davies HF, Hill BM, Banks SC. Population genomics and conservation management of the threatened black-footed tree-rat (Mesembriomys gouldii) in northern Australia. Heredity (Edinb) 2023; 130:278-288. [PMID: 36899176 PMCID: PMC10162988 DOI: 10.1038/s41437-023-00601-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 03/12/2023] Open
Abstract
Genomic diversity is a fundamental component of Earth's total biodiversity, and requires explicit consideration in efforts to conserve biodiversity. To conserve genomic diversity, it is necessary to measure its spatial distribution, and quantify the contribution that any intraspecific evolutionary lineages make to overall genomic diversity. Here, we describe the range-wide population genomic structure of a threatened Australian rodent, the black-footed tree-rat (Mesembriomys gouldii), aiming to provide insight into the timing and extent of population declines across a large region with a dearth of long-term monitoring data. By estimating recent trajectories in effective population sizes at four localities, we confirm widespread population decline across the species' range, but find that the population in the peri-urban area of the Darwin region has been more stable. Based on current sampling, the Melville Island population made the greatest contribution to overall allelic richness of the species, and the prioritisation analysis suggested that conservation of the Darwin and Cobourg Peninsula populations would be the most cost-effective scenario to retain more than 90% of all alleles. Our results broadly confirm current sub-specific taxonomy, and provide crucial data on the spatial distribution of genomic diversity to help prioritise limited conservation resources. Along with additional sampling and genomic analysis from the far eastern and western edges of the black-footed tree-rat distribution, we suggest a range of conservation and research priorities that could help improve black-footed tree-rat population trajectories at large and fine spatial scales, including the retention and expansion of structurally complex habitat patches.
Collapse
Affiliation(s)
- Brenton von Takach
- School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Holly Sargent
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Cara E Penton
- Warddeken Land Management Ltd, Darwin, NT, Australia
| | - Kate Rick
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Brett P Murphy
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Georgina Neave
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Hugh F Davies
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Brydie M Hill
- Flora and Fauna Division, Department of Environment, Parks and Water Security, Northern Territory Government, Berrimah, NT, 0831, Australia
| | - Sam C Banks
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia.
| |
Collapse
|