1
|
Yu G, Ge X, Li W, Ji L, Yang S. Interspecific cross-talk: The catalyst driving microbial biosynthesis of secondary metabolites. Biotechnol Adv 2024; 76:108420. [PMID: 39128577 DOI: 10.1016/j.biotechadv.2024.108420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/07/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Microorganisms co-exist and co-evolve in nature, forming intricate ecological communities. The interspecies cross-talk within these communities creates and sustains their great biosynthetic potential, making them an important source of natural medicines and high-value-added chemicals. However, conventional investigations into microbial metabolites are typically carried out in pure cultures, resulting in the absence of specific activating factors and consequently causing a substantial number of biosynthetic gene clusters to remain silent. This, in turn, hampers the in-depth exploration of microbial biosynthetic potential and frequently presents researchers with the challenge of rediscovering compounds. In response to this challenge, the coculture strategy has emerged to explore microbial biosynthetic capabilities and has shed light on the study of cross-talk mechanisms. These elucidated mechanisms will contribute to a better understanding of complex biosynthetic regulations and offer valuable insights to guide the mining of secondary metabolites. This review summarizes the research advances in microbial cross-talk mechanisms, with a particular focus on the mechanisms that activate the biosynthesis of secondary metabolites. Additionally, the instructive value of these mechanisms for developing strategies to activate biosynthetic pathways is discussed. Moreover, challenges and recommendations for conducting in-depth studies on the cross-talk mechanisms are presented.
Collapse
Affiliation(s)
- Guihong Yu
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China.
| | - Xiaoxuan Ge
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Wanting Li
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Linwei Ji
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Song Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China.
| |
Collapse
|
2
|
Guo L, Xi B, Lu L. Strategies to enhance production of metabolites in microbial co-culture systems. BIORESOURCE TECHNOLOGY 2024; 406:131049. [PMID: 38942211 DOI: 10.1016/j.biortech.2024.131049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Increasing evidence shows that microbial synthesis plays an important role in producing high value-added products. However, microbial monoculture generally hampers metabolites production and limits scalability due to the increased metabolic burden on the host strain. In contrast, co-culture is a more flexible approach to improve the environmental adaptability and reduce the overall metabolic burden. The well-defined co-culturing microbial consortia can tap their metabolic potential to obtain yet-to-be discovered and pre-existing metabolites. This review focuses on the use of a co-culture strategy and its underlying mechanisms to enhance the production of products. Notably, the significance of comprehending the microbial interactions, diverse communication modes, genetic information, and modular co-culture involved in co-culture systems were highlighted. Furthermore, it addresses the current challenges and outlines potential future directions for microbial co-culture. This review provides better understanding the diversity and complexity of the interesting interaction and communication to advance the development of co-culture techniques.
Collapse
Affiliation(s)
- Lichun Guo
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214122, PR China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Bingwen Xi
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214122, PR China
| | - Liushen Lu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
3
|
Chodkowski JL, Shade A. Bioactive exometabolites drive maintenance competition in simple bacterial communities. mSystems 2024; 9:e0006424. [PMID: 38470039 PMCID: PMC11019792 DOI: 10.1128/msystems.00064-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
During prolonged resource limitation, bacterial cells can persist in metabolically active states of non-growth. These maintenance periods, such as those experienced in stationary phase, can include upregulation of secondary metabolism and release of exometabolites into the local environment. As resource limitation is common in many environmental microbial habitats, we hypothesized that neighboring bacterial populations employ exometabolites to compete or cooperate during maintenance and that these exometabolite-facilitated interactions can drive community outcomes. Here, we evaluated the consequences of exometabolite interactions over the stationary phase among three environmental strains: Burkholderia thailandensis E264, Chromobacterium subtsugae ATCC 31532, and Pseudomonas syringae pv. tomato DC3000. We assembled them into synthetic communities that only permitted chemical interactions. We compared the responses (transcripts) and outputs (exometabolites) of each member with and without neighbors. We found that transcriptional dynamics were changed with different neighbors and that some of these changes were coordinated between members. The dominant competitor B. thailandensis consistently upregulated biosynthetic gene clusters to produce bioactive exometabolites for both exploitative and interference competition. These results demonstrate that competition strategies during maintenance can contribute to community-level outcomes. It also suggests that the traditional concept of defining competitiveness by growth outcomes may be narrow and that maintenance competition could be an additional or alternative measure. IMPORTANCE Free-living microbial populations often persist and engage in environments that offer few or inconsistently available resources. Thus, it is important to investigate microbial interactions in this common and ecologically relevant condition of non-growth. This work investigates the consequences of resource limitation for community metabolic output and for population interactions in simple synthetic bacterial communities. Despite non-growth, we observed active, exometabolite-mediated competition among the bacterial populations. Many of these interactions and produced exometabolites were dependent on the community composition but we also observed that one dominant competitor consistently produced interfering exometabolites regardless. These results are important for predicting and understanding microbial interactions in resource-limited environments.
Collapse
Affiliation(s)
- John L. Chodkowski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Ashley Shade
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Villeurbanne, France
| |
Collapse
|
4
|
Hoskisson PA, Barona-Gómez F, Rozen DE. Phenotypic heterogeneity in Streptomyces colonies. Curr Opin Microbiol 2024; 78:102448. [PMID: 38447313 DOI: 10.1016/j.mib.2024.102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
Streptomyces are a large genus of multicellular bacteria best known for their prolific production of bioactive natural products. In addition, they play key roles in the mineralisation of insoluble resources, such as chitin and cellulose. Because of their multicellular mode of growth, colonies of interconnected hyphae extend over a large area that may experience different conditions in different parts of the colony. Here, we argue that within-colony phenotypic heterogeneity can allow colonies to simultaneously respond to divergent inputs from resources or competitors that are spatially and temporally dynamic. We discuss causal drivers of heterogeneity, including competitors, precursor availability, metabolic diversity and division of labour, that facilitate divergent phenotypes within Streptomyces colonies. We discuss the adaptive causes and consequences of within-colony heterogeneity, highlight current knowledge (gaps) and outline key questions for future studies.
Collapse
Affiliation(s)
- Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | | | - Daniel E Rozen
- Institute of Biology, Leiden University, Sylviusweg 72, Leiden, The Netherlands.
| |
Collapse
|
5
|
Lara AC, Kotrbová L, Keller M, Nouioui I, Neumann-Schaal M, Mast Y, Chroňáková A. Lentzea sokolovensis sp. nov., Lentzea kristufekii sp. nov. and Lentzea miocenica sp. nov., rare actinobacteria from Miocene lacustrine sediment of the Sokolov Coal Basin, Czech Republic. Int J Syst Evol Microbiol 2024; 74. [PMID: 38630118 DOI: 10.1099/ijsem.0.006335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
The taxonomic position of three actinobacterial strains, BCCO 10_0061T, BCCO 10_0798T, and BCCO 10_0856T, recovered from bare soil in the Sokolov Coal Basin, Czech Republic, was established using a polyphasic approach. The multilocus sequence analysis based on 100 single-copy genes positioned BCCO 10_0061T in the same cluster as Lentzea waywayandensis, strain BCCO 10_0798T in the same cluster as Lentzea flaviverrucosa, Lentzea californiensis, Lentzea violacea, and Lentzea albidocapillata, and strain BCCO 10_0856T clustered together with Lentzea kentuckyensis and Lentzea alba. Morphological and chemotaxonomic characteristics of these strains support their assignment to the genus Lentzea. In all three strains, MK-9(H4) accounted for more than 80 % of the isoprenoid quinone. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The whole-cell sugars were rhamnose, ribose, mannose, glucose, and galactose. The major fatty acids (>10 %) were iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0, and C16 : 0. The polar lipids were diphosphatidylglycerol, methyl-phosphatidylethanolamine, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylinositol. The genomic DNA G+C content of strains (mol%) was 68.8 for BCCO 10_0061T, 69.2 for BCCO 10_0798T, and 68.5 for BCCO 10_0856T. The combination of digital DNA-DNA hybridization results, average nucleotide identity values and phenotypic characteristics of BCCO 10_0061T, BCCO 10_0798T, and BCCO 10_0856T distinguishes them from their closely related strains. Bioinformatic analysis of the genome sequences of the strains revealed several biosynthetic gene clusters (BGCs) with identities >50 % to already known clusters, including BGCs for geosmin, coelichelin, ε-poly-l-lysine, and erythromycin-like BGCs. Most of the identified BGCs showed low similarity to known BGCs (<50 %) suggesting their genetic potential for the biosynthesis of novel secondary metabolites. Based on the above results, each strain represents a novel species of the genus Lentzea, for which we propose the name Lentzea sokolovensis sp. nov. for BCCO 10_0061T (=DSM 116175T), Lentzea kristufekii sp. nov. for BCCO 10_0798T (=DSM 116176T), and Lentzea miocenica sp. nov. for BCCO 10_0856T (=DSM 116177T).
Collapse
Affiliation(s)
- Ana Catalina Lara
- Biology Centre Czech Academy of Sciences, Institute of Soil Biology and BiogeochemistryNaSádkách 7, 37005 České Budějovice, Czech Republic
- University of Chemistry, and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technická 5, 16628 Prague, Czech Republic
| | - Lucie Kotrbová
- Biology Centre Czech Academy of Sciences, Institute of Soil Biology and BiogeochemistryNaSádkách 7, 37005 České Budějovice, Czech Republic
- University of South Bohemia, Faculty of Science, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Moritz Keller
- Biology Centre Czech Academy of Sciences, Institute of Soil Biology and BiogeochemistryNaSádkách 7, 37005 České Budějovice, Czech Republic
- University of South Bohemia, Faculty of Science, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Imen Nouioui
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Yvonne Mast
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Alica Chroňáková
- Biology Centre Czech Academy of Sciences, Institute of Soil Biology and BiogeochemistryNaSádkách 7, 37005 České Budějovice, Czech Republic
| |
Collapse
|
6
|
Liu Y, LaBonte S, Brake C, LaFayette C, Rosebrock AP, Caudy AA, Straight PD. MOB rules: Antibiotic Exposure Reprograms Metabolism to Mobilize Bacillus subtilis in Competitive Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585991. [PMID: 38562742 PMCID: PMC10983992 DOI: 10.1101/2024.03.20.585991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Antibiotics have dose-dependent effects on exposed bacteria. The medicinal use of antibiotics relies on their growth-inhibitory activities at sufficient concentrations. At subinhibitory concentrations, exposure effects vary widely among different antibiotics and bacteria. Bacillus subtilis responds to bacteriostatic translation inhibitors by mobilizing a population of cells (MOB-Mobilized Bacillus) to spread across a surface. How B. subtilis regulates the antibiotic-induced mobilization is not known. In this study, we used chloramphenicol to identify regulatory functions that B. subtilis requires to coordinate cell mobilization following subinhibitory exposure. We measured changes in gene expression and metabolism and mapped the results to a network of regulatory proteins that direct the mobile response. Our data reveal that several transcriptional regulators coordinately control the reprogramming of metabolism to support mobilization. The network regulates changes in glycolysis, nucleotide metabolism, and amino acid metabolism that are signature features of the mobilized population. Among the hundreds of genes with changing expression, we identified two, pdhA and pucA, where the magnitudes of their changes in expression, and in the abundance of associated metabolites, reveal hallmark metabolic features of the mobilized population. Using reporters of pdhA and pucA expression, we visualized the separation of major branches of metabolism in different regions of the mobilized population. Our results reveal a regulated response to chloramphenicol exposure that enables a population of bacteria in different metabolic states to mount a coordinated mobile response.
Collapse
Affiliation(s)
- Yongjin Liu
- Biochemistry and Biophysics Department, Texas A&M University, AgriLife Research, College Station, Texas, USA
| | - Sandra LaBonte
- Biochemistry and Biophysics Department, Texas A&M University, AgriLife Research, College Station, Texas, USA
- Interdisciplinary Program in Genetics and Genomics,Texas A&M University, College Station, Texas, USA
| | - Courtney Brake
- Department of Visualization, Institute for Applied Creativity, Texas A&M University, College Station, Texas, USA
| | - Carol LaFayette
- Department of Visualization, Institute for Applied Creativity, Texas A&M University, College Station, Texas, USA
| | | | - Amy A. Caudy
- Maple Flavored Solutions, LLC, Indianapolis, Indiana, USA
| | - Paul D. Straight
- Biochemistry and Biophysics Department, Texas A&M University, AgriLife Research, College Station, Texas, USA
- Interdisciplinary Program in Genetics and Genomics,Texas A&M University, College Station, Texas, USA
| |
Collapse
|
7
|
Du X, Liu N, Yan B, Li Y, Liu M, Huang Y. Proximity-based defensive mutualism between Streptomyces and Mesorhizobium by sharing and sequestering iron. THE ISME JOURNAL 2024; 18:wrad041. [PMID: 38366066 PMCID: PMC10881299 DOI: 10.1093/ismejo/wrad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/25/2023] [Accepted: 12/26/2024] [Indexed: 02/18/2024]
Abstract
Microorganisms living in soil maintain intricate interactions among themselves, forming the soil microbiota that influences the rhizosphere microbiome and plant growth. However, the mechanisms underlying the soil microbial interactions remain unclear. Streptomyces and Mesorhizobium are commonly found in soil and serve as plant growth-promoting rhizobacteria (PGPR). Here, we identified an unprecedented interaction between the colonies of red-soil-derived Streptomyces sp. FXJ1.4098 and Mesorhizobium sp. BAC0120 and referred to it as "proximity-based defensive mutualism (PBDM)." We found that metabolite-mediated iron competition and sharing between the two microorganisms were responsible for PBDM. Streptomyces sp. FXJ1.4098 produced a highly diffusible siderophore, desferrioxamine, which made iron unavailable to co-cultured Mesorhizobium sp. BAC0120, thereby inhibiting its growth. Streptomyces sp. FXJ1.4098 also released poorly diffusible iron-porphyrin complexes, which could be utilized by Mesorhizobium sp. BAC0120, thereby restoring the growth of nearby Mesorhizobium sp. BAC0120. Furthermore, in ternary interactions, the PBDM strategy contributed to the protection of Mesorhizobium sp. BAC0120 close to Streptomyces sp. FXJ1.4098 from other microbial competitors, resulting in the coexistence of these two PGPR. A scale-up pairwise interaction screening suggested that the PBDM strategy may be common between Mesorhizobium and red-soil-derived Streptomyces. These results demonstrate the key role of iron in complex microbial interactions and provide novel insights into the coexistence of PGPR in soil.
Collapse
Affiliation(s)
- Xueyuan Du
- State Key Laboratory of Microbial Resources, Chinese Academy of Sciences, Institute of Microbiology, Beijing 100101, P. R. China
- College of Life Sciences, University of Chinese Academy of Sciences , Beijing 101408, P. R. China
- National Engineering Laboratory for Site Remediation Technologies, BCEG Environmental Remediation Co., Ltd., Beijing 100015, P. R. China
| | - Ning Liu
- State Key Laboratory of Microbial Resources, Chinese Academy of Sciences, Institute of Microbiology, Beijing 100101, P. R. China
| | - Bingfa Yan
- State Key Laboratory of Microbial Resources, Chinese Academy of Sciences, Institute of Microbiology, Beijing 100101, P. R. China
- College of Life Sciences, University of Chinese Academy of Sciences , Beijing 101408, P. R. China
| | - Yisong Li
- School of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Minghao Liu
- State Key Laboratory of Microbial Resources, Chinese Academy of Sciences, Institute of Microbiology, Beijing 100101, P. R. China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Chinese Academy of Sciences, Institute of Microbiology, Beijing 100101, P. R. China
- College of Life Sciences, University of Chinese Academy of Sciences , Beijing 101408, P. R. China
| |
Collapse
|
8
|
Zhao Y, Bitzer A, Power JJ, Belikova D, Torres Salazar BO, Adolf LA, Gerlach D, Krismer B, Heilbronner S. Nasal commensals reduce Staphylococcus aureus proliferation by restricting siderophore availability. THE ISME JOURNAL 2024; 18:wrae123. [PMID: 38987933 PMCID: PMC11296517 DOI: 10.1093/ismejo/wrae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
The human microbiome is critically associated with human health and disease. One aspect of this is that antibiotic-resistant opportunistic bacterial pathogens, such as methicillin-resistant Staphylococcus aureus, can reside within the nasal microbiota, which increases the risk of infection. Epidemiological studies of the nasal microbiome have revealed positive and negative correlations between non-pathogenic species and S. aureus, but the underlying molecular mechanisms remain poorly understood. The nasal cavity is iron-limited, and bacteria are known to produce iron-scavenging siderophores to proliferate in such environments. Siderophores are public goods that can be consumed by all members of a bacterial community. Accordingly, siderophores are known to mediate bacterial competition and collaboration, but their role in the nasal microbiome is unknown. Here, we show that siderophore acquisition is crucial for S. aureus nasal colonization in vivo. We screened 94 nasal bacterial strains from seven genera for their capacity to produce siderophores as well as to consume the siderophores produced by S. aureus. We found that 80% of the strains engaged in siderophore-mediated interactions with S. aureus. Non-pathogenic corynebacterial species were found to be prominent consumers of S. aureus siderophores. In co-culture experiments, consumption of siderophores by competitors reduced S. aureus growth in an iron-dependent fashion. Our data show a wide network of siderophore-mediated interactions between the species of the human nasal microbiome and provide mechanistic evidence for inter-species competition and collaboration impacting pathogen proliferation. This opens avenues for designing nasal probiotics to displace S. aureus from the nasal cavity of humans.
Collapse
Affiliation(s)
- Yanfeng Zhao
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Laboratory Medicine Center, The Second Affiliated Hospital, Nanjing Medical University, 210011 Nanjing, P. R. China
| | - Alina Bitzer
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| | - Jeffrey John Power
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| | - Darya Belikova
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany
| | - Benjamin Orlando Torres Salazar
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| | - Lea Antje Adolf
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany
| | - David Gerlach
- Ludwig-Maximilians-Universität München, Faculty of Biology, Microbiology, 82152 Martinsried, Germany
| | - Bernhard Krismer
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| | - Simon Heilbronner
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany
- Ludwig-Maximilians-Universität München, Faculty of Biology, Microbiology, 82152 Martinsried, Germany
- German Center for Infection Research “DZIF” partnersite Tübingen, Germany
| |
Collapse
|
9
|
Santamaría RI, Martínez-Carrasco A, Tormo JR, Martín J, Genilloud O, Reyes F, Díaz M. Interactions of Different Streptomyces Species and Myxococcus xanthus Affect Myxococcus Development and Induce the Production of DK-Xanthenes. Int J Mol Sci 2023; 24:15659. [PMID: 37958645 PMCID: PMC10649082 DOI: 10.3390/ijms242115659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The co-culturing of microorganisms is a well-known strategy to study microbial interactions in the laboratory. This approach facilitates the identification of new signals and molecules produced by one species that affects other species' behavior. In this work, we have studied the effects of the interaction of nine Streptomyces species (S. albidoflavus, S. ambofaciens, S. argillaceus, S. griseus, S. lividans, S. olivaceus, S. parvulus, S. peucetius, and S. rochei) with the predator bacteria Myxococcus xanthus, five of which (S. albidoflavus, S. griseus, S. lividans, S. olivaceus, and S. argillaceus) induce mound formation of M. xanthus on complex media (Casitone Yeast extract (CYE) and Casitone tris (CTT); media on which M. xanthus does not form these aggregates under normal culture conditions. An in-depth study on S. griseus-M. xanthus interactions (the Streptomyces strain producing the strongest effect) has allowed the identification of two siderophores produced by S. griseus, demethylenenocardamine and nocardamine, responsible for this grouping effect over M. xanthus. Experiments using pure commercial nocardamine and different concentrations of FeSO4 show that iron depletion is responsible for the behavior of M. xanthus. Additionally, it was found that molecules, smaller than 3 kDa, produced by S. peucetius can induce the production of DK-xanthenes by M. xanthus.
Collapse
Affiliation(s)
- Ramón I. Santamaría
- Instituto de Biología Funcional y Genómica (IBFG), Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, C/Zacarías González, nº 2, 37007 Salamanca, Spain;
| | - Ana Martínez-Carrasco
- Instituto de Biología Funcional y Genómica (IBFG), Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, C/Zacarías González, nº 2, 37007 Salamanca, Spain;
| | - José R. Tormo
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (J.R.T.); (J.M.); (O.G.); (F.R.)
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (J.R.T.); (J.M.); (O.G.); (F.R.)
| | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (J.R.T.); (J.M.); (O.G.); (F.R.)
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (J.R.T.); (J.M.); (O.G.); (F.R.)
| | - Margarita Díaz
- Instituto de Biología Funcional y Genómica (IBFG), Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, C/Zacarías González, nº 2, 37007 Salamanca, Spain;
| |
Collapse
|
10
|
O'Brien S, Culbert CT, Barraclough TG. Community composition drives siderophore dynamics in multispecies bacterial communities. BMC Ecol Evol 2023; 23:45. [PMID: 37658316 PMCID: PMC10472669 DOI: 10.1186/s12862-023-02152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/17/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Intraspecific public goods are commonly shared within microbial populations, where the benefits of public goods are largely limited to closely related conspecifics. One example is the production of iron-scavenging siderophores that deliver iron to cells via specific cell envelope receptor and transport systems. Intraspecific social exploitation of siderophore producers is common, since non-producers avoid the costs of production but retain the cell envelope machinery for siderophore uptake. However, little is known about how interactions between species (i.e., interspecific interactions) can shape intraspecific public goods exploitation. Here, we predicted that strong competition for iron between species in diverse communities will increase costs of siderophore cooperation, and hence drive intraspecific exploitation. We examined how increasing microbial community species diversity shapes intraspecific social dynamics by monitoring the growth of siderophore producers and non-producers of the plant-growth promoting bacterium Pseudomonas fluorescens, embedded within tree-hole microbial communities ranging from 2 to 15 species. RESULTS We find, contrary to our prediction, that siderophore production is favoured at higher levels of community species richness, driven by increased likelihood of encountering key species that reduce the growth of siderophore non-producing (but not producing) strains of P. fluorescens. CONCLUSIONS Our results suggest that maintaining a diverse soil microbiota could partly contribute to the maintenance of siderophore production in natural communities.
Collapse
Affiliation(s)
- Siobhán O'Brien
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Christopher T Culbert
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
| | - Timothy G Barraclough
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| |
Collapse
|
11
|
McRose D, Li J, Newman D. The chemical ecology of coumarins and phenazines affects iron acquisition by pseudomonads. Proc Natl Acad Sci U S A 2023; 120:e2217951120. [PMID: 36996105 PMCID: PMC10083548 DOI: 10.1073/pnas.2217951120] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/27/2023] [Indexed: 03/31/2023] Open
Abstract
Secondary metabolites are important facilitators of plant-microbe interactions in the rhizosphere, contributing to communication, competition, and nutrient acquisition. However, at first glance, the rhizosphere seems full of metabolites with overlapping functions, and we have a limited understanding of basic principles governing metabolite use. Increasing access to the essential nutrient iron is one important, but seemingly redundant role performed by both plant and microbial Redox-Active Metabolites (RAMs). We used coumarins, RAMs made by the model plant Arabidopsis thaliana, and phenazines, RAMs made by soil-dwelling pseudomonads, to ask whether plant and microbial RAMs might each have distinct functions under different environmental conditions. We show that variations in oxygen and pH lead to predictable differences in the capacity of coumarins vs phenazines to increase the growth of iron-limited pseudomonads and that these effects depend on whether pseudomonads are grown on glucose, succinate, or pyruvate: carbon sources commonly found in root exudates. Our results are explained by the chemical reactivities of these metabolites and the redox state of phenazines as altered by microbial metabolism. This work shows that variations in the chemical microenvironment can profoundly affect secondary metabolite function and suggests plants may tune the utility of microbial secondary metabolites by altering the carbon released in root exudates. Together, these findings suggest that RAM diversity may be less overwhelming when viewed through a chemical ecological lens: Distinct molecules can be expected to be more or less important to certain ecosystem functions, such as iron acquisition, depending on the local chemical microenvironments in which they reside.
Collapse
Affiliation(s)
- Darcy L. McRose
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Jinyang Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Dianne K. Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
12
|
Dolan SK. Illuminating Siderophore Transporter Functionality with Thiopeptide Antibiotics. mBio 2023; 14:e0332622. [PMID: 36946760 PMCID: PMC10128021 DOI: 10.1128/mbio.03326-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
The Gram-negative opportunistic pathogen Pseudomonas aeruginosa is a leading cause of infections and mortality in immunocompromised patients. This organism can overcome iron deprivation during infection via the synthesis of two iron-chelating siderophores, pyoverdine and pyochelin, which scavenge iron from host proteins. P. aeruginosa can also uptake xenosiderophores produced by other bacteria or fungi using dedicated transporter systems. The precise substrate specificity of these siderophore transporters remains to be determined. The thiopeptide antibiotic thiostrepton exploits the pyoverdine transporters FpvA and FpvB to cross the outer membrane and reach intracellular targets. Using a series of intricate biochemical experiments, a recent study by Chan and Burrows capitalized on the specificity of thiostrepton to uncover that FpvB transports the xenosiderophores ferrichrome and ferrioxamine B with higher affinity than pyoverdine. This surprising result highlights an alternative uptake pathway for these siderophores and has significant implications for our understanding of iron acquisition in this organism.
Collapse
Affiliation(s)
- Stephen K Dolan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory Children's Cystic Fibrosis Center, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Selegato DM, Castro-Gamboa I. Enhancing chemical and biological diversity by co-cultivation. Front Microbiol 2023; 14:1117559. [PMID: 36819067 PMCID: PMC9928954 DOI: 10.3389/fmicb.2023.1117559] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
In natural product research, microbial metabolites have tremendous potential to provide new therapeutic agents since extremely diverse chemical structures can be found in the nearly infinite microbial population. Conventionally, these specialized metabolites are screened by single-strain cultures. However, owing to the lack of biotic and abiotic interactions in monocultures, the growth conditions are significantly different from those encountered in a natural environment and result in less diversity and the frequent re-isolation of known compounds. In the last decade, several methods have been developed to eventually understand the physiological conditions under which cryptic microbial genes are activated in an attempt to stimulate their biosynthesis and elicit the production of hitherto unexpressed chemical diversity. Among those, co-cultivation is one of the most efficient ways to induce silenced pathways, mimicking the competitive microbial environment for the production and holistic regulation of metabolites, and has become a golden methodology for metabolome expansion. It does not require previous knowledge of the signaling mechanism and genome nor any special equipment for cultivation and data interpretation. Several reviews have shown the potential of co-cultivation to produce new biologically active leads. However, only a few studies have detailed experimental, analytical, and microbiological strategies for efficiently inducing bioactive molecules by co-culture. Therefore, we reviewed studies applying co-culture to induce secondary metabolite pathways to provide insights into experimental variables compatible with high-throughput analytical procedures. Mixed-fermentation publications from 1978 to 2022 were assessed regarding types of co-culture set-ups, metabolic induction, and interaction effects.
Collapse
|
14
|
Taga ME, Ludington WB. Nutrient encryption and the diversity of cobamides, siderophores, and glycans. Trends Microbiol 2023; 31:115-119. [PMID: 36522241 PMCID: PMC9877164 DOI: 10.1016/j.tim.2022.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/15/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
Encryption makes information available only to those with the decoding key. We propose that microbes, living in a chemical environment, encrypt nutrients, thereby making them available only to those with the decoding enzymes, such as their kin. Examples of encrypted nutrients include cobamides, which are expensive to make and valuable for microbial fitness. Furthermore, we propose that hosts encrypt nutrients to encourage desirable colonizers. For instance, plant root exudates and breast milk oligosaccharides encourage beneficial microbes.
Collapse
Affiliation(s)
- Michiko E Taga
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| | - William B Ludington
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
15
|
Andrić S, Rigolet A, Argüelles Arias A, Steels S, Hoff G, Balleux G, Ongena L, Höfte M, Meyer T, Ongena M. Plant-associated Bacillus mobilizes its secondary metabolites upon perception of the siderophore pyochelin produced by a Pseudomonas competitor. THE ISME JOURNAL 2023; 17:263-275. [PMID: 36357782 PMCID: PMC9860033 DOI: 10.1038/s41396-022-01337-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/12/2022]
Abstract
Bacillus velezensis is considered as model species for plant-associated bacilli providing benefits to its host such as protection against phytopathogens. This is mainly due to the potential to secrete a wide range of secondary metabolites with specific and complementary bioactivities. This metabolite arsenal has been quite well defined genetically and chemically but much remains to be explored regarding how it is expressed under natural conditions and notably how it can be modulated upon interspecies interactions in the competitive rhizosphere niche. Here, we show that B. velezensis can mobilize a substantial part of its metabolome upon the perception of Pseudomonas, as a soil-dwelling competitor. This metabolite response reflects a multimodal defensive strategy as it includes polyketides and the bacteriocin amylocyclicin, with broad antibiotic activity, as well as surfactin lipopeptides, contributing to biofilm formation and enhanced motility. Furthermore, we identified the secondary Pseudomonas siderophore pyochelin as an info-chemical, which triggers this response via a mechanism independent of iron stress. We hypothesize that B. velezensis relies on such chelator sensing to accurately identify competitors, illustrating a new facet of siderophore-mediated interactions beyond the concept of competition for iron and siderophore piracy. This phenomenon may thus represent a new component of the microbial conversations driving the behavior of members of the rhizosphere community.
Collapse
Affiliation(s)
- Sofija Andrić
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| | - Augustin Rigolet
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Anthony Argüelles Arias
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Sébastien Steels
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Grégory Hoff
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Ecology and Biodiversity, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Guillaume Balleux
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Loïc Ongena
- Laboratory of Gene Expression and Cancer, GIGA-MBD, University of Liège, Liège, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Thibault Meyer
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
- UMR Ecologie Microbienne, F-69622, University of Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, Villeurbanne, France.
| | - Marc Ongena
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| |
Collapse
|
16
|
Stallforth P, Mittag M, Brakhage AA, Hertweck C, Hellmich UA. Functional modulation of chemical mediators in microbial communities. Trends Biochem Sci 2023; 48:71-81. [PMID: 35981931 DOI: 10.1016/j.tibs.2022.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 12/27/2022]
Abstract
Interactions between microorganisms are often mediated by specialized metabolites. Although the structures and biosynthesis of these compounds may have been elucidated, microbes exist within complex microbiomes and chemical signals can thus also be subject to community-dependent modifications. Increasingly powerful chemical and biological tools allow to shed light on this poorly understood aspect of chemical ecology. We provide an overview of loss-of-function and gain-of-function chemical mediator (CM) modifications within microbial multipartner relationships. Although loss-of-function modifications are abundant in the literature, few gain-of-function modifications have been described despite their important role in microbial interactions. Research in this field holds great potential for our understanding of microbial interactions and may also provide novel tools for targeted interference with microbial signaling.
Collapse
Affiliation(s)
- Pierre Stallforth
- Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll Institute, Beutenbergstrasse 11a, 07745 Jena, Germany; Friedrich Schiller University Jena, Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Humboldtstrasse 10, 07743 Jena, Germany.
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Axel A Brakhage
- Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll Institute, Beutenbergstrasse 11a, 07745 Jena, Germany; Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll Institute, Beutenbergstrasse 11a, 07745 Jena, Germany; Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Ute A Hellmich
- Friedrich Schiller University Jena, Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany.
| |
Collapse
|
17
|
Iron acquisition strategies in pseudomonads: mechanisms, ecology, and evolution. Biometals 2022:10.1007/s10534-022-00480-8. [PMID: 36508064 PMCID: PMC10393863 DOI: 10.1007/s10534-022-00480-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
AbstractIron is important for bacterial growth and survival, as it is a common co-factor in essential enzymes. Although iron is very abundant in the earth crust, its bioavailability is low in most habitats because ferric iron is largely insoluble under aerobic conditions and at neutral pH. Consequently, bacteria have evolved a plethora of mechanisms to solubilize and acquire iron from environmental and host stocks. In this review, I focus on Pseudomonas spp. and first present the main iron uptake mechanisms of this taxa, which involve the direct uptake of ferrous iron via importers, the production of iron-chelating siderophores, the exploitation of siderophores produced by other microbial species, and the use of iron-chelating compounds produced by plants and animals. In the second part of this review, I elaborate on how these mechanisms affect interactions between bacteria in microbial communities, and between bacteria and their hosts. This is important because Pseudomonas spp. live in diverse communities and certain iron-uptake strategies might have evolved not only to acquire this essential nutrient, but also to gain relative advantages over competitors in the race for iron. Thus, an integrative understanding of the mechanisms of iron acquisition and the eco-evolutionary dynamics they drive at the community level might prove most useful to understand why Pseudomonas spp., in particular, and many other bacterial species, in general, have evolved such diverse iron uptake repertoires.
Collapse
|
18
|
Laible AR, Dinius A, Schrader M, Krull R, Kwade A, Briesen H, Schmideder S. Effects and interactions of metal oxides in microparticle-enhanced cultivation of filamentous microorganisms. Eng Life Sci 2022; 22:725-743. [PMID: 36514528 PMCID: PMC9731605 DOI: 10.1002/elsc.202100075] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/13/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
Filamentous microorganisms are used as molecular factories in industrial biotechnology. In 2007, a new approach to improve productivity in submerged cultivation was introduced: microparticle-enhanced cultivation (MPEC). Since then, numerous studies have investigated the influence of microparticles on the cultivation. Most studies considered MPEC a morphology engineering approach, in which altered morphology results in increased productivity. But sometimes similar morphological changes lead to decreased productivity, suggesting that this hypothesis is not a sufficient explanation for the effects of microparticles. Effects of surface chemistry on particles were paid little attention, as particles were often considered chemically-inert and bioinert. However, metal oxide particles strongly interact with their environment. This review links morphological, physical, and chemical properties of microparticles with effects on culture broth, filamentous morphology, and molecular biology. More precisely, surface chemistry effects of metal oxide particles lead to ion leaching, adsorption of enzymes, and generation of reactive oxygen species. Therefore, microparticles interfere with gene regulation, metabolism, and activity of enzymes. To enhance the understanding of microparticle-based morphology engineering, further interactions between particles and cells are elaborated. The presented description of phenomena occurring in MPEC eases the targeted choice of microparticles, and thus, contributes to improving the productivity of microbial cultivation technology.
Collapse
Affiliation(s)
- Andreas Reiner Laible
- School of Life SciencesChair of Process Systems EngineeringTechnische Universität MünchenFreisingGermany
| | - Anna Dinius
- Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany
- Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany
| | - Marcel Schrader
- Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany
- Institute for Particle TechnologyTechnische Universität BraunschweigBraunschweigGermany
| | - Rainer Krull
- Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany
- Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany
| | - Arno Kwade
- Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany
- Institute for Particle TechnologyTechnische Universität BraunschweigBraunschweigGermany
| | - Heiko Briesen
- School of Life SciencesChair of Process Systems EngineeringTechnische Universität MünchenFreisingGermany
| | - Stefan Schmideder
- School of Life SciencesChair of Process Systems EngineeringTechnische Universität MünchenFreisingGermany
| |
Collapse
|
19
|
Microbiome composition modulates secondary metabolism in a multispecies bacterial community. Proc Natl Acad Sci U S A 2022; 119:e2212930119. [PMID: 36215464 PMCID: PMC9586298 DOI: 10.1073/pnas.2212930119] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial secondary metabolites are a major source of antibiotics and other bioactive compounds. In microbial communities, these molecules can mediate interspecies interactions and responses to environmental change. Despite the importance of secondary metabolites in human health and microbial ecology, little is known about their roles and regulation in the context of multispecies communities. In a simplified model of the rhizosphere composed of Bacillus cereus, Flavobacterium johnsoniae, and Pseudomonas koreensis, we show that the dynamics of secondary metabolism depend on community species composition and interspecies interactions. Comparative metatranscriptomics and metametabolomics reveal that the abundance of transcripts of biosynthetic gene clusters (BGCs) and metabolomic molecular features differ between monocultures or dual cultures and a tripartite community. In both two- and three-member cocultures, P. koreensis modified expression of BGCs for zwittermicin, petrobactin, and other secondary metabolites in B. cereus and F. johnsoniae, whereas the BGC transcriptional response to the community in P. koreensis itself was minimal. Pairwise and tripartite cocultures with P. koreensis displayed unique molecular features that appear to be derivatives of lokisin, suggesting metabolic handoffs between species. Deleting the BGC for koreenceine, another P. koreensis metabolite, altered transcript and metabolite profiles across the community, including substantial up-regulation of the petrobactin and bacillibactin BGCs in B. cereus, suggesting that koreenceine represses siderophore production. Results from this model community show that bacterial BGC expression and chemical output depend on the identity and biosynthetic capacity of coculture partners, suggesting community composition and microbiome interactions may shape the regulation of secondary metabolism in nature.
Collapse
|
20
|
Martinet L, Baiwir D, Mazzucchelli G, Rigali S. Structure of New Ferroverdins Recruiting Unconventional Ferrous Iron Chelating Agents. Biomolecules 2022; 12:biom12060752. [PMID: 35740878 PMCID: PMC9221444 DOI: 10.3390/biom12060752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Ferroverdins are ferrous iron (Fe2+)-nitrosophenolato complexes produced by a few Streptomyces species as a response to iron overload. Previously, three ferroverdins were identified: ferroverdin A, in which three molecules of p-vinylphenyl-3-nitroso-4-hydroxybenzoate (p-vinylphenyl-3,4-NHBA) are recruited to bind Fe2+, and Ferroverdin B and Ferroverdin C, in which one molecule of p-vinylphenyl-3,4-NHBA is substituted by hydroxy-p-vinylphenyl-3,4-NHBA, and by carboxy-p-vinylphenyl-3,4-NHBA, respectively. These molecules, especially ferroverdin B, are potent inhibitors of the human cholesteryl ester transfer protein (CETP) and therefore candidate hits for the development of drugs that increase the serum concentration of high-density lipoprotein cholesterol, thereby diminishing the risk of atherosclerotic cardiovascular disease. In this work, we used high-resolution mass spectrometry combined with tandem mass spectrometry to identify 43 novel ferroverdins from the cytosol of two Streptomyces lunaelactis species. For 13 of them (designated ferroverdins C2, C3, D, D2, D3, E, F, G, H, CD, DE, DF, and DG), we could elucidate their structure, and for the other 17 new ferroverdins, ambiguity remains for one of the three ligands. p-formylphenyl-3,4-NHBA, p-benzoic acid-3,4-NHBA, 3,4-NHBA, p-phenylpropionate-3,4-NHBA, and p-phenyacetate-3,4-NHBA were identified as new alternative chelators for Fe2+-binding, and two compounds (C3 and D3) are the first reported ferroverdins that do not recruit p-vinylphenyl-3,4-NHBA. Our work thus uncovered putative novel CETP inhibitors or ferroverdins with novel bioactivities.
Collapse
Affiliation(s)
- Loïc Martinet
- InBioS, Center for Protein Engineering, University of Liege, B-4000 Liege, Belgium
- Hedera-22, Boulevard du Rectorat 27b, B-4000 Liege, Belgium;
| | - Dominique Baiwir
- GIGA Proteomics Facility, University of Liege, B-4000 Liege, Belgium;
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, B-4000 Liege, Belgium;
| | - Sébastien Rigali
- InBioS, Center for Protein Engineering, University of Liege, B-4000 Liege, Belgium
- Hedera-22, Boulevard du Rectorat 27b, B-4000 Liege, Belgium;
- Correspondence:
| |
Collapse
|
21
|
Zambri MP, Williams MA, Elliot MA. How Streptomyces thrive: Advancing our understanding of classical development and uncovering new behaviors. Adv Microb Physiol 2022; 80:203-236. [PMID: 35489792 DOI: 10.1016/bs.ampbs.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Streptomyces are soil- and marine-dwelling microbes that need to survive dramatic fluctuations in nutrient levels and environmental conditions. Here, we explore the advances made in understanding how Streptomyces bacteria can thrive in their natural environments. We examine their classical developmental cycle, and the intricate regulatory cascades that govern it. We discuss alternative growth strategies and behaviors, like the rapid expansion and colonization properties associated with exploratory growth, the release of membrane vesicles and S-cells from hyphal tips, and the acquisition of exogenous DNA along the lateral walls. We further investigate Streptomyces interactions with other organisms through the release of volatile compounds that impact nutrient levels, microbial growth, and insect behavior. Finally, we explore the increasingly diverse strategies employed by Streptomyces species in escaping and thwarting phage infections.
Collapse
Affiliation(s)
- Matthew P Zambri
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Michelle A Williams
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Marie A Elliot
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
22
|
Deflandre B, Stulanovic N, Planckaert S, Anderssen S, Bonometti B, Karim L, Coppieters W, Devreese B, Rigali S. The virulome of Streptomyces scabiei in response to cello-oligosaccharide elicitors. Microb Genom 2022; 8. [PMID: 35040428 PMCID: PMC8914351 DOI: 10.1099/mgen.0.000760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The development of spots or lesions symptomatic of common scab on root and tuber crops is caused by few pathogenic Streptomyces with Streptomyces scabiei 87–22 as the model species. Thaxtomin phytotoxins are the primary virulence determinants, mainly acting by impairing cellulose synthesis, and their production in S. scabiei is in turn boosted by cello-oligosaccharides released from host plants. In this work we aimed to determine which molecules and which biosynthetic gene clusters (BGCs) of the specialized metabolism of S. scabiei 87–22 show a production and/or a transcriptional response to cello-oligosaccharides. Comparative metabolomic analyses revealed that molecules of the virulome of S. scabiei induced by cellobiose and cellotriose include (i) thaxtomin and concanamycin phytotoxins, (ii) desferrioxamines, scabichelin and turgichelin siderophores in order to acquire iron essential for housekeeping functions, (iii) ectoine for protection against osmotic shock once inside the host, and (iv) bottromycin and concanamycin antimicrobials possibly to prevent other microorganisms from colonizing the same niche. Importantly, both cello-oligosaccharides reduced the production of the spore germination inhibitors germicidins thereby giving the ‘green light’ to escape dormancy and trigger the onset of the pathogenic lifestyle. For most metabolites - either with induced or reduced production - cellotriose was revealed to be a slightly stronger elicitor compared to cellobiose, supporting an earlier hypothesis which suggested the trisaccharide was the real trigger for virulence released from the plant cell wall through the action of thaxtomins. Interestingly, except for thaxtomins, none of these BGCs’ expression seems to be under direct control of the cellulose utilization repressor CebR suggesting the existence of a yet unknown mechanism for switching on the virulome. Finally, a transcriptomic analysis revealed nine additional cryptic BGCs that have their expression awakened by cello-oligosaccharides, suggesting that other and yet to be discovered metabolites could be part of the virulome of S. scabiei.
Collapse
Affiliation(s)
- Benoit Deflandre
- InBioS-Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000, Liège, Belgium
| | - Nudzejma Stulanovic
- InBioS-Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000, Liège, Belgium
| | - Sören Planckaert
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, B-9000, Ghent, Belgium
| | - Sinaeda Anderssen
- InBioS-Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000, Liège, Belgium
| | - Beatrice Bonometti
- InBioS-Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000, Liège, Belgium
| | - Latifa Karim
- Genomics Platform, GIGA, University of Liège, B-4000, Liège, Belgium
| | - Wouter Coppieters
- Genomics Platform, GIGA, University of Liège, B-4000, Liège, Belgium
| | - Bart Devreese
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, B-9000, Ghent, Belgium
| | - Sébastien Rigali
- InBioS-Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000, Liège, Belgium
| |
Collapse
|
23
|
Chevrette MG, Handelsman J. Needles in haystacks: reevaluating old paradigms for the discovery of bacterial secondary metabolites. Nat Prod Rep 2021; 38:2083-2099. [PMID: 34693961 DOI: 10.1039/d1np00044f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Natural products research is in the midst of a renaissance ushered in by a modern understanding of microbiology and the technological explosions of genomics and metabolomics. As the exploration of uncharted chemical space expands into high-throughput discovery campaigns, it has become increasingly clear how design elements influence success: (bio)geography, habitat, community dynamics, culturing/induction methods, screening methods, dereplication, and more. We explore critical considerations and assumptions in natural products discovery. We revisit previous estimates of chemical rediscovery and discuss their relatedness to study design and producer taxonomy. Through frequency analyses of biosynthetic gene clusters in publicly available genomic data, we highlight phylogenetic biases that influence rediscovery rates. Through selected examples of how study design at each level determines discovery outcomes, we discuss the challenges and opportunities for the future of high-throughput natural product discovery.
Collapse
Affiliation(s)
- Marc G Chevrette
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Jo Handelsman
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
24
|
Li Y, He Y, Wang W, Li X, Xu X, Liu X, Li C, Wu Z. Plant-beneficial functions and interactions of Bacillus subtilis SL-44 and Enterobacter cloacae Rs-2 in co-culture by transcriptomics analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56333-56344. [PMID: 34053038 DOI: 10.1007/s11356-021-14578-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
The development of mixed microbial agents can reduce the use of pesticides and fertilizers in agriculture. However, most previous studies focused only on the overall effects of mixed microbial agents and ignored the interactions between bacteria in mixed systems. In this study, Bacillus subtilis SL-44 and Enterobacter cloacae Rs-2 were used to explore the interactions between two different functional plant growth-promoting rhizobacteria (PGPR). The plant growth-promotion properties and inhibition rate of Rhizoctonia solani were determined, and the mechanism of the interactions under single and co-culture conditions was elucidated via transcriptomics analysis under single and co-culture conditions. Results showed that the co-culture was not conducive to B. subtilis SL-44 growth. Furthermore, the differentially expressed genes related to B. subtilis SL-44 developmental process and cell differentiation were downregulated by 82.7% and 84.8% respectively. Moreover, among the properties, only siderophore production by the mixed culture was higher than that of single cultures because of the upregulation of the siderophore-related genes of B. subtilis SL-44. In addition, results revealed the altruistic relationship between the two strains, and the chemical and non-chemical signals of their interaction. This study provides unique insights into PGPR interactions and offers guidance for the development and application of mixed microbial agents.
Collapse
Affiliation(s)
- Yan Li
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Yanhui He
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Wenfei Wang
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Xueping Li
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Xiaolin Xu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Xiaochen Liu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Chun Li
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Zhansheng Wu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China.
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China.
| |
Collapse
|
25
|
Boruta T. A bioprocess perspective on the production of secondary metabolites by Streptomyces in submerged co-cultures. World J Microbiol Biotechnol 2021; 37:171. [PMID: 34490503 PMCID: PMC8421279 DOI: 10.1007/s11274-021-03141-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/31/2021] [Indexed: 12/17/2022]
Abstract
Filamentous microorganisms are potent sources of bioactive secondary metabolites, the molecules formed in response to complex environmental signals. The chemical diversity encoded in microbial genomes is only partially revealed by following the standard microbiological approaches. Mimicking the natural stimuli through laboratory co-cultivation is one of the most effective methods of awakening the formation of high-value metabolic products. Whereas the biosynthetic outcomes of co-cultures are reviewed extensively, the bioprocess aspects of such efforts are often overlooked. The aim of the present review is to discuss the submerged co-cultivation strategies used for triggering and enhancing secondary metabolites production in Streptomyces, a heavily investigated bacterial genus exhibiting an impressive repertoire of secondary metabolites, including a vast array of antibiotics. The previously published studies on influencing the biosynthetic capabilities of Streptomyces through co-cultivation are comparatively analyzed in the bioprocess perspective, mainly with the focus on the approaches of co-culture initiation, the experimental setup, the design of experimental controls and the ways of influencing the outcomes of co-cultivation processes. These topics are discussed in the general context of secondary metabolites production in submerged microbial co-cultures by referring to the Streptomyces-related studies as illustrative examples.
Collapse
Affiliation(s)
- Tomasz Boruta
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wolczanska 213, 90-924, Lodz, Poland.
| |
Collapse
|
26
|
Akbar S, Stevens DC. Functional genomics study of Pseudomonas putida to determine traits associated with avoidance of a myxobacterial predator. Sci Rep 2021; 11:16445. [PMID: 34385565 PMCID: PMC8360965 DOI: 10.1038/s41598-021-96046-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Predation contributes to the structure and diversity of microbial communities. Predatory myxobacteria are ubiquitous to a variety of microbial habitats and capably consume a broad diversity of microbial prey. Predator-prey experiments utilizing myxobacteria have provided details into predatory mechanisms and features that facilitate consumption of prey. However, prey resistance to myxobacterial predation remains underexplored, and prey resistances have been observed exclusively from predator-prey experiments that included the model myxobacterium Myxococcus xanthus. Utilizing a predator-prey pairing that instead included the myxobacterium, Cystobacter ferrugineus, with Pseudomonas putida as prey, we observed surviving phenotypes capable of eluding predation. Comparative transcriptomics between P. putida unexposed to C. ferrugineus and the survivor phenotype suggested that increased expression of efflux pumps, genes associated with mucoid conversion, and various membrane features contribute to predator avoidance. Unique features observed from the survivor phenotype when compared to the parent P. putida include small colony variation, efflux-mediated antibiotic resistance, phenazine-1-carboxylic acid production, and increased mucoid conversion. These results demonstrate the utility of myxobacterial predator-prey models and provide insight into prey resistances in response to predatory stress that might contribute to the phenotypic diversity and structure of bacterial communities.
Collapse
Affiliation(s)
- Shukria Akbar
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| | - D Cole Stevens
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA.
| |
Collapse
|
27
|
Li YP, Fekih IB, Fru EC, Moraleda-Munoz A, Li X, Rosen BP, Yoshinaga M, Rensing C. Antimicrobial Activity of Metals and Metalloids. Annu Rev Microbiol 2021; 75:175-197. [PMID: 34343021 DOI: 10.1146/annurev-micro-032921-123231] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Competition shapes evolution. Toxic metals and metalloids have exerted selective pressure on life since the rise of the first organisms on the Earth, which has led to the evolution and acquisition of resistance mechanisms against them, as well as mechanisms to weaponize them. Microorganisms exploit antimicrobial metals and metalloids to gain competitive advantage over other members of microbial communities. This exerts a strong selective pressure that drives evolution of resistance. This review describes, with a focus on arsenic and copper, how microorganisms exploit metals and metalloids for predation and how metal- and metalloid-dependent predation may have been a driving force for evolution of microbial resistance against metals and metalloids. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yuan Ping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 35002, China;
| | - Ibtissem Ben Fekih
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 35002, China;
| | - Ernest Chi Fru
- Centre for Geobiology and Geochemistry, School of Earth and Ocean Sciences, Cardiff University, CF10 3AT Cardiff, United Kingdom
| | - Aurelio Moraleda-Munoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada 18071, Spain
| | - Xuanji Li
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 35002, China;
| |
Collapse
|
28
|
Kim JH, Lee N, Hwang S, Kim W, Lee Y, Cho S, Palsson BO, Cho BK. Discovery of novel secondary metabolites encoded in actinomycete genomes through coculture. J Ind Microbiol Biotechnol 2021; 48:6119915. [PMID: 33825906 PMCID: PMC9113425 DOI: 10.1093/jimb/kuaa001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/02/2020] [Indexed: 01/23/2023]
Abstract
Actinomycetes are a rich source of bioactive natural products important for novel drug leads. Recent genome mining approaches have revealed an enormous number of secondary metabolite biosynthetic gene clusters (smBGCs) in actinomycetes. However, under standard laboratory culture conditions, many smBGCs are silent or cryptic. To activate these dormant smBGCs, several approaches, including culture-based or genetic engineering-based strategies, have been developed. Above all, coculture is a promising approach to induce novel secondary metabolite production from actinomycetes by mimicking an ecological habitat where cryptic smBGCs may be activated. In this review, we introduce coculture studies that aim to expand the chemical diversity of actinomycetes, by categorizing the cases by the type of coculture partner. Furthermore, we discuss the current challenges that need to be overcome to support the elicitation of novel bioactive compounds from actinomycetes.
Collapse
Affiliation(s)
- Ji Hun Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Namil Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soonkyu Hwang
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Woori Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yongjae Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.,Intelligent Synthetic Biology Center, Daejeon 34141, Republic of Korea
| |
Collapse
|
29
|
Covington BC, Xu F, Seyedsayamdost MR. A Natural Product Chemist's Guide to Unlocking Silent Biosynthetic Gene Clusters. Annu Rev Biochem 2021; 90:763-788. [PMID: 33848426 PMCID: PMC9148385 DOI: 10.1146/annurev-biochem-081420-102432] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microbial natural products have provided an important source of therapeutic leads and motivated research and innovation in diverse scientific disciplines. In recent years, it has become evident that bacteria harbor a large, hidden reservoir of potential natural products in the form of silent or cryptic biosynthetic gene clusters (BGCs). These can be readily identified in microbial genome sequences but do not give rise to detectable levels of a natural product. Herein, we provide a useful organizational framework for the various methods that have been implemented for interrogating silent BGCs. We divide all available approaches into four categories. The first three are endogenous strategies that utilize the native host in conjunction with classical genetics, chemical genetics, or different culture modalities. The last category comprises expression of the entire BGC in a heterologous host. For each category, we describe the rationale, recent applications, and associated advantages and limitations.
Collapse
Affiliation(s)
- Brett C Covington
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA; ,
| | - Fei Xu
- Institute of Pharmaceutical Biotechnology and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA; ,
- Department of Molecular Biology, Princeton University, New Jersey 08544, USA
| |
Collapse
|
30
|
Genetic Network Architecture and Environmental Cues Drive Spatial Organization of Phenotypic Division of Labor in Streptomyces coelicolor. mBio 2021; 12:mBio.00794-21. [PMID: 34006658 PMCID: PMC8262882 DOI: 10.1128/mbio.00794-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of bacteria are known to differentiate into cells with distinct phenotypic traits during processes such as biofilm formation or the development of reproductive structures. These cell types, by virtue of their specialized functions, embody a division of labor. However, how bacteria build spatial patterns of differentiated cells is not well understood. Here, we examine the factors that drive spatial patterns in divisions of labor in colonies of Streptomyces coelicolor, a multicellular bacterium capable of synthesizing an array of antibiotics and forming complex reproductive structures (e.g., aerial hyphae and spores). Using fluorescent reporters, we demonstrate that the pathways for antibiotic biosynthesis and aerial hypha formation are activated in distinct waves of gene expression that radiate outwards in S. coelicolor colonies. We also show that the spatiotemporal separation of these cell types depends on a key activator in the developmental pathway, AdpA. Importantly, when we manipulated local gradients by growing competing microbes nearby, or through physical disruption, expression in these pathways could be decoupled and/or disordered, respectively. Finally, the normal spatial organization of these cell types was partially restored with the addition of a siderophore, a public good made by these organisms, to the growth medium. Together, these results indicate that spatial divisions of labor in S. coelicolor colonies are determined by a combination of physiological gradients and regulatory network architecture, key factors that also drive patterns of cellular differentiation in multicellular eukaryotic organisms.
Collapse
|
31
|
Terra L, Ratcliffe N, Castro HC, Vicente ACP, Dyson P. Biotechnological Potential of Streptomyces Siderophores as New Antibiotics. Curr Med Chem 2021; 28:1407-1421. [PMID: 32389112 DOI: 10.2174/0929867327666200510235512] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/29/2020] [Accepted: 03/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Siderophores are small-molecule iron-chelators produced by microorganisms and plants growing mostly under low iron conditions. Siderophores allow iron capture and transport through cell membranes into the cytoplasm, where iron is released for use in biological processes. These bacterial iron uptake systems can be used for antibiotic conjugation or as targets for killing pathogenic bacteria. Siderophores have been explored recently because of their potential applications in environmental and therapeutic research. They are present in Streptomyces, Grampositive bacteria that are an important source for discovering new siderophores. OBJECTIVE This review summarizes siderophore molecules produced by the genus Streptomyces emphasizing their potential as biotechnological producers and also illustrating genomic tools for discovering siderophores useful for treating bacterial infections. METHODS The literature search was performed using PUBMED and MEDLINE databases with keywords siderophore, secondary metabolites, Trojan horse strategy, sideromycin and Streptomyces. The literature research focused on bibliographic databases including all siderophores identified in the genus Streptomyces. In addition, reference genomes of Streptomyces from GenBank were used to identify siderophore biosynthetic gene clusters by using the antiSMASH platform. RESULTS This review has highlighted some of the many siderophore molecules produced by Streptomyces, illustrating the diversity of their chemical structures and a wide spectrum of bioactivities against pathogenic bacteria. Furthermore, the possibility of using siderophores conjugated with antibiotics could be an alternative to overcome bacterial resistance to drugs and could improve their therapeutic efficacy. CONCLUSION This review confirms the importance of Streptomyces as a rich source of siderophores, and underlines their potential as antibacterial agents.
Collapse
Affiliation(s)
- Luciana Terra
- Programa de Pos-Graduacao em Ciencias e Biotecnologia, Instituto de Biologia, UFF, Brazil
| | - Norman Ratcliffe
- Programa de Pos-Graduacao em Ciencias e Biotecnologia, Instituto de Biologia, UFF, Brazil
| | - Helena Carla Castro
- Programa de Pos-Graduacao em Ciencias e Biotecnologia, Instituto de Biologia, UFF, Brazil
| | | | - Paul Dyson
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, United Kingdom
| |
Collapse
|
32
|
Swayambhu G, Bruno M, Gulick AM, Pfeifer BA. Siderophore natural products as pharmaceutical agents. Curr Opin Biotechnol 2021; 69:242-251. [PMID: 33640597 DOI: 10.1016/j.copbio.2021.01.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 11/27/2022]
Abstract
Siderophore natural products are characterized by an ability to tightly chelate metals. The origins of such compounds are often pathogenic microbes utilizing siderophores as virulence factors during host infection. The mechanism for siderophore formation typically involves the activity of nonribosomal peptide synthetases producing compounds across functional group classifications that include catecholate, phenolate, hydroxamate, and mixed categories. Though siderophore production has been a hallmark of pathogenicity, the evolutionarily-optimized binding abilities of siderophores suggest the possibility of re-directing the compounds towards alternative beneficial applications. In this mini-review, we will first describe siderophore formation origins before discussing alternative applications as pharmaceutical products. In so doing, we will cover examples and applications that include reducing metal overload, targeted antibiotic delivery, cancer treatment, vaccine development, and diagnostics. Included in this analysis will be a discussion on the native production hosts of siderophores and prospects for improvement in compound access through the adoption of heterologous biosynthesis.
Collapse
Affiliation(s)
- Girish Swayambhu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Michael Bruno
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Andrew M Gulick
- Department of Structural Biology, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States.
| |
Collapse
|
33
|
Abstract
Bacteria secrete antibiotics to inhibit their competitors, but the presence of competitors can determine whether these toxins are produced. Here, we study the role of the competitive and resource environment on antibiotic production in Streptomyces, bacteria renowned for their production of antibiotics. One of the most important ways that bacteria compete for resources and space is by producing antibiotics that inhibit competitors. Because antibiotic production is costly, the biosynthetic gene clusters coordinating their synthesis are under strict regulatory control and often require “elicitors” to induce expression, including cues from competing strains. Although these cues are common, they are not produced by all competitors, and so the phenotypes causing induction remain unknown. By studying interactions between 24 antibiotic-producing strains of streptomycetes, we show that strains commonly inhibit each other’s growth and that this occurs more frequently if strains are closely related. Next, we show that antibiotic production is more likely to be induced by cues from strains that are closely related or that share secondary metabolite biosynthetic gene clusters (BGCs). Unexpectedly, antibiotic production is less likely to be induced by competitors that inhibit the growth of a focal strain, indicating that cell damage is not a general cue for induction. In addition to induction, antibiotic production often decreases in the presence of a competitor, although this response was not associated with genetic relatedness or overlap in BGCs. Finally, we show that resource limitation increases the chance that antibiotic production declines during competition. Our results reveal the importance of social cues and resource availability in the dynamics of interference competition in streptomycetes.
Collapse
|
34
|
Perraud Q, Kuhn L, Fritsch S, Graulier G, Gasser V, Normant V, Hammann P, Schalk IJ. Opportunistic use of catecholamine neurotransmitters as siderophores to access iron by Pseudomonas aeruginosa. Environ Microbiol 2020; 24:878-893. [PMID: 33350053 DOI: 10.1111/1462-2920.15372] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Iron is an essential nutrient for bacterial growth and the cause of a fierce battle between the pathogen and host during infection. Bacteria have developed several strategies to access iron from the host, the most common being the production of siderophores, small iron-chelating molecules secreted into the bacterial environment. The opportunist pathogen Pseudomonas aeruginosa produces two siderophores, pyoverdine and pyochelin, and is also able to use a wide panoply of xenosiderophores, siderophores produced by other microorganisms. Here, we demonstrate that catecholamine neurotransmitters (dopamine, l-DOPA, epinephrine and norepinephrine) are able to chelate iron and efficiently bring iron into P. aeruginosa cells via TonB-dependent transporters (TBDTs). Bacterial growth assays under strong iron-restricted conditions and with numerous mutants showed that the TBDTs involved are PiuA and PirA. PiuA exhibited more pronounced specificity for dopamine uptake than for norepinephrine, epinephrine and l-DOPA, whereas PirA specificity appeared to be higher for l-DOPA and norepinephrine. Proteomic and qRT-PCR approaches showed pirA transcription and expression to be induced in the presence of all four catecholamines. Finally, the oxidative properties of catecholamines enable them to reduce iron, and we observed ferrous iron uptake via the FeoABC system in the presence of l-DOPA.
Collapse
Affiliation(s)
- Quentin Perraud
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, Strasbourg Cedex, F-67084, France
| | - Sarah Fritsch
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Gwenaëlle Graulier
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Véronique Gasser
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Vincent Normant
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Philippe Hammann
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, Strasbourg Cedex, F-67084, France
| | - Isabelle J Schalk
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| |
Collapse
|
35
|
Xie F, Dai S, Zhao Y, Huang P, Yu S, Ren B, Wang Q, Ji Z, Alterovitz G, Zhang Q, Zhang J, Chen X, Jiang L, Song F, Liu H, Ausubel FM, Liu X, Dai H, Zhang L. Generation of Fluorinated Amychelin Siderophores against Pseudomonas aeruginosa Infections by a Combination of Genome Mining and Mutasynthesis. Cell Chem Biol 2020; 27:1532-1543.e6. [PMID: 33186541 DOI: 10.1016/j.chembiol.2020.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/29/2020] [Accepted: 10/20/2020] [Indexed: 11/30/2022]
Abstract
Pioneering microbial genomic surveys have revealed numerous untapped biosynthetic gene clusters, unveiling the great potential of new natural products. Here, using a combination of genome mining, mutasynthesis, and activity screening in an infection model comprising Caenorhabditis elegans and Pseudomonas aeruginosa, we identified candidate virulence-blocking amychelin siderophore compounds from actinomycetes. Subsequently, we developed unreported analogs of these virulence-blocking siderophores with improved potency by exploiting an Amycolatopsis methanolica strain 239T chorismate to salicylate a biosynthetic subpathway for mutasynthesis. This allowed us to generate the fluorinated amychelin, fluoroamychelin I, which rescued C. elegans from P. aeruginosa-mediated killing with an EC50 value of 1.4 μM, outperforming traditional antibiotics including ceftazidime and meropenem. In general, this paper describes an efficient platform for the identification and production of classes of anti-microbial compounds with potential unique modes of action.
Collapse
Affiliation(s)
- Feng Xie
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengwang Dai
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Zhao
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pei Huang
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shen Yu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiushui Wang
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zengchun Ji
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Qi Zhang
- Department of Pediatrics, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiangyin Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lan Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fuhang Song
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Frederick M Ausubel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
36
|
Oliveira R, Bush MJ, Pires S, Chandra G, Casas-Pastor D, Fritz G, Mendes MV. The novel ECF56 SigG1-RsfG system modulates morphological differentiation and metal-ion homeostasis in Streptomyces tsukubaensis. Sci Rep 2020; 10:21728. [PMID: 33303917 PMCID: PMC7730460 DOI: 10.1038/s41598-020-78520-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Extracytoplasmic function (ECF) sigma factors are key transcriptional regulators that prokaryotes have evolved to respond to environmental challenges. Streptomyces tsukubaensis harbours 42 ECFs to reprogram stress-responsive gene expression. Among them, SigG1 features a minimal conserved ECF σ2-σ4 architecture and an additional C-terminal extension that encodes a SnoaL_2 domain, which is characteristic for ECF σ factors of group ECF56. Although proteins with such domain organisation are widely found among Actinobacteria, the functional role of ECFs with a fused SnoaL_2 domain remains unknown. Our results show that in addition to predicted self-regulatory intramolecular amino acid interactions between the SnoaL_2 domain and the ECF core, SigG1 activity is controlled by the cognate anti-sigma protein RsfG, encoded by a co-transcribed sigG1-neighbouring gene. Characterisation of ∆sigG1 and ∆rsfG strains combined with RNA-seq and ChIP-seq experiments, suggests the involvement of SigG1 in the morphological differentiation programme of S. tsukubaensis. SigG1 regulates the expression of alanine dehydrogenase, ald and the WhiB-like regulator, wblC required for differentiation, in addition to iron and copper trafficking systems. Overall, our work establishes a model in which the activity of a σ factor of group ECF56, regulates morphogenesis and metal-ions homeostasis during development to ensure the timely progression of multicellular differentiation.
Collapse
Affiliation(s)
- Rute Oliveira
- Bioengineering and Synthetic Microbiology Group, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCBiology), ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Matthew J Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Sílvia Pires
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Jill Roberts Institute for IBD Research, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Delia Casas-Pastor
- Center for Synthetic Microbiology, Philipps-University Marburg, 35032, Marburg, Germany
| | - Georg Fritz
- School for Molecular Sciences, University of Western Australia, Perth, 6009, Australia
| | - Marta V Mendes
- Bioengineering and Synthetic Microbiology Group, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
37
|
Hierarchical routing in carbon metabolism favors iron-scavenging strategy in iron-deficient soil Pseudomonas species. Proc Natl Acad Sci U S A 2020; 117:32358-32369. [PMID: 33273114 PMCID: PMC7768705 DOI: 10.1073/pnas.2016380117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Siderophore secretion confers competitive advantage to pathogenic and beneficial bacteria in various nutritional environments, including human infections and rhizosphere microbiome. The siderophore biosynthesis must be sustained during a compromised carbon metabolism in Fe-deficient cells. Here we demonstrate that Fe-deficient Pseudomonas species overcome this paradox by coupling selectivity in carbon utilization with a hierarchy in metabolic pathways to favor carbon and energy fluxes for siderophore biosynthesis. A reprogrammed metabolism is predicted from genomics-based data obtained with several marine and soil bacterial systems in response to Fe deficiency, but metabolomics evidence is lacking. The present study offers an important roadmap for investigating the underlying metabolic connections between Fe or other metal nutrient availability and carbon utilization. High-affinity iron (Fe) scavenging compounds, or siderophores, are widely employed by soil bacteria to survive scarcity in bioavailable Fe. Siderophore biosynthesis relies on cellular carbon metabolism, despite reported decrease in both carbon uptake and Fe-containing metabolic proteins in Fe-deficient cells. Given this paradox, the metabolic network required to sustain the Fe-scavenging strategy is poorly understood. Here, through multiple 13C-metabolomics experiments with Fe-replete and Fe-limited cells, we uncover how soil Pseudomonas species reprogram their metabolic pathways to prioritize siderophore biosynthesis. Across the three species investigated (Pseudomonas putida KT2440, Pseudomonas protegens Pf-5, and Pseudomonas putida S12), siderophore secretion is higher during growth on gluconeogenic substrates than during growth on glycolytic substrates. In response to Fe limitation, we capture decreased flux toward the tricarboxylic acid (TCA) cycle during the metabolism of glycolytic substrates but, due to carbon recycling to the TCA cycle via enhanced anaplerosis, the metabolism of gluconeogenic substrates results in an increase in both siderophore secretion (up to threefold) and Fe extraction (up to sixfold) from soil minerals. During simultaneous feeding on the different substrate types, Fe deficiency triggers a hierarchy in substrate utilization, which is facilitated by changes in protein abundances for substrate uptake and initial catabolism. Rerouted metabolism further promotes favorable fluxes in the TCA cycle and the gluconeogenesis–anaplerosis nodes, despite decrease in several proteins in these pathways, to meet carbon and energy demands for siderophore precursors in accordance with increased proteins for siderophore biosynthesis. Hierarchical carbon metabolism thus serves as a critical survival strategy during the metal nutrient deficiency.
Collapse
|
38
|
Tenconi E, Traxler M, Tellatin D, van Wezel GP, Rigali S. Prodiginines Postpone the Onset of Sporulation in Streptomyces coelicolor. Antibiotics (Basel) 2020; 9:E847. [PMID: 33256178 PMCID: PMC7760128 DOI: 10.3390/antibiotics9120847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 01/29/2023] Open
Abstract
Bioactive natural products are typically secreted by the producer strain. Besides that, this allows the targeting of competitors, also filling a protective role, reducing the chance of self-killing. Surprisingly, DNA-degrading and membrane damaging prodiginines (PdGs) are only produced intracellularly, and are required for the onset of the second round of programmed cell death (PCD) in Streptomyces coelicolor. In this work, we investigated the influence of PdGs on the timing of the morphological differentiation of S. coelicolor. The deletion of the transcriptional activator gene redD that activates the red cluster for PdGs or nutrient-mediated reduction of PdG synthesis both resulted in the precocious appearance of mature spore chains. Transcriptional analysis revealed an accelerated expression of key developmental genes in the redD null mutant, including bldN for the developmental σ factor BldN which is essential for aerial mycelium formation. In contrast, PdG overproduction due to the enhanced copy number of redD resulted in a delay or block in sporulation. In addition, confocal fluorescence microscopy revealed that the earliest aerial hyphae do not produce PdGs. This suggests that filaments that eventually differentiate into spore chains and are hence required for survival of the colony, are excluded from the second round of PCD induced by PdGs. We propose that one of the roles of PdGs would be to delay the entrance of S. coelicolor into the dormancy state (sporulation) by inducing the leakage of the intracellular content of dying filaments thereby providing nutrients for the survivors.
Collapse
Affiliation(s)
- Elodie Tenconi
- InBioS—Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000 Liège, Belgium; (E.T.); (D.T.)
- Hedera-22, Boulevard du rectorat 27b, B-4000 Liège, Belgium
| | - Matthew Traxler
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA;
| | - Déborah Tellatin
- InBioS—Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000 Liège, Belgium; (E.T.); (D.T.)
| | - Gilles P. van Wezel
- Molecular Biotechnology, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands;
| | - Sébastien Rigali
- InBioS—Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000 Liège, Belgium; (E.T.); (D.T.)
- Hedera-22, Boulevard du rectorat 27b, B-4000 Liège, Belgium
| |
Collapse
|
39
|
Liu N, Song T, Zhang S, Liu H, Zhao X, Shao Y, Li C, Zhang W. Characterization of the Potential Probiotic Vibrio sp. V33 Antagonizing Vibrio Splendidus Based on Iron Competition. IRANIAN JOURNAL OF BIOTECHNOLOGY 2020; 18:e2259. [PMID: 32884955 PMCID: PMC7461713 DOI: 10.30498/ijb.2019.85192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background: Vibrio Splendidus Vs is an important aquaculture pathogen that can infect a broad host of marine organisms. In our previous study,
an antagonistic bacterium Vibrio sp. V33 that possessed inhibitory effects on the growth and virulence of a pathogenic isolate V. splendidus Vs was identified. Objectives: Here, we further explored the antagonistic substances and antagonistic effects from the viewpoint of iron competition. Materials and Methods: The main antagonistic substances in the supernatants from Vibrio sp. V33 were identified using the bioassay-guided method.
The response of V. splendidus Vs under the challenge of cell-free supernatant from Vibrio sp. V33 was determined via sodium dodecyl
sulfate-polyacrylamide gel electrophoresis and real-time reverse-transcription PCR. Results: The main antagonistic substances produced by Vibrio sp. V33 have low molecular weights, are water soluble, and are heat-stable substances.
Meanwhile, the iron uptake rate of Vibrio sp. V33 was higher than that of V. splendidus Vs. In the presence of cell-free supernatant
from Vibrio sp. V33, expressions of two functional genes, viuB and asbJ related to ferric uptake processes in V. splendidus Vs,
were up-regulated, whereas furVs coding the ferric uptake repressor was suppressed below 0.5-fold. One gene coding phosphopyruvate
hydratase does not change at mRNA level, but was up-regulated at protein level. Conclusions: Our results suggested that antagonistic effect of Vibrio sp. V33 on the pathogenic isolate V. splendidus Vs was partially due to the stronger
ability of Vibrio sp. V33 to seize iron. This cell-free supernatant from Vibrio sp. V33 created an iron-limited milieu for V. splendidus Vs,
which led to the changed expression profiles of genes that were related to iron uptake in V. splendidus Vs.
Collapse
Affiliation(s)
- Ningning Liu
- School of Marine Sciences, Ningbo University, Ningbo 315211, P.R. China
| | - Tongxiang Song
- School of Marine Sciences, Ningbo University, Ningbo 315211, P.R. China
| | - Shanshan Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, P.R. China
| | - Huijie Liu
- School of Marine Sciences, Ningbo University, Ningbo 315211, P.R. China
| | - Xuelin Zhao
- School of Marine Sciences, Ningbo University, Ningbo 315211, P.R. China
| | - Yina Shao
- School of Marine Sciences, Ningbo University, Ningbo 315211, P.R. China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, P.R. China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, P.R. China
| |
Collapse
|
40
|
Role of symbiosis in the discovery of novel antibiotics. J Antibiot (Tokyo) 2020; 73:490-503. [PMID: 32499556 DOI: 10.1038/s41429-020-0321-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/18/2020] [Accepted: 04/26/2020] [Indexed: 12/16/2022]
Abstract
Antibiotic resistance has been an ongoing challenge that has emerged almost immediately after the initial discovery of antibiotics and requires the development of innovative new antibiotics and antibiotic combinations that can effectively mitigate the development of resistance. More than 35,000 people die each year from antibiotic resistant infections in just the United States. This signifies the importance of identifying other alternatives to antibiotics for which resistance has developed. Virtually, all currently used antibiotics can trace their genesis to soil derived bacteria and fungi. The bacteria and fungi involved in symbiosis is an area that still remains widely unexplored for the discovery and development of new antibiotics. This brief review focuses on the challenges and opportunities in the application of symbiotic microbes and also provides an interesting platform that links natural product chemistry with evolutionary biology and ecology.
Collapse
|
41
|
Eickhoff MJ, Bassler BL. Vibrio fischeri siderophore production drives competitive exclusion during dual-species growth. Mol Microbiol 2020; 114:244-261. [PMID: 32259318 PMCID: PMC7541421 DOI: 10.1111/mmi.14509] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/21/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022]
Abstract
When two or more bacterial species inhabit a shared niche, often, they must compete for limited nutrients. Iron is an essential nutrient that is especially scarce in the marine environment. Bacteria can use the production, release, and re-uptake of siderophores, small molecule iron chelators, to scavenge iron. Siderophores provide fitness advantages to species that employ them by enhancing iron acquisition, and moreover, by denying iron to competitors incapable of using the siderophore-iron complex. Here, we show that cell-free culture fluids from the marine bacterium Vibrio fischeri ES114 prevent the growth of other vibrio species. Mutagenesis reveals the aerobactin siderophore as the inhibitor. Our analysis reveals a gene, that we name aerE, encodes the aerobactin exporter, and LuxT is a transcriptional activator of aerobactin production. In co-culture, under iron-limiting conditions, aerobactin production allows V. fischeri ES114 to competitively exclude Vibrio harveyi, which does not possess aerobactin production and uptake genes. In contrast, V. fischeri ES114 mutants incapable of aerobactin production lose in competition with V. harveyi. Introduction of iutA, encoding the aerobactin receptor, together with fhuCDB, encoding the aerobactin importer are sufficient to convert V. harveyi into an "aerobactin cheater."
Collapse
Affiliation(s)
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
42
|
van Bergeijk DA, Terlouw BR, Medema MH, van Wezel GP. Ecology and genomics of Actinobacteria: new concepts for natural product discovery. Nat Rev Microbiol 2020; 18:546-558. [DOI: 10.1038/s41579-020-0379-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2020] [Indexed: 01/09/2023]
|
43
|
Yang N, Cao Q, Hu S, Xu C, Fan K, Chen F, Yang C, Liang H, Wu M, Bae T, Lan L. Alteration of protein homeostasis mediates the interaction of
Pseudomonas aeruginosa
with
Staphylococcus aureus. Mol Microbiol 2020; 114:423-442. [DOI: 10.1111/mmi.14519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Nana Yang
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Qiao Cao
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
- College of Life Science Northwest University Xi'an China
| | - Shuyang Hu
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Chenchen Xu
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Ke Fan
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Feifei Chen
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
- College of Life Science Northwest University Xi'an China
| | - Cai‐Guang Yang
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Haihua Liang
- College of Life Science Northwest University Xi'an China
| | - Min Wu
- Department of Biomedical Sciences University of North Dakota Grand Forks ND USA
| | - Taeok Bae
- Department of Microbiology and Immunology Indiana University School of Medicine‐Northwest Gary IN USA
| | - Lefu Lan
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
- College of Life Science Northwest University Xi'an China
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology Shanghai Institute for Food and Drug Control Shanghai China
| |
Collapse
|
44
|
Lesson from Ecotoxicity: Revisiting the Microbial Lipopeptides for the Management of Emerging Diseases for Crop Protection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041434. [PMID: 32102264 PMCID: PMC7068399 DOI: 10.3390/ijerph17041434] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022]
Abstract
Microorganisms area treasure in terms of theproduction of various bioactive compounds which are being explored in different arenas of applied sciences. In agriculture, microbes and their bioactive compounds are being utilized in growth promotion and health promotion withnutrient fortification and its acquisition. Exhaustive explorations are unraveling the vast diversity of microbialcompounds with their potential usage in solving multiferous problems incrop production. Lipopeptides are one of such microbial compounds which havestrong antimicrobial properties against different plant pathogens. These compounds are reported to be produced by bacteria, cyanobacteria, fungi, and few other microorganisms; however, genus Bacillus alone produces a majority of diverse lipopeptides. Lipopeptides are low molecular weight compounds which havemultiple industrial roles apart from being usedas biosurfactants and antimicrobials. In plant protection, lipopeptides have wide prospects owing totheirpore-forming ability in pathogens, siderophore activity, biofilm inhibition, and dislodging activity, preventing colonization bypathogens, antiviral activity, etc. Microbes with lipopeptides that haveall these actions are good biocontrol agents. Exploring these antimicrobial compounds could widen the vistasof biological pest control for existing and emerging plant pathogens. The broader diversity and strong antimicrobial behavior of lipopeptides could be a boon for dealing withcomplex pathosystems and controlling diseases of greater economic importance. Understanding which and how these compounds modulate the synthesis and production of defense-related biomolecules in the plants is a key question—the answer of whichneeds in-depth investigation. The present reviewprovides a comprehensive picture of important lipopeptides produced by plant microbiome, their isolation, characterization, mechanisms of disease control, behavior against phytopathogens to understand different aspects of antagonism, and potential prospects for future explorations as antimicrobial agents. Understanding and exploring the antimicrobial lipopeptides from bacteria and fungi could also open upan entire new arena of biopesticides for effective control of devastating plant diseases.
Collapse
|
45
|
Lee N, Kim W, Chung J, Lee Y, Cho S, Jang KS, Kim SC, Palsson B, Cho BK. Iron competition triggers antibiotic biosynthesis in Streptomyces coelicolor during coculture with Myxococcus xanthus. ISME JOURNAL 2020; 14:1111-1124. [PMID: 31992858 PMCID: PMC7174319 DOI: 10.1038/s41396-020-0594-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/09/2020] [Accepted: 01/17/2020] [Indexed: 01/09/2023]
Abstract
Microbial coculture to mimic the ecological habitat has been suggested as an approach to elucidate the effect of microbial interaction on secondary metabolite biosynthesis of Streptomyces. However, because of chemical complexity during coculture, underlying mechanisms are largely unknown. Here, we found that iron competition triggered antibiotic biosynthesis in Streptomyces coelicolor during coculture with Myxococcus xanthus. During coculture, M. xanthus enhanced the production of a siderophore, myxochelin, leading M. xanthus to dominate iron scavenging and S. coelicolor to experience iron-restricted conditions. This chemical competition, but not physical contact, activated the actinorhodin biosynthetic gene cluster and the branched-chain amino acid degradation pathway which imply the potential to produce precursors, along with activation of a novel actinorhodin export system. Furthermore, we found that iron restriction increased the expression of 21 secondary metabolite biosynthetic gene clusters (smBGCs) in other Streptomyces species. These findings suggested that the availability for key ions stimulates specific smBGCs, which had the potential to enhance secondary metabolite biosynthesis in Streptomyces.
Collapse
Affiliation(s)
- Namil Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Woori Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jinkyoo Chung
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yongjae Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Kyoung-Soon Jang
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea.,Division of Bio-Analytical Science, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,Intelligent Synthetic Biology Center, Daejeon, 34141, Republic of Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.,Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea. .,Intelligent Synthetic Biology Center, Daejeon, 34141, Republic of Korea. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark.
| |
Collapse
|
46
|
Liu C, Kakeya H. Cryptic Chemical Communication: Secondary Metabolic Responses Revealed by Microbial Co‐culture. Chem Asian J 2020; 15:327-337. [DOI: 10.1002/asia.201901505] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/15/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Chao Liu
- Department of System Chemotherapy and Molecular SciencesDivision of Bioinformatics and Chemical GenomicsGraduate School of Pharmaceutical SciencesKyoto University Sakyo-ku Kyoto 606-8501 Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular SciencesDivision of Bioinformatics and Chemical GenomicsGraduate School of Pharmaceutical SciencesKyoto University Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
47
|
Chevrette MG, Gutiérrez-García K, Selem-Mojica N, Aguilar-Martínez C, Yañez-Olvera A, Ramos-Aboites HE, Hoskisson PA, Barona-Gómez F. Evolutionary dynamics of natural product biosynthesis in bacteria. Nat Prod Rep 2019; 37:566-599. [PMID: 31822877 DOI: 10.1039/c9np00048h] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2008 up to 2019The forces of biochemical adaptive evolution operate at the level of genes, manifesting in complex phenotypes and the global biodiversity of proteins and metabolites. While evolutionary histories have been deciphered for some other complex traits, the origins of natural product biosynthesis largely remain a mystery. This fundamental knowledge gap is surprising given the many decades of research probing the genetic, chemical, and biophysical mechanisms of bacterial natural product biosynthesis. Recently, evolutionary thinking has begun to permeate this otherwise mechanistically dominated field. Natural products are now sometimes referred to as 'specialized' rather than 'secondary' metabolites, reinforcing the importance of their biological and ecological functions. Here, we review known evolutionary mechanisms underlying the overwhelming chemical diversity of bacterial secondary metabolism, focusing on enzyme promiscuity and the evolution of enzymatic domains that enable metabolic traits. We discuss the mechanisms that drive the assembly of natural product biosynthetic gene clusters and propose formal definitions for 'specialized' and 'secondary' metabolism. We further explore how biosynthetic gene clusters evolve to synthesize related molecular species, and in turn how the biological and ecological roles that emerge from metabolic diversity are acted on by selection. Finally, we reconcile chemical, functional, and genetic data into an evolutionary model, the dynamic chemical matrix evolutionary hypothesis, in which the relationships between chemical distance, biomolecular activity, and relative fitness shape adaptive landscapes.
Collapse
Affiliation(s)
- Marc G Chevrette
- Wisconsin Institute for Discovery, Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Siderophores have important functions for bacteria in iron acquisition and as virulence factors. In this chapter we will discuss the engineering of cyclic hydroxamate siderophores by various biochemical approaches based on the example of Shewanella algae. The marine gamma-proteobacterium S. algae produces three different cyclic hydroxamate siderophores as metabolites via a single biosynthetic gene cluster and one of them is an important key player in interspecies competition blocking swarming of Vibrio alginolyticus. AvbD is the key metabolic enzyme assembling the precursors into three different core structures and hence an interesting target for metabolic and biochemical engineering. Synthetic natural and unnatural precursors can be converted in vitro with purified AvbD to generate siderophores with various ring sizes ranging from analytical to milligram scale. These engineered siderophores can be applied, for example, as swarming inhibitors against V. alginolyticus. Here, we describe the synthesis of the natural and unnatural siderophore precursors HS[X]A and provide our detailed protocols for protein expression of AvbD, conversion of HS[X]A with the enzyme to produce ring-size engineered siderophores and secondly for a biosynthetic feeding strategy that allows to extract engineered siderophores in the milligram scale.
Collapse
|
49
|
Abstract
Diatoms can access inorganic iron with remarkable efficiency, but this process is contingent on carbonate ion concentration. As ocean acidification reduces carbonate concentration, inorganic iron uptake may be discouraged in favor of carbonate-independent uptake. We report details of an iron assimilation process that needs no carbonate but requires exogenous compounds produced by cooccurring organisms. We show this process to be critical for diatom growth at high siderophore concentrations, but ineffective at acquiring iron from low-affinity organic chelators or lithogenic particulates. Understanding the caveats associated with iron source preference in diatoms will help predict the impacts of climate change on microbial community structure in high-nitrate low-chlorophyll ecosystems. Iron uptake by diatoms is a biochemical process with global biogeochemical implications. In large regions of the surface ocean diatoms are both responsible for the majority of primary production and frequently experiencing iron limitation of growth. The strategies used by these phytoplankton to extract iron from seawater constrain carbon flux into higher trophic levels and sequestration into sediments. In this study we use reverse genetic techniques to target putative iron-acquisition genes in the model pennate diatom Phaeodactylum tricornutum. We describe components of a reduction-dependent siderophore acquisition pathway that relies on a bacterial-derived receptor protein and provides a viable alternative to inorganic iron uptake under certain conditions. This form of iron uptake entails a close association between diatoms and siderophore-producing organisms during low-iron conditions. Homologs of these proteins are found distributed across diatom lineages, suggesting the significance of siderophore utilization by diatoms in the marine environment. Evaluation of specific proteins enables us to confirm independent iron-acquisition pathways in diatoms and characterize their preferred substrates. These findings refine our mechanistic understanding of the multiple iron-uptake systems used by diatoms and help us better predict the influence of iron speciation on taxa-specific iron bioavailability.
Collapse
|
50
|
Zhang C, Straight PD. Antibiotic discovery through microbial interactions. Curr Opin Microbiol 2019; 51:64-71. [DOI: 10.1016/j.mib.2019.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/05/2019] [Accepted: 06/20/2019] [Indexed: 01/09/2023]
|