1
|
Helmann JD. Metals in Motion: Understanding Labile Metal Pools in Bacteria. Biochemistry 2025; 64:329-345. [PMID: 39755956 PMCID: PMC11755726 DOI: 10.1021/acs.biochem.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 01/07/2025]
Abstract
Metal ions are essential for all life. In microbial cells, potassium (K+) is the most abundant cation and plays a key role in maintaining osmotic balance. Magnesium (Mg2+) is the dominant divalent cation and is required for nucleic acid structure and as an enzyme cofactor. Microbes typically require the transition metals manganese (Mn), iron (Fe), copper (Cu), and zinc (Zn), although the precise set of metal ions needed to sustain life is variable. Intracellular metal pools can be conceptualized as a chemically complex mixture of rapidly exchanging (labile) ions, complemented by those reservoirs that exchange slowly relative to cell metabolism (sequestered). Labile metal pools are buffered by transient interactions with anionic metabolites and macromolecules, with the ribosome playing a major role. Sequestered metal pools include many metalloproteins, cofactors, and storage depots, with some pools redeployed upon metal depletion. Here, I review the size, composition, and dynamics of intracellular metal pools and highlight the major gaps in understanding.
Collapse
Affiliation(s)
- John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, United States
| |
Collapse
|
2
|
Arvaniti M, Gaballa A, Orsi RH, Skandamis P, Wiedmann M. Deciphering the Molecular Mechanism of Peracetic Acid Response in Listeria monocytogenes. J Food Prot 2025; 88:100401. [PMID: 39515609 DOI: 10.1016/j.jfp.2024.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Peracetic acid (PAA), a strong oxidizing agent, has been widely used as a disinfectant in food processing settings as it does not produce harmful chlorinated by-products. In the present study, the transcriptional response of Listeria monocytogenes to a sub-lethal concentration of PAA (2.5 ppm) was assessed using RNA-sequencing (RNA-seq). Our analysis revealed 12 differentially expressed protein-coding genes, of which nine were upregulated (ohrR, ohrA, rpsN, lmo0637, lmo1973, fur, lmo2492, zurM, and lmo1007), and three were down-regulated (argG, lmo0604 and lmo2156) in PAA-treated samples compared to the control samples. A non-coding small RNA gene (rli32) was also found to be down-regulated. In detail, the organic peroxide toxicity protection (OhrA-OhrR) system, the metal homeostasis genes fur and zurM, the SbrE-regulated lmo0636-lmo0637 operon and a carbohydrate phosphotransferase system (PTS) operon component were induced under exposure of L. monocytogenes to PAA. Hence, this study identified key elements involved in the primary response of L. monocytogenes to oxidative stress caused by PAA, including the expression of the peroxide detoxification system and fine-tuning the levels of redox-active metals in the cell. The investigation of the molecular mechanism of PAA response in L. monocytogenes is of utmost importance for the food industry, as residual PAA can lead to stress tolerance in pathogens.
Collapse
Affiliation(s)
- Marianna Arvaniti
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece.
| | - Ahmed Gaballa
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Renato H Orsi
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Panagiotis Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Martin Wiedmann
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Gonsalves LJ, Tran A, Gardiner T, Freeman T, Dutta A, Miller CJ, McNamara S, Waalkes A, Long DR, Salipante SJ, Hoffman LR, Wolter DJ. Mechanisms of Staphylococcus aureus survival of trimethoprim-sulfamethoxazole-induced thymineless death. mBio 2024; 15:e0163424. [PMID: 39445807 PMCID: PMC11559000 DOI: 10.1128/mbio.01634-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Trimethoprim-sulfamethoxazole (SXT) is commonly used to treat diverse Staphylococcus aureus infections, including those associated with cystic fibrosis (CF) pulmonary disease. Studies with Escherichia coli found that SXT impairs tetrahydrofolate production, leading to DNA damage, stress response induction, and accumulation of reactive oxygen species (ROS) in a process known as thymineless death (TLD). TLD survival can occur through the uptake of exogenous thymidine, countering the effects of SXT; however, a growing body of research has implicated central metabolism as another potentially important determinant of bacterial survival of SXT and other antibiotics. Here, we conducted studies to better understand the mechanisms of TLD survival in S. aureus. We found that thymidine abundances in CF sputum were insufficient to prevent TLD of S. aureus, highlighting the importance of alternative survival mechanisms in vivo. In S. aureus cultured in vitro with SXT and low thymidine, we frequently identified adaptive mutations in genes encoding carbohydrate, nucleotide, and amino acid metabolism, supporting reduced metabolism as a common survival mechanism. Although intracellular ROS levels rose with SXT treatment in vitro, survival was not improved in the presence of ROS scavengers, unlike in E. coli. SXT challenge induced the SOS response, which was alleviated by added thymidine. Finally, an inactivating mutation in the phosphotransferase gene ptsI conferred both limitation in cellular ATP and improved survival against TLD. Collectively, these results suggest that alterations in core metabolic functions, particularly those that reduce ATP levels, predominantly confer S. aureus survival and persistence during SXT treatment, potentially identifying novel targets for co-treatment.IMPORTANCEStaphylococcus aureus is a ubiquitous organism and one of the leading causes of human infections, many of which are difficult to treat due to persistence, antibiotic resistance, or antibiotic tolerance. As our arsenal of effective antibiotics dwindles, the need for improved treatments becomes increasingly urgent, necessitating a better understanding of the precise mechanisms by which pathogens evade our most critical antimicrobial agents. Here, we report a systematic characterization of the mechanisms of S. aureus survival to treatment with the first-line antistaphylococcal antibiotic trimethoprim-sulfamethoxazole, identifying pathways and candidate targets for enhancing the efficacy of available antimicrobial agents.
Collapse
Affiliation(s)
- Lauren J. Gonsalves
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Allyson Tran
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Tessa Gardiner
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Tiia Freeman
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Angshita Dutta
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Carson J. Miller
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Sharon McNamara
- Pulmonary Division, Seattle Children’s Hospital, Seattle, Washington, USA
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Dustin R. Long
- Division of Critical Care Medicine, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Lucas R. Hoffman
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Pulmonary Division, Seattle Children’s Hospital, Seattle, Washington, USA
| | - Daniel J. Wolter
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Pulmonary Division, Seattle Children’s Hospital, Seattle, Washington, USA
| |
Collapse
|
4
|
Mapar M, Rydzak T, Hommes JW, Surewaard BGJ, Lewis IA. Diverse molecular mechanisms underpinning Staphylococcus aureus small colony variants. Trends Microbiol 2024:S0966-842X(24)00251-8. [PMID: 39393939 DOI: 10.1016/j.tim.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
Small colony variants (SCVs) of Staphylococcus aureus are a relatively rare but clinically significant growth morphotype. Infections with SCVs are frequently difficult to treat, inherently antibiotic-resistant, and can lead to persistent infections. Despite a long history of research, the molecular underpinnings of this morphotype and their impact on the clinical trajectory of infections remain unclear. However, a growing body of literature indicates that SCVs are caused by a diverse range of molecular factors. These recent findings suggest that SCVs should be thought of as an ensemble collection of loosely related phenotypes, and not as a single phenomenon. This review describes the diverse mechanisms currently known to contribute to SCVs and proposes an ensemble model for conceptualizing this morphotype.
Collapse
Affiliation(s)
- Maryam Mapar
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Thomas Rydzak
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Josefien W Hommes
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bas G J Surewaard
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ian A Lewis
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
5
|
Wang M, Wang Y, Wang M, Liu M, Cheng A. Heme acquisition and tolerance in Gram-positive model bacteria: An orchestrated balance. Heliyon 2023; 9:e18233. [PMID: 37501967 PMCID: PMC10368836 DOI: 10.1016/j.heliyon.2023.e18233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
As a nutrient, heme is important for various cellular processes of organism. Bacteria can obtain heme via heme biosynthesis or/and uptake of exogenous heme from the host. On the other side, absorption of excess heme is cytotoxic to bacteria. Thus, bacteria have developed systems to relieve heme toxicity and contribute to the maintenance of heme homeostasis. In the past decades, the mechanisms underlying heme acquisition and tolerance have been well studied in Gram-positive model bacteria, such as Staphylococcus, Streptococcus and other Gram-positive bacteria. Here, we review the elaborate mechanisms by which these bacteria acquire heme and resist heme toxicity. Since both the heme utilization system and the heme tolerance system contribute to bacterial virulence, this review is not only helpful for a comprehensive understanding of the heme homeostasis mechanism in Gram-positive bacteria but also provides a theoretical basis for the development of antimicrobial agents.
Collapse
Affiliation(s)
- Mengying Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuwei Wang
- Mianyang Academy of Agricultural Sciences, Institute of Livestock Research, Mianyang 621023, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
6
|
Stanborough T, Ho NAT, Bulloch EMM, Bashiri G, Dawes SS, Akazong EW, Titterington J, Allison TM, Jiao W, Johnston JM. Allosteric inhibition of Staphylococcus aureus MenD by 1,4-dihydroxy naphthoic acid: a feedback inhibition mechanism of the menaquinone biosynthesis pathway. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220035. [PMID: 36633276 PMCID: PMC9835592 DOI: 10.1098/rstb.2022.0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/25/2022] [Indexed: 01/13/2023] Open
Abstract
Menaquinones (MKs) are electron carriers in bacterial respiratory chains. In Staphylococcus aureus (Sau), MKs are essential for aerobic and anaerobic respiration. As MKs are redox-active, their biosynthesis likely requires tight regulation to prevent disruption of cellular redox balance. We recently found that the Mycobacterium tuberculosis MenD, the first committed enzyme of the MK biosynthesis pathway, is allosterically inhibited by the downstream metabolite 1,4-dihydroxy-2-naphthoic acid (DHNA). To understand if this is a conserved mechanism in phylogenetically distant genera that also use MK, we investigated whether the Sau-MenD is allosterically inhibited by DHNA. Our results show that DHNA binds to and inhibits the SEPHCHC synthase activity of Sau-MenD enzymes. We identified residues in the DHNA binding pocket that are important for catalysis (Arg98, Lys283, Lys309) and inhibition (Arg98, Lys283). Furthermore, we showed that exogenous DHNA inhibits the growth of Sau, an effect that can be rescued by supplementing the growth medium with MK-4. Our results demonstrate that, despite a lack of strict conservation of the DHNA binding pocket between Mtb-MenD and Sau-MenD, feedback inhibition by DHNA is a conserved mechanism in Sau-MenD and hence the Sau MK biosynthesis pathway. These findings may have implications for the development of anti-staphylococcal agents targeting MK biosynthesis. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
Affiliation(s)
- Tamsyn Stanborough
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre (BIC), University of Canterbury, Christchurch 8041, New Zealand
| | - Ngoc Anh Thu Ho
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre (BIC), University of Canterbury, Christchurch 8041, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Esther M. M. Bulloch
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ghader Bashiri
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Stephanie S. Dawes
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Etheline W. Akazong
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre (BIC), University of Canterbury, Christchurch 8041, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - James Titterington
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre (BIC), University of Canterbury, Christchurch 8041, New Zealand
| | - Timothy M. Allison
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre (BIC), University of Canterbury, Christchurch 8041, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Wanting Jiao
- Ferrier Research Institute, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jodie M. Johnston
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre (BIC), University of Canterbury, Christchurch 8041, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
7
|
Ismail M, Bai B, Guo J, Bai Y, Sajid Z, Muhammad SA, Shaikh RS. Experimental Validation of MHC Class I and II Peptide-Based Potential Vaccine Candidates for Human Papilloma Virus Using Sprague-Dawly Models. Molecules 2023; 28:1687. [PMID: 36838675 PMCID: PMC9968051 DOI: 10.3390/molecules28041687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Human papilloma virus (HPV) causes cervical and many other cancers. Recent trend in vaccine design is shifted toward epitope-based developments that are more specific, safe, and easy to produce. In this study, we predicted eight immunogenic peptides of CD4+ and CD8+ T-lymphocytes (MHC class I and II as M1 and M2) including early proteins (E2 and E6), major (L1) and minor capsid protein (L2). Male and female Sprague Dawly rats in groups were immunized with each synthetic peptide. L1M1, L1M2, L2M1, and L2M2 induced significant immunogenic response compared to E2M1, E2M2, E6M1 and E6M2. We observed optimal titer of IgG antibodies (>1.25 g/L), interferon-γ (>64 ng/L), and granzyme-B (>40 pg/mL) compared to control at second booster dose (240 µg/500 µL). The induction of peptide-specific IgG antibodies in immunized rats indicates the T-cell dependent B-lymphocyte activation. A substantial CD4+ and CD8+ cell count was observed at 240 µg/500 µL. In male and female rats, CD8+ cell count for L1 and L2 peptide is 3000 and 3118, and CD4+ is 3369 and 3484 respectively compared to control. In conclusion, we demonstrated that L1M1, L1M2, L2M1, L2M2 are likely to contain potential epitopes for induction of immune responses supporting the feasibility of peptide-based vaccine development for HPV.
Collapse
Affiliation(s)
- Mehreen Ismail
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Baogang Bai
- School of Information and Technology, Wenzhou Business College, Wenzhou 325015, China
- Engineering Research Center of Intelligent Medicine, Wenzhou 325000, China
- The 1st School of Medical, School of Information and Engineering, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Jinlei Guo
- School of Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang 453513, China
| | - Yuhui Bai
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zureesha Sajid
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Syed Aun Muhammad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Rehan Sadiq Shaikh
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan 60800, Pakistan
- Centre for Applied Molecular Biology, University of the Punjab, Lahore 54000, Pakistan
| |
Collapse
|
8
|
Islam S, Callender AC, Ho QN, Wakeman CA. Iron restriction induces the small-colony variant phenotype in Staphylococcus aureus. Front Microbiol 2022; 13:978859. [PMID: 36569073 PMCID: PMC9772265 DOI: 10.3389/fmicb.2022.978859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Pathogens such as Staphylococcus aureus must overcome host-induced selective pressures, including limited iron availability. To cope with the harsh conditions of the host environment, S. aureus can adapt its physiology in multiple ways. One of these adaptations is the fermenting small-colony variant (SCV) phenotype, which is known to be inherently tolerant to certain classes of antibiotics and heme toxicity. We hypothesized that SCVs might also behave uniquely in response to iron starvation since one of the major cellular uses of iron is the respiration machinery. In this study, a respiring strain of S. aureus and fermenting SCV strains were treated with different concentrations of the iron chelator, 2,2' dipyridyl (DIP). Our data demonstrate that a major impact of iron starvation in S. aureus is the repression of respiration and the induction of the SCV phenotype. We demonstrate that the SCV phenotype transiently induced by iron starvation mimics the aminoglycoside recalcitrance exhibited by genetic SCVs. Furthermore, prolonged growth in iron starvation promotes increased emergence of stable aminoglycoside-resistant SCVs relative to the naturally occurring subpopulation of SCVs within an S. aureus community. These findings may have relevance to physiological and evolutionary processes occurring within bacterial populations infecting iron-limited host environments.
Collapse
Affiliation(s)
| | | | | | - Catherine A. Wakeman
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
9
|
Keim KC, George IK, Reynolds L, Smith AC. The Clinical Significance of Staphylococcus aureus Small Colony Variants. Lab Med 2022; 54:227-234. [PMID: 36226897 DOI: 10.1093/labmed/lmac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Abstract
A burdensome, atypical phenotype of Staphylococcus aureus (SA) called S aureus small colony variant (SA-SCV) has been identified, which is induced as a result of a combination of environmental stressors, including polymicrobial interactions. The SA-SCVs exhibit altered phenotypes as a result of metabolic dormancy caused by electron transport deficiency, leading to increased biofilm production and alterations to antimicrobial susceptibility. The SA-SCVs typically exhibit altered colony morphology and biochemical reactions compared with wild-type SA, making them difficult to detect via routine diagnostics. The SA-SCVs have been found to contribute to chronic or recurrent infections, including skin and soft-tissue infections, foreign-body associated infection, cystic fibrosis, and sepsis. There is evidence that SA-SCVs contribute to patient morbidity and mortality as a result of diagnostic difficulties and limited treatment options. New detection methods may need to be developed that can be incorporated into routine diagnostics, which would allow for better assessment of specimens and introduce new considerations for treatment.
Collapse
Affiliation(s)
- Klara C Keim
- Department of Immunology and Microbiology, School of Medicine, Anschutz Medical Campus, University of Colorado , Aurora, CO , USA
| | - Isaiah K George
- Department of Honors Studies, Texas Tech University , Lubbock, TX , USA
| | - Landrye Reynolds
- Department of Honors Studies, Texas Tech University , Lubbock, TX , USA
| | - Allie C Smith
- Department of Honors Studies, Texas Tech University , Lubbock, TX , USA
| |
Collapse
|
10
|
Poshvina DV, Dilbaryan DS, Kasyanov SP, Sadykova VS, Lapchinskaya OA, Rogozhin EA, Vasilchenko AS. Staphylococcus aureus is able to generate resistance to novel lipoglycopeptide antibiotic gausemycin A. Front Microbiol 2022; 13:963979. [PMID: 36246291 PMCID: PMC9558223 DOI: 10.3389/fmicb.2022.963979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Gausemycin A is the first member of the novel lipoglycopeptides family produced by Streptomyces roseoflavus INA-Ac-5812. Gausemycin A has a pronounced bactericidal activity against methicillin-resistant Staphylococcus aureus. However, the ability of S. aureus to be resistant to gausemycin A has not been investigated yet. Using serial passaging, we have obtained the resistant variant S. aureus 5812R, which is 80 times more resistant compared to the parent strain. Susceptibility testing of S. aureus 5812R revealed the acquisition of cross-resistance to daptomycin, cefazolin, tetracycline, and gentamicin, while the resistance to vancomycin, nisin, and ramoplanin was absent. Whole genome sequencing revealed single nucleotide polymorphism (SNP) and deletions in S. aureus 5812R, among which are genes encoding efflux pump (sepA), the two-component Kdp system (kdpE), and the component of isoprenoid biosynthesis pathway (hepT). Phenotypically, S. aureus 5812R resembles a small-colony variant, as it is slow-growing, forms small colonies, and is deficient in pigments. Profiling of fatty acids (FA) composition constituting the cytoplasmic membrane of S. aureus 5812R revealed the prevalence of anteiso-branched FA, while straight FA was slightly less present. The evidence also showed that the gausemycin A-resistant strain has increased expression of the cls2 gene of the cardiolipin synthase. The performed checkerboard assay pointed out that the combination of gausemycin A and ciprofloxacin showed a synergistic effect against S. aureus 5812R.
Collapse
Affiliation(s)
- Darya V. Poshvina
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia
| | - Diana S. Dilbaryan
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia
| | - Sergey P. Kasyanov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Vladivostok, Russia
| | | | | | - Eugene A. Rogozhin
- Gause Institute of New Antibiotics, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, Russia
| | - Alexey S. Vasilchenko
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia
- *Correspondence: Alexey S. Vasilchenko
| |
Collapse
|
11
|
Li Y, Li Y, Chen Y, Cheng M, Yu H, Song H, Cao Y. Coupling riboflavin de novo biosynthesis and cytochrome expression for improving extracellular electron transfer efficiency in Shewanella oneidensis. Biotechnol Bioeng 2022; 119:2806-2818. [PMID: 35798677 DOI: 10.1002/bit.28172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/06/2022]
Abstract
Shewanella oneidensis MR-1, as a model exoelectrogen with divergent extracellular electron transfer (EET) pathways, has been widely used in microbial fuel cells (MFCs). The electron transfer rate is largely determined by riboflavin (RF) and c-type cytochromes (c-Cyts). However, relatively low RF production and inappropriate amount of c-Cyts substantially impedes the capacity of improving the EET rate. In this work, coupling of riboflavin de novo biosynthesis and c-Cyts expression was implemented to enhance the efficiency of EET in S. oneidensis. Firstly, the upstream pathway of RF de novo biosynthesis was divided into four modules, and the expression level of 22 genes in above four modules was fine-tuned by employing promoters with different strength. Among them, genes zwf*, glyA, ybjU which exhibited the optimal RF production were combinatorially overexpressed, leading to enhancement of maximum output power density by 166%. Secondly, the diverse c-Cyts genes were overexpressed to match high RF production, and omcA was selected for further combination. Thirdly, RF de novo biosynthesis and c-Cyts expression were combined, resulting in 2.34-fold higher power output than the parent strain. This modular and combinatorial manipulation strategy provides a generalized reference to advance versatile practical applications of electroactive microorganisms. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yan Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Yuanyuan Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Yaru Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Meijie Cheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Huan Yu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
12
|
Structural basis for heme detoxification by an ATP-binding cassette-type efflux pump in gram-positive pathogenic bacteria. Proc Natl Acad Sci U S A 2022; 119:e2123385119. [PMID: 35767641 PMCID: PMC9271180 DOI: 10.1073/pnas.2123385119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bacterial pathogens acquire heme from the host hemoglobin as an iron nutrient for their virulence and proliferation in blood. Concurrently, they encounter cytotoxic-free heme that escapes the heme-acquisition process. To overcome this toxicity, many gram-positive bacteria employ an ATP-binding cassette heme-dedicated efflux pump, HrtBA in the cytoplasmic membranes. Although genetic analyses have suggested that HrtBA expels heme from the bacterial membranes, the molecular mechanism of heme efflux remains elusive due to the lack of protein studies. Here, we show the biochemical properties and crystal structures of Corynebacterium diphtheriae HrtBA, alone and in complex with heme or an ATP analog, and we reveal how HrtBA extracts heme from the membrane and releases it. HrtBA consists of two cytoplasmic HrtA ATPase subunits and two transmembrane HrtB permease subunits. A heme-binding site is formed in the HrtB dimer and is laterally accessible to heme in the outer leaflet of the membrane. The heme-binding site captures heme from the membrane using a glutamate residue of either subunit as an axial ligand and sequesters the heme within the rearranged transmembrane helix bundle. By ATP-driven HrtA dimerization, the heme-binding site is squeezed to extrude the bound heme. The mechanism sheds light on the detoxification of membrane-bound heme in this bacterium.
Collapse
|
13
|
Beavers WN, Munneke MJ, Stackhouse AR, Freiberg JA, Skaar EP. Host Polyunsaturated Fatty Acids Potentiate Aminoglycoside Killing of Staphylococcus aureus. Microbiol Spectr 2022; 10:e0276721. [PMID: 35377191 PMCID: PMC9045252 DOI: 10.1128/spectrum.02767-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
Aminoglycoside antibiotics rely on the proton motive force to enter the bacterial cell, and facultative anaerobes like Staphylococcus aureus can shift energy generation from respiration to fermentation, becoming tolerant of aminoglycosides. Following this metabolic shift, high concentrations of aminoglycosides are required to eradicate S. aureus infections, which endangers the host due to the toxicity of aminoglycosides. Membrane-disrupting molecules prevent aminoglycoside tolerance in S. aureus by facilitating passive entry of the drug through the membrane. Polyunsaturated fatty acids (PUFAs) increase membrane permeability when incorporated into S. aureus. Here, we report that the abundant host-derived PUFA arachidonic acid increases the susceptibility of S. aureus to aminoglycosides, decreasing the aminoglycoside concentration needed to kill S. aureus. We demonstrate that PUFAs and aminoglycosides synergize to kill multiple strains of S. aureus, including both methicillin-resistant and -susceptible S. aureus. We also present data showing that PUFAs and aminoglycosides effectively kill S. aureus small colony variants, strains that are particularly recalcitrant to killing by many antibiotics. We conclude that cotreatment with PUFAs, which are molecules with low host toxicity, and aminoglycosides decreases the aminoglycoside concentration necessary to kill S. aureus, lowering the toxic side effects to the host associated with prolonged aminoglycoside exposure. IMPORTANCE Staphylococcus aureus infects every niche of the human host, and these infections are the leading cause of Gram-positive sepsis. Aminoglycoside antibiotics are inexpensive, stable, and effective against many bacterial infections. However, S. aureus can shift its metabolism to become tolerant of aminoglycosides, requiring increased concentrations and/or longer courses of treatment, which can cause severe host toxicity. Here, we report that polyunsaturated fatty acids (PUFAs), which have low host toxicity, disrupt the S. aureus membrane, making the pathogen susceptible to aminoglycosides. Additionally, cotreatment with aminoglycosides is effective at killing S. aureus small colony variants, strains that are difficult to treat with antibiotics. Taken together, the data presented herein show the promise of PUFA cotreatment to increase the efficacy of aminoglycosides against S. aureus infections and decrease the risk to the human host of antibiotic-induced toxicity.
Collapse
Affiliation(s)
- William N. Beavers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathobiological Sciences, Louisiana State University and Agricultural and Mechanical College, School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Matthew J. Munneke
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alex R. Stackhouse
- Department of Pathobiological Sciences, Louisiana State University and Agricultural and Mechanical College, School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Jeffrey A. Freiberg
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
14
|
Naclerio GA, Onyedibe KI, Karanja CW, Aryal UK, Sintim HO. Comparative Studies to Uncover Mechanisms of Action of N-(1,3,4-Oxadiazol-2-yl)benzamide Containing Antibacterial Agents. ACS Infect Dis 2022; 8:865-877. [PMID: 35297603 PMCID: PMC9188027 DOI: 10.1021/acsinfecdis.1c00613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drug-resistant bacterial pathogens still cause high levels of mortality annually despite the availability of many antibiotics. Methicillin-resistant Staphylococcus aureus (MRSA) is especially problematic, and the rise in resistance to front-line treatments like vancomycin and linezolid calls for new chemical modalities to treat chronic and relapsing MRSA infections. Halogenated N-(1,3,4-oxadiazol-2-yl)benzamides are an interesting class of antimicrobial agents, which have been described by multiple groups to be effective against different bacterial pathogens. The modes of action of a few N-(1,3,4-oxadiazol-2-yl)benzamides have been elucidated. For example, oxadiazoles KKL-35 and MBX-4132 have been described as inhibitors of trans-translation (a ribosome rescue pathway), while HSGN-94 was shown to inhibit lipoteichoic acid (LTA). However, other similarly halogenated N-(1,3,4-oxadiazol-2-yl)benzamides neither inhibit trans-translation nor LTA biosynthesis but are potent antimicrobial agents. For example, HSGN-220, -218, and -144 are N-(1,3,4-oxadiazol-2-yl)benzamides that are modified with OCF3, SCF3, or SF5 and have remarkable minimum inhibitory concentrations ranging from 1 to 0.06 μg/mL against MRSA clinical isolates and show a low propensity to develop resistance to MRSA over 30 days. The mechanism of action of these highly potent oxadiazoles is however unknown. To provide insights into how these halogenated N-(1,3,4-oxadiazol-2-yl)benzamides inhibit bacterial growth, we performed global proteomics and RNA expression analysis of some essential genes of S. aureus treated with HSGN-220, -218, and -144. These studies revealed that the oxadiazoles HSGN-220, -218, and -144 are multitargeting antibiotics that regulate menaquinone biosynthesis and other essential proteins like DnaX, Pol IIIC, BirA, LexA, and DnaC. In addition, these halogenated N-(1,3,4-oxadiazol-2-yl)benzamides were able to depolarize bacterial membranes and regulate siderophore biosynthesis and heme regulation. Iron starvation appears to be part of the mechanism of action that led to bacterial killing. This study demonstrates that N-(1,3,4-oxadiazol-2-yl)benzamides are indeed privileged scaffolds for the development of antibacterial agents and that subtle modifications lead to changes to the mechanism of action.
Collapse
Affiliation(s)
- George A. Naclerio
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kenneth I. Onyedibe
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Inflammation, Immunology, and Infectious Diseases, West Lafayette, Indiana 47907, United States
| | - Caroline W. Karanja
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Uma K. Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Herman O. Sintim
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Inflammation, Immunology, and Infectious Diseases, West Lafayette, Indiana 47907, United States
| |
Collapse
|
15
|
Quinones: More Than Electron Shuttles. Res Microbiol 2022; 173:103953. [DOI: 10.1016/j.resmic.2022.103953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/21/2022]
|
16
|
Li L, Koirala B, Hernandez Y, MacIntyre LW, Ternei MA, Russo R, Brady SF. Identification of structurally diverse menaquinone-binding antibiotics with in vivo activity against multidrug-resistant pathogens. Nat Microbiol 2022; 7:120-131. [PMID: 34949828 PMCID: PMC8732328 DOI: 10.1038/s41564-021-01013-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
The emergence of multidrug-resistant bacteria poses a threat to global health and necessitates the development of additional in vivo active antibiotics with diverse modes of action. Directly targeting menaquinone (MK), which plays an important role in bacterial electron transport, is an appealing, yet underexplored, mode of action due to a dearth of MK-binding molecules. Here we combine sequence-based metagenomic mining with a motif search of bioinformatically predicted natural product structures to identify six biosynthetic gene clusters that we predicted encode MK-binding antibiotics (MBAs). Their predicted products (MBA1-6) were rapidly accessed using a synthetic bioinformatic natural product approach, which relies on bioinformatic structure prediction followed by chemical synthesis. Among these six structurally diverse MBAs, four make up two new MBA structural families. The most potent member of each new family (MBA3, MBA6) proved effective at treating methicillin-resistant Staphylococcus aureus infection in a murine peritonitis-sepsis model. The only conserved feature present in all MBAs is the sequence 'GXLXXXW', which we propose represents a minimum MK-binding motif. Notably, we found that a subset of MBAs were active against Mycobacterium tuberculosis both in vitro and in macrophages. Our findings suggest that naturally occurring MBAs are a structurally diverse and untapped class of mechanistically interesting, in vivo active antibiotics.
Collapse
Affiliation(s)
- Lei Li
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - Bimal Koirala
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - Yozen Hernandez
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - Logan W MacIntyre
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - Melinda A Ternei
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - Riccardo Russo
- Department of Medicine, Center for Emerging and Re-emerging Pathogens, Rutgers University-New Jersey Medical School, Newark, NJ, USA
| | - Sean F Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
17
|
López GD, Suesca E, Álvarez-Rivera G, Rosato AE, Ibáñez E, Cifuentes A, Leidy C, Carazzone C. Carotenogenesis of Staphylococcus aureus: New insights and impact on membrane biophysical properties. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158941. [PMID: 33862238 DOI: 10.1016/j.bbalip.2021.158941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Abstract
Staphyloxanthin (STX) is a saccharolipid derived from a carotenoid in Staphylococcus aureus involved in oxidative-stress tolerance and antimicrobial peptide resistance. STX influences the biophysical properties of the bacterial membrane and has been associated to the formation of lipid domains in the regulation of methicillin-resistance. In this work, a targeted metabolomics and biophysical characterization study was carried out to investigate the biosynthetic pathways of carotenoids, and their impact on the membrane biophysical properties. Five different S. aureus strains were investigated, including three wild-type strains containing the crtM gene related to STX biosynthesis, a crtM-deletion mutant, and a crtMN plasmid-complemented variant. LC-DAD-MS/MS analysis of extracts allowed the identification of 34 metabolites related to carotenogenesis in S. aureus at different growth phases (8, 24 and 48 h), showing the progression of these metabolites as the bacteria advances into the stationary phase. For the first time, 22 members of a large family of carotenoids were identified, including STX and STX-homologues, as well as Dehydro-STX and Dehydro-STX-homologues. Moreover, thermotropic behavior of the CH2 stretch of lipid acyl chains in live cells by FTIR, show that the presence of STX increases acyl chain order at the bacterial growth temperature. Indeed, the cooperative melting event of the bacterial membrane, which occurs around 15 °C in the native strains, shifts with increased carotenoid content. These results show the diversity biosynthetic of carotenoids in S. aureus, and their influence on membrane biophysical properties.
Collapse
Affiliation(s)
- Gerson-Dirceu López
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá D.C., Colombia; Laboratory of Biophysics, Physics Department, Universidad de los Andes, Bogotá D.C., Colombia; Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain
| | - Elizabeth Suesca
- Laboratory of Biophysics, Physics Department, Universidad de los Andes, Bogotá D.C., Colombia
| | | | - Adriana E Rosato
- Molecular Microbiology Diagnostics-Research, Riverside University Health System, Professor Loma Linda University, Moreno Valley, CA, USA
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain
| | - Chad Leidy
- Laboratory of Biophysics, Physics Department, Universidad de los Andes, Bogotá D.C., Colombia.
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá D.C., Colombia.
| |
Collapse
|
18
|
Watthanasakphuban N, Virginia LJ, Haltrich D, Peterbauer C. Analysis and Reconstitution of the Menaquinone Biosynthesis Pathway in Lactiplantibacillus plantarum and Lentilactibacillus buchneri. Microorganisms 2021; 9:1476. [PMID: 34361912 PMCID: PMC8303990 DOI: 10.3390/microorganisms9071476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/29/2022] Open
Abstract
In Lactococcus lactis and some other lactic acid bacteria, respiratory metabolism has been reported upon supplementation with only heme, leading to enhanced biomass formation, reduced acidification, resistance to oxygen, and improved long-term storage. Genes encoding a complete respiratory chain with all components were found in genomes of L. lactis and Leuconostoc mesenteroides, but menaquinone biosynthesis was found to be incomplete in Lactobacillaceae (except L. mesenteroides). Lactiplantibacillus plantarum has only two genes (menA, menG) encoding enzymes in the biosynthetic pathway (out of eight), and Lentilactobacillus buchneri has only four (menA, menB, menE, and menG). We constructed knock-out strains of L. lactis defective in menA, menB, menE, and menG (encoding the last steps in the pathway) and complemented these by expression of the extant genes from Lactipl. plantarum and Lent. buchneri to verify their functionality. Three of the Lactipl. plantarum biosynthesis genes, lpmenA1, lpmenG1, and lpmenG2, as well as lbmenB and lbmenG from Lent. buchneri, reconstituted menaquinone production and respiratory growth in the deficient L. lactis strains when supplemented with heme. We then reconstituted the incomplete menaquinone biosynthesis pathway in Lactipl. plantarum by expressing six genes from L. lactis homologous to the missing genes in a synthetic operon with two inducible promoters. Higher biomass formation was observed in Lactipl. plantarum carrying this operon, with an OD600 increase from 3.0 to 5.0 upon induction.
Collapse
Affiliation(s)
- Nisit Watthanasakphuban
- Department of Food Sciences and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; (N.W.); (L.J.V.); (D.H.)
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Ludovika Jessica Virginia
- Department of Food Sciences and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; (N.W.); (L.J.V.); (D.H.)
| | - Dietmar Haltrich
- Department of Food Sciences and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; (N.W.); (L.J.V.); (D.H.)
| | - Clemens Peterbauer
- Department of Food Sciences and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; (N.W.); (L.J.V.); (D.H.)
| |
Collapse
|
19
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
20
|
Herrin BE, Islam S, Rentschler KN, Pert LH, Kopanski SP, Wakeman CA. Haem toxicity provides a competitive advantage to the clinically relevant Staphylococcus aureus small colony variant phenotype. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001044. [PMID: 33749578 PMCID: PMC8289220 DOI: 10.1099/mic.0.001044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/18/2021] [Indexed: 11/18/2022]
Abstract
Microorganisms encounter toxicities inside the host. Many pathogens exist as subpopulations to maximize survivability. Subpopulations of Staphylococcus aureus include antibiotic-tolerant small colony variants (SCVs). These mutants often emerge following antibiotic treatment but can be present in infections prior to antibiotic exposure. We hypothesize that haem toxicity in the host selects for respiration-deficient S. aureus SCVs in the absence of antibiotics. We demonstrate that some but not all respiration-deficient SCV phenotypes are more protective than the haem detoxification system against transient haem exposure, indicating that haem toxicity in the host may contribute to the dominance of menaquinone-deficient and haem-deficient SCVs prior to antibiotic treatment.
Collapse
Affiliation(s)
- Brittany E. Herrin
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
- Present address: Department of Biology, Indiana University, Bloomington, IN, USA
| | - Shariful Islam
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | | | - Lauren H. Pert
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | | | | |
Collapse
|
21
|
A Novel Enterococcus faecalis Heme Transport Regulator (FhtR) Senses Host Heme To Control Its Intracellular Homeostasis. mBio 2021; 12:mBio.03392-20. [PMID: 33531389 PMCID: PMC7858072 DOI: 10.1128/mbio.03392-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecalis, a normal and harmless colonizer of the human intestinal flora can cause severe infectious diseases in immunocompromised patients, particularly those that have been heavily treated with antibiotics. Therefore, it is important to understand the factors that promote its resistance and its virulence. E. faecalis, which cannot synthesize heme, an essential but toxic metabolite, needs to scavenge this molecule from the host to respire and fight stress generated by oxidants. Enterococcus faecalis is a commensal Gram-positive pathogen found in the intestines of mammals and is also a leading cause of severe infections occurring mainly among antibiotic-treated dysbiotic hospitalized patients. Like most intestinal bacteria, E. faecalis does not synthesize heme (in this report, heme refers to iron protoporphyrin IX regardless of the iron redox state). Nevertheless, environmental heme can improve E. faecalis fitness by activating respiration metabolism and a catalase that limits hydrogen peroxide stress. Since free heme also generates toxicity, its intracellular levels need to be strictly controlled. Here, we describe a unique transcriptional regulator, FhtR (named FhtR for faecalis heme transport regulator), which manages heme homeostasis by controlling an HrtBA-like efflux pump (named HrtBAEf for the HrtBA from E. faecalis). We show that FhtR, by managing intracellular heme concentration, regulates the functional expression of the heme-dependent catalase A (KatA), thus participating in heme detoxification. The biochemical features of FhtR binding to DNA, and its interaction with heme that induces efflux, are characterized. The FhtR-HrtBAEf system is shown to be relevant in a mouse intestinal model. We further show that FhtR senses heme from blood and hemoglobin but also from crossfeeding by Escherichia coli. These findings bring to light the central role of heme sensing by FhtR in response to heme fluctuations within the gastrointestinal tract, which allow this pathogen to limit heme toxicity while ensuring expression of an oxidative defense system.
Collapse
|
22
|
Liu L, Ingmer H, Vestergaard M. Genome-Wide Identification of Resveratrol Intrinsic Resistance Determinants in Staphylococcus aureus. Antibiotics (Basel) 2021; 10:antibiotics10010082. [PMID: 33467002 PMCID: PMC7829806 DOI: 10.3390/antibiotics10010082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 11/16/2022] Open
Abstract
Resveratrol has been extensively studied due to its potential health benefits in multiple diseases, for example, cancer, obesity and cardiovascular diseases. Besides these properties, resveratrol displays inhibitory activity against a wide range of bacterial species; however, the cellular effects of resveratrol in bacteria remain incompletely understood, especially in the human pathogen, Staphylococcus aureus. In this study, we aimed to identify intrinsic resistance genes that aid S. aureus in tolerating the activity of resveratrol. We screened the Nebraska Transposon Mutant Library, consisting of 1920 mutants with inactivation of non-essential genes in S. aureus JE2, for increased susceptibly to resveratrol. On agar plates containing 0.5× the minimum inhibitory concentration (MIC), 17 transposon mutants failed to grow. Of these, four mutants showed a two-fold reduction in MIC, being the clpP protease mutant and three mutants with deficiencies in the electron transport chain (menD, hemB, aroC). The remaining 13 mutants did not show a reduction in MIC, but were confirmed by spot-assays to have increased susceptibility to resveratrol. Several genes were associated with DNA damage repair (recJ, xerC and xseA). Treatment of S. aureus JE2 with sub-inhibitory concentrations of resveratrol did not affect the expression of recJ, xerC and xseA, but increased expression of the SOS-stress response genes lexA and recA, suggesting that resveratrol interferes with DNA integrity in S. aureus. Expression of error-prone DNA polymerases are part of the SOS-stress response and we could show that sub-inhibitory concentrations of resveratrol increased overall mutation frequency as measured by formation of rifampicin resistant mutants. Our data show that DNA repair systems are important determinants aiding S. aureus to overcome the inhibitory activity of resveratrol. Activation of the SOS response by resveratrol could potentially facilitate the development of resistance towards conventional antibiotics in S. aureus.
Collapse
|
23
|
Panthee S, Paudel A, Hamamoto H, Uhlemann AC, Sekimizu K. The Role of Amino Acid Substitution in HepT Toward Menaquinone Isoprenoid Chain Length Definition and Lysocin E Sensitivity in Staphylococcus aureus. Front Microbiol 2020; 11:2076. [PMID: 32983054 PMCID: PMC7479192 DOI: 10.3389/fmicb.2020.02076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Staphylococcus aureus Smith strain is a historical strain widely used for research purposes in animal infection models for testing the therapeutic activity of antimicrobial agents. We found that it displayed higher sensitivity toward lysocin E, a menaquinone (MK) targeting antibiotic, compared to other S. aureus strains. Therefore, we further explored the mechanism of this hypersensitivity. METHODS MK production was analyzed by high-performance liquid chromatography and mass spectrometric analysis. S. aureus Smith genome sequence was completed using a hybrid assembly approach, and the MK biosynthetic genes were compared with other S. aureus strains. The hepT gene was cloned and introduced into S. aureus RN4220 strain using phage mediated recombination, and lysocin E sensitivity was analyzed by the measurement of colony-forming units. RESULTS We found that Smith strain produced MKs with the length of the side chain ranging between 8 and 10, as opposed to other S. aureus strains that produce MKs 7-9. We revealed that Smith strain possessed the classical pathway for MK biosynthesis like the other S. aureus. HepT, a polyprenyl diphosphate synthase involved in chain elongation of isoprenoid, in Smith strain harbored a Q25P substitution. Introduction of hepT from Smith to RN4220 led to the production of MK-10 and an increased sensitivity toward lysocin E. CONCLUSION We found that HepT was responsible for the definition of isoprenoid chain length of MKs and antibiotic sensitivity.
Collapse
Affiliation(s)
- Suresh Panthee
- Teikyo University Institute of Medical Mycology, Hachioji, Japan
| | - Atmika Paudel
- Teikyo University Institute of Medical Mycology, Hachioji, Japan
| | - Hiroshi Hamamoto
- Teikyo University Institute of Medical Mycology, Hachioji, Japan
| | - Anne-Catrin Uhlemann
- Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | | |
Collapse
|
24
|
Hutchings C, Rajasekharan SK, Reifen R, Shemesh M. Mitigating Milk-Associated Bacteria through Inducing Zinc Ions Antibiofilm Activity. Foods 2020; 9:foods9081094. [PMID: 32796547 PMCID: PMC7466369 DOI: 10.3390/foods9081094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 12/27/2022] Open
Abstract
Dairy products are a sector heavily impacted by food loss, often due to bacterial contaminations. A major source of contamination is associated with the formation of biofilms by bacterial species adopted to proliferate in milk production environment and onto the surfaces of milk processing equipment. Bacterial cells within the biofilm are characterized by increased resistance to unfavorable environmental conditions and antimicrobial agents. Members of the Bacillus genus are the most commonly found spoilage microorganisms in the dairy environment. It appears that physiological behavior of these species is somehow depended on the availability of bivalent cations in the environment. One of the important cations that may affect the bacterial physiology as well as survivability are Zn2+ ions. Thus, the aim of this study was to examine the antimicrobial effect of Zn2+ ions, intending to elucidate the potential of a zinc-based antibacterial treatment suitable for the dairy industry. The antimicrobial effect of different doses of ZnCl2 was assessed microscopically. In addition, expression of biofilm related genes was evaluated using RT-PCR. Analysis of survival rates following heat treatment was conducted in order to exemplify a possible applicative use of Zn2+ ions. Addition of zinc efficiently inhibited biofilm formation by B. subtilis and further disrupted the biofilm bundles. Expression of matrix related genes was found to be notably downregulated. Microscopic evaluation showed that cell elongation was withheld when cells were grown in the presence of zinc. Finally, B. cereus and B. subtilis cells were more susceptible to heat treatment after being exposed to Zn2+ ions. It is believed that an anti-biofilm activity, expressed in downregulation of genes involved in construction of the extracellular matrix, would account for the higher sensitivity of bacteria during heat pasteurization. Consequently, we suggest that Zn2+ ions can be of used as an effective antimicrobial treatment in various applications in the dairy industry, targeting both biofilms and vegetative bacterial cells.
Collapse
Affiliation(s)
- Carmel Hutchings
- Department of Food Science, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; (C.H.); (S.K.R.)
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel;
| | - Satish Kumar Rajasekharan
- Department of Food Science, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; (C.H.); (S.K.R.)
| | - Ram Reifen
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel;
| | - Moshe Shemesh
- Department of Food Science, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; (C.H.); (S.K.R.)
- Correspondence: ; Tel.: +972-3-968-3868
| |
Collapse
|
25
|
Cesinger MR, Thomason MK, Edrozo MB, Halsey CR, Reniere ML. Listeria monocytogenes SpxA1 is a global regulator required to activate genes encoding catalase and heme biosynthesis enzymes for aerobic growth. Mol Microbiol 2020; 114:230-243. [PMID: 32255216 PMCID: PMC7496741 DOI: 10.1111/mmi.14508] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/24/2022]
Abstract
An imbalance of cellular oxidants and reductants causes redox stress, which must be rapidly detected to restore homeostasis. In bacteria, the Firmicutes encode conserved Spx-family transcriptional regulators that modulate transcription in response to redox stress. SpxA1 is an Spx-family orthologue in the intracellular pathogen Listeria monocytogenes that is essential for aerobic growth and pathogenesis. Here, we investigated the role of SpxA1 in growth and virulence by identifying genes regulated by SpxA1 in broth and during macrophage infection. We found SpxA1-activated genes encoding heme biosynthesis enzymes and catalase (kat) were required for L. monocytogenes aerobic growth in rich medium. An Spx-recognition motif previously defined in Bacillus subtilis was identified in the promoters of SpxA1-activated genes and proved necessary for the proper activation of two genes, indicating this regulation by SpxA1 is likely direct. Together, these findings elucidated the mechanism of spxA1 essentiality in vitro and demonstrated that SpxA1 is required for basal expression of scavenging enzymes to combat redox stress generated in the presence of oxygen.
Collapse
Affiliation(s)
- Monica R. Cesinger
- Department of MicrobiologySchool of MedicineUniversity of WashingtonSeattleWAUSA
| | - Maureen K. Thomason
- Department of MicrobiologySchool of MedicineUniversity of WashingtonSeattleWAUSA
| | - Mauna B. Edrozo
- Department of MicrobiologySchool of MedicineUniversity of WashingtonSeattleWAUSA
| | - Cortney R. Halsey
- Department of MicrobiologySchool of MedicineUniversity of WashingtonSeattleWAUSA
| | - Michelle L. Reniere
- Department of MicrobiologySchool of MedicineUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
26
|
Knippel RJ, Wexler AG, Miller JM, Beavers WN, Weiss A, de Crécy-Lagard V, Edmonds KA, Giedroc DP, Skaar EP. Clostridioides difficile Senses and Hijacks Host Heme for Incorporation into an Oxidative Stress Defense System. Cell Host Microbe 2020; 28:411-421.e6. [PMID: 32526159 DOI: 10.1016/j.chom.2020.05.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/02/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022]
Abstract
Clostridioides difficile infection of the colon leads to severe inflammation and damage to the gastrointestinal epithelium due to the production of potent toxins. This inflammatory tissue damage causes the liberation of high concentrations of host heme at infection sites. Here, we identify the C. difficile heme-sensing membrane protein system (HsmRA) and show that this operon induces a protective response that repurposes heme to counteract antimicrobial oxidative stress responses. HsmR senses vertebrate heme, leading to increased expression of the hsmRA operon and subsequent deployment of HsmA to capture heme and reduce redox damage caused by inflammatory mediators of protection and antibiotic therapy. Strains with inactivated hsmR or hsmA have increased sensitivity to redox-active compounds and reduced colonization persistence in a murine model of relapse C. difficile infection. These results define a mechanism exploited by C. difficile to repurpose toxic heme within the inflamed gut as a shield against antimicrobial compounds.
Collapse
Affiliation(s)
- Reece J Knippel
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aaron G Wexler
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeanette M Miller
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William N Beavers
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andy Weiss
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| | | | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
27
|
Schurig-Briccio LA, Parraga Solorzano PK, Lencina AM, Radin JN, Chen GY, Sauer JD, Kehl-Fie TE, Gennis RB. Role of respiratory NADH oxidation in the regulation of Staphylococcus aureus virulence. EMBO Rep 2020; 21:e45832. [PMID: 32202364 DOI: 10.15252/embr.201845832] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 01/28/2023] Open
Abstract
The success of Staphylococcus aureus as a pathogen is due to its capability of fine-tuning its cellular physiology to meet the challenges presented by diverse environments, which allows it to colonize multiple niches within a single vertebrate host. Elucidating the roles of energy-yielding metabolic pathways could uncover attractive therapeutic strategies and targets. In this work, we seek to determine the effects of disabling NADH-dependent aerobic respiration on the physiology of S. aureus. Differing from many pathogens, S. aureus has two type-2 respiratory NADH dehydrogenases (NDH-2s) but lacks the respiratory ion-pumping NDHs. Here, we show that the NDH-2s, individually or together, are not essential either for respiration or growth. Nevertheless, their absence eliminates biofilm formation, production of α-toxin, and reduces the ability to colonize specific organs in a mouse model of systemic infection. Moreover, we demonstrate that the reason behind these phenotypes is the alteration of the fatty acid metabolism. Importantly, the SaeRS two-component system, which responds to fatty acids regulation, is responsible for the link between NADH-dependent respiration and virulence in S. aureus.
Collapse
Affiliation(s)
| | - Paola K Parraga Solorzano
- Department of Microbiology, University of Illinois, Urbana, IL, USA.,Departamento de Ciencias de la Vida, Universidad de las Fuerzas Armada ESPE, Sangolquí, Ecuador
| | - Andrea M Lencina
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| | - Jana N Radin
- Department of Microbiology, University of Illinois, Urbana, IL, USA
| | - Grischa Y Chen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Thomas E Kehl-Fie
- Department of Microbiology, University of Illinois, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| |
Collapse
|
28
|
Anand A, Chen K, Yang L, Sastry AV, Olson CA, Poudel S, Seif Y, Hefner Y, Phaneuf PV, Xu S, Szubin R, Feist AM, Palsson BO. Adaptive evolution reveals a tradeoff between growth rate and oxidative stress during naphthoquinone-based aerobic respiration. Proc Natl Acad Sci U S A 2019; 116:25287-25292. [PMID: 31767748 PMCID: PMC6911176 DOI: 10.1073/pnas.1909987116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evolution fine-tunes biological pathways to achieve a robust cellular physiology. Two and a half billion years ago, rapidly rising levels of oxygen as a byproduct of blooming cyanobacterial photosynthesis resulted in a redox upshift in microbial energetics. The appearance of higher-redox-potential respiratory quinone, ubiquinone (UQ), is believed to be an adaptive response to this environmental transition. However, the majority of bacterial species are still dependent on the ancient respiratory quinone, naphthoquinone (NQ). Gammaproteobacteria can biosynthesize both of these respiratory quinones, where UQ has been associated with aerobic lifestyle and NQ with anaerobic lifestyle. We engineered an obligate NQ-dependent γ-proteobacterium, Escherichia coli ΔubiC, and performed adaptive laboratory evolution to understand the selection against the use of NQ in an oxic environment and also the adaptation required to support the NQ-driven aerobic electron transport chain. A comparative systems-level analysis of pre- and postevolved NQ-dependent strains revealed a clear shift from fermentative to oxidative metabolism enabled by higher periplasmic superoxide defense. This metabolic shift was driven by the concerted activity of 3 transcriptional regulators (PdhR, RpoS, and Fur). Analysis of these findings using a genome-scale model suggested that resource allocation to reactive oxygen species (ROS) mitigation results in lower growth rates. These results provide a direct elucidation of a resource allocation tradeoff between growth rate and ROS mitigation costs associated with NQ usage under oxygen-replete condition.
Collapse
Affiliation(s)
- Amitesh Anand
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093
| | - Ke Chen
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093
| | - Laurence Yang
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093
| | - Anand V Sastry
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093
| | - Connor A Olson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093
| | - Saugat Poudel
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093
| | - Yara Seif
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093
| | - Ying Hefner
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093
| | - Patrick V Phaneuf
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093
| | - Sibei Xu
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093
| | - Richard Szubin
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093
| | - Adam M Feist
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens, Lyngby, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093;
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens, Lyngby, Denmark
| |
Collapse
|
29
|
Schleimer N, Kaspar U, Ballhausen B, Fotiadis SA, Streu JM, Kriegeskorte A, Proctor RA, Becker K. Adaption of an Episomal Antisense Silencing Approach for Investigation of the Phenotype Switch of Staphylococcus aureus Small-Colony Variants. Front Microbiol 2019; 10:2044. [PMID: 31551979 PMCID: PMC6738336 DOI: 10.3389/fmicb.2019.02044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/20/2019] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus small-colony variants (SCVs) are associated with chronic, persistent, and relapsing courses of infection and are characterized by slow growth combined with other phenotypic and molecular traits. Although certain mechanisms have been described, the genetic basis of clinical SCVs remains often unknown. Hence, we adapted an episomal tool for rapid identification and investigation of putative SCV phenotype-associated genes via antisense gene silencing based on previously described Tnl0-encoded tet-regulatory elements. Targeting the SCV phenotype-inducing enoyl-acyl-carrier-protein reductase gene (fabI), plasmid pSN1-AS‘fabI’ was generated leading to antisense silencing, which was proven by pronounced growth retardation in liquid cultures, phenotype switch on solid medium, and 200-fold increase of antisense ‘fabI’ expression. A crucial role of TetR repression in effective regulation of the system was demonstrated. Based on the use of anhydrotetracycline as effector, an easy-to-handle one-plasmid setup was set that may be applicable to different S. aureus backgrounds and cell culture studies. However, selection of the appropriate antisense fragment of the target gene remains a critical factor for effectiveness of silencing. This inducible gene expression system may help to identify SCV phenotype-inducing genes, which is prerequisite for the development of new antistaphylococcal agents and future alternative strategies to improve treatment of therapy-refractory SCV-related infections by iatrogenically induced phenotypic switch. Moreover, it can be used as controllable phenotype switcher to examine important aspects of SCV biology in cell culture as well as in vivo.
Collapse
Affiliation(s)
- Nina Schleimer
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Ursula Kaspar
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Britta Ballhausen
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Sarah A Fotiadis
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Jessica M Streu
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - André Kriegeskorte
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Richard A Proctor
- Departments of Medical Microbiology/Immunology and Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Karsten Becker
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
30
|
Artificial Selection for Pathogenicity Mutations in Staphylococcus aureus Identifies Novel Factors Relevant to Chronic Infection. Infect Immun 2019; 87:IAI.00884-18. [PMID: 30642903 DOI: 10.1128/iai.00884-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Adaptation of Staphylococcus aureus to host microenvironments during chronic infection involves spontaneous mutations, yet changes underlying adaptive phenotypes remain incompletely explored. Here, we employed artificial selection and whole-genome sequencing to better characterize spontaneous chromosomal mutations that alter two pathogenicity phenotypes relevant to chronic infection in S. aureus: intracellular invasiveness and intracellular cytotoxicity. We identified 23 genes whose alteration coincided with enhanced virulence, 11 that were previously known and 12 (52%) that had no previously described role in S. aureus pathogenicity. Using precision genome editing, transposon mutants, and gene complementation, we empirically assessed the contributions of individual genes to the two virulence phenotypes. We functionally validated 14 of 21 genes tested as measurably influencing invasion and/or cytotoxicity, including 8 newly implicated by this study. We identified inactivating mutations (murA, ndhC, and a hypothetical membrane protein) and gain-of-function mutations (aroE Thr182Ile, yhcF Thr74Ile, and Asp486Glu in a hypothetical peptidase) in previously unrecognized S. aureus virulence genes that enhance pathogenesis when introduced into a clean genetic background, as well as a novel activating mutation in the known virulence regulator gene saeS (Ala106Thr). Investigation of potentially epistatic interactions identified a tufA mutation (Ala271Val) that enhances virulence only in the context of purine operon repressor gene (purR) inactivation. This project reveals a functionally diverse range of genes affected by gain- or loss-of-function mutations that contribute to S. aureus adaptive virulence phenotypes. More generally, the work establishes artificial selection as a means to determine the genetic mechanisms underlying complex bacterial phenotypes relevant to adaptation during infection.
Collapse
|
31
|
Keppel M, Piepenbreier H, Gätgens C, Fritz G, Frunzke J. Toxic but tasty - temporal dynamics and network architecture of heme-responsive two-component signaling in Corynebacterium glutamicum. Mol Microbiol 2019; 111:1367-1381. [PMID: 30767351 PMCID: PMC6850329 DOI: 10.1111/mmi.14226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2019] [Indexed: 01/24/2023]
Abstract
Heme is an essential cofactor and alternative iron source for almost all bacterial species but may cause severe toxicity upon elevated levels and consequently, regulatory mechanisms coordinating heme homeostasis represent an important fitness trait. A remarkable scenario is found in several corynebacterial species, e.g. Corynebacterium glutamicum and Corynebacterium diphtheriae, which dedicate two paralogous, heme-responsive two-component systems, HrrSA and ChrSA, to cope with the Janus nature of heme. Here, we combined experimental reporter profiling with a quantitative mathematical model to understand how this particular regulatory network architecture shapes the dynamic response to heme. Our data revealed an instantaneous activation of the detoxification response (hrtBA) upon stimulus perception and we found that kinase activity of both kinases contribute to this fast onset. Furthermore, instant deactivation of the PhrtBA promoter is achieved by a strong ChrS phosphatase activity upon stimulus decline. While the activation of detoxification response is uncoupled from further factors, heme utilization is additionally governed by the global iron regulator DtxR integrating information on iron availability into the regulatory network. Altogether, our data provide comprehensive insights how TCS cross-regulation and network hierarchy shape the temporal dynamics of detoxification (hrtBA) and utilization (hmuO) as part of a global homeostatic response to heme.
Collapse
Affiliation(s)
- Marc Keppel
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, 52425, Germany
| | - Hannah Piepenbreier
- LOEWE-Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Marburg, 35032, Germany
| | - Cornelia Gätgens
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, 52425, Germany
| | - Georg Fritz
- LOEWE-Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Marburg, 35032, Germany
| | - Julia Frunzke
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, 52425, Germany
| |
Collapse
|
32
|
Seif Y, Monk JM, Mih N, Tsunemoto H, Poudel S, Zuniga C, Broddrick J, Zengler K, Palsson BO. A computational knowledge-base elucidates the response of Staphylococcus aureus to different media types. PLoS Comput Biol 2019; 15:e1006644. [PMID: 30625152 PMCID: PMC6326480 DOI: 10.1371/journal.pcbi.1006644] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/14/2018] [Indexed: 12/15/2022] Open
Abstract
S. aureus is classified as a serious threat pathogen and is a priority that guides the discovery and development of new antibiotics. Despite growing knowledge of S. aureus metabolic capabilities, our understanding of its systems-level responses to different media types remains incomplete. Here, we develop a manually reconstructed genome-scale model (GEM-PRO) of metabolism with 3D protein structures for S. aureus USA300 str. JE2 containing 854 genes, 1,440 reactions, 1,327 metabolites and 673 3-dimensional protein structures. Computations were in 85% agreement with gene essentiality data from random barcode transposon site sequencing (RB-TnSeq) and 68% agreement with experimental physiological data. Comparisons of computational predictions with experimental observations highlight: 1) cases of non-essential biomass precursors; 2) metabolic genes subject to transcriptional regulation involved in Staphyloxanthin biosynthesis; 3) the essentiality of purine and amino acid biosynthesis in synthetic physiological media; and 4) a switch to aerobic fermentation upon exposure to extracellular glucose elucidated as a result of integrating time-course of quantitative exo-metabolomics data. An up-to-date GEM-PRO thus serves as a knowledge-based platform to elucidate S. aureus’ metabolic response to its environment. Environmental perturbations (e.g., antibiotic stress, nutrient starvation, oxidative stress) induce systems-level perturbations of bacterial cells that vary depending on the growth environment. The generation of omics data is aimed at capturing a complete view of the organism’s response under different conditions. Genome-scale models (GEMs) of metabolism represent a knowledge-based platform for the contextualization and integration of multi-omic measurements and can serve to offer valuable insights of system-level responses. This work provides the most up to date reconstruction effort integrating recent advances in the knowledge of S. aureus molecular biology with previous annotations resulting in the first quantitatively and qualitatively validated S. aureus GEM. GEM guided predictions obtained from model analysis provided insights into the effects of medium composition on metabolic flux distribution and gene essentiality. The model can also serve as a platform to guide network reconstructions for other Staphylococci as well as direct hypothesis generation following the integration of omics data sets, including transcriptomics, proteomics, metabolomics, and multi-strain genomic data.
Collapse
Affiliation(s)
- Yara Seif
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America
| | - Jonathan M. Monk
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America
| | - Nathan Mih
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America
| | - Hannah Tsunemoto
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Saugat Poudel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America
| | - Cristal Zuniga
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America
| | - Jared Broddrick
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America
| | - Karsten Zengler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
33
|
Berdejo D, Chueca B, Pagán E, Renzoni A, Kelley WL, Pagán R, Garcia-Gonzalo D. Sub-Inhibitory Doses of Individual Constituents of Essential Oils Can Select for Staphylococcus aureus Resistant Mutants. Molecules 2019; 24:E170. [PMID: 30621156 PMCID: PMC6337159 DOI: 10.3390/molecules24010170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 11/16/2022] Open
Abstract
Increased bacterial resistance to food preservation technologies represents a risk for food safety and shelf-life. The use of natural antimicrobials, such as essential oils (EOs) and their individual constituents (ICs), has been proposed to avoid the generation of antimicrobial resistance. However, prolonged application of ICs might conceivably lead to the emergence of resistant strains. Hence, this study was aimed toward applying sub-inhibitory doses of the ICs carvacrol, citral, and (+)-limonene oxide to Staphylococcus aureus USA300, in order to evaluate the emergence of resistant strains and to identify the genetic modifications responsible for their increased resistance. Three stable-resistant strains, CAR (from cultures with carvacrol), CIT (from cultures with citral), and OXLIM (from cultures with (+)-limonene oxide) were isolated, showing an increased resistance against the ICs and a higher tolerance to lethal treatments by ICs or heat. Whole-genome sequencing revealed in CAR a large deletion in a region that contained genes encoding transcriptional regulators and metabolic enzymes. CIT showed a single missense mutation in aroC (N187K), which encodes for chorismate synthase; and in OXLIM a missense mutation was detected in rpoB (A862V), which encodes for RNA polymerase subunit beta. This study provides a first detailed insight into the mechanisms of action and S. aureus resistance arising from exposure to carvacrol, citral, and (+)-limonene oxide.
Collapse
Affiliation(s)
- Daniel Berdejo
- Tecnología de los Alimentos, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 930 50059 Zaragoza, Spain.
| | - Beatriz Chueca
- Tecnología de los Alimentos, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 930 50059 Zaragoza, Spain.
| | - Elisa Pagán
- Tecnología de los Alimentos, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 930 50059 Zaragoza, Spain.
| | - Adriana Renzoni
- Service of Infectious Diseases, Department of Medical Specialties, University Hospital of Geneva, 1205 Geneva, Switzerland.
| | - William L Kelley
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1205 Geneva, Switzerland.
| | - Rafael Pagán
- Tecnología de los Alimentos, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 930 50059 Zaragoza, Spain.
| | - Diego Garcia-Gonzalo
- Tecnología de los Alimentos, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 930 50059 Zaragoza, Spain.
| |
Collapse
|
34
|
Dos Santos PT, Larsen PT, Menendez-Gil P, Lillebæk EMS, Kallipolitis BH. Listeria monocytogenes Relies on the Heme-Regulated Transporter hrtAB to Resist Heme Toxicity and Uses Heme as a Signal to Induce Transcription of lmo1634, Encoding Listeria Adhesion Protein. Front Microbiol 2018; 9:3090. [PMID: 30619169 PMCID: PMC6305404 DOI: 10.3389/fmicb.2018.03090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/29/2018] [Indexed: 01/29/2023] Open
Abstract
For pathogenic bacteria, host-derived heme represents an important metabolic cofactor and a source for iron. However, high levels of heme are toxic to bacteria. We have previously shown that excess heme has a growth-inhibitory effect on the Gram-positive foodborne pathogen Listeria monocytogenes, and we have learned that the LhrC1-5 family of small RNAs, together with the two-component system (TCS) LisRK, play a role in the adaptation of L. monocytogenes to heme stress conditions. However, a broader knowledge on how this pathogen responds to heme toxicity is still lacking. Here, we analyzed the global transcriptomic response of L. monocytogenes to heme stress. We found that the response of L. monocytogenes to excess heme is multifaceted, involving various strategies acting to minimize the toxic effects of heme. For example, heme exposure triggers the SOS response that deals with DNA damage. In parallel, L. monocytogenes shuts down the transcription of genes involved in heme/iron uptake and utilization. Furthermore, heme stress resulted in a massive increase in the transcription of a putative heme detoxification system, hrtAB, which is highly conserved in Gram-positive bacteria. As expected, we found that the TCS HssRS is required for heme-mediated induction of hrtAB and that a functional heme efflux system is essential for L. monocytogenes to resist heme toxicity. Curiously, the most highly up-regulated gene upon heme stress was lmo1634, encoding the Listeria adhesion protein, LAP, which acts to promote the translocation of L. monocytogenes across the intestinal barrier. Additionally, LAP is predicted to act as a bifunctional acetaldehyde-CoA/alcohol dehydrogenase. Surprisingly, a mutant lacking lmo1634 grows well under heme stress conditions, showing that LAP is not required for L. monocytogenes to resist heme toxicity. Likewise, a functional ResDE TCS, which contributes to heme-mediated expression of lmo1634, is not required for the adaptation of L. monocytogenes to heme stress conditions. Collectively, this study provides novel insights into the strategies employed by L. monocytogenes to resist heme toxicity. Our findings indicate that L. monocytogenes is using heme as a host-derived signaling molecule to control the expression of its virulence genes, as exemplified by lmo1634.
Collapse
Affiliation(s)
| | - Pernille Tholund Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Pilar Menendez-Gil
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | | |
Collapse
|
35
|
Knippel RJ, Zackular JP, Moore JL, Celis AI, Weiss A, Washington MK, DuBois JL, Caprioli RM, Skaar EP. Heme sensing and detoxification by HatRT contributes to pathogenesis during Clostridium difficile infection. PLoS Pathog 2018; 14:e1007486. [PMID: 30576368 PMCID: PMC6303022 DOI: 10.1371/journal.ppat.1007486] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/27/2018] [Indexed: 02/04/2023] Open
Abstract
Clostridium difficile is a Gram-positive, spore-forming anaerobic bacterium that infects the colon, causing symptoms ranging from infectious diarrhea to fulminant colitis. In the last decade, the number of C. difficile infections has dramatically risen, making it the leading cause of reported hospital acquired infection in the United States. Bacterial toxins produced during C. difficile infection (CDI) damage host epithelial cells, releasing erythrocytes and heme into the gastrointestinal lumen. The reactive nature of heme can lead to toxicity through membrane disruption, membrane protein and lipid oxidation, and DNA damage. Here we demonstrate that C. difficile detoxifies excess heme to achieve full virulence within the gastrointestinal lumen during infection, and that this detoxification occurs through the heme-responsive expression of the heme activated transporter system (HatRT). Heme-dependent transcriptional activation of hatRT was discovered through an RNA-sequencing analysis of C. difficile grown in the presence of a sub-toxic concentration of heme. HatRT is comprised of a TetR family transcriptional regulator (hatR) and a major facilitator superfamily transporter (hatT). Strains inactivated for hatR or hatT are more sensitive to heme toxicity than wild-type. HatR binds heme, which relieves the repression of the hatRT operon, whereas HatT functions as a heme efflux pump. In a murine model of CDI, a strain inactivated for hatT displayed lower pathogenicity in a toxin-independent manner. Taken together, these data suggest that HatR senses intracellular heme concentrations leading to increased expression of the hatRT operon and subsequent heme efflux by HatT during infection. These results describe a mechanism employed by C. difficile to relieve heme toxicity within the host, and set the stage for the development of therapeutic interventions to target this bacterial-specific system.
Collapse
Affiliation(s)
- Reece J. Knippel
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Joseph P. Zackular
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Jessica L. Moore
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States of America
| | - Arianna I. Celis
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States of America
| | - Andy Weiss
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - M. Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Jennifer L. DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States of America
| | - Richard M. Caprioli
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States of America
| | - Eric P. Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States of America
| |
Collapse
|
36
|
Li Z, Quan G, Jiang X, Yang Y, Ding X, Zhang D, Wang X, Hardwidge PR, Ren W, Zhu G. Effects of Metabolites Derived From Gut Microbiota and Hosts on Pathogens. Front Cell Infect Microbiol 2018; 8:314. [PMID: 30276161 PMCID: PMC6152485 DOI: 10.3389/fcimb.2018.00314] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022] Open
Abstract
Intestinal metabolites participate in various physiological processes, including energy metabolism, cell-to-cell communication, and host immunity. These metabolites mainly originate from gut microbiota and hosts. Although many host metabolites are dominant in intestines, such as free fatty acids, amino acids and vitamins, the metabolites derived from gut microbiota are also essential for intestinal homeostasis. In addition, some metabolites are only generated and released by gut microbiota, such as bacteriocins, short-chain fatty acids, and quorum-sensing autoinducers. In this review, we summarize recent studies regarding the crosstalk between pathogens and metabolites from different sources, including the influence on bacterial development and the activation/inhibition of immune responses of hosts. All of these functions would affect the colonization of and infection by pathogens. This review provides clear ideas and directions for further exploring the regulatory mechanisms and effects of metabolites on pathogens.
Collapse
Affiliation(s)
- Zhendong Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Guomei Quan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Xinyi Jiang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Yang Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Xueyan Ding
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Dong Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Xiuqing Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University Manhattan, KS, United States
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University Guangzhou, Guangdong, China
| | - Guoqiang Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| |
Collapse
|
37
|
Ayala OD, Wakeman CA, Pence IJ, Gaddy JA, Slaughter JC, Skaar EP, Mahadevan-Jansen A. Drug-Resistant Staphylococcus aureus Strains Reveal Distinct Biochemical Features with Raman Microspectroscopy. ACS Infect Dis 2018; 4:1197-1210. [PMID: 29845863 PMCID: PMC6476553 DOI: 10.1021/acsinfecdis.8b00029] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus ( S. aureus) is a leading cause of hospital-acquired infections, such as bacteremia, pneumonia, and endocarditis. Treatment of these infections can be challenging since strains of S. aureus, such as methicillin-resistant S. aureus (MRSA), have evolved resistance to antimicrobials. Current methods to identify infectious agents in hospital environments often rely on time-consuming, multistep culturing techniques to distinguish problematic strains (i.e., antimicrobial resistant variants) of a particular bacterial species. Therefore, a need exists for a rapid, label-free technique to identify drug-resistant bacterial strains to guide proper antibiotic treatment. Here, our findings demonstrate the ability to characterize and identify microbes at the subspecies level using Raman microspectroscopy, which probes the vibrational modes of molecules to provide a biochemical "fingerprint". This technique can distinguish between different isolates of species such as Streptococcus agalactiae and S. aureus. To determine the ability of this analytical approach to detect drug-resistant bacteria, isogenic variants of S. aureus including the comparison of strains lacking or expressing antibiotic resistance determinants were evaluated. Spectral variations observed may be associated with biochemical components such as amino acids, carotenoids, and lipids. Mutants lacking carotenoid production were distinguished from wild-type S. aureus and other strain variants. Furthermore, spectral biomarkers of S. aureus isogenic bacterial strains were identified. These results demonstrate the feasibility of Raman microspectroscopy for distinguishing between various genetically distinct forms of a single bacterial species in situ. This is important for detecting antibiotic-resistant strains of bacteria and indicates the potential for future identification of other multidrug resistant pathogens with this technique.
Collapse
Affiliation(s)
- Oscar D. Ayala
- Biophotonics Center, Vanderbilt University, 410 24th Avenue South, Nashville, Tennessee 37235, United States
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, Tennessee 37232, United States
| | - Catherine A. Wakeman
- Department of Biological Sciences, Texas Tech University, 2901 Main Street, Lubbock, Texas 79409, United States
| | - Isaac J. Pence
- Biophotonics Center, Vanderbilt University, 410 24th Avenue South, Nashville, Tennessee 37235, United States
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, Tennessee 37232, United States
| | - Jennifer A. Gaddy
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, Nashville, Tennessee 37232, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, Nashville, Tennessee 37232, United States
- Tennessee Valley Healthcare Systems, Department of Veterans Affairs, 1310 24th Avenue South, Nashville, Tennessee 37212, United States
| | - James C. Slaughter
- Department of Biostatistics, Vanderbilt University School of Medicine, 2525 West End Avenue, Suite 11000, Nashville, Tennessee 37203, United States
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, Nashville, Tennessee 37232, United States
| | - Anita Mahadevan-Jansen
- Biophotonics Center, Vanderbilt University, 410 24th Avenue South, Nashville, Tennessee 37235, United States
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
38
|
Ueda D, Matsugane S, Okamoto W, Hashimoto M, Sato T. A Non-Enzymatic Pathway with Superoxide in Intracellular Terpenoid Synthesis. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daijiro Ueda
- Department of Applied Biological Chemistry and Graduate School of Science and Technology; Niigata University; Ikarashi 2-8050, Nishi-ku Niigata 950-2181 Japan
| | - Saori Matsugane
- Department of Applied Biological Chemistry and Graduate School of Science and Technology; Niigata University; Ikarashi 2-8050, Nishi-ku Niigata 950-2181 Japan
| | - Wataru Okamoto
- Department of Applied Biological Chemistry and Graduate School of Science and Technology; Niigata University; Ikarashi 2-8050, Nishi-ku Niigata 950-2181 Japan
| | - Masayuki Hashimoto
- Institute of Molecular Medicine; National Cheng-Kung University; Tainan City 704-56 Taiwan, ROC
- Center of Infectious Disease and Signal Transduction; College of Medicine; National Cheng-Kung University; Tainan City 704-56 Taiwan, ROC
| | - Tsutomu Sato
- Department of Applied Biological Chemistry and Graduate School of Science and Technology; Niigata University; Ikarashi 2-8050, Nishi-ku Niigata 950-2181 Japan
| |
Collapse
|
39
|
Ueda D, Matsugane S, Okamoto W, Hashimoto M, Sato T. A Non-Enzymatic Pathway with Superoxide in Intracellular Terpenoid Synthesis. Angew Chem Int Ed Engl 2018; 57:10347-10351. [DOI: 10.1002/anie.201805383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/18/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Daijiro Ueda
- Department of Applied Biological Chemistry and Graduate School of Science and Technology; Niigata University; Ikarashi 2-8050, Nishi-ku Niigata 950-2181 Japan
| | - Saori Matsugane
- Department of Applied Biological Chemistry and Graduate School of Science and Technology; Niigata University; Ikarashi 2-8050, Nishi-ku Niigata 950-2181 Japan
| | - Wataru Okamoto
- Department of Applied Biological Chemistry and Graduate School of Science and Technology; Niigata University; Ikarashi 2-8050, Nishi-ku Niigata 950-2181 Japan
| | - Masayuki Hashimoto
- Institute of Molecular Medicine; National Cheng-Kung University; Tainan City 704-56 Taiwan, ROC
- Center of Infectious Disease and Signal Transduction; College of Medicine; National Cheng-Kung University; Tainan City 704-56 Taiwan, ROC
| | - Tsutomu Sato
- Department of Applied Biological Chemistry and Graduate School of Science and Technology; Niigata University; Ikarashi 2-8050, Nishi-ku Niigata 950-2181 Japan
| |
Collapse
|
40
|
Abstract
Transition metals are required cofactors for many proteins that are critical for life, and their concentration within cells is carefully maintained to avoid both deficiency and toxicity. To defend against bacterial pathogens, vertebrate immune proteins sequester metals, in particular zinc, iron, and manganese, as a strategy to limit bacterial acquisition of these necessary nutrients in a process termed "nutritional immunity." In response, bacteria have evolved elegant strategies to access metals and counteract this host defense. In mammals, metal abundance can drastically shift due to changes in dietary intake or absorption from the intestinal tract, disrupting the balance between host and pathogen in the fight for metals and altering susceptibility to disease. This review describes the current understanding of how dietary metals modulate host-microbe interactions and the subsequent impact on the outcome of disease.
Collapse
Affiliation(s)
- Christopher A Lopez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
41
|
Greene NP, Kaplan E, Crow A, Koronakis V. Antibiotic Resistance Mediated by the MacB ABC Transporter Family: A Structural and Functional Perspective. Front Microbiol 2018; 9:950. [PMID: 29892271 PMCID: PMC5985334 DOI: 10.3389/fmicb.2018.00950] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022] Open
Abstract
The MacB ABC transporter forms a tripartite efflux pump with the MacA adaptor protein and TolC outer membrane exit duct to expel antibiotics and export virulence factors from Gram-negative bacteria. Here, we review recent structural and functional data on MacB and its homologs. MacB has a fold that is distinct from other structurally characterized ABC transporters and uses a unique molecular mechanism termed mechanotransmission. Unlike other bacterial ABC transporters, MacB does not transport substrates across the inner membrane in which it is based, but instead couples cytoplasmic ATP hydrolysis with transmembrane conformational changes that are used to perform work in the extra-cytoplasmic space. In the MacAB-TolC tripartite pump, mechanotransmission drives efflux of antibiotics and export of a protein toxin from the periplasmic space via the TolC exit duct. Homologous tripartite systems from pathogenic bacteria similarly export protein-like signaling molecules, virulence factors and siderophores. In addition, many MacB-like ABC transporters do not form tripartite pumps, but instead operate in diverse cellular processes including antibiotic sensing, cell division and lipoprotein trafficking.
Collapse
Affiliation(s)
- Nicholas P Greene
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Elise Kaplan
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Allister Crow
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Vassilis Koronakis
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
42
|
Santiago M, Lee W, Fayad AA, Coe KA, Rajagopal M, Do T, Hennessen F, Srisuknimit V, Müller R, Meredith TC, Walker S. Genome-wide mutant profiling predicts the mechanism of a Lipid II binding antibiotic. Nat Chem Biol 2018; 14:601-608. [PMID: 29662210 PMCID: PMC5964011 DOI: 10.1038/s41589-018-0041-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 02/27/2018] [Indexed: 12/11/2022]
Abstract
Identifying targets of antibacterial compounds remains a challenging step in antibiotic development. We have developed a two-pronged functional genomics approach to predict mechanism of action that uses mutant fitness data from antibiotic-treated transposon libraries containing both upregulation and inactivation mutants. We treated a Staphylococcus aureus transposon library containing 690,000 unique insertions with 32 antibiotics. Upregulation signatures, identified from directional biases in insertions, revealed known molecular targets and resistance mechanisms for the majority of these. Because single gene upregulation does not always confer resistance, we used a complementary machine learning approach to predict mechanism from inactivation mutant fitness profiles. This approach suggested the cell wall precursor Lipid II as the molecular target of the lysocins, a mechanism we have confirmed. We conclude that docking to membrane-anchored Lipid II precedes the selective bacteriolysis that distinguishes these lytic natural products, showing the utility of our approach for nominating antibiotic mechanism of action.
Collapse
Affiliation(s)
- Marina Santiago
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Wonsik Lee
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Antoine Abou Fayad
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Kathryn A Coe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Mithila Rajagopal
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Truc Do
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Fabienne Hennessen
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Veerasak Srisuknimit
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Saarbrücken, Germany.
| | - Timothy C Meredith
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA. .,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA.
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA. .,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
43
|
Zotta T, Ricciardi A, Ianniello RG, Storti LV, Glibota NA, Parente E. Aerobic and respirative growth of heterofermentative lactic acid bacteria: A screening study. Food Microbiol 2018; 76:117-127. [PMID: 30166132 DOI: 10.1016/j.fm.2018.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/17/2018] [Accepted: 02/24/2018] [Indexed: 01/22/2023]
Abstract
Heterofermentative lactic acid bacteria (76 strains) belonging to Lactobacillus, Leuconostoc and Weissella species which are important in fermentation, spoilage or as probiotics were screened in a factorial experiment for their ability to grow, produce catalase and consume oxygen in aerobiosis or in anaerobiosis, with or without supplementation with hemin and/or menaquinone in a medium containing glucose as a carbohydrate source. Aerobiosis improved growth with a few exceptions. The effect of supplementation with heme and/or menaquinone was strain specific and clear evidence of heme-boosted respiration was found in some cases. Heme-catalase was produced by strains of L. brevis, W. minor and Leuc. mesenteroides; some strains of the latter species produced non-heme catalase. Shaken flasks experiments showed that aerobic growth resulted in increased maximum growth rate and in a limited increase in biomass. Heme supplementation during aerobic growth resulted in a further increase in growth rate and final biomass only for a few strains; this was often related to catalase, which was also responsible for increased tolerance of H2O2. In both experiments we found evidence of heme toxicity, especially in anaerobiosis and in absence of menaquinone. Dose response curves for aerobic growth in the presence of combinations of hemin and menaquinone were non-monotonic, with growth stimulation at low doses of heme (<2.5 mg/l) and toxicity at higher doses. Menaquinone at 0.25-8 mg/l increased growth stimulation and partially reduced toxicity.
Collapse
Affiliation(s)
- Teresa Zotta
- Istituto di Scienze dell'Alimentazione-CNR, Avellino, Italy
| | - Annamaria Ricciardi
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata, Potenza, Italy.
| | - Rocco G Ianniello
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Livia V Storti
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Nicolas A Glibota
- Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario (ceiA3), Jaén, 23071, Spain
| | - Eugenio Parente
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| |
Collapse
|
44
|
Choby JE, Grunenwald CM, Celis AI, Gerdes SY, DuBois JL, Skaar EP. Staphylococcus aureus HemX Modulates Glutamyl-tRNA Reductase Abundance To Regulate Heme Biosynthesis. mBio 2018; 9:e02287-17. [PMID: 29437922 PMCID: PMC5801465 DOI: 10.1128/mbio.02287-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus aureus is responsible for a significant amount of devastating disease. Its ability to colonize the host and cause infection is supported by a variety of proteins that are dependent on the cofactor heme. Heme is a porphyrin used broadly across kingdoms and is synthesized de novo from common cellular precursors and iron. While heme is critical to bacterial physiology, it is also toxic in high concentrations, requiring that organisms encode regulatory processes to control heme homeostasis. In this work, we describe a posttranscriptional regulatory strategy in S. aureus heme biosynthesis. The first committed enzyme in the S. aureus heme biosynthetic pathway, glutamyl-tRNA reductase (GtrR), is regulated by heme abundance and the integral membrane protein HemX. GtrR abundance increases dramatically in response to heme deficiency, suggesting a mechanism by which S. aureus responds to the need to increase heme synthesis. Additionally, HemX is required to maintain low levels of GtrR in heme-proficient cells, and inactivation of hemX leads to increased heme synthesis. Excess heme synthesis in a ΔhemX mutant activates the staphylococcal heme stress response, suggesting that regulation of heme synthesis is critical to reduce self-imposed heme toxicity. Analysis of diverse organisms indicates that HemX is widely conserved among heme-synthesizing bacteria, suggesting that HemX is a common factor involved in the regulation of GtrR abundance. Together, this work demonstrates that S. aureus regulates heme synthesis by modulating GtrR abundance in response to heme deficiency and through the activity of the broadly conserved HemX.IMPORTANCEStaphylococcus aureus is a leading cause of skin and soft tissue infections, endocarditis, bacteremia, and osteomyelitis, making it a critical health care concern. Development of new antimicrobials against S. aureus requires knowledge of the physiology that supports this organism's pathogenesis. One component of staphylococcal physiology that contributes to growth and virulence is heme. Heme is a widely utilized cofactor that enables diverse chemical reactions across many enzyme families. S. aureus relies on many critical heme-dependent proteins and is sensitive to excess heme toxicity, suggesting S. aureus must maintain proper intracellular heme homeostasis. Because S. aureus provides heme for heme-dependent enzymes via synthesis from common precursors, we hypothesized that regulation of heme synthesis is one mechanism to maintain heme homeostasis. In this study, we identify that S. aureus posttranscriptionally regulates heme synthesis by restraining abundance of the first heme biosynthetic enzyme, GtrR, via heme and the broadly conserved membrane protein HemX.
Collapse
Affiliation(s)
- Jacob E Choby
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Graduate Program in Microbiology & Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Caroline M Grunenwald
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Arianna I Celis
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | | | - Jennifer L DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
45
|
Müller A, Grein F, Otto A, Gries K, Orlov D, Zarubaev V, Girard M, Sher X, Shamova O, Roemer T, François P, Becher D, Schneider T, Sahl HG. Differential daptomycin resistance development in Staphylococcus aureus strains with active and mutated gra regulatory systems. Int J Med Microbiol 2017; 308:335-348. [PMID: 29429584 DOI: 10.1016/j.ijmm.2017.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 02/03/2023] Open
Abstract
The first-in-class lipopeptide antibiotic daptomycin (DAP) is highly active against Gram-positive pathogens including ß-lactam and glycopeptide resistant strains. Its molecular mode of action remains enigmatic, since a defined target has not been identified so far and multiple effects, primarily on the cell envelope have been observed. Reduced DAP susceptibility has been described in S. aureus and enterococci after prolonged treatment courses. In line with its pleiotropic antibiotic activities, a unique, defined molecular mechanism of resistance has not emerged, instead non-susceptibility appears often accompanied by alterations in membrane composition and changes in cell wall homeostasis. We compared S. aureus strains HG001 and SG511, which differ primarily in the functionality of the histidine kinase GraS, to evaluate the impact of the GraRS regulatory system on the development of DAP non-susceptibility. After extensive serial passing, both DAPR variants reached a minimal inhibitory concentration of 31 μg/ml and shared some phenotypic characteristics (e.g. thicker cell wall, reduced autolysis). However, based on comprehensive analysis of the underlying genetic, transcriptomic and proteomic changes, we found that both strains took different routes to achieve DAP resistance. Our study highlights the impressive genetic and physiological capacity of S. aureus to counteract pleiotropic activities of cell wall- and membrane-active compounds even when a major cell wall regulatory system is dysfunctional.
Collapse
Affiliation(s)
- Anna Müller
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn.
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn
| | - Andreas Otto
- Institute for Microbiology, University of Greifswald, Greifswald, Germany
| | - Kathrin Gries
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Dmitriy Orlov
- Institute for Experimental Medicine, Saint Petersburg, Russia; Saint Petersburg University, Saint Petersburg, Russia
| | - Vladimir Zarubaev
- Pasteur Institute of Epidemiology and Microbiology, Saint Petersburg Russia
| | - Myriam Girard
- Genomic Research Laboratory, Department of Medical Specialties, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
| | - Xinwei Sher
- Merck & Co., Infectious Diseases, Kenilworth, NJ, USA
| | - Olga Shamova
- Institute for Experimental Medicine, Saint Petersburg, Russia; Saint Petersburg University, Saint Petersburg, Russia
| | | | - Patrice François
- Genomic Research Laboratory, Department of Medical Specialties, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
| | - Dörte Becher
- Institute for Microbiology, University of Greifswald, Greifswald, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn
| | - Hans-Georg Sahl
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn; Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
46
|
Casabona MG, Kneuper H, Alferes de Lima D, Harkins CP, Zoltner M, Hjerde E, Holden MTG, Palmer T. Haem-iron plays a key role in the regulation of the Ess/type VII secretion system of Staphylococcus aureus RN6390. MICROBIOLOGY-SGM 2017; 163:1839-1850. [PMID: 29171824 PMCID: PMC5845736 DOI: 10.1099/mic.0.000579] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Staphylococcus aureus type VII protein secretion system (T7SS) plays important roles in virulence and intra-species competition. Here we show that the T7SS in strain RN6390 is activated by supplementing the growth medium with haemoglobin, and its cofactor haemin (haem B). Transcript analysis and secretion assays suggest that activation by haemin occurs at a transcriptional and a post-translational level. Loss of T7 secretion activity by deletion of essC results in upregulation of genes required for iron acquisition. Taken together these findings suggest that the T7SS plays a role in iron homeostasis in at least some S. aureus strains.
Collapse
Affiliation(s)
- M Guillermina Casabona
- Division of Molecular Microbiology School of Life Sciences, University of Dundee, Dundee, UK
| | - Holger Kneuper
- Division of Molecular Microbiology School of Life Sciences, University of Dundee, Dundee, UK
| | - Daniela Alferes de Lima
- Division of Molecular Microbiology School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Martin Zoltner
- Division of Molecular Microbiology School of Life Sciences, University of Dundee, Dundee, UK
| | - Erik Hjerde
- Department of Chemistry, Arctic University of Norway, Tromsø, Norway
| | | | - Tracy Palmer
- Division of Molecular Microbiology School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
47
|
Itoh H, Tokumoto K, Kaji T, Paudel A, Panthee S, Hamamoto H, Sekimizu K, Inoue M. Total Synthesis and Biological Mode of Action of WAP-8294A2: A Menaquinone-Targeting Antibiotic. J Org Chem 2017; 83:6924-6935. [PMID: 29019678 DOI: 10.1021/acs.joc.7b02318] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
WAP-8294A2 (lotilibcin, 1) is a potent antibiotic with superior in vivo efficacy to vancomycin against methicillin-resistant Staphylococcus aureus (MRSA). Despite the great medical importance, its molecular mode of action remains unknown. Here we report the total synthesis of complex macrocyclic peptide 1 comprised of 12 amino acids with a β-hydroxy fatty-acid chain, and its deoxy analogue 2. A full solid-phase synthesis of 1 and 2 enabled their rapid assembly and the first detailed investigation of their functions. Compounds 1 and 2 were equipotent against various strains of Gram-positive bacteria including MRSA. We present evidence that the antimicrobial activities of 1 and 2 are due to lysis of the bacterial membrane, and their membrane-disrupting effects depend on the presence of menaquinone, an essential factor for the bacterial respiratory chain. The established synthetic routes and the menaquinone-targeting mechanisms provide valuable information for designing and developing new antibiotics based on their structures.
Collapse
Affiliation(s)
- Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Kotaro Tokumoto
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Takuya Kaji
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Atmika Paudel
- Teikyo University Institute of Medical Mycology , 359 Otsuka , Hachioji , Tokyo 192-0395 , Japan
| | - Suresh Panthee
- Teikyo University Institute of Medical Mycology , 359 Otsuka , Hachioji , Tokyo 192-0395 , Japan
| | - Hiroshi Hamamoto
- Teikyo University Institute of Medical Mycology , 359 Otsuka , Hachioji , Tokyo 192-0395 , Japan
| | - Kazuhisa Sekimizu
- Teikyo University Institute of Medical Mycology , 359 Otsuka , Hachioji , Tokyo 192-0395 , Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| |
Collapse
|
48
|
Vestergaard M, Nøhr-Meldgaard K, Ingmer H. Multiple pathways towards reduced membrane potential and concomitant reduction in aminoglycoside susceptibility in Staphylococcus aureus. Int J Antimicrob Agents 2017; 51:132-135. [PMID: 28843820 DOI: 10.1016/j.ijantimicag.2017.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
Abstract
Staphylococcus aureus is responsible for life-threatening and difficult-to-treat infections worldwide and antimicrobial resistance is an increasing concern. Whilst acquired resistance has been widely studied, little is known of the contributions from chromosomal determinants that upon inactivation may reduce the susceptibility of S. aureus to antibiotics. The aim of this study was to identify genetic determinants that upon inactivation reduce aminoglycoside susceptibility in S. aureus. The Nebraska Transposon Mutant Library of 1920 single-gene inactivations in S. aureus strain JE2 was screened for reduced susceptibility to gentamicin. Nine mutants were confirmed by Etest to display between 2- and 16-fold reduced susceptibility to this antibiotic. All of the identified genes were associated with the electron transport chain and energy metabolism. Four mutant strains (menD, hemB, aroC and SAUSA300_0355) conferred the largest decrease in gentamicin susceptibility and three exhibited a small colony variant phenotype, whereas the remaining mutants (qoxA, qoxB, qoxC, ndh and hemX) displayed colony morphology similar to the wild-type. All of the mutants, except hemX, displayed reduced membrane potential suggesting that reduced uptake of gentamicin is the predominant mechanism leading to reduced susceptibility. The results of this study demonstrate that S. aureus possesses multiple genes that upon inactivation by mutagenesis reduce the membrane potential and thereby reduce the lethal activity of gentamicin.
Collapse
Affiliation(s)
- Martin Vestergaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, Frederiksberg C DK-1870, Denmark
| | - Katrine Nøhr-Meldgaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, Frederiksberg C DK-1870, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, Frederiksberg C DK-1870, Denmark.
| |
Collapse
|
49
|
Mechanisms of Pyocyanin Toxicity and Genetic Determinants of Resistance in Staphylococcus aureus. J Bacteriol 2017; 199:JB.00221-17. [PMID: 28607159 DOI: 10.1128/jb.00221-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/07/2017] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are commonly isolated from polymicrobial infections, such as wound infections and chronic respiratory infections of persons with cystic fibrosis. Despite their coisolation, P. aeruginosa produces substances toxic to S. aureus, including pyocyanin, a blue-pigmented molecule that functions in P. aeruginosa virulence. Pyocyanin inhibits S. aureus respiration, forcing it to derive energy from fermentation and adopt a small-colony variant (SCV) phenotype. The mechanisms by which S. aureus sustains infection in the presence of pyocyanin are not clear. We sought to clarify the mechanisms of pyocyanin toxicity in S. aureus as well as identify the staphylococcal factors involved in its resistance to pyocyanin toxicity. Nonrespiring S. aureus SCVs are inhibited by pyocyanin through pyocyanin-dependent reactive oxygen species (ROS) production, indicating that pyocyanin toxicity is mediated through respiratory inhibition and ROS generation. Selection on pyocyanin yielded a menadione auxotrophic SCV capable of growth on high concentrations of pyocyanin. Genome sequencing of this isolate identified mutations in four genes, including saeS, menD, NWMN_0006, and qsrR QsrR is a quinone-sensing repressor of quinone detoxification genes. Inactivation of qsrR resulted in significant pyocyanin resistance, and additional pyocyanin resistance was achieved through combined inactivation of qsrR and menadione biosynthesis. Pyocyanin-resistant S. aureus has an enhanced capability to inactivate pyocyanin, suggesting QsrR-regulated gene products may degrade pyocyanin to alleviate toxicity. These findings demonstrate pyocyanin-mediated ROS generation as an additional mechanism of pyocyanin toxicity and define QsrR as a key mediator of pyocyanin resistance in S. aureus IMPORTANCE Many bacterial infections occur in the presence of other microbes, where interactions between different microbes and the host impact disease. In patients with cystic fibrosis, chronic lung infection with multiple microbes results in the most severe disease manifestations. Staphylococcus aureus and Pseudomonas aeruginosa are prevalent cystic fibrosis pathogens, and infection with both is associated with worse outcomes. These organisms have evolved mechanisms of competing with one another. For example, P. aeruginosa produces pyocyanin, which inhibits S. aureus growth. Our research has identified how pyocyanin inhibits S. aureus growth and how S. aureus can adapt to survive in the presence of pyocyanin. Understanding how S. aureus sustains infection in the presence of P. aeruginosa may identify means of disrupting these microbial communities.
Collapse
|
50
|
Chandrangsu P, Rensing C, Helmann JD. Metal homeostasis and resistance in bacteria. Nat Rev Microbiol 2017; 15:338-350. [PMID: 28344348 DOI: 10.1038/nrmicro.2017.15] [Citation(s) in RCA: 432] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metal ions are essential for many reactions, but excess metals can be toxic. In bacteria, metal limitation activates pathways that are involved in the import and mobilization of metals, whereas excess metals induce efflux and storage. In this Review, we highlight recent insights into metal homeostasis, including protein-based and RNA-based sensors that interact directly with metals or metal-containing cofactors. The resulting transcriptional response to metal stress takes place in a stepwise manner and is reinforced by post-transcriptional regulatory systems. Metal limitation and intoxication by the host are evolutionarily ancient strategies for limiting bacterial growth. The details of the resulting growth restriction are beginning to be understood and seem to be organism-specific.
Collapse
Affiliation(s)
- Pete Chandrangsu
- Department of Microbiology, Cornell University, Wing Hall, 123 Wing Drive, Ithaca, New York 14853, USA
| | - Christopher Rensing
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.,Department of Agricultural Resource and Environment, College of Resources and the Environment, Fujian Agriculture &Forestry University, Boxbue Building, 15 Shangxiadian Road, Cangshan District, Fuzhou, Fujian 350002, China.,J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, California 92037, USA
| | - John D Helmann
- Department of Microbiology, Cornell University, Wing Hall, 123 Wing Drive, Ithaca, New York 14853, USA
| |
Collapse
|