1
|
Ranjani J, Sivakumar R, Gunasekaran P, Velmurugan G, Ramasamy S, Rajendhran J. Genome-wide identification of genetic requirements of Pseudomonas aeruginosa PAO1 for rat cardiomyocyte (H9C2) infection by insertion sequencing. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105231. [PMID: 35104681 DOI: 10.1016/j.meegid.2022.105231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 12/18/2021] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
Abstract
Pseudomonas aeruginosa is a major infectious agent among Gram-negative bacteria, which causes both acute and chronic infections. Infections due to P. aeruginosa are hard to treat, as it entails various strategies like virulence factors synthesis, drug efflux systems & resistance and protein secretion systems during pathogenesis. Despite extensive research in Pseudomonas pathogenesis, novel drug targets and potential therapeutic strategies are urgently needed. In this study, we investigated the genetic requirements of P. aeruginosa PAO1 for rat cardiomyocyte (H9C2) infection by insertion sequencing (INSeq). A mutant library comprising ~70,000 mutants of PAO1 was generated and the differentiated form of H9C2 cells (d-H9C2) was infected with the library. The infected d-H9C2 cells were maintained with antibiotic-protection and without any antibiotics in the growth media for 24 h. Subsequently, DNA library for INSeq was prepared, sequenced and fitness analysis was performed. One hundred and thirteen mutants were negatively selected in the infection condition with antibiotic-protection, whereas 143 mutants were negatively selected in antibiotic-free condition. Surprisingly, a higher number of mutants showed enriched fitness than the mutants of reduced fitness during the infection. We demonstrated that the genes associated with flagella and T3SS are important for adhesion and invasion of cardiomyocytes, while pili and proteases are conditionally essential during host cell lysis. Hence, our findings highlight the essential genes for cardiomyocyte infection, particularly during the intracellular phase. The aerotaxis receptor Aer, plays a critical role during intracellular life. Genes such as flgE, flgF, flhA, flhB, fliA, fliC, fliF, motA, aotJ, aer, wbpJ, ponA, fleQ, PA5205, hmgA, trkH and pslH are essential for infection.
Collapse
Affiliation(s)
- Jothi Ranjani
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Ramamoorthy Sivakumar
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Paramasamy Gunasekaran
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Ganesan Velmurugan
- Chemomicrobiomics Laboratory, Department of Biochemistry & Microbiology, KMCH Research Foundation, Coimbatore 641014, Tamil Nadu, India
| | - Subbiah Ramasamy
- Cardiac Hypertrophy Laboratory, Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Jeyaprakash Rajendhran
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India.
| |
Collapse
|
2
|
Riesbeck K. Complement evasion by the human respiratory tract pathogens Haemophilus influenzae and Moraxella catarrhalis. FEBS Lett 2020; 594:2586-2597. [PMID: 32053211 DOI: 10.1002/1873-3468.13758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/26/2020] [Accepted: 02/09/2020] [Indexed: 12/14/2022]
Abstract
All infective bacterial species need to conquer the innate immune system in order to colonize and survive in their hosts. The human respiratory pathogens Haemophilus influenzae and Moraxella catarrhalis are no exceptions and have developed sophisticated mechanisms to evade complement-mediated killing. Both bacterial species carry lipooligosaccharides preventing complement attacks and attract and utilize host complement regulators C4b binding protein and factor H to inhibit the classical and alternative pathways of complement activation, respectively. In addition, the regulator of the terminal pathway of complement activation, vitronectin, is hijacked by both bacteria. An array of different outer membrane proteins (OMP) in H. influenzae and M. catarrhalis simultaneously binds complement regulators, but also plasminogen. Several of the bacterial complement-binding proteins are important adhesins and contain highly conserved regions for interactions with the host. Thus, some of the OMP are viable targets for new therapeutics, including vaccines aimed at preventing respiratory tract diseases such as otitis media in children and exacerbations in patients suffering from chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
3
|
Fenker DE, McDaniel CT, Panmanee W, Panos RJ, Sorscher EJ, Sabusap C, Clancy JP, Hassett DJ. A Comparison between Two Pathophysiologically Different yet Microbiologically Similar Lung Diseases: Cystic Fibrosis and Chronic Obstructive Pulmonary Disease. INTERNATIONAL JOURNAL OF RESPIRATORY AND PULMONARY MEDICINE 2018; 5:098. [PMID: 30627668 PMCID: PMC6322854 DOI: 10.23937/2378-3516/1410098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) are chronic pulmonary diseases that affect ~70,000 and 251 million individuals worldwide, respectively. Although these two diseases have distinctly different pathophysiologies, both cause chronic respiratory insufficiency that erodes quality of life and causes significant morbidity and eventually death. In both CF and COPD, the respiratory microbiome plays a major contributing role in disease progression and morbidity. Pulmonary pathogens can differ dramatically during various stages of each disease and frequently cause acute worsening of lung function due to disease exacerbation. Despite some similarities, outcome and timing/type of exacerbation can also be quite different between CF and COPD. Given these clinical distinctions, both patients and physicians should be aware of emerging therapeutic options currently being offered or in development for the treatment of lung infections in individuals with CF and COPD. Although interventions are available that prolong life and mitigate morbidity, neither disorder is curable. Both acute and chronic pulmonary infections contribute to an inexorable downward course and may trigger exacerbations, culminating in loss of lung function or respiratory failure. Knowledge of the pulmonary pathogens causing these infections, their clinical presentation, consequences, and management are, therefore, critical. In this review, we compare and contrast CF and COPD, including underlying causes, general outcomes, features of the lung microbiome, and potential treatment strategies.
Collapse
Affiliation(s)
- Daniel E Fenker
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Cameron T McDaniel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Warunya Panmanee
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Ralph J Panos
- Department of Medicine, Cincinnati VA Medical Center, Cincinnati, USA
| | | | | | - John P Clancy
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Daniel J Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, USA
| |
Collapse
|
4
|
Kessler RL, Contreras VT, Marliére NP, Aparecida Guarneri A, Villamizar Silva LH, Mazzarotto GACA, Batista M, Soccol VT, Krieger MA, Probst CM. Recently differentiated epimastigotes fromTrypanosoma cruziare infective to the mammalian host. Mol Microbiol 2017; 104:712-736. [DOI: 10.1111/mmi.13653] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2017] [Indexed: 12/31/2022]
Affiliation(s)
| | - Víctor Tulio Contreras
- Laboratorio de Protozoología, Centro de Biología Molecular de Parásitos, Facultad Ciencias de la Salud; Universidad de Carabobo; Valencia Venezuela
| | - Newmar Pinto Marliére
- Vector Behavior and Pathogen Interaction Group; Centro de Pesquisas René Rachou, Fiocruz; Belo Horizonte Minas Gerais Brazil
| | - Alessandra Aparecida Guarneri
- Vector Behavior and Pathogen Interaction Group; Centro de Pesquisas René Rachou, Fiocruz; Belo Horizonte Minas Gerais Brazil
| | | | | | | | - Vanete Thomaz Soccol
- Programa de Pós-Graduação em Processos Biotecnológicos e Biotecnologia, Centro Politécnico; Universidade Federal do Paraná; Curitiba PR Brazil
| | | | | |
Collapse
|
5
|
de Vries SP, Gupta S, Baig A, Wright E, Wedley A, Jensen AN, Lora LL, Humphrey S, Skovgård H, Macleod K, Pont E, Wolanska DP, L'Heureux J, Mobegi FM, Smith DGE, Everest P, Zomer A, Williams N, Wigley P, Humphrey T, Maskell DJ, Grant AJ. Genome-wide fitness analyses of the foodborne pathogen Campylobacter jejuni in in vitro and in vivo models. Sci Rep 2017; 7:1251. [PMID: 28455506 PMCID: PMC5430854 DOI: 10.1038/s41598-017-01133-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/27/2017] [Indexed: 01/22/2023] Open
Abstract
Campylobacter is the most common cause of foodborne bacterial illness worldwide. Faecal contamination of meat, especially chicken, during processing represents a key route of transmission to humans. There is a lack of insight into the mechanisms driving C. jejuni growth and survival within hosts and the environment. Here, we report a detailed analysis of C. jejuni fitness across models reflecting stages in its life cycle. Transposon (Tn) gene-inactivation libraries were generated in three C. jejuni strains and the impact on fitness during chicken colonisation, survival in houseflies and under nutrient-rich and -poor conditions at 4 °C and infection of human gut epithelial cells was assessed by Tn-insertion site sequencing (Tn-seq). A total of 331 homologous gene clusters were essential for fitness during in vitro growth in three C. jejuni strains, revealing that a large part of its genome is dedicated to growth. We report novel C. jejuni factors essential throughout its life cycle. Importantly, we identified genes that fulfil important roles across multiple conditions. Our comprehensive screens showed which flagella elements are essential for growth and which are vital to the interaction with host organisms. Future efforts should focus on how to exploit this knowledge to effectively control infections caused by C. jejuni.
Collapse
Affiliation(s)
- Stefan P de Vries
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Srishti Gupta
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Abiyad Baig
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonnington, Leicestershire, United Kingdom
| | - Elli Wright
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Amy Wedley
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | | | - Lizeth LaCharme Lora
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Suzanne Humphrey
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Neston, United Kingdom
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Henrik Skovgård
- Department of Agroecology, University of Aarhus, Slagelse, Denmark
| | - Kareen Macleod
- University of Glasgow, Veterinary School, Glasgow, United Kingdom
| | - Elsa Pont
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Dominika P Wolanska
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Joanna L'Heureux
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Fredrick M Mobegi
- Department of Paediatric Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - David G E Smith
- Heriot-Watt University, School of Life Sciences, Edinburgh, Scotland, United Kingdom
| | - Paul Everest
- University of Glasgow, Veterinary School, Glasgow, United Kingdom
| | - Aldert Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nicola Williams
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Paul Wigley
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Thomas Humphrey
- School of Medicine, Institute of Life Sciences, Swansea University, Swansea, United Kingdom
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J Grant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
6
|
Earl JP, de Vries SPW, Ahmed A, Powell E, Schultz MP, Hermans PWM, Hill DJ, Zhou Z, Constantinidou CI, Hu FZ, Bootsma HJ, Ehrlich GD. Comparative Genomic Analyses of the Moraxella catarrhalis Serosensitive and Seroresistant Lineages Demonstrate Their Independent Evolution. Genome Biol Evol 2016; 8:955-74. [PMID: 26912404 PMCID: PMC4860680 DOI: 10.1093/gbe/evw039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2016] [Indexed: 02/07/2023] Open
Abstract
The bacterial speciesMoraxella catarrhalishas been hypothesized as being composed of two distinct lineages (referred to as the seroresistant [SR] and serosensitive [SS]) with separate evolutionary histories based on several molecular typing methods, whereas 16S ribotyping has suggested an additional split within the SS lineage. Previously, we characterized whole-genome sequences of 12 SR-lineage isolates, which revealed a relatively small supragenome when compared with other opportunistic nasopharyngeal pathogens, suggestive of a relatively short evolutionary history. Here, we performed whole-genome sequencing on 18 strains from both ribotypes of the SS lineage, an additional SR strain, as well as four previously identified highly divergent strains based on multilocus sequence typing analyses. All 35 strains were subjected to a battery of comparative genomic analyses which clearly show that there are three lineages-the SR, SS, and the divergent. The SR and SS lineages are closely related, but distinct from each other based on three different methods of comparison: Allelic differences observed among core genes; possession of lineage-specific sets of core and distributed genes; and by an alignment of concatenated core sequences irrespective of gene annotation. All these methods show that the SS lineage has much longer interstrain branches than the SR lineage indicating that this lineage has likely been evolving either longer or faster than the SR lineage. There is evidence of extensive horizontal gene transfer (HGT) within both of these lineages, and to a lesser degree between them. In particular, we identified very high rates of HGT between these two lineages for ß-lactamase genes. The four divergent strains aresui generis, being much more distantly related to both the SR and SS groups than these other two groups are to each other. Based on average nucleotide identities, gene content, GC content, and genome size, this group could be considered as a separate taxonomic group. The SR and SS lineages, although distinct, clearly form a single species based on multiple criteria including a large common core genome, average nucleotide identity values, GC content, and genome size. Although neither of these lineages arose from within the other based on phylogenetic analyses, the question of how and when these lineages split and then subsequently reunited in the human nasopharynx is explored.
Collapse
Affiliation(s)
- Joshua P Earl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA Center for Genomic Sciences and Center for Advanced Microbial Processing, Institute of Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA
| | - Stefan P W de Vries
- Present address: Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Azad Ahmed
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA
| | - Evan Powell
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA
| | - Matthew P Schultz
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA
| | - Peter W M Hermans
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Darryl J Hill
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Zhemin Zhou
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | - Fen Z Hu
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA Center for Genomic Sciences and Center for Advanced Microbial Processing, Institute of Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA Department of Otolaryngology Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA
| | - Hester J Bootsma
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Garth D Ehrlich
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA Center for Genomic Sciences and Center for Advanced Microbial Processing, Institute of Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA Department of Otolaryngology Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA
| |
Collapse
|
7
|
Kwon YM, Ricke SC, Mandal RK. Transposon sequencing: methods and expanding applications. Appl Microbiol Biotechnol 2015; 100:31-43. [DOI: 10.1007/s00253-015-7037-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/15/2015] [Accepted: 09/20/2015] [Indexed: 12/26/2022]
|
8
|
de Vries SPW, Bootsma HJ. Differential gene expression of Moraxella catarrhalis upon exposure to human serum. GENOMICS DATA 2014; 2:312-3. [PMID: 26484117 PMCID: PMC4536000 DOI: 10.1016/j.gdata.2014.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 11/28/2022]
Abstract
The complement system is an important part of the innate defense against invading pathogens (Blom et al., 2009; [1]). The ability to resist complement-mediated killing is considered to be an important virulence trait for the human-restricted respiratory tract pathogen Moraxella catarrhalis, as most disease-associated M. catarrhalis isolates are complement-resistant (Wirth et al., 2007; [2]). Here we provide a detailed overview of the experimental methods that we have used to study the molecular basis of M. catarrhalis complement-resistance by transcriptome profiling of the bacterium upon exposure to 10% normal human serum (NHS), associated with the study of de Vries et al. published in Molecular Microbiology in 2014 [3].
Collapse
Affiliation(s)
- Stefan P W de Vries
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Hester J Bootsma
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Premkumar L, Kurth F, Duprez W, Grøftehauge MK, King GJ, Halili MA, Heras B, Martin JL. Structure of the Acinetobacter baumannii dithiol oxidase DsbA bound to elongation factor EF-Tu reveals a novel protein interaction site. J Biol Chem 2014; 289:19869-80. [PMID: 24860094 DOI: 10.1074/jbc.m114.571737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The multidrug resistant bacterium Acinetobacter baumannii is a significant cause of nosocomial infection. Biofilm formation, that requires both disulfide bond forming and chaperone-usher pathways, is a major virulence trait in this bacterium. Our biochemical characterizations show that the periplasmic A. baumannii DsbA (AbDsbA) enzyme has an oxidizing redox potential and dithiol oxidase activity. We found an unexpected non-covalent interaction between AbDsbA and the highly conserved prokaryotic elongation factor, EF-Tu. EF-Tu is a cytoplasmic protein but has been localized extracellularly in many bacterial pathogens. The crystal structure of this complex revealed that the EF-Tu switch I region binds to the non-catalytic surface of AbDsbA. Although the physiological and pathological significance of a DsbA/EF-Tu association is unknown, peptides derived from the EF-Tu switch I region bound to AbDsbA with submicromolar affinity. We also identified a seven-residue DsbB-derived peptide that bound to AbDsbA with low micromolar affinity. Further characterization confirmed that the EF-Tu- and DsbB-derived peptides bind at two distinct sites. These data point to the possibility that the non-catalytic surface of DsbA is a potential substrate or regulatory protein interaction site. The two peptides identified in this work together with the newly characterized interaction site provide a novel starting point for inhibitor design targeting AbDsbA.
Collapse
Affiliation(s)
- Lakshmanane Premkumar
- From the Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Fabian Kurth
- From the Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Wilko Duprez
- From the Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Morten K Grøftehauge
- From the Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Gordon J King
- From the Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Maria A Halili
- From the Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Begoña Heras
- From the Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Jennifer L Martin
- From the Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St. Lucia, Queensland 4067, Australia
| |
Collapse
|
10
|
Bernhard S, Fleury C, Su YC, Zipfel PF, Koske I, Nordström T, Riesbeck K. Outer membrane protein OlpA contributes to Moraxella catarrhalis serum resistance via interaction with factor H and the alternative pathway. J Infect Dis 2014; 210:1306-10. [PMID: 24771863 DOI: 10.1093/infdis/jiu241] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Factor H is an important complement regulator of the alternative pathway commonly recruited by pathogens to achieve increased rates of survival in the human host. The respiratory pathogen Moraxella catarrhalis, which resides in the mucosa, is highly resistant to the bactericidal activity of serum and causes otitis media in children and respiratory tract infections in individuals with underlying diseases. In this study, we show that M. catarrhalis binds factor H via the outer membrane protein OlpA. M. catarrhalis serum resistance was dramatically decreased in the absence of either OlpA or factor H, demonstrating that this inhibition of the alternative pathway significantly contributes to the virulence of M. catarrhalis.
Collapse
Affiliation(s)
- Sara Bernhard
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Sweden
| | - Christophe Fleury
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Sweden
| | - Yu-Ching Su
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Sweden
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Iris Koske
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Sweden
| | - Therése Nordström
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Sweden
| | - Kristian Riesbeck
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Sweden
| |
Collapse
|