1
|
Dong J, Ning J, Tian Y, Li H, Chen H, Guan W. The involvement of multiple ABC transporters in daunorubicin efflux in Streptomyces coeruleorubidus. Microb Biotechnol 2024; 17:e70023. [PMID: 39375957 PMCID: PMC11458662 DOI: 10.1111/1751-7915.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/15/2024] [Indexed: 10/09/2024] Open
Abstract
Streptomyces genus produces a large number of antibiotics, which are always synthesized by specific biosynthetic gene clusters (BGCs). To resist autotoxicity, transporters encoded by genes located within BGC occasionally pump antibiotic along with transporter encoded by gene located outside BGC. Daunorubicin is an anthracycline antibiotic biosynthesized by Streptomyces species, playing a crucial role in the treatment of leukaemia. In existing studies, only one two-component ATP-binding cassette (ABC) transporter, encoded by drrA1-drrB1 (abbreviated as drrAB1) and located within the daunorubicin BGC, has been proven to extrude daunorubicin. In this work, two other two-component ABC transporters, encoded by drrAB2 and drrAB3 and located outside the cluster, were found to play the complementary role in daunorubicin efflux in S. coeruleorubidus. Disruption of three drrABs resulted in a 94% decrease in daunorubicin production. Furthermore, drrAB2 is regulated by the TetR family regulator DrrR1, responding to the intracellular accumulation of daunorubicin and suggesting its role in stress response and self-resistance. Although the homologues of DrrAB1 are only found in three anthracycline BGCs, the homologues of DrrAB2 and DrrAB3 are spread in many Streptomyces strains which do not contain any known anthracycline BGC. This indicates that DrrAB2 and DrrAB3 may recognize and extrude a broader range of substrates besides daunorubicin, thus playing a more extensive role in cellular detoxification.
Collapse
Affiliation(s)
- Jianxin Dong
- The Fourth Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of MedicineZhejiang UniversityHangzhouChina
| | - Jiali Ning
- The Fourth Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of MedicineZhejiang UniversityHangzhouChina
| | - Yu Tian
- School of Biology, Food and EnvironmentHefei UniversityHefeiChina
| | - Han Li
- The Fourth Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of MedicineZhejiang UniversityHangzhouChina
| | - Hua Chen
- School of Biology, Food and EnvironmentHefei UniversityHefeiChina
| | - Wenjun Guan
- The Fourth Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
2
|
Chihomvu P, Ganesan A, Gibbons S, Woollard K, Hayes MA. Phytochemicals in Drug Discovery-A Confluence of Tradition and Innovation. Int J Mol Sci 2024; 25:8792. [PMID: 39201478 PMCID: PMC11354359 DOI: 10.3390/ijms25168792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/02/2024] Open
Abstract
Phytochemicals have a long and successful history in drug discovery. With recent advancements in analytical techniques and methodologies, discovering bioactive leads from natural compounds has become easier. Computational techniques like molecular docking, QSAR modelling and machine learning, and network pharmacology are among the most promising new tools that allow researchers to make predictions concerning natural products' potential targets, thereby guiding experimental validation efforts. Additionally, approaches like LC-MS or LC-NMR speed up compound identification by streamlining analytical processes. Integrating structural and computational biology aids in lead identification, thus providing invaluable information to understand how phytochemicals interact with potential targets in the body. An emerging computational approach is machine learning involving QSAR modelling and deep neural networks that interrelate phytochemical properties with diverse physiological activities such as antimicrobial or anticancer effects.
Collapse
Affiliation(s)
- Patience Chihomvu
- Compound Synthesis and Management, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - A. Ganesan
- School of Chemistry, Pharmacy & Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Simon Gibbons
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mawz 616, Oman;
| | - Kevin Woollard
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolic, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB21 6GH, UK;
| | - Martin A. Hayes
- Compound Synthesis and Management, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 431 83 Mölndal, Sweden
| |
Collapse
|
3
|
Parkhill SL, Johnson EO. Integrating bacterial molecular genetics with chemical biology for renewed antibacterial drug discovery. Biochem J 2024; 481:839-864. [PMID: 38958473 PMCID: PMC11346456 DOI: 10.1042/bcj20220062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
The application of dyes to understanding the aetiology of infection inspired antimicrobial chemotherapy and the first wave of antibacterial drugs. The second wave of antibacterial drug discovery was driven by rapid discovery of natural products, now making up 69% of current antibacterial drugs. But now with the most prevalent natural products already discovered, ∼107 new soil-dwelling bacterial species must be screened to discover one new class of natural product. Therefore, instead of a third wave of antibacterial drug discovery, there is now a discovery bottleneck. Unlike natural products which are curated by billions of years of microbial antagonism, the vast synthetic chemical space still requires artificial curation through the therapeutics science of antibacterial drugs - a systematic understanding of how small molecules interact with bacterial physiology, effect desired phenotypes, and benefit the host. Bacterial molecular genetics can elucidate pathogen biology relevant to therapeutics development, but it can also be applied directly to understanding mechanisms and liabilities of new chemical agents with new mechanisms of action. Therefore, the next phase of antibacterial drug discovery could be enabled by integrating chemical expertise with systematic dissection of bacterial infection biology. Facing the ambitious endeavour to find new molecules from nature or new-to-nature which cure bacterial infections, the capabilities furnished by modern chemical biology and molecular genetics can be applied to prospecting for chemical modulators of new targets which circumvent prevalent resistance mechanisms.
Collapse
Affiliation(s)
- Susannah L. Parkhill
- Systems Chemical Biology of Infection and Resistance Laboratory, The Francis Crick Institute, London, U.K
- Faculty of Life Sciences, University College London, London, U.K
| | - Eachan O. Johnson
- Systems Chemical Biology of Infection and Resistance Laboratory, The Francis Crick Institute, London, U.K
- Faculty of Life Sciences, University College London, London, U.K
- Department of Chemistry, Imperial College, London, U.K
- Department of Chemistry, King's College London, London, U.K
| |
Collapse
|
4
|
Allemailem KS. Recent Advances in Understanding the Molecular Mechanisms of Multidrug Resistance and Novel Approaches of CRISPR/Cas9-Based Genome-Editing to Combat This Health Emergency. Int J Nanomedicine 2024; 19:1125-1143. [PMID: 38344439 PMCID: PMC10859101 DOI: 10.2147/ijn.s453566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
The rapid spread of multidrug resistance (MDR), due to abusive use of antibiotics has led to global health emergency, causing substantial morbidity and mortality. Bacteria attain MDR by different means such as antibiotic modification/degradation, target protection/modification/bypass, and enhanced efflux mechanisms. The classical approaches of counteracting MDR bacteria are expensive and time-consuming, thus, it is highly significant to understand the molecular mechanisms of this resistance to curb the problem from core level. The revolutionary approach of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated sequence 9 (CRISPR/Cas9), considered as a next-generation genome-editing tool presents an innovative opportunity to precisely target and edit bacterial genome to alter their MDR strategy. Different bacteria possessing antibiotic resistance genes such as mecA, ermB, ramR, tetA, mqrB and blaKPC that have been targeted by CRISPR/Cas9 to re-sensitize these pathogens against antibiotics, such as methicillin, erythromycin, tigecycline, colistin and carbapenem, respectively. The CRISPR/Cas9 from S. pyogenes is the most widely studied genome-editing tool, consisting of a Cas9 DNA endonuclease associated with tracrRNA and crRNA, which can be systematically coupled as sgRNA. The targeting strategies of CRISPR/Cas9 to bacterial cells is mediated through phage, plasmids, vesicles and nanoparticles. However, the targeting approaches of this genome-editing tool to specific bacteria is a challenging task and still remains at a very preliminary stage due to numerous obstacles awaiting to be solved. This review elaborates some recent updates about the molecular mechanisms of antibiotic resistance and the innovative role of CRISPR/Cas9 system in modulating these resistance mechanisms. Furthermore, the delivery approaches of this genome-editing system in bacterial cells are discussed. In addition, some challenges and future prospects are also described.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah51452, Saudi Arabia
| |
Collapse
|
5
|
Alves da Silva A, Silva IJ, Arraiano CM. A paradox of bacterial persistence and antibiotic resistance: chloramphenicol acetyl transferase as a double barrel shot gun. MICROLIFE 2023; 4:uqad034. [PMID: 37781689 PMCID: PMC10540939 DOI: 10.1093/femsml/uqad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/04/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
The problematic microbial resistance to antibiotics has led to an increasing interest in bacterial persistence and its impact on infection. Nonetheless, these two mechanisms are often assessed in independent studies, and there is a lack of knowledge about their relation or possible interactions, both at cellular and population levels. This work shows evidence that the insertion of the resistance gene Chloramphenicol Acetyl Transferase (cat) together with its cognate antibiotic chloramphenicol (CAM), is capable to modulate Salmonella Typhimurium persistence to several antibiotics and decrease its survival. This effect is independent of the antibiotics' mechanisms of action or the locus of cat. RelA [p(ppGpp) syntetase] has been shown to be involved in persistence. It was recently proposed that RelA [(p)ppGpp synthetase], binds to uncharged tRNAs, forming RelA.tRNA complexes. These complexes bind to vacant A-sites in the ribosome, and this mechanism is essential for the activation of RelA. In this study, we propose that the antibiotic chloramphenicol blocks the A-site of the ribosome, hindering the binding of RelA.tRNA complexes to the ribosome thus preventing the activation of RelA and (p)ppGpp synthesis, with a consequent decrease in the level of persistence of the population. Our discovery that the concomitant use of chloramphenicol and other antibiotics in chloramphenicol resistant bacteria can decrease the persister levels can be the basis of novel therapeutics aiming to decrease the persisters and recalcitrant infections.
Collapse
Affiliation(s)
- Ana Alves da Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Inês Jesus Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Cecília Maria Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
6
|
Zhang Y, Zhao J, Chen M, Tang X, Wang Y, Zou Y. Fecal antibiotic resistance genes were transferred through the distribution of soil-lettuce-snail food chain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87793-87809. [PMID: 37434056 DOI: 10.1007/s11356-023-28606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023]
Abstract
Massive antibiotic resistance genes (ARG) were detected in the soil modified by manure, which may affect human life safety through the food chain. However, the transmission of ARGs through the soil-plant-animal food chain is still unclear. Therefore, this study used high-throughput quantitative PCR technology to explore the effects of pig manure application on ARGs and bacterial communities in soil, lettuce phyllosphere, and snail excrement. The results showed that a total of 384 ARGs and 48 MEGs were detected in all samples after 75 days of incubation. The diversity of ARGs and MGEs in soil components increased significantly by 87.04% and 40% with the addition of pig manure. The absolute abundance of ARGs in the phyllosphere of lettuce was significantly higher than that of the control group, with a growth rate of 212.5%. Six common ARGs were detected between the three components of the fertilization group, indicating that there was internal transmission of fecal ARGs between the trophic levels of the food chain. Firmicutes and Proteobacteria were identified as the dominant host bacteria in the food chain system, which were more likely to be used as carriers of ARGs to promote the spread of resistance in the food chain. The results were used to assess the potential ecological risks of livestock and poultry manure. It provides theoretical basis and scientific support for the formulation of ARG prevention and control policies.
Collapse
Affiliation(s)
- Yuan Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Jiayi Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Minglong Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xinyue Tang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yijia Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yun Zou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
7
|
Zani ACB, Almeida ÉJRD, Furlan JPR, Pedrino M, Guazzaroni ME, Stehling EG, Andrade ARD, Reginatto V. Electrobiochemical skills of Pseudomonas aeruginosa species that produce pyocyanin or pyoverdine for glycerol oxidation in a microbial fuel cell. CHEMOSPHERE 2023:139073. [PMID: 37263512 DOI: 10.1016/j.chemosphere.2023.139073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/05/2023] [Accepted: 05/28/2023] [Indexed: 06/03/2023]
Abstract
Pseudomonas aeruginosa can produce pigments, which mediate external electron transfer (EET). Depending on the mediator, this species can be explored in bioelectrosystems to harvest energy or to obtain chemicals from residual organic compounds. This study has compared the performance of microbial fuel cells (MFCs) inoculated with a Pseudomonas aeruginosa isolate, namely EW603 or EW819, which produce pyocyanin and pyoverdine, respectively. The efficiency of these MFCs in glycerol, a typical residue of biodiesel production, were also compared. The MFCs exhibited different performances. The maximum voltage was 411 and 281 mV m2, the power density was 40.1 and 21.3 mW m-2, and the coulombic efficiency was 5.16 and 1.49% for MFC-EW603 and MFC-EW819, respectively. MFC-EW603 and MFC-EW819 achieved maximum current at 560 and 2200 Ω, at 141.2 and 91.3 mA m-2, respectively. When the system was operated at the respective maximum current output, MFC-EW603 consumed the total glycerol content (11 mmol L-1), and no products could be detected after 50 h. In turn, acetic and butyric acids were detected at the end of MFC-EW819 operation (75 h). The results suggested that P. aeruginosa metabolism can be steered in the MFC to generate current or microbial products depending on the pigment-producing strain and the conditions applied to the system, such as the external resistance. In addition, gene cluster pathways related to phenazine production (phzA and phzB) and other electrogenic-related genes (mexGHI-opmB) were identified in the strain genomes, supporting the findings. These results open new possibilities for using glycerol in bioelectrochemical systems.
Collapse
Affiliation(s)
- Ana Clara Bonizol Zani
- Universidade de São Paulo- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto - FFCLRP - SP. Departamento de Química, Av. Bandeirantes, 3900, CEP 14040-030, Ribeirão Preto, SP, Brazil
| | - Érica Janaina Rodrigues de Almeida
- Universidade de São Paulo- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto - FFCLRP - SP. Departamento de Química, Av. Bandeirantes, 3900, CEP 14040-030, Ribeirão Preto, SP, Brazil
| | - João Pedro Rueda Furlan
- Universidade de São Paulo - Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP - SP. Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Av. Bandeirantes, 3900, CEP 14040-030, Ribeirão Preto, SP, Brazil
| | - Matheus Pedrino
- Universidade de São Paulo - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Av. Bandeirantes 3900, Ribeirão Preto, SP, 14049-901, Brazil
| | - María-Eugenia Guazzaroni
- Universidade de São Paulo - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Av. Bandeirantes 3900, Ribeirão Preto, SP, 14049-901, Brazil
| | - Eliana Guedes Stehling
- Universidade de São Paulo - Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP - SP. Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Av. Bandeirantes, 3900, CEP 14040-030, Ribeirão Preto, SP, Brazil
| | - Adalgisa Rodrigues de Andrade
- Universidade de São Paulo- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto - FFCLRP - SP. Departamento de Química, Av. Bandeirantes, 3900, CEP 14040-030, Ribeirão Preto, SP, Brazil; Unesp, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, P.O. Box 355, 14800-900, Araraquara, SP, Brazil
| | - Valeria Reginatto
- Universidade de São Paulo- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto - FFCLRP - SP. Departamento de Química, Av. Bandeirantes, 3900, CEP 14040-030, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
8
|
Colizzi ES, van Dijk B, Merks RMH, Rozen DE, Vroomans RMA. Evolution of genome fragility enables microbial division of labor. Mol Syst Biol 2023; 19:e11353. [PMID: 36727665 PMCID: PMC9996244 DOI: 10.15252/msb.202211353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Division of labor can evolve when social groups benefit from the functional specialization of its members. Recently, a novel means of coordinating the division of labor was found in the antibiotic-producing bacterium Streptomyces coelicolor, where specialized cells are generated through large-scale genomic re-organization. We investigate how the evolution of a genome architecture enables such mutation-driven division of labor, using a multiscale computational model of bacterial evolution. In this model, bacterial behavior-antibiotic production or replication-is determined by the structure and composition of their genome, which encodes antibiotics, growth-promoting genes, and fragile genomic loci that can induce chromosomal deletions. We find that a genomic organization evolves, which partitions growth-promoting genes and antibiotic-coding genes into distinct parts of the genome, separated by fragile genomic loci. Mutations caused by these fragile sites mostly delete growth-promoting genes, generating sterile, and antibiotic-producing mutants from weakly-producing progenitors, in agreement with experimental observations. This division of labor enhances the competition between colonies by promoting antibiotic diversity. These results show that genomic organization can co-evolve with genomic instabilities to enable reproductive division of labor.
Collapse
Affiliation(s)
- Enrico Sandro Colizzi
- Mathematical Institute, Leiden University, Leiden, The Netherlands.,Origins Center, Leiden, The Netherlands.,Sainsbury Laboratory, Cambridge University, Cambridge, UK
| | - Bram van Dijk
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Roeland M H Merks
- Mathematical Institute, Leiden University, Leiden, The Netherlands.,Origins Center, Leiden, The Netherlands.,Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Daniel E Rozen
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Renske M A Vroomans
- Origins Center, Leiden, The Netherlands.,Sainsbury Laboratory, Cambridge University, Cambridge, UK.,Informatic Institute, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Luo T, Dai X, Chen Z, Wu L, Wei W, Xu Q, Ni BJ. Different microplastics distinctively enriched the antibiotic resistance genes in anaerobic sludge digestion through shifting specific hosts and promoting horizontal gene flow. WATER RESEARCH 2023; 228:119356. [PMID: 36423550 DOI: 10.1016/j.watres.2022.119356] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/01/2022] [Accepted: 11/12/2022] [Indexed: 06/03/2023]
Abstract
Both microplastics (MPs) and antibiotic resistance genes (ARGs) are intensively detected in waste activated sludge (WAS). However, the distinctive impacts of different MPs on ARGs emergence, dissemination, and its potential mechanisms remain unclear. In this study, long-term semi-continuous digesters were performed to examine the profiles of ARGs and antibiotic-resistant bacteria (ARB) in response to two different typical MPs (polyethylene (PE) and polyvinyl chloride (PVC)) in anaerobic sludge digestion. Metagenomic results show that PE- and PVC-MPs increase ARGs abundance by 14.8% and 23.6% in digester, respectively. ARB are also enriched by PE- and PVC-MPs, Acinetobacter sp. and Salmonella sp. are the dominant ARB. Further exploration reveals that PVC-MPs stimulates the acquisition of ARGs by human pathogen bacteria (HPB) and functional microorganisms (FMs), but PE-MPs doesn't. Network analysis shows that more ARGs tend to co-occur with HBP and FMs after MPs exposure, and more importantly, new bacteria are observed to acquire ARGs possibly via horizontal gene flow (HGF) in MPs-stressed digester. The genes involved in the HGF process, including reactive oxygen species (ROS) production, cell membrane permeability, extracellular polymeric substances (EPS) secretion, and ATP synthesis, are also enhanced by MPs, thereby attributing to the promoted ARGs dissemination. These findings offer advanced insights into the distinctive contribution of MPs to fate, host, dissemination of ARGs in anaerobic sludge digestion.
Collapse
Affiliation(s)
- Tianyi Luo
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Zhijie Chen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qiuxiang Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
10
|
Huang Y, Zou K, Qing T, Feng B, Zhang P. Metagenomics and metatranscriptomics analyses of antibiotic synthesis in activated sludge. ENVIRONMENTAL RESEARCH 2022; 213:113741. [PMID: 35750126 DOI: 10.1016/j.envres.2022.113741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/23/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
The generic of antibiotics is considered to be a main reason for the generation of antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs). However, little has been reported about the antibiotic biosynthesis by activated sludge. In this study, the distribution and expression of antibiotic biosynthetic genes (ABGs) in the floc sludge and biofilm from two WWTPs were deciphered using metagenomics and metatranscriptomics. The results showed that 2% of the community were in general well-linked to antibiotic production, indicating a non-negligible antibiotic synthetic ability of WWTPs. 93 ABGs belonging to 26 antibiotics were determined, among which aminoglycosides, β-lactams, ansamycins, peptides, macrolides were majority. The relative abundances of detected ABGs had a large interval, ranging from 0.000006% to 0.042%. The predominant antibiotic types of synthetic genes with higher relative expression levels were monobactams, penicillin & cephalosporins and streptomycin, primarily belonging to β-lactams and aminoglycosides. The hypothetical synthetic pathways of streptomycin synthesis and penicillin & cephalosporin synthesis were proposed. And the coexistence of ABGs and ARGs for these two antibiotics was also pronounced in activated sludge from meta-omics data. These findings for the first time demonstrated the antibiotic synthetic potential in activated sludges, revealing new sources of antibiotics and resistance genes in WWTPs, and thereby aggravating environmental pollution.
Collapse
Affiliation(s)
- Yu Huang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Kui Zou
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Taiping Qing
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
11
|
Gude F, Molloy EM, Horch T, Dell M, Dunbar KL, Krabbe J, Groll M, Hertweck C. A Specialized Polythioamide-Binding Protein Confers Antibiotic Self-Resistance in Anaerobic Bacteria. Angew Chem Int Ed Engl 2022; 61:e202206168. [PMID: 35852818 PMCID: PMC9545259 DOI: 10.1002/anie.202206168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 12/04/2022]
Abstract
Understanding antibiotic resistance mechanisms is central to the development of anti-infective therapies and genomics-based drug discovery. Yet, many knowledge gaps remain regarding the resistance strategies employed against novel types of antibiotics from less-explored producers such as anaerobic bacteria, among them the Clostridia. Through the use of genome editing and functional assays, we found that CtaZ confers self-resistance against the copper chelator and gyrase inhibitor closthioamide (CTA) in Ruminiclostridium cellulolyticum. Bioinformatics, biochemical analyses, and X-ray crystallography revealed CtaZ as a founding member of a new group of GyrI-like proteins. CtaZ is unique in binding a polythioamide scaffold in a ligand-optimized hydrophobic pocket, thereby confining CTA. By genome mining using CtaZ as a handle, we discovered previously overlooked homologs encoded by diverse members of the phylum Firmicutes, including many pathogens. In addition to characterizing both a new role for a GyrI-like domain in self-resistance and unprecedented thioamide binding, this work aids in uncovering related drug-resistance mechanisms.
Collapse
Affiliation(s)
- Finn Gude
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Evelyn M Molloy
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Therese Horch
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Maria Dell
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Kyle L Dunbar
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Jana Krabbe
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Michael Groll
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, 85747, Garching, Germany
| | - Christian Hertweck
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
12
|
Gude F, Molloy EM, Horch T, Dell M, Dunbar KL, Krabbe J, Groll M, Hertweck C. A Specialized Polythioamide‐Binding Protein Confers Antibiotic Self‐Resistance in Anaerobic Bacteria. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Finn Gude
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut Biomolecular Chemistry GERMANY
| | - Evelyn M. Molloy
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut Biomolecular Chemistry GERMANY
| | - Therese Horch
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut Biomolecular Chemistry GERMANY
| | - Maria Dell
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut Biomolecular Chemistry GERMANY
| | - Kyle L. Dunbar
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut Biomolecular Chemistry GERMANY
| | - Jana Krabbe
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut Biomolecular Chemistry GERMANY
| | - Michael Groll
- TU München: Technische Universitat Munchen Center for Protein Assemblies GERMANY
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI Department of Biomolecular Chemistry Beutenbergstr. 11a 07745 Jena GERMANY
| |
Collapse
|
13
|
Siro G, Pipite A, Christi K, Srinivasan S, Subramani R. Marine Actinomycetes Associated with Stony Corals: A Potential Hotspot for Specialized Metabolites. Microorganisms 2022; 10:1349. [PMID: 35889068 PMCID: PMC9319285 DOI: 10.3390/microorganisms10071349] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 02/05/2023] Open
Abstract
Microbial secondary metabolites are an important source of antibiotics currently available for combating drug-resistant pathogens. These important secondary metabolites are produced by various microorganisms, including Actinobacteria. Actinobacteria have a colossal genome with a wide array of genes that code for several bioactive metabolites and enzymes. Numerous studies have reported the isolation and screening of millions of strains of actinomycetes from various habitats for specialized metabolites worldwide. Looking at the extent of the importance of actinomycetes in various fields, corals are highlighted as a potential hotspot for untapped secondary metabolites and new bioactive metabolites. Unfortunately, knowledge about the diversity, distribution and biochemistry of marine actinomycetes compared to hard corals is limited. In this review, we aim to summarize the recent knowledge on the isolation, diversity, distribution and discovery of natural compounds from marine actinomycetes associated with hard corals. A total of 11 new species of actinomycetes, representing nine different families of actinomycetes, were recovered from hard corals during the period from 2007 to 2022. In addition, this study examined a total of 13 new compounds produced by five genera of actinomycetes reported from 2017 to 2022 with antibacterial, antifungal and cytotoxic activities. Coral-derived actinomycetes have different mechanisms of action against their competitors.
Collapse
Affiliation(s)
- Galana Siro
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Laucala Campus, Suva, Fiji; (G.S.); (K.C.); (R.S.)
| | - Atanas Pipite
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Laucala Campus, Suva, Fiji; (G.S.); (K.C.); (R.S.)
| | - Ketan Christi
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Laucala Campus, Suva, Fiji; (G.S.); (K.C.); (R.S.)
| | - Sathiyaraj Srinivasan
- Department of Bio & Environmental Technology, Division of Environmental & Life Science, College of Natural Science, Seoul Women’s University, 623 Hwarangno, Nowon-gu, Seoul 01797, Korea
| | - Ramesh Subramani
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Laucala Campus, Suva, Fiji; (G.S.); (K.C.); (R.S.)
| |
Collapse
|
14
|
Kalló G, Kumar A, Tőzsér J, Csősz É. Chemical Barrier Proteins in Human Body Fluids. Biomedicines 2022; 10:biomedicines10071472. [PMID: 35884778 PMCID: PMC9312486 DOI: 10.3390/biomedicines10071472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Chemical barriers are composed of those sites of the human body where potential pathogens can contact the host cells. A chemical barrier is made up by different proteins that are part of the antimicrobial and immunomodulatory protein/peptide (AMP) family. Proteins of the AMP family exert antibacterial, antiviral, and/or antifungal activity and can modulate the immune system. Besides these proteins, a wide range of proteases and protease inhibitors can also be found in the chemical barriers maintaining a proteolytic balance in the host and/or the pathogens. In this review, we aimed to identify the chemical barrier components in nine human body fluids. The interaction networks of the chemical barrier proteins in each examined body fluid were generated as well.
Collapse
Affiliation(s)
- Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (A.K.); (J.T.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-52-416432
| | - Ajneesh Kumar
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (A.K.); (J.T.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - József Tőzsér
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (A.K.); (J.T.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (A.K.); (J.T.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| |
Collapse
|
15
|
Comparative Transcriptome-Based Mining of Genes Involved in the Export of Polyether Antibiotics for Titer Improvement. Antibiotics (Basel) 2022; 11:antibiotics11050600. [PMID: 35625244 PMCID: PMC9138065 DOI: 10.3390/antibiotics11050600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
The anti-coccidiosis agent salinomycin is a polyether antibiotic produced by Streptomyces albus BK3-25 with a remarkable titer of 18 g/L at flask scale, suggesting a highly efficient export system. It is worth identifying the involved exporter genes for further titer improvement. In this study, a titer gradient was achieved by varying soybean oil concentrations in a fermentation medium, and the corresponding transcriptomes were studied. Comparative transcriptomic analysis identified eight putative transporter genes, whose transcription increased when the oil content was increased and ranked top among up-regulated genes at higher oil concentrations. All eight genes were proved to be positively involved in salinomycin export through gene deletion and trans-complementation in the mutants, and they showed constitutive expression in the early growth stage, whose overexpression in BK3-25 led to a 7.20–69.75% titer increase in salinomycin. Furthermore, the heterologous expression of SLNHY_0929 or SLNHY_1893 rendered the host Streptomyces lividans with improved resistance to salinomycin. Interestingly, SLNHY_0929 was found to be a polyether-specific transporter because the titers of monensin, lasalocid, and nigericin were also increased by 124.6%, 60.4%, and 77.5%, respectively, through its overexpression in the corresponding producing strains. In conclusion, a transcriptome-based strategy was developed to mine genes involved in salinomycin export, which may pave the way for further salinomycin titer improvement and the identification of transporter genes involved in the biosynthesis of other antibiotics.
Collapse
|
16
|
Nag A, Mehra S. Involvement of the SCO3366 efflux pump from S. coelicolor in rifampicin resistance and its regulation by a TetR regulator. Appl Microbiol Biotechnol 2022; 106:2175-2190. [PMID: 35194656 DOI: 10.1007/s00253-022-11837-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/05/2022] [Accepted: 02/12/2022] [Indexed: 11/26/2022]
Abstract
Overexpression of efflux pumps represents a key mechanism of resistance in bacteria. Soil bacteria such as Streptomyces harbour a vast array of efflux genes that are transcriptionally silent under laboratory conditions. However, dissemination of many of these genes into clinical pathogens via horizontal gene transfer results in conferring resistance to multiple drugs. In this study, we have identified the role of a MFS transporter, SCO3366 from Streptomyces coelicolor, in governing multidrug resistance. Overexpression and knockout studies revealed that SCO3366 provides resistance to several structurally unrelated drugs including ciprofloxacin, chloramphenicol, rifampicin and EtBr, with rifampicin being the major substrate. Beyond multidrug resistance, SCO3366 was efficient in providing tolerance towards oxidative stress. A combinatorial mechanism of increased oxidative stress tolerance decreased intracellular drug levels and decreased permeability act synergistically to provide resistance towards rifampicin. Shedding light on the regulation of SCO3366, we find the pump to be directly regulated by the TetR regulator SCO3367 in a negative manner and the repression was found to be relieved in presence of different compounds recognized as substrates of SCO3366. KEY POINTS: • First reported rifampicin efflux pump in Streptomyces coelicolor • Resistance to rifampicin is the result of a synergistic action of increased efflux with increased oxidative stress tolerance and decreased permeability, which can potentially arise in clinically relevant bacteria • SCO3366-SCO3367 to be a novel system that operates to protect the bacteria under varied environmental stress conditions.
Collapse
Affiliation(s)
- Ankita Nag
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sarika Mehra
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
17
|
Li LY, Hu YL, Sun JL, Yu LB, Shi J, Wang ZR, Guo ZK, Zhang B, Guo WJ, Tan RX, Ge HM. Resistance and phylogeny guided discovery reveals structural novelty of tetracycline antibiotics. Chem Sci 2022; 13:12892-12898. [DOI: 10.1039/d2sc03965f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
Using resistance gene genome mining strategy and refinement with chain length factor, we obtained 25 distinct tetracycline biosynthetic gene clusters and a novel tetracycline. The biosynthesis of the highly modified tetracycline was investigated.
Collapse
Affiliation(s)
- Ling Yu Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yi Ling Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Jia Lin Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Long Bo Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Zi Ru Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Zhi Kai Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Bio-technology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Wen Jie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
18
|
Hulst MB, Grocholski T, Neefjes JJC, van Wezel GP, Metsä-Ketelä M. Anthracyclines: biosynthesis, engineering and clinical applications. Nat Prod Rep 2021; 39:814-841. [PMID: 34951423 DOI: 10.1039/d1np00059d] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: January 1995 to June 2021Anthracyclines are glycosylated microbial natural products that harbour potent antiproliferative activities. Doxorubicin has been widely used as an anticancer agent in the clinic for several decades, but its use is restricted due to severe side-effects such as cardiotoxicity. Recent studies into the mode-of-action of anthracyclines have revealed that effective cardiotoxicity-free anthracyclines can be generated by focusing on histone eviction activity, instead of canonical topoisomerase II poisoning leading to double strand breaks in DNA. These developments have coincided with an increased understanding of the biosynthesis of anthracyclines, which has allowed generation of novel compound libraries by metabolic engineering and combinatorial biosynthesis. Coupled to the continued discovery of new congeners from rare Actinobacteria, a better understanding of the biology of Streptomyces and improved production methodologies, the stage is set for the development of novel anthracyclines that can finally surpass doxorubicin at the forefront of cancer chemotherapy.
Collapse
Affiliation(s)
- Mandy B Hulst
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| | - Thadee Grocholski
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Jacques J C Neefjes
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| | - Mikko Metsä-Ketelä
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| |
Collapse
|
19
|
Polash SA, Khare T, Kumar V, Shukla R. Prospects of Exploring the Metal-Organic Framework for Combating Antimicrobial Resistance. ACS APPLIED BIO MATERIALS 2021; 4:8060-8079. [PMID: 35005933 DOI: 10.1021/acsabm.1c00832] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infectious diseases are a major public health concern globally. Infections caused by pathogens with resistance against commonly used antimicrobial drugs or antibiotics (known as antimicrobial resistance, AMR) are becoming extremely difficult to control. AMR has thus been declared as one of the top 10 global public health threats, as it has very limited solutions. The drying pipeline of effective antibiotics has further worsened the situation. There is no absolute treatment, and the limitations of existing methods warrant further development in antimicrobials. Recent developments in the nanomaterial field present them as promising therapeutics and effective alternative to conventional antibiotics and synthetic drugs. The metal-organic framework (MOF) is a recent addition to the antimicrobial category with superior properties. The MOF exerts antimicrobial action on a wide range of species and is highly biocompatible. Additionally, their porous structures allow the incorporation of biomolecules and drugs for synergistic antimicrobial action. This review provides an inclusive summary of the molecular events responsible for resistance development and current trends in antimicrobials to combat antibiotic resistance and explores the potential role of the MOF in tackling the drug-resistant microbial species.
Collapse
Affiliation(s)
- Shakil Ahmed Polash
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia.,Centre for Advance Materials & Industrial Chemistry (CAMIC), RMIT University, Melbourne, Victoria 3001, Australia
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Ravi Shukla
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia.,Centre for Advance Materials & Industrial Chemistry (CAMIC), RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
20
|
Koch N, Islam NF, Sonowal S, Prasad R, Sarma H. Environmental antibiotics and resistance genes as emerging contaminants: Methods of detection and bioremediation. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100027. [PMID: 34841318 PMCID: PMC8610363 DOI: 10.1016/j.crmicr.2021.100027] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 12/13/2022] Open
Abstract
In developing countries, the use of antibiotics has helped to reduce the mortality rate by minimizing the deaths caused by pathogenic infections, but the costs of antibiotic contamination remain a major concern. Antibiotics are released into the environment, creating a complicated environmental problem. Antibiotics are used in human, livestock and agriculture, contributing to its escalation in the environment. Environmental antibiotics pose a range of risks and have significant effects on human and animal health. Nevertheless, this is the result of the development of antibiotic-resistant and multi-drug-resistant bacteria. In the area of health care, animal husbandry and crop processing, the imprudent use of antibiotic drugs produces antibiotic-resistant bacteria. This threat is the deepest in the developing world, with an estimated 700,000 people suffering from antibiotic-resistant infections each year. The study explores how bacteria use a wide variety of antibiotic resistance mechanism and how these approaches have an impact on the environment and on our health. The paper focuses on the processes by which antibiotics degrade, the health effects of these emerging contaminants, and the tolerance of bacteria to antibiotics.
Collapse
Affiliation(s)
- Niharika Koch
- Department of Botany, Mahatma Gandhi Central University, Motihari 845401, Bihar, India
| | - Nazim F. Islam
- Department of Botany, Nanda Nath Saikia College, Titabar, Assam 785630, India
| | - Songita Sonowal
- Department of Botany, Mahatma Gandhi Central University, Motihari 845401, Bihar, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari 845401, Bihar, India
| | - Hemen Sarma
- Department of Botany, Nanda Nath Saikia College, Titabar, Assam 785630, India
| |
Collapse
|
21
|
Koberska M, Vesela L, Vimberg V, Lenart J, Vesela J, Kamenik Z, Janata J, Balikova Novotna G. Beyond Self-Resistance: ABCF ATPase LmrC Is a Signal-Transducing Component of an Antibiotic-Driven Signaling Cascade Accelerating the Onset of Lincomycin Biosynthesis. mBio 2021; 12:e0173121. [PMID: 34488446 PMCID: PMC8546547 DOI: 10.1128/mbio.01731-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
In natural environments, antibiotics are important means of interspecies competition. At subinhibitory concentrations, they act as cues or signals inducing antibiotic production; however, our knowledge of well-documented antibiotic-based sensing systems is limited. Here, for the soil actinobacterium Streptomyces lincolnensis, we describe a fundamentally new ribosome-mediated signaling cascade that accelerates the onset of lincomycin production in response to an external ribosome-targeting antibiotic to synchronize antibiotic production within the population. The entire cascade is encoded in the lincomycin biosynthetic gene cluster (BGC) and consists of three lincomycin resistance proteins in addition to the transcriptional regulator LmbU: a lincomycin transporter (LmrA), a 23S rRNA methyltransferase (LmrB), both of which confer high resistance, and an ATP-binding cassette family F (ABCF) ATPase, LmrC, which confers only moderate resistance but is essential for antibiotic-induced signal transduction. Specifically, antibiotic sensing occurs via ribosome-mediated attenuation, which activates LmrC production in response to lincosamide, streptogramin A, or pleuromutilin antibiotics. Then, ATPase activity of the ribosome-associated LmrC triggers the transcription of lmbU and consequently the expression of lincomycin BGC. Finally, the production of LmrC is downregulated by LmrA and LmrB, which reduces the amount of ribosome-bound antibiotic and thus fine-tunes the cascade. We propose that analogous ABCF-mediated signaling systems are relatively common because many ribosome-targeting antibiotic BGCs encode an ABCF protein accompanied by additional resistance protein(s) and transcriptional regulators. Moreover, we revealed that three of the eight coproduced ABCF proteins of S. lincolnensis are clindamycin responsive, suggesting that the ABCF-mediated antibiotic signaling may be a widely utilized tool for chemical communication. IMPORTANCE Resistance proteins are perceived as mechanisms protecting bacteria from the inhibitory effect of their produced antibiotics or antibiotics from competitors. Here, we report that antibiotic resistance proteins regulate lincomycin biosynthesis in response to subinhibitory concentrations of antibiotics. In particular, we show the dual character of the ABCF ATPase LmrC, which confers antibiotic resistance and simultaneously transduces a signal from ribosome-bound antibiotics to gene expression, where the 5' untranslated sequence upstream of its encoding gene functions as a primary antibiotic sensor. ABCF-mediated antibiotic signaling can in principle function not only in the induction of antibiotic biosynthesis but also in selective gene expression in response to any small molecules targeting the 50S ribosomal subunit, including clinically important antibiotics, to mediate intercellular antibiotic signaling and stress response induction. Moreover, the resistance-regulatory function of LmrC presented here for the first time unifies functionally inconsistent ABCF family members involving antibiotic resistance proteins and translational regulators.
Collapse
Affiliation(s)
- Marketa Koberska
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Ludmila Vesela
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- Charles University in Prague, Faculty of Science, Department of Genetics and Microbiology, Prague, Czech Republic
| | - Vladimir Vimberg
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Jakub Lenart
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Jana Vesela
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Zdenek Kamenik
- Institute of Microbiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Janata
- Institute of Microbiology, The Czech Academy of Sciences, Prague, Czech Republic
| | | |
Collapse
|
22
|
The diversity and antibacterial activity of culturable actinobacteria isolated from the rhizosphere soil of Deschampsia antarctica (Galindez Island, Maritime Antarctic). Polar Biol 2021. [DOI: 10.1007/s00300-021-02924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Khare T, Anand U, Dey A, Assaraf YG, Chen ZS, Liu Z, Kumar V. Exploring Phytochemicals for Combating Antibiotic Resistance in Microbial Pathogens. Front Pharmacol 2021; 12:720726. [PMID: 34366872 PMCID: PMC8334005 DOI: 10.3389/fphar.2021.720726] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 01/09/2023] Open
Abstract
Antibiotic resistance or microbial drug resistance is emerging as a serious threat to human healthcare globally, and the multidrug-resistant (MDR) strains are imposing major hurdles to the progression of drug discovery programs. Newer antibiotic-resistance mechanisms in microbes contribute to the inefficacy of the existing drugs along with the prolonged illness and escalating expenditures. The injudicious usage of the conventional and commonly available antibiotics in human health, hygiene, veterinary and agricultural practices is proving to be a major driver for evolution, persistence and spread of antibiotic-resistance at a frightening rate. The drying pipeline of new and potent antibiotics is adding to the severity. Therefore, novel and effective new drugs and innovative therapies to treat MDR infections are urgently needed. Apart from the different natural and synthetic drugs being tested, plant secondary metabolites or phytochemicals are proving efficient in combating the drug-resistant strains. Various phytochemicals from classes including alkaloids, phenols, coumarins, terpenes have been successfully demonstrated their inhibitory potential against the drug-resistant pathogens. Several phytochemicals have proved effective against the molecular determinants responsible for attaining the drug resistance in pathogens like membrane proteins, biofilms, efflux pumps and bacterial cell communications. However, translational success rate needs to be improved, but the trends are encouraging. This review highlights current knowledge and developments associated challenges and future prospects for the successful application of phytochemicals in combating antibiotic resistance and the resistant microbial pathogens.
Collapse
Affiliation(s)
- Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Pune, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune, India
| | - Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Abhijit Dey
- Ethnopharmacology and Natural Product Research Laboratory, Department of Life Sciences, Presidency University, Kolkata, India
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhijun Liu
- Department of Microbiology, Weifang Medical University, Weifang, China
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Pune, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
24
|
Nielsen MC, Wang N, Jiang SC. Acquisition of antibiotic resistance genes on human skin after swimming in the ocean. ENVIRONMENTAL RESEARCH 2021; 197:110978. [PMID: 33689825 DOI: 10.1016/j.envres.2021.110978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The skin is a complex organ responsible for protecting the body from physical, chemical and biological insults. The skin microbiome is known to play an important role in protecting the host from skin infections. This study examined the skin microbiome and the changes in antibiotic resistance genes (ARGs), antibiotic biosynthesis genes (ABSGs) and virulence factor genes (VFGs) on human skin before and after swimming in the ocean. Skin microbiome samples were collected from human participants before and after they swam in the ocean, and at 6 h and 24 h post-swim. The samples were analyzed using 16S rRNA gene and shotgun metagenomic sequencing. The results showed that not only is the skin microbiome composition altered after swimming, but the abundance and diversity of ARGs, ABSGs and VFGs on the skin increased post-swim. Overall, there was an increase in total ARGs by 70.6% from before to after swimming. The elevated number of ARGs persisted and continued to increase for at least 6 h post-swim with greater than a 300% increase in comparison with samples collected before ocean swimming. The outcomes of the study support the epidemiological observations of increased risk of skin infections after swimming in the ocean. Cleaning the skin immediately after recreational ocean activities is recommended to reduce the opportunity for infection.
Collapse
Affiliation(s)
- Marisa C Nielsen
- Environmental Health Sciences, University of California, Irvine, USA.
| | - Nan Wang
- Civil and Environmental Engineering, University of California, Irvine, USA
| | - Sunny C Jiang
- Environmental Health Sciences, University of California, Irvine, USA; Civil and Environmental Engineering, University of California, Irvine, USA
| |
Collapse
|
25
|
Silva V, Caniça M, Capelo JL, Igrejas G, Poeta P. Diversity and genetic lineages of environmental staphylococci: a surface water overview. FEMS Microbiol Ecol 2021; 96:5909032. [PMID: 32949464 DOI: 10.1093/femsec/fiaa191] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial resistance in the environmental dimension is one of the greatest challenges and emerging threats. The presence of resistant bacteria and resistance genes in the environment, especially in aquatic systems, has been a matter of growing concern in the past decade. Monitoring the presence of antimicrobial resistance species, in this particular case, Staphylococcus spp., in natural water environments could lead to a better understanding of the epidemiology of staphylococci infections. Thus, the investigation of natural waters as a potential reservoir and vehicle for transmission of these bacteria is imperative. Only a few studies have investigated the prevalence, antimicrobial resistance and genetic lineages of staphylococci in natural waters. Those studies reported a high diversity of staphylococci species and lineages in surface waters. Methicillin-resistant S. aureus were relatively prevalent in surface waters and, as expected, often presented a multidrug-resistant profile. There was a high diversity of S. aureus lineages in surface waters. The presence of S. aureus CC8 and CC5 suggests a human origin. Among the coagulase-negative staphylococci, the most frequently found in natural waters was S. warneri and S. epidermidis. These studies are extremely important to estimate the contribution of the aquatic environment in the spread of pathogenic bacteria.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), NOVA University of Lisbon, Lisboa, 2829-516 Caparica, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - José L Capelo
- BIOSCOPE Group, LAQV-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, NOVA University of Lisbon, 2825-466 Almada, Portugal
- Proteomass Scientific Society, 2825-466 Costa de Caparica, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), NOVA University of Lisbon, Lisboa, 2829-516 Caparica, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), NOVA University of Lisbon, Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
26
|
Arefa N, Sarker AK, Rahman MA. Resistance-guided isolation and characterization of antibiotic-producing bacteria from river sediments. BMC Microbiol 2021; 21:116. [PMID: 33865329 PMCID: PMC8053276 DOI: 10.1186/s12866-021-02175-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/16/2021] [Indexed: 11/25/2022] Open
Abstract
Background To tackle the problem of antibiotic resistance, an extensive search for novel antibiotics is one of the top research priorities. Around 60% of the antibiotics used today were obtained from the genus Streptomyces. The river sediments of Bangladesh are still an unexplored source for antibiotic-producing bacteria (APB). This study aimed to isolate novel APB from Padma and Kapotakkho river sediments having the potential to produce antibacterial compounds with known scaffolds by manipulating their self-protection mechanisms. Results The antibiotic supplemented starch-casein-nitrate agar (SCNA) media were used to isolate antibiotic-resistant APB from the river sediments. The colonies having Streptomyces-like morphology were selectively purified and their antagonistic activity was screened against a range of test bacteria using the cross-streaking method. A notable decrease of the colony-forming units (CFUs) in the antibiotic supplemented SCNA plates compared to control plates (where added antibiotics were absent) was observed. A total of three azithromycin resistant (AZR) and nine meropenem resistant (MPR) isolates were purified and their antagonistic activity was investigated against a series of test bacteria including Shigella brodie, Escherichia coli, Pseudomonas sp., Proteus sp., Staphylococcus aureus, and Bacillus cereus. All the AZR isolates and all but two MPR isolates exhibited moderate to high broad-spectrum activity. Among the isolates, 16S rDNA sequencing of NAr5 and NAr6 were performed to identify them up to species level. The analyses of the sequences revealed that both belong to the genus Streptomyces. Conclusions The results from these studies suggest that manipulation of the self-resistance property of APB is an easy and quick method to search for novel APB having the potential to produce potentially novel antibacterial compounds with known scaffolds.
Collapse
Affiliation(s)
- Nowreen Arefa
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Ashish Kumar Sarker
- Department of Pharmacy, Pabna University of Science and Technology, Pabna, Bangladesh
| | - Md Ajijur Rahman
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh.
| |
Collapse
|
27
|
Zhang Y, Bai J, Zhang L, Zhang C, Liu B, Hu Y. Self-Resistance in the Biosynthesis of Fungal Macrolides Involving Cycles of Extracellular Oxidative Activation and Intracellular Reductive Inactivation. Angew Chem Int Ed Engl 2021; 60:6639-6645. [PMID: 33314510 DOI: 10.1002/anie.202015442] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Indexed: 11/11/2022]
Abstract
Self-resistance genes are employed by many microbial producers of bioactive natural products to avoid self-harm. Herein, we describe a unique strategy for self-resistance toward a macrolide antibiotic, A26771B (1), identified by elucidating its biosynthetic pathway in the fungus Penicillium egyptiacum. A highly reducing polyketide synthase and a trans-acting thioesterase generate the macrolide backbone, and a cytochrome P450 and an acyltransferase, respectively catalyze hydroxylation and succinylation to form the prodrug berkeleylactone E (2). Then, extracellular oxidative activation by a secreted flavin-dependent oxidase forms 1, while intracellular reductive inactivation by a short-chain reductase reforms 2, forming a redox cycle. Our work illustrates a unique redox-mediated resistance mechanism for fungal antibiotics and contributes to the understanding of antibiotic biosynthesis and resistance.
Collapse
Affiliation(s)
- Yalong Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Jian Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Le Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Chen Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Bingyu Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Youcai Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| |
Collapse
|
28
|
Self‐Resistance in the Biosynthesis of Fungal Macrolides Involving Cycles of Extracellular Oxidative Activation and Intracellular Reductive Inactivation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
A Major Facilitator Superfamily (MFS) Efflux Pump, SCO4121, from Streptomyces coelicolor with Roles in Multidrug Resistance and Oxidative Stress Tolerance and Its Regulation by a MarR Regulator. Appl Environ Microbiol 2021; 87:AEM.02238-20. [PMID: 33483304 DOI: 10.1128/aem.02238-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Overexpression of efflux pumps is one of the major determinants of resistance in bacteria. Streptomyces species harbor a large array of efflux pumps that are transcriptionally silenced under laboratory conditions. However, their dissemination results in multidrug resistance in different clinical pathogens. In this study, we have identified an efflux pump from Streptomyces coelicolor, SCO4121, belonging to the major facilitator superfamily (MFS) family of transporters and characterized its role in antibiotic resistance. SCO4121 provided resistance to multiple dissimilar drugs upon overexpression in both native and heterologous hosts. Further, deletion of SCO4121 resulted in increased sensitivity toward ciprofloxacin and chloramphenicol, suggesting the pump to be a major transporter of these substrates. Apart from providing multidrug resistance, SCO4121 imparted increased tolerance against the strong oxidant HOCl. In wild-type Streptomyces coelicolor cells, these drugs were found to transcriptionally regulate the pump in a concentration-dependent manner. Additionally, we identified SCO4122, a MarR regulator that positively regulates SCO4121 in response to various drugs and the oxidant HOCl. Thus, through these studies we present the multiple roles of SCO4121 in S. coelicolor and highlight the intricate mechanisms via which it is regulated in response to antibiotics and oxidative stress.IMPORTANCE One of the key mechanisms of drug resistance in bacteria is overexpression of efflux pumps. Streptomyces species are a reservoir of a large number of efflux pumps, potentially to provide resistance to both endogenous and nonendogenous antibiotics. While many of these pumps are not expressed under standard laboratory conditions, they result in resistance to multiple drugs when spread to other bacterial pathogens through horizontal gene transfer. In this study, we have identified a widely conserved efflux pump SCO4121 from Streptomyces coelicolor with roles in both multidrug resistance and oxidative stress tolerance. We also report the presence of an adjacent MarR regulator, SCO4122, which positively regulates SCO4121 in the presence of diverse substrates in a redox-responsive manner. This study highlights that soil bacteria such as Streptomyces can reveal novel mechanisms of antibiotic resistance that may potentially emerge in clinically important bacteria.
Collapse
|
30
|
Abstract
Bacteria secrete antibiotics to inhibit their competitors, but the presence of competitors can determine whether these toxins are produced. Here, we study the role of the competitive and resource environment on antibiotic production in Streptomyces, bacteria renowned for their production of antibiotics. One of the most important ways that bacteria compete for resources and space is by producing antibiotics that inhibit competitors. Because antibiotic production is costly, the biosynthetic gene clusters coordinating their synthesis are under strict regulatory control and often require “elicitors” to induce expression, including cues from competing strains. Although these cues are common, they are not produced by all competitors, and so the phenotypes causing induction remain unknown. By studying interactions between 24 antibiotic-producing strains of streptomycetes, we show that strains commonly inhibit each other’s growth and that this occurs more frequently if strains are closely related. Next, we show that antibiotic production is more likely to be induced by cues from strains that are closely related or that share secondary metabolite biosynthetic gene clusters (BGCs). Unexpectedly, antibiotic production is less likely to be induced by competitors that inhibit the growth of a focal strain, indicating that cell damage is not a general cue for induction. In addition to induction, antibiotic production often decreases in the presence of a competitor, although this response was not associated with genetic relatedness or overlap in BGCs. Finally, we show that resource limitation increases the chance that antibiotic production declines during competition. Our results reveal the importance of social cues and resource availability in the dynamics of interference competition in streptomycetes.
Collapse
|
31
|
Devine R, McDonald HP, Qin Z, Arnold CJ, Noble K, Chandra G, Wilkinson B, Hutchings MI. Re-wiring the regulation of the formicamycin biosynthetic gene cluster to enable the development of promising antibacterial compounds. Cell Chem Biol 2021; 28:515-523.e5. [PMID: 33440167 PMCID: PMC8062789 DOI: 10.1016/j.chembiol.2020.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/12/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022]
Abstract
The formicamycins are promising antibiotics first identified in Streptomyces formicae KY5, which produces the compounds at low levels. Here, we show that by understanding the regulation of the for biosynthetic gene cluster (BGC), we can rewire the BGC to increase production levels. The for BGC consists of 24 genes expressed on nine transcripts. The MarR regulator ForJ represses expression of seven transcripts encoding the major biosynthetic genes as well as the ForGF two-component system that initiates biosynthesis. We show that overexpression of forGF in a ΔforJ background increases formicamycin production 10-fold compared with the wild-type. De-repression, by deleting forJ, also switches on biosynthesis in liquid culture and induces the production of additional, previously unreported formicamycin congeners. Furthermore, combining de-repression with mutations in biosynthetic genes leads to biosynthesis of additional bioactive precursors. Formicamycin biosynthesis requires 24 genes expressed on nine transcripts Deleting the MarR regulator ForJ increases formicamycin biosynthesis De-repressing formicamycin biosynthesis induces production in liquid culture Re-wiring regulation and biosynthesis results in the production of new congeners
Collapse
Affiliation(s)
- Rebecca Devine
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Hannah P McDonald
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Zhiwei Qin
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Corinne J Arnold
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Katie Noble
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Matthew I Hutchings
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
32
|
Salam LB. Unravelling the antibiotic and heavy metal resistome of a chronically polluted soil. 3 Biotech 2020; 10:238. [PMID: 32405442 PMCID: PMC7205953 DOI: 10.1007/s13205-020-02219-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
The antibiotic and heavy metal resistome of a chronically polluted soil (3S) obtained from an automobile workshop in Ilorin, Kwara State, Nigeria was deciphered via functional annotation of putative ORFs (open reading frames). Functional annotation of antibiotic and heavy metal resistance genes in 3S metagenome was conducted using the Comprehensive Antibiotic Resistance Database (CARD), Antibiotic Resistance Gene-annotation (ARG-ANNOT) and Antibacterial Biocide and Metal Resistance Gene Database (BacMet). Annotation revealed detection of resistance genes for 15 antibiotic classes with the preponderance of beta lactamases, mobilized colistin resistance determinant (mcr), glycopepetide and tetracycline resistance genes, the OqxBgb and OqxA RND-type multidrug efflux pumps, among others. The dominance of resistance genes for antibiotics effective against members of the Enterobacteriaceae indicate possible contamination with faecal materials. Annotation of heavy metal resistance genes revealed diverse resistance genes responsible for the uptake, transport, detoxification, efflux and regulation of copper, zinc, cadmium, nickel, chromium, cobalt, mercury, arsenic, iron, molybdenum and several others. Majority of the antibiotic and heavy metal resistance genes detected in this study are borne on mobile genetic elements, which facilitate their spread and dissemination in the polluted soil. The presence of the heavy metal resistance genes is strongly believed to play a major role in the proliferation of antibiotic resistance genes. This study has established that soil is a huge repertoire of antibiotic and heavy metal resistome and due to the intricate link between human, animals and the soil environment, it may be a major contributor to the proliferation of multidrug-resistant clinical pathogens.
Collapse
Affiliation(s)
- Lateef Babatunde Salam
- Microbiology Unit, Department of Biological Sciences, Summit University, Offa, Kwara Nigeria
| |
Collapse
|
33
|
Characterization of the Self-Resistance Mechanism to Dityromycin in the Streptomyces Producer Strain. mSphere 2019; 4:4/5/e00554-19. [PMID: 31554724 PMCID: PMC6763770 DOI: 10.1128/msphere.00554-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dityromycin is a peptide antibiotic isolated from the culture broth of the soil microorganism Streptomyces sp. strain AM-2504. Recent structural studies have shown that dityromycin targets the ribosomal protein S12 in the 30S ribosomal subunit, inhibiting translocation. Herein, by using in vitro protein synthesis assays, we identified the resistance mechanism of the producer strain to the secondary metabolite dityromycin. The results show that the self-resistance mechanism of the Streptomyces sp. strain AM-2504 is due to a specific modification of the ribosome. In particular, two amino acid substitutions, located in a highly conserved region of the S12 protein corresponding to the binding site of the antibiotic, were found. These mutations cause a substantial loss of affinity of the dityromycin for the 30S ribosomal subunit, protecting the producer strain from the toxic effect of the antibiotic. In addition to providing a detailed description of the first mechanism of self-resistance based on a mutated ribosomal protein, this work demonstrates that the molecular determinants of the dityromycin resistance identified in Streptomyces can be transferred to Escherichia coli ribosomes, where they can trigger the same antibiotic resistance mechanism found in the producer strain.IMPORTANCE The World Health Organization has identified antimicrobial resistance as a substantial threat to human health. Because of the emergence of pathogenic bacteria resistant to multiple antibiotics worldwide, there is a need to identify the mode of action of antibiotics and to unravel the basic mechanisms responsible for drug resistance. Antibiotic producers' microorganisms can protect themselves from the toxic effect of the drug using different strategies; one of the most common involves the modification of the antibiotic's target site. In this work, we report a detailed analysis of the molecular mechanism, based on protein modification, devised by the soil microorganism Streptomyces sp. strain AM-2504 to protect itself from the activity of the peptide antibiotic dityromycin. Furthermore, we demonstrate that this mechanism can be reproduced in E. coli, thereby eliciting antibiotic resistance in this human commensal bacterium.
Collapse
|
34
|
Severi E, Thomas GH. Antibiotic export: transporters involved in the final step of natural product production. Microbiology (Reading) 2019; 165:805-818. [DOI: 10.1099/mic.0.000794] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Emmanuele Severi
- Department of Biology, University of York, Wentworth Way, York, UK
| | - Gavin H. Thomas
- Department of Biology, University of York, Wentworth Way, York, UK
| |
Collapse
|
35
|
Gehrke EJ, Zhang X, Pimentel-Elardo SM, Johnson AR, Rees CA, Jones SE, Hindra, Gehrke SS, Turvey S, Boursalie S, Hill JE, Carlson EE, Nodwell JR, Elliot MA. Silencing cryptic specialized metabolism in Streptomyces by the nucleoid-associated protein Lsr2. eLife 2019; 8:47691. [PMID: 31215866 PMCID: PMC6584129 DOI: 10.7554/elife.47691] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
Lsr2 is a nucleoid-associated protein conserved throughout the actinobacteria, including the antibiotic-producing Streptomyces. Streptomyces species encode paralogous Lsr2 proteins (Lsr2 and Lsr2-like, or LsrL), and we show here that of the two, Lsr2 has greater functional significance. We found that Lsr2 binds AT-rich sequences throughout the chromosome, and broadly represses gene expression. Strikingly, specialized metabolic clusters were over-represented amongst its targets, and the cryptic nature of many of these clusters appears to stem from Lsr2-mediated repression. Manipulating Lsr2 activity in model species and uncharacterized isolates resulted in the production of new metabolites not seen in wild type strains. Our results suggest that the transcriptional silencing of biosynthetic clusters by Lsr2 may protect Streptomyces from the inappropriate expression of specialized metabolites, and provide global control over Streptomyces’ arsenal of signaling and antagonistic compounds.
Collapse
Affiliation(s)
- Emma J Gehrke
- Department of Biology, McMaster University, Hamilton, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
| | - Xiafei Zhang
- Department of Biology, McMaster University, Hamilton, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
| | | | - Andrew R Johnson
- Department of Chemistry, Indiana University, Bloomington, United States
| | - Christiaan A Rees
- Geisel School of Medicine and Thayer School of Engineering, Dartmouth College, Hanover, United States
| | - Stephanie E Jones
- Department of Biology, McMaster University, Hamilton, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
| | - Hindra
- Department of Biology, McMaster University, Hamilton, Canada
| | - Sebastian S Gehrke
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Sonya Turvey
- Department of Biology, McMaster University, Hamilton, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
| | - Suzanne Boursalie
- Department of Biology, McMaster University, Hamilton, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
| | - Jane E Hill
- Geisel School of Medicine and Thayer School of Engineering, Dartmouth College, Hanover, United States
| | - Erin E Carlson
- Department of Chemistry, Indiana University, Bloomington, United States.,Department of Chemistry, University of Minnesota, Minneapolis, United States
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Marie A Elliot
- Department of Biology, McMaster University, Hamilton, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
| |
Collapse
|
36
|
Zhao YF, Lu DD, Bechthold A, Ma Z, Yu XP. Impact of otrA expression on morphological differentiation, actinorhodin production, and resistance to aminoglycosides in Streptomyces coelicolor M145. J Zhejiang Univ Sci B 2019; 19:708-717. [PMID: 30178637 DOI: 10.1631/jzus.b1800046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
otrA resembles elongation factor G (EF-G) and is considered to be an oxytetracycline (OTC)-resistance determinant in Streptomyces rimosus. In order to determine whether otrA also conferred resistance to OTC and other aminoglycosides to Streptomyces coelicolor, the otrA gene from S. rimosus M527 was cloned under the control of the strong ermE* promoter. The resulting plasmid, pIB139-otrA, was introduced into S. coelicolor M145 by intergeneric conjugation, yielding the recombinant strain S. coelicolor M145-OA. As expected S. coelicolor M145-OA exhibited higher resistance levels specifically to OTC and aminoglycosides gentamycin, hygromycin, streptomycin, and spectinomycin. However, unexpectedly, S. coelicolor M145-OA on solid medium showed an accelerated aerial mycelia formation, a precocious sporulation, and an enhanced actinorhodin (Act) production. Upon growth in 5-L fermentor, the amount of intra- and extracellular Act production was 6-fold and 2-fold higher, respectively, than that of the original strain. Consistently, reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that the transcriptional level of pathway-specific regulatory gene actII-orf4 was significantly enhanced in S. coelicolor M145-OA compared with in S. coelicolor M145.
Collapse
Affiliation(s)
- Yan-Fang Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Dan-Dan Lu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Andreas Bechthold
- Institute for Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, University of Freiburg, 79104 Freiburg, Germany
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
37
|
Peterson E, Kaur P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front Microbiol 2018; 9:2928. [PMID: 30555448 PMCID: PMC6283892 DOI: 10.3389/fmicb.2018.02928] [Citation(s) in RCA: 450] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/14/2018] [Indexed: 11/13/2022] Open
Abstract
Emergence of antibiotic resistant pathogenic bacteria poses a serious public health challenge worldwide. However, antibiotic resistance genes are not confined to the clinic; instead they are widely prevalent in different bacterial populations in the environment. Therefore, to understand development of antibiotic resistance in pathogens, we need to consider important reservoirs of resistance genes, which may include determinants that confer self-resistance in antibiotic producing soil bacteria and genes encoding intrinsic resistance mechanisms present in all or most non-producer environmental bacteria. While the presence of resistance determinants in soil and environmental bacteria does not pose a threat to human health, their mobilization to new hosts and their expression under different contexts, for example their transfer to plasmids and integrons in pathogenic bacteria, can translate into a problem of huge proportions, as discussed in this review. Selective pressure brought about by human activities further results in enrichment of such determinants in bacterial populations. Thus, there is an urgent need to understand distribution of resistance determinants in bacterial populations, elucidate resistance mechanisms, and determine environmental factors that promote their dissemination. This comprehensive review describes the major known self-resistance mechanisms found in producer soil bacteria of the genus Streptomyces and explores the relationships between resistance determinants found in producer soil bacteria, non-producer environmental bacteria, and clinical isolates. Specific examples highlighting potential pathways by which pathogenic clinical isolates might acquire these resistance determinants from soil and environmental bacteria are also discussed. Overall, this article provides a conceptual framework for understanding the complexity of the problem of emergence of antibiotic resistance in the clinic. Availability of such knowledge will allow researchers to build models for dissemination of resistance genes and for developing interventions to prevent recruitment of additional or novel genes into pathogens.
Collapse
Affiliation(s)
- Elizabeth Peterson
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Parjit Kaur
- Department of Biology, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
38
|
Tenconi E, Traxler MF, Hoebreck C, van Wezel GP, Rigali S. Production of Prodiginines Is Part of a Programmed Cell Death Process in Streptomyces coelicolor. Front Microbiol 2018; 9:1742. [PMID: 30127771 PMCID: PMC6087738 DOI: 10.3389/fmicb.2018.01742] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/12/2018] [Indexed: 12/24/2022] Open
Abstract
Actinobacteria are prolific producers of antitumor antibiotics with antiproliferative activity, but why these bacteria synthetize metabolites with this bioactivity has so far remained a mystery. In this work we raised the hypothesis that under certain circumstances, production of antiproliferative agents could be part of a genetically programmed death of the producing organism. While programmed cell death (PCD) has been well documented when Streptomyces species switch from vegetative (nutrition) to aerial (reproduction) growth, lethal determinants are yet to be discovered. Using DNA-damaging prodiginines of Streptomyces coelicolor as model system, we revealed that, under certain conditions, their biosynthesis is always triggered in the dying zone of the mycelial network prior to morphological differentiation, right after an initial round of cell death. The programmed massive death round of the vegetative mycelium is absent in a prodiginine non-producer (ΔredD strain), and mutant complementation restored both prodiginine production and cell death. The redD null mutant of S. coelicolor also showed increased DNA, RNA, and proteins synthesis when most of the mycelium of the wild-type strain was dead when prodiginines accumulated. Moreover, addition of the prodiginine synthesis inhibitors also resulted in enhanced accumulation of viable filaments. Overall, our data enable us to propose a model where the time-space production of prodiginines is programmed to be triggered by the perception of dead cells, and their biosynthesis further amplifies the PCD process. As prodiginine production coincides with the moment S. coelicolor undergoes morphogenesis, the production of these lethal compounds might be used to eradicate the obsolete part of the population in order to provide nutrients for development of the survivors. Hence, next to weapons in competition between organisms or signals in inter- and intra-species communications, we propose a third role for antibiotics (in the literal meaning of the word ‘against life’) i.e., elements involved in self-toxicity in order to control cell proliferation, and/or for PCD associated with developmental processes.
Collapse
Affiliation(s)
- Elodie Tenconi
- InBioS - Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Matthew F Traxler
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Charline Hoebreck
- InBioS - Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Sébastien Rigali
- InBioS - Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| |
Collapse
|
39
|
Almabruk KH, Dinh LK, Philmus B. Self-Resistance of Natural Product Producers: Past, Present, and Future Focusing on Self-Resistant Protein Variants. ACS Chem Biol 2018; 13:1426-1437. [PMID: 29763292 DOI: 10.1021/acschembio.8b00173] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nature is a prolific producers of bioactive natural products with an array of biological activities and impact on human and animal health. But with great power comes great responsibility, and the organisms that produce a bioactive compound must be resistant to its biological effects to survive during production/accumulation. Microorganisms, particularly bacteria, have developed different strategies to prevent self-toxicity. Here, we review a few of the major mechanisms including the mechanism of resistance with a focus on self-resistant protein variants, target proteins that contain amino acid substitutions to reduce the binding of the bioactive natural product, and therefore its inhibitory effects are highlighted in depth. We also try to identify some future avenues of research and challenges that need to be addressed.
Collapse
Affiliation(s)
- Khaled H. Almabruk
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Linh K. Dinh
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
40
|
Markley JL, Wencewicz TA. Tetracycline-Inactivating Enzymes. Front Microbiol 2018; 9:1058. [PMID: 29899733 PMCID: PMC5988894 DOI: 10.3389/fmicb.2018.01058] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/04/2018] [Indexed: 12/25/2022] Open
Abstract
Tetracyclines have been foundational antibacterial agents for more than 70 years. Renewed interest in tetracycline antibiotics is being driven by advancements in tetracycline synthesis and strategic scaffold modifications designed to overcome established clinical resistance mechanisms including efflux and ribosome protection. Emerging new resistance mechanisms, including enzymatic antibiotic inactivation, threaten recent progress on bringing these next-generation tetracyclines to the clinic. Here we review the current state of knowledge on the structure, mechanism, and inhibition of tetracycline-inactivating enzymes.
Collapse
Affiliation(s)
- Jana L Markley
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, United States
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
41
|
Daniel-Ivad M, Pimentel-Elardo S, Nodwell JR. Control of Specialized Metabolism by Signaling and Transcriptional Regulation: Opportunities for New Platforms for Drug Discovery? Annu Rev Microbiol 2018; 72:25-48. [PMID: 29799791 DOI: 10.1146/annurev-micro-022618-042458] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Specialized metabolites are bacterially produced small molecules that have an extraordinary diversity of important biological activities. They are useful as biochemical probes of living systems, and they have been adapted for use as drugs for human afflictions ranging from infectious diseases to cancer. The biosynthetic genes for these molecules are controlled by a dense network of regulatory mechanisms: Cell-cell signaling and nutrient sensing are conspicuous features of this network. While many components of these mechanisms have been identified, important questions about their biological roles remain shrouded in mystery. In addition to identifying new molecules and solving their mechanisms of action (a central preoccupation in this field), we suggest that addressing questions of quorum sensing versus diffusion sensing and identifying the dominant nutritional and environmental cues for specialized metabolism are important directions for research.
Collapse
Affiliation(s)
- M Daniel-Ivad
- Department of Biochemistry, University of Toronto, Ontario M5G 1M1, Canada;
| | - S Pimentel-Elardo
- Department of Biochemistry, University of Toronto, Ontario M5G 1M1, Canada;
| | - J R Nodwell
- Department of Biochemistry, University of Toronto, Ontario M5G 1M1, Canada;
| |
Collapse
|
42
|
Tenconi E, Rigali S. Self-resistance mechanisms to DNA-damaging antitumor antibiotics in actinobacteria. Curr Opin Microbiol 2018; 45:100-108. [PMID: 29642052 DOI: 10.1016/j.mib.2018.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/08/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
Abstract
Streptomyces and few other Actinobacteria naturally produce compounds currently used in chemotherapy for being cytotoxic against various types of tumor cells by damaging the DNA structure and/or inhibiting DNA functions. DNA-damaging antitumor antibiotics belong to different classes of natural compounds that are structurally unrelated such as anthracyclines, bleomycins, enediynes, mitomycins, and prodiginines. By targeting a ubiquitous molecule and housekeeping functions, these compounds are also cytotoxic to their producer. How DNA-damaging antitumor antibiotics producing actinobacteria avoid suicide is the theme of the current review which illustrates the different strategies developed for self-resistance such as toxin sequestration, efflux, modification, destruction, target repair/protection, or stochastic activity. Finally, the observed spatio-temporal correlation between cell death, morphogenesis, and prodiginine production in S. coelicolor suggests a new physiological role for these molecules, that, together with their self-resistance mechanisms, would function as new types of toxin-antitoxin systems recruited in programmed cell death processes of the producer.
Collapse
Affiliation(s)
- Elodie Tenconi
- InBioS - Center for Protein Engineering, Université de liège, Institut de Chimie B64, B-4000 Liège, Belgium
| | - Sébastien Rigali
- InBioS - Center for Protein Engineering, Université de liège, Institut de Chimie B64, B-4000 Liège, Belgium.
| |
Collapse
|
43
|
Yu P, Bu QT, Tang YL, Mao XM, Li YQ. Bidirectional Regulation of AdpA ch in Controlling the Expression of scnRI and scnRII in the Natamycin Biosynthesis of Streptomyces chattanoogensis L10. Front Microbiol 2018; 9:316. [PMID: 29551998 PMCID: PMC5840217 DOI: 10.3389/fmicb.2018.00316] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/09/2018] [Indexed: 11/13/2022] Open
Abstract
AdpA, an AraC/XylS family protein, had been proved as a key regulator for secondary metabolism and morphological differentiation in Streptomyces griseus. Here, we identify AdpAch, an ortholog of AdpA, as a "higher level" pleiotropic regulator of natamycin biosynthesis with bidirectional regulatory ability in Streptomyces chattanoogensis L10. DNase I footprinting revealed six AdpAch-binding sites in the scnRI-scnRII intergenic region. Further analysis using the xylE reporter gene fused to the scnRI-scnRII intergenic region of mutated binding sites demonstrated that the expression of scnRI and scnRII was under the control of AdpAch. AdpAch showed a bi-stable regulatory ability where it firstly binds to the Site C and Site D to activate the transcription of the two pathway-specific genes, scnRI and scnRII, and then binds to other sites where it acts as an inhibitor. When Site A and Site F were mutated in vivo, the production of natamycin was increased by 21% and 25%, respectively. These findings indicated an autoregulatory mechanism where AdpAch serves as a master switch with bidirectional regulation for natamycin biosynthesis.
Collapse
Affiliation(s)
- Pin Yu
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China.,College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qing-Ting Bu
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Yi-Li Tang
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Xu-Ming Mao
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| |
Collapse
|
44
|
Tracanna V, de Jong A, Medema MH, Kuipers OP. Mining prokaryotes for antimicrobial compounds: from diversity to function. FEMS Microbiol Rev 2018; 41:417-429. [PMID: 28402441 DOI: 10.1093/femsre/fux014] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/02/2017] [Indexed: 01/03/2023] Open
Abstract
The bacterial kingdom provides a major source of antimicrobials that can either be directly applied or used as scaffolds to further improve their functionality in the host. The rapidly increasing amount of bacterial genomic, metabolomic and transcriptomic data offers unique opportunities to apply a variety of approaches to mine for existing and novel antimicrobials. Here, we discuss several powerful mining approaches to identify novel molecules with antimicrobial activity across structurally diverse natural products, including ribosomally synthesized and posttranslationally modified peptides, nonribosomal peptides and polyketides. We not only discuss the direct mining of genomes based on identification of biosynthetic gene clusters, but also describe more advanced and integrative approaches in ecology-based mining, functionality-based mining and mode-of-action-based mining. These efforts are likely to accelerate the discovery and development of novel antimicrobial drugs.
Collapse
Affiliation(s)
- Vittorio Tracanna
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, Radix West, Building 107, 6708 PB Wageningen, The Netherlands
| | - Anne de Jong
- Molecular Genetics, University of Groningen, Nijenborgh 7, 9726AG Groningen, The Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, Radix West, Building 107, 6708 PB Wageningen, The Netherlands
| | - Oscar P Kuipers
- Molecular Genetics, University of Groningen, Nijenborgh 7, 9726AG Groningen, The Netherlands
| |
Collapse
|
45
|
Peterson E, Kaur P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front Microbiol 2018; 9:2928. [PMID: 30555448 DOI: 10.3389/fmicb.2018.02928/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/14/2018] [Indexed: 05/20/2023] Open
Abstract
Emergence of antibiotic resistant pathogenic bacteria poses a serious public health challenge worldwide. However, antibiotic resistance genes are not confined to the clinic; instead they are widely prevalent in different bacterial populations in the environment. Therefore, to understand development of antibiotic resistance in pathogens, we need to consider important reservoirs of resistance genes, which may include determinants that confer self-resistance in antibiotic producing soil bacteria and genes encoding intrinsic resistance mechanisms present in all or most non-producer environmental bacteria. While the presence of resistance determinants in soil and environmental bacteria does not pose a threat to human health, their mobilization to new hosts and their expression under different contexts, for example their transfer to plasmids and integrons in pathogenic bacteria, can translate into a problem of huge proportions, as discussed in this review. Selective pressure brought about by human activities further results in enrichment of such determinants in bacterial populations. Thus, there is an urgent need to understand distribution of resistance determinants in bacterial populations, elucidate resistance mechanisms, and determine environmental factors that promote their dissemination. This comprehensive review describes the major known self-resistance mechanisms found in producer soil bacteria of the genus Streptomyces and explores the relationships between resistance determinants found in producer soil bacteria, non-producer environmental bacteria, and clinical isolates. Specific examples highlighting potential pathways by which pathogenic clinical isolates might acquire these resistance determinants from soil and environmental bacteria are also discussed. Overall, this article provides a conceptual framework for understanding the complexity of the problem of emergence of antibiotic resistance in the clinic. Availability of such knowledge will allow researchers to build models for dissemination of resistance genes and for developing interventions to prevent recruitment of additional or novel genes into pathogens.
Collapse
Affiliation(s)
- Elizabeth Peterson
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Parjit Kaur
- Department of Biology, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
46
|
Mak S, Nodwell JR. Actinorhodin is a redox-active antibiotic with a complex mode of action against Gram-positive cells. Mol Microbiol 2017; 106:597-613. [PMID: 28906045 DOI: 10.1111/mmi.13837] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2017] [Indexed: 11/29/2022]
Abstract
Actinorhodin is a blue-pigmented, redox-active secondary metabolite that is produced by the bacterium Streptomyces coelicolor. Although actinorhodin has been used as a model compound for studying secondary metabolism, its biological activity is not well understood. Indeed, redox-active antibiotics in general have not been widely investigated at the mechanistic level. In this work, we have conducted a comprehensive chemical genetic investigation of actinorhodin's antibacterial effect on target organisms. We find that actinorhodin is a potent, bacteriostatic, pH-responsive antibiotic. Cells activate at least three stress responses in the presence of actinorhodin, including those responsible for managing oxidative damage, protein damage and selected forms of DNA damage. We find that mutations in the Staphylococcus aureus walRKHI operon can confer low-level resistance to actinorhodin, indicating possible targeting of the cell envelope. Our study indicates a complex mechanism of action, involving multiple molecular targets, that is distinct from other antibiotics.
Collapse
Affiliation(s)
- Stefanie Mak
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Improvement of oxytetracycline production mediated via cooperation of resistance genes in Streptomyces rimosus. SCIENCE CHINA-LIFE SCIENCES 2017; 60:992-999. [PMID: 28755296 DOI: 10.1007/s11427-017-9121-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 05/12/2017] [Indexed: 01/15/2023]
Abstract
Increasing the self-resistance levels of Streptomyces is an effective strategy to improve the production of antibiotics. To increase the oxytetracycline (OTC) production in Streptomyces rimosus, we investigated the cooperative effect of three co-overexpressing OTC resistance genes: one gene encodes a ribosomal protection protein (otrA) and the other two express efflux proteins (otrB and otrC). Results indicated that combinational overexpression of otrA, otrB, and otrC (MKABC) exerted a synergetic effect. OTC production increased by 179% in the recombinant strain compared with that of the wild-type strain M4018. The resistance level to OTC was increased by approximately two-fold relative to the parental strain, thereby indicating that applying the cooperative effect of self-resistance genes is useful to improve OTC production. Furthermore, the previously identified cluster-situated activator OtcR was overexpressed in MKABC in constructing the recombinant strain MKRABC; such strain can produce OTC of approximately 7.49 g L-1, which represents an increase of 19% in comparison with that of the OtcR-overexpressing strain alone. Our work showed that the cooperative overexpression of self-resistance genes is a promising strategy to enhance the antibiotics production in Streptomyces.
Collapse
|
48
|
Interpreting Microbial Biosynthesis in the Genomic Age: Biological and Practical Considerations. Mar Drugs 2017; 15:md15060165. [PMID: 28587290 PMCID: PMC5484115 DOI: 10.3390/md15060165] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/22/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023] Open
Abstract
Genome mining has become an increasingly powerful, scalable, and economically accessible tool for the study of natural product biosynthesis and drug discovery. However, there remain important biological and practical problems that can complicate or obscure biosynthetic analysis in genomic and metagenomic sequencing projects. Here, we focus on limitations of available technology as well as computational and experimental strategies to overcome them. We review the unique challenges and approaches in the study of symbiotic and uncultured systems, as well as those associated with biosynthetic gene cluster (BGC) assembly and product prediction. Finally, to explore sequencing parameters that affect the recovery and contiguity of large and repetitive BGCs assembled de novo, we simulate Illumina and PacBio sequencing of the Salinispora tropica genome focusing on assembly of the salinilactam (slm) BGC.
Collapse
|
49
|
Wang TJ, Shan YM, Li H, Dou WW, Jiang XH, Mao XM, Liu SP, Guan WJ, Li YQ. Multiple transporters are involved in natamycin efflux in Streptomyces chattanoogensis L10. Mol Microbiol 2017; 103:713-728. [PMID: 27874224 DOI: 10.1111/mmi.13583] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 12/24/2022]
Abstract
Antibiotic-producing microorganisms have evolved several self-resistance mechanisms to prevent auto-toxicity. Overexpression of specific transporters to improve the efflux of toxic antibiotics has been found one of the most important and intrinsic resistance strategies used by many Streptomyces strains. In this work, two ATP-binding cassette (ABC) transporter-encoding genes located in the natamycin biosynthetic gene cluster, scnA and scnB, were identified as the primary exporter genes for natamycin efflux in Streptomyces chattanoogensis L10. Two other transporters located outside the cluster, a major facilitator superfamily transporter Mfs1 and an ABC transporter NepI/II were found to play a complementary role in natamycin efflux. ScnA/ScnB and Mfs1 also participate in exporting the immediate precursor of natamycin, 4,5-de-epoxynatamycin, which is more toxic to S. chattanoogensis L10 than natamycin. As the major complementary exporter for natamycin efflux, Mfs1 is up-regulated in response to intracellular accumulation of natamycin and 4,5-de-epoxynatamycin, suggesting a key role in the stress response for self-resistance. This article discusses a novel antibiotic-related efflux and response system in Streptomyces, as well as a self-resistance mechanism in antibiotic-producing strains.
Collapse
Affiliation(s)
- Tan-Jun Wang
- Institute of Pharmaceutical Biotechnology, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yi-Ming Shan
- Institute of Pharmaceutical Biotechnology, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Han Li
- Institute of Pharmaceutical Biotechnology, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Wei-Wang Dou
- Institute of Pharmaceutical Biotechnology, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xin-Hang Jiang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xu-Ming Mao
- Institute of Pharmaceutical Biotechnology, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolism Engineering, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Shui-Ping Liu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Wen-Jun Guan
- Institute of Pharmaceutical Biotechnology, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolism Engineering, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolism Engineering, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
50
|
The Pseudomonas aeruginosa efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development. Proc Natl Acad Sci U S A 2016; 113:E3538-47. [PMID: 27274079 DOI: 10.1073/pnas.1600424113] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Redox-cycling compounds, including endogenously produced phenazine antibiotics, induce expression of the efflux pump MexGHI-OpmD in the opportunistic pathogen Pseudomonas aeruginosa Previous studies of P. aeruginosa virulence, physiology, and biofilm development have focused on the blue phenazine pyocyanin and the yellow phenazine-1-carboxylic acid (PCA). In P. aeruginosa phenazine biosynthesis, conversion of PCA to pyocyanin is presumed to proceed through the intermediate 5-methylphenazine-1-carboxylate (5-Me-PCA), a reactive compound that has eluded detection in most laboratory samples. Here, we apply electrochemical methods to directly detect 5-Me-PCA and find that it is transported by MexGHI-OpmD in P. aeruginosa strain PA14 planktonic and biofilm cells. We also show that 5-Me-PCA is sufficient to fully induce MexGHI-OpmD expression and that it is required for wild-type colony biofilm morphogenesis. These physiological effects are consistent with the high redox potential of 5-Me-PCA, which distinguishes it from other well-studied P. aeruginosa phenazines. Our observations highlight the importance of this compound, which was previously overlooked due to the challenges associated with its detection, in the context of P. aeruginosa gene expression and multicellular behavior. This study constitutes a unique demonstration of efflux-based self-resistance, controlled by a simple circuit, in a Gram-negative pathogen.
Collapse
|