1
|
Lo TW, Cutler KJ, Choi HJ, Wiggins PA. OmniSegger: A time-lapse image analysis pipeline for bacterial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625259. [PMID: 39651263 PMCID: PMC11623665 DOI: 10.1101/2024.11.25.625259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Time-lapse microscopy is a powerful tool for studying the cell biology of bacterial cells. The development of pipelines that facilitate the automated analysis of these datasets is a long-standing goal of the field. In this paper, we describe OmniSegger , an updated version of our SuperSegger pipeline, developed as an open-source, modular, and holistic suite of algorithms whose input is raw microscopy images and whose output is a wide range of quantitative cellular analyses, including dynamical cell cytometry data and cellular visualizations. The updated version described in this paper introduces two principal refinements: (i) robustness to cell morphologies and (ii) support for a range of common imaging modalities. To demonstrate robustness to cell morphology, we present an analysis of the proliferation dynamics of Escherichia coli treated with a drug that induces filamentation. To demonstrate extended support for new image modalities, we analyze cells imaged by five distinct modalities: phase-contrast, two brightfield modalities, and cytoplasmic and membrane fluorescence. Together, this pipeline should greatly increase the scope of tractable analyses for bacterial microscopists.
Collapse
|
2
|
Newton MS, Azadeh AL, Morgenthaler AB, Copley SD. Challenging a decades-old paradigm: ProB and ProA do not channel the unstable intermediate in proline synthesis after all. Proc Natl Acad Sci U S A 2024; 121:e2413673121. [PMID: 39514317 PMCID: PMC11573504 DOI: 10.1073/pnas.2413673121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
The pathway for synthesis of proline in most forms of life produces a highly unstable intermediate, γ-L-glutamyl 5-phosphate (GP). For nearly 70 y, channeling of this intermediate from the active site of glutamate 5-kinase to the active site of GP reductase has been believed to protect GP from cyclization to a dead-end product. However, the evidence presented in support of this idea is not conclusive. We show that changes in the structures of the kinase or reductase that should preclude a protein-protein interaction do not compromise proline synthesis in Escherichia coli, demonstrating that channeling does not occur. We calculate that the half-life of GP is 320 ms. Although GP is indeed unstable, it should diffuse the length of an E. coli cell in less than 3 ms. Thus, most GP produced by glutamate 5-kinase should encounter the active site of GP reductase before cyclization occurs.
Collapse
Affiliation(s)
- Matilda S Newton
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309
- Royal Society Te Aparangi, Wellington 6140, New Zealand
| | - Ashley L Azadeh
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309
| | - Andrew B Morgenthaler
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309
- Amyris Inc., Emeryville, CA 94608
| | - Shelley D Copley
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309
| |
Collapse
|
3
|
Norris V. Hypothesis: bacteria live on the edge of phase transitions with a cell cycle regulated by a water-clock. Theory Biosci 2024; 143:253-277. [PMID: 39505803 DOI: 10.1007/s12064-024-00427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
A fundamental problem in biology is how cells obtain the reproducible, coherent phenotypes needed for natural selection to act or, put differently, how cells manage to limit their exploration of the vastness of phenotype space. A subset of this problem is how they regulate their cell cycle. Bacteria, like eukaryotic cells, are highly structured and contain scores of hyperstructures or assemblies of molecules and macromolecules. The existence and functioning of certain of these hyperstructures depend on phase transitions. Here, I propose a conceptual framework to facilitate the development of water-clock hypotheses in which cells use water to generate phenotypes by living 'on the edge of phase transitions'. I give an example of such a hypothesis in the case of the bacterial cell cycle and show how it offers a relatively novel 'view from here' that brings together a range of different findings about hyperstructures, phase transitions and water and that can be integrated with other hypotheses about differentiation, metabolism and the origins of life.
Collapse
Affiliation(s)
- Vic Norris
- CBSA UR 4312, University of Rouen Normandy, 76821, Rouen, Mont Saint Aignan, France.
| |
Collapse
|
4
|
Hiromoto Y, Minamino N, Kikuchi S, Kimata Y, Matsumoto H, Nakagawa S, Ueda M, Higaki T. Comprehensive and quantitative analysis of intracellular structure polarization at the apical-basal axis in elongating Arabidopsis zygotes. Sci Rep 2023; 13:22879. [PMID: 38129559 PMCID: PMC10739889 DOI: 10.1038/s41598-023-50020-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
A comprehensive and quantitative evaluation of multiple intracellular structures or proteins is a promising approach to provide a deeper understanding of and new insights into cellular polarity. In this study, we developed an image analysis pipeline to obtain intensity profiles of fluorescent probes along the apical-basal axis in elongating Arabidopsis thaliana zygotes based on two-photon live-cell imaging data. This technique showed the intracellular distribution of actin filaments, mitochondria, microtubules, and vacuolar membranes along the apical-basal axis in elongating zygotes from the onset of cell elongation to just before asymmetric cell division. Hierarchical cluster analysis of the quantitative data on intracellular distribution revealed that the zygote may be compartmentalized into two parts, with a boundary located 43.6% from the cell tip, immediately after fertilization. To explore the biological significance of this compartmentalization, we examined the positions of the asymmetric cell divisions from the dataset used in this distribution analysis. We found that the cell division plane was reproducibly inserted 20.5% from the cell tip. This position corresponded well with the midpoint of the compartmentalized apical region, suggesting a potential relationship between the zygote compartmentalization, which begins with cell elongation, and the position of the asymmetric cell division.
Collapse
Affiliation(s)
- Yukiko Hiromoto
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan
| | - Naoki Minamino
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan
| | - Suzuka Kikuchi
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan
| | - Yusuke Kimata
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Hikari Matsumoto
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Sakumi Nakagawa
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Minako Ueda
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Kyoto, Japan
| | - Takumi Higaki
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan.
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, Japan.
| |
Collapse
|
5
|
Norris V, Kayser C, Muskhelishvili G, Konto-Ghiorghi Y. The roles of nucleoid-associated proteins and topoisomerases in chromosome structure, strand segregation, and the generation of phenotypic heterogeneity in bacteria. FEMS Microbiol Rev 2023; 47:fuac049. [PMID: 36549664 DOI: 10.1093/femsre/fuac049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
How to adapt to a changing environment is a fundamental, recurrent problem confronting cells. One solution is for cells to organize their constituents into a limited number of spatially extended, functionally relevant, macromolecular assemblies or hyperstructures, and then to segregate these hyperstructures asymmetrically into daughter cells. This asymmetric segregation becomes a particularly powerful way of generating a coherent phenotypic diversity when the segregation of certain hyperstructures is with only one of the parental DNA strands and when this pattern of segregation continues over successive generations. Candidate hyperstructures for such asymmetric segregation in prokaryotes include those containing the nucleoid-associated proteins (NAPs) and the topoisomerases. Another solution to the problem of creating a coherent phenotypic diversity is by creating a growth-environment-dependent gradient of supercoiling generated along the replication origin-to-terminus axis of the bacterial chromosome. This gradient is modulated by transcription, NAPs, and topoisomerases. Here, we focus primarily on two topoisomerases, TopoIV and DNA gyrase in Escherichia coli, on three of its NAPs (H-NS, HU, and IHF), and on the single-stranded binding protein, SSB. We propose that the combination of supercoiling-gradient-dependent and strand-segregation-dependent topoisomerase activities result in significant differences in the supercoiling of daughter chromosomes, and hence in the phenotypes of daughter cells.
Collapse
Affiliation(s)
- Vic Norris
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Clara Kayser
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Georgi Muskhelishvili
- Agricultural University of Georgia, School of Natural Sciences, 0159 Tbilisi, Georgia
| | - Yoan Konto-Ghiorghi
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| |
Collapse
|
6
|
Whitley KD, Middlemiss S, Jukes C, Dekker C, Holden S. High-resolution imaging of bacterial spatial organization with vertical cell imaging by nanostructured immobilization (VerCINI). Nat Protoc 2022; 17:847-869. [DOI: 10.1038/s41596-021-00668-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/19/2021] [Indexed: 11/09/2022]
|
7
|
Huang D, Lo T, Merrikh H, Wiggins PA. Characterizing stochastic cell-cycle dynamics in exponential growth. Phys Rev E 2022; 105:014420. [PMID: 35193317 PMCID: PMC9506121 DOI: 10.1103/physreve.105.014420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Two powerful and complementary experimental approaches are commonly used to study the cell cycle and cell biology: One class of experiments characterizes the statistics (or demographics) of an unsynchronized exponentially growing population, while the other captures cell-cycle dynamics, either by time-lapse imaging of full cell cycles or in bulk experiments on synchronized populations. In this paper, we study the subtle relationship between observations in these two distinct experimental approaches. We begin with an existing model: A single-cell deterministic description of cell-cycle dynamics where cell states (i.e., periods or phases) have precise lifetimes. We then generalize this description to a stochastic model in which the states have stochastic lifetimes, as described by arbitrary probability distribution functions. Our analyses of the demographics of an exponential culture reveal a simple and exact correspondence between the deterministic and stochastic models: The corresponding state ages in the deterministic model are equal to the exponential mean of the age in the stochastic model. An important implication is therefore that the demographics of an exponential culture will be well fit by a deterministic model even if the state timing is stochastic. Although we explore the implications of the models in the context of the Escherichia coli cell cycle, we expect both the models as well as the significance of the exponential-mean lifetimes to find many applications in the quantitative analysis of cell-cycle dynamics in other biological systems.
Collapse
Affiliation(s)
- Dean Huang
- Department of Physics, University of Washington, Seattle, WA, 98195
| | - Teresa Lo
- Department of Physics, University of Washington, Seattle, WA, 98195
| | - Houra Merrikh
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37205
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Paul A. Wiggins
- Department of Physics, University of Washington, Seattle, WA, 98195
- Department of Bioengineering, University of Washington, Seattle, WA, 98195
- Department of Microbiology, University of Washington, Seattle, WA, 98195
| |
Collapse
|
8
|
Spatiotemporal localization of proteins in mycobacteria. Cell Rep 2021; 37:110154. [PMID: 34965429 PMCID: PMC8861988 DOI: 10.1016/j.celrep.2021.110154] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/16/2021] [Accepted: 12/01/2021] [Indexed: 01/10/2023] Open
Abstract
Although prokaryotic organisms lack traditional organelles, they must still organize cellular structures in space and time, challenges that different species solve differently. To systematically define the subcellular architecture of mycobacteria, we perform high-throughput imaging of a library of fluorescently tagged proteins expressed in Mycobacterium smegmatis and develop a customized computational pipeline, MOMIA and GEMATRIA, to analyze these data. Our results establish a spatial organization network of over 700 conserved mycobacterial proteins and reveal a coherent localization pattern for many proteins of known function, including those in translation, energy metabolism, cell growth and division, as well as proteins of unknown function. Furthermore, our pipeline exploits morphologic proxies to enable a pseudo-temporal approximation of protein localization and identifies previously uncharacterized cell-cycle-dependent dynamics of essential mycobacterial proteins. Collectively, these data provide a systems perspective on the subcellular organization of mycobacteria and provide tools for the analysis of bacteria with non-standard growth characteristics. Zhu et al. develop a two-stage image analysis pipeline, MOMIA and GEMATRIA, that efficiently models the spatial and temporal dynamics of over 700 conserved proteins in M. smegmatis. Through the analysis they report spatial constraints of mycobacterial ribosomes and membrane complexes and reconstruct temporal dynamics from still image data.
Collapse
|
9
|
Sun J, Shi H, Huang KC. Hyperosmotic Shock Transiently Accelerates Constriction Rate in Escherichia coli. Front Microbiol 2021; 12:718600. [PMID: 34489908 PMCID: PMC8418109 DOI: 10.3389/fmicb.2021.718600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial cells in their natural environments encounter rapid and large changes in external osmolality. For instance, enteric bacteria such as Escherichia coli experience a rapid decrease when they exit from host intestines. Changes in osmolality alter the mechanical load on the cell envelope, and previous studies have shown that large osmotic shocks can slow down bacterial growth and impact cytoplasmic diffusion. However, it remains unclear how cells maintain envelope integrity and regulate envelope synthesis in response to osmotic shocks. In this study, we developed an agarose pad-based protocol to assay envelope stiffness by measuring population-averaged cell length before and after a hyperosmotic shock. Pad-based measurements exhibited an apparently larger length change compared with single-cell dynamics in a microfluidic device, which we found was quantitatively explained by a transient increase in division rate after the shock. Inhibiting cell division led to consistent measurements between agarose pad-based and microfluidic measurements. Directly after hyperosmotic shock, FtsZ concentration and Z-ring intensity increased, and the rate of septum constriction increased. These findings establish an agarose pad-based protocol for quantifying cell envelope stiffness, and demonstrate that mechanical perturbations can have profound effects on bacterial physiology.
Collapse
Affiliation(s)
- Jiawei Sun
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Handuo Shi
- Department of Bioengineering, Stanford University, Stanford, CA, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States.,Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
10
|
Zhu L, Rajendram M, Huang KC. Effects of fixation on bacterial cellular dimensions and integrity. iScience 2021; 24:102348. [PMID: 33912815 PMCID: PMC8066382 DOI: 10.1016/j.isci.2021.102348] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/25/2021] [Accepted: 03/18/2021] [Indexed: 11/22/2022] Open
Abstract
Fixation facilitates imaging of subcellular localization and cell morphology, yet it remains unknown how fixation affects cellular dimensions and intracellular fluorescence patterns, particularly during long-term storage. Here, we characterized the effects of multiple fixatives on several bacterial species. Fixation generally reduced cell length by 5-15%; single-cell tracking in microfluidics revealed that the length decrease was an aggregate effect of many steps in the fixation protocol and that fluorescence of cytoplasmic GFP but not membrane-bound MreB-msfGFP was rapidly lost with formaldehyde-based fixatives. Cellular dimensions were preserved in formaldehyde-based fixatives for ≥4 days, but methanol caused length to decrease. Although methanol preserved cytoplasmic fluorescence better than formaldehyde-based fixatives, some Escherichia coli cells were able to grow directly after fixation. Moreover, methanol fixation caused lysis in a subpopulation of cells, with virtually all Bacillus subtilis cells lysing after one day. These findings highlight tradeoffs between maintenance of fluorescence and membrane integrity for future applications of fixation.
Collapse
Affiliation(s)
- Lillian Zhu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Manohary Rajendram
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
11
|
Lawson M, Elf J. Imaging-based screens of pool-synthesized cell libraries. Nat Methods 2021; 18:358-365. [PMID: 33589838 DOI: 10.1038/s41592-020-01053-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023]
Abstract
Mapping a genetic perturbation to a change in phenotype is at the core of biological research. Advances in microscopy have transformed these studies, but they have largely been confined to examining a few strains or cell lines at a time. In parallel, there has been a revolution in creating synthetic libraries of genetically altered cells with relative ease. Here we describe methods that combine these powerful tools to perform live-cell imaging of pool-generated strain libraries for improved biological discovery.
Collapse
Affiliation(s)
- Michael Lawson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Johan Elf
- Department of Cell and Molecular Biology Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
12
|
Norris V, Ripoll C. Generation of Bacterial Diversity by Segregation of DNA Strands. Front Microbiol 2021; 12:550856. [PMID: 33828535 PMCID: PMC8019907 DOI: 10.3389/fmicb.2021.550856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 02/28/2021] [Indexed: 11/24/2022] Open
Abstract
The generation in a bacterial population of a diversity that is coherent with present and future environments is a fundamental problem. Here, we use modeling to investigate growth rate diversity. We show that the combination of (1) association of extended assemblies of macromolecules with the DNA strands and (2) the segregation of DNA strands during cell division allows cells to generate different patterns of growth rate diversity with little effect on the overall growth rate of the population and thereby constitutes an example of “order for free” on which evolution can act.
Collapse
Affiliation(s)
- Vic Norris
- Laboratory of Microbiology Signals and Microenvironment, Faculty of Science, University of Rouen, Mont Saint Aignan, France
| | - Camille Ripoll
- Faculty of Science, University of Rouen, Mont Saint Aignan, France
| |
Collapse
|
13
|
Konto-Ghiorghi Y, Norris V. Hypothesis: nucleoid-associated proteins segregate with a parental DNA strand to generate coherent phenotypic diversity. Theory Biosci 2020; 140:17-25. [PMID: 33095418 DOI: 10.1007/s12064-020-00323-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 10/12/2020] [Indexed: 01/07/2023]
Abstract
The generation of a phenotypic diversity that is coherent across a bacterial population is a fundamental problem. We propose here that the DNA strand-specific segregation of certain nucleoid-associated proteins or NAPs results in these proteins being asymmetrically distributed to the daughter cells. We invoke a variety of mechanisms as responsible for this asymmetrical segregation including those based on differences between the leading and lagging strands, post-translational modifications, oligomerisation and association with membrane domains.
Collapse
Affiliation(s)
- Yoan Konto-Ghiorghi
- Laboratory of Microbiology Signals and Microenvironment, EA 4312, University of Rouen, 76821, Mont Saint Aignan, France
| | - Vic Norris
- Laboratory of Microbiology Signals and Microenvironment, EA 4312, University of Rouen, 76821, Mont Saint Aignan, France.
| |
Collapse
|
14
|
Efficiency and Robustness of Processes Driven by Nucleoid Exclusion in Escherichia coli. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32894477 DOI: 10.1007/978-3-030-46886-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The internal spatial organization of prokaryotic organisms, including Escherichia coli, is essential for the proper functioning of processes such as cell division. One source of this organization in E. coli is the nucleoid, which causes the exclusion of macromolecules - e.g. protein aggregates and the chemotaxis network - from midcell. Similarly, following DNA replication, the nucleoid(s) assist in placing the Z-ring at midcell. These processes need to be efficient in optimal conditions and robust to suboptimal conditions. After reviewing recent findings on these topics, we make use of past data to study the efficiency of the spatial constraining of Z-rings, chemotaxis networks, and protein aggregates, as a function of the nucleoid(s) morphology. Also, we compare the robustness of these processes to nonoptimal temperatures. We show that Z-rings, Tsr clusters, and protein aggregates have temperature-dependent spatial distributions along the major cell axis that are consistent with the nucleoid(s) morphology and the volume-exclusion phenomenon. Surprisingly, the consequences of the changes in nucleoid size with temperature are most visible in the kurtosis of these spatial distributions, in that it has a statistically significant linear correlation with the mean nucleoid length and, in the case of Z-rings, with the distance between nucleoids prior to cell division. Interestingly, we also find a negative, statistically significant linear correlation between the efficiency of these processes at the optimal condition and their robustness to suboptimal conditions, suggesting a trade-off between these traits.
Collapse
|
15
|
Clusters of bacterial RNA polymerase are biomolecular condensates that assemble through liquid-liquid phase separation. Proc Natl Acad Sci U S A 2020; 117:18540-18549. [PMID: 32675239 PMCID: PMC7414142 DOI: 10.1073/pnas.2005019117] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacterial cells are small and were long thought to have little to no internal structure. However, advances in microscopy have revealed that bacteria do indeed contain subcellular compartments. But how these compartments form has remained a mystery. Recent progress in larger, more complex eukaryotic cells has identified a novel mechanism for intracellular organization known as liquid–liquid phase separation. This process causes certain types of molecules to concentrate within distinct compartments inside the cell. Here, we demonstrate that the same process also occurs in bacteria. This work, together with a growing body of literature, suggests that liquid–liquid phase separation is a common mechanism for intracellular organization in both eukaryotic and prokaryotic cells. Once described as mere “bags of enzymes,” bacterial cells are in fact highly organized, with many macromolecules exhibiting nonuniform localization patterns. Yet the physical and biochemical mechanisms that govern this spatial heterogeneity remain largely unknown. Here, we identify liquid–liquid phase separation (LLPS) as a mechanism for organizing clusters of RNA polymerase (RNAP) in Escherichia coli. Using fluorescence imaging, we show that RNAP quickly transitions from a dispersed to clustered localization pattern as cells enter log phase in nutrient-rich media. RNAP clusters are sensitive to hexanediol, a chemical that dissolves liquid-like compartments in eukaryotic cells. In addition, we find that the transcription antitermination factor NusA forms droplets in vitro and in vivo, suggesting that it may nucleate RNAP clusters. Finally, we use single-molecule tracking to characterize the dynamics of cluster components. Our results indicate that RNAP and NusA molecules move inside clusters, with mobilities faster than a DNA locus but slower than bulk diffusion through the nucleoid. We conclude that RNAP clusters are biomolecular condensates that assemble through LLPS. This work provides direct evidence for LLPS in bacteria and demonstrates that this process can serve as a mechanism for intracellular organization in prokaryotes and eukaryotes alike.
Collapse
|
16
|
Stochastic models coupling gene expression and partitioning in cell division in Escherichia coli. Biosystems 2020; 193-194:104154. [PMID: 32353481 DOI: 10.1016/j.biosystems.2020.104154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022]
Abstract
Regulation of future RNA and protein numbers is a key process by which cells continuously best fit the environment. In bacteria, RNA and proteins exist in small numbers and their regulatory processes are stochastic. Consequently, there is cell-to-cell variability in these numbers, even between sister cells. Traditionally, the two most studied sources of this variability are gene expression and RNA and protein degradation, with evidence suggesting that the latter is subject to little regulation, when compared to the former. However, time-lapse microscopy and single molecule fluorescent tagging have produced evidence that cell division can also be a significant source of variability due to asymmetries in the partitioning of RNA and proteins. Relevantly, the impact of this noise differs from noise in production and degradation since, unlike these, it is not continuous. Rather, it occurs at specific time points, at which moment it can introduce major fluctuations. Several models have now been proposed that integrate noise from cell division, in addition to noise in gene expression, to mimic the dynamics of RNA and protein numbers of cell lineages. This is expected to be particularly relevant in genetic circuits, where significant fluctuations in one component protein, at specific time moments, are expected to perturb near-equilibrium states of the circuits, which can have long-lasting consequences. Here we review stochastic models coupling these processes in Escherichia coli, from single genes to small circuits.
Collapse
|
17
|
Milner DS, Ray LJ, Saxon EB, Lambert C, Till R, Fenton AK, Sockett RE. DivIVA Controls Progeny Morphology and Diverse ParA Proteins Regulate Cell Division or Gliding Motility in Bdellovibrio bacteriovorus. Front Microbiol 2020; 11:542. [PMID: 32373080 PMCID: PMC7186360 DOI: 10.3389/fmicb.2020.00542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/12/2020] [Indexed: 01/12/2023] Open
Abstract
The predatory bacterium B. bacteriovorus grows and divides inside the periplasm of Gram-negative bacteria, forming a structure known as a bdelloplast. Cell division of predators inside the dead prey cell is not by binary fission but instead by synchronous division of a single elongated filamentous cell into odd or even numbers of progeny cells. Bdellovibrio replication and cell division processes are dependent on the finite level of nutrients available from inside the prey bacterium. The filamentous growth and division process of the predator maximizes the number of progeny produced by the finite nutrients in a way that binary fission could not. To learn more about such an unusual growth profile, we studied the role of DivIVA in the growing Bdellovibrio cell. This protein is well known for its link to polar cell growth and spore formation in Gram-positive bacteria, but little is known about its function in a predatory growth context. We show that DivIVA is expressed in the growing B. bacteriovorus cell and controls cell morphology during filamentous cell division, but not the number of progeny produced. Bacterial Two Hybrid (BTH) analysis shows DivIVA may interact with proteins that respond to metabolic indicators of amino-acid biosynthesis or changes in redox state. Such changes may be relevant signals to the predator, indicating the consumption of prey nutrients within the sealed bdelloplast environment. ParA, a chromosome segregation protein, also contributes to bacterial septation in many species. The B. bacteriovorus genome contains three ParA homologs; we identify a canonical ParAB pair required for predatory cell division and show a BTH interaction between a gene product encoded from the same operon as DivIVA with the canonical ParA. The remaining ParA proteins are both expressed in Bdellovibrio but are not required for predator cell division. Instead, one of these ParA proteins coordinates gliding motility, changing the frequency at which the cells reverse direction. Our work will prime further studies into how one bacterium can co-ordinate its cell division with the destruction of another bacterium that it dwells within.
Collapse
Affiliation(s)
- David S Milner
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Luke J Ray
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Emma B Saxon
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Carey Lambert
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Rob Till
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Andrew K Fenton
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Renee Elizabeth Sockett
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
18
|
Kisner JR, Kuwada NJ. Nucleoid-mediated positioning and transport in bacteria. Curr Genet 2019; 66:279-291. [PMID: 31691024 DOI: 10.1007/s00294-019-01041-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/28/2022]
Abstract
Precise management of the spatiotemporal position of subcellular components is critical to a number of essential processes in the bacterial cell. The bacterial nucleoid is a highly structured yet dynamic object that undergoes significant reorganization during the relatively short cell cycle, e.g. during gene expression, chromosome replication, and segregation. Although the nucleoid takes up a large fraction of the volume of the cell, the mobility of macromolecules within these dense regions is relatively high and recent results suggest that the nucleoid plays an integral role of dynamic localization in a host of seemingly disparate cellular processes. Here, we review a number of recent reports of nucleoid-mediated positioning and transport in the model bacteria Escherichia coli. These results viewed as a whole suggest that the dynamic, cellular-scale structure of the nucleoid may be a key driver of positioning and transport within the cell. This model of a global, default positioning and transport system may help resolve many unanswered questions about the mechanisms of partitioning and segregation in bacteria.
Collapse
Affiliation(s)
- Jessica R Kisner
- Department of Physics, Central Washington University, Ellensburg, WA, 98926, USA
| | - Nathan J Kuwada
- Department of Physics, Central Washington University, Ellensburg, WA, 98926, USA.
| |
Collapse
|
19
|
Kannaiah S, Livny J, Amster-Choder O. Spatiotemporal Organization of the E. coli Transcriptome: Translation Independence and Engagement in Regulation. Mol Cell 2019; 76:574-589.e7. [PMID: 31540875 DOI: 10.1016/j.molcel.2019.08.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 06/28/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022]
Abstract
RNA localization in eukaryotes is a mechanism to regulate transcripts fate. Conversely, bacterial transcripts were not assumed to be specifically localized. We previously demonstrated that E. coli mRNAs may localize to where their products localize in a translation-independent manner, thus challenging the transcription-translation coupling extent. However, the scope of RNA localization in bacteria remained unknown. Here, we report the distribution of the E. coli transcriptome between the membrane, cytoplasm, and poles by combining cell fractionation with deep-sequencing (Rloc-seq). Our results reveal asymmetric RNA distribution on a transcriptome-wide scale, significantly correlating with proteome localization and prevalence of translation-independent RNA localization. The poles are enriched with stress-related mRNAs and small RNAs, the latter becoming further enriched upon stress in an Hfq-dependent manner. Genome organization may play a role in localizing membrane protein-encoding transcripts. Our results show an unexpected level of intricacy in bacterial transcriptome organization and highlight the poles as hubs for regulation.
Collapse
Affiliation(s)
- Shanmugapriya Kannaiah
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O. Box 12272, Jerusalem 91120, Israel
| | - Jonathan Livny
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02140, USA
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O. Box 12272, Jerusalem 91120, Israel.
| |
Collapse
|
20
|
Abstract
RNA-binding proteins (RBPs) are central to most if not all cellular processes, dictating the fate of virtually all RNA molecules in the cell. Starting with pioneering work on ribosomal proteins, studies of bacterial RBPs have paved the way for molecular studies of RNA-protein interactions. Work over the years has identified major RBPs that act on cellular transcripts at the various stages of bacterial gene expression and that enable their integration into post-transcriptional networks that also comprise small non-coding RNAs. Bacterial RBP research has now entered a new era in which RNA sequencing-based methods permit mapping of RBP activity in a truly global manner in vivo. Moreover, the soaring interest in understudied members of host-associated microbiota and environmental communities is likely to unveil new RBPs and to greatly expand our knowledge of RNA-protein interactions in bacteria.
Collapse
Affiliation(s)
- Erik Holmqvist
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany. .,Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
21
|
Kramm K, Endesfelder U, Grohmann D. A Single-Molecule View of Archaeal Transcription. J Mol Biol 2019; 431:4116-4131. [PMID: 31207238 DOI: 10.1016/j.jmb.2019.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/27/2019] [Accepted: 06/06/2019] [Indexed: 01/03/2023]
Abstract
The discovery of the archaeal domain of life is tightly connected to an in-depth analysis of the prokaryotic RNA world. In addition to Carl Woese's approach to use the sequence of the 16S rRNA gene as phylogenetic marker, the finding of Karl Stetter and Wolfram Zillig that archaeal RNA polymerases (RNAPs) were nothing like the bacterial RNAP but are more complex enzymes that resemble the eukaryotic RNAPII was one of the key findings supporting the idea that archaea constitute the third major branch on the tree of life. This breakthrough in transcriptional research 40years ago paved the way for in-depth studies of the transcription machinery in archaea. However, although the archaeal RNAP and the basal transcription factors that fine-tune the activity of the RNAP during the transcription cycle are long known, we still lack information concerning the architecture and dynamics of archaeal transcription complexes. In this context, single-molecule measurements were instrumental as they provided crucial insights into the process of transcription initiation, the architecture of the initiation complex and the dynamics of mobile elements of the RNAP. In this review, we discuss single-molecule approaches suitable to examine molecular mechanisms of transcription and highlight findings that shaped our understanding of the archaeal transcription apparatus. We furthermore explore the possibilities and challenges of next-generation single-molecule techniques, for example, super-resolution microscopy and single-molecule tracking, and ask whether these approaches will ultimately allow us to investigate archaeal transcription in vivo.
Collapse
Affiliation(s)
- Kevin Kramm
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Ulrike Endesfelder
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 16, 35043 Marburg, Germany
| | - Dina Grohmann
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
22
|
Altinoglu I, Merrifield CJ, Yamaichi Y. Single molecule super-resolution imaging of bacterial cell pole proteins with high-throughput quantitative analysis pipeline. Sci Rep 2019; 9:6680. [PMID: 31040310 PMCID: PMC6491441 DOI: 10.1038/s41598-019-43051-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/05/2019] [Indexed: 12/17/2022] Open
Abstract
Bacteria show sophisticated control of their cellular organization, and many bacteria deploy different polar landmark proteins to organize the cell pole. Super-resolution microscopy, such as Photo-Activated Localization Microscopy (PALM), provides the nanoscale localization of molecules and is crucial for better understanding of organization and dynamics in single-molecule. However, analytical tools are not fully available yet, in particular for bacterial cell biology. For example, quantitative and statistical analyses of subcellular localization with multiple cells from multiple fields of view are lacking. Furthermore, brightfield images are not sufficient to get accurate contours of small and low contrast bacterial cells, compared to subpixel presentation of target molecules. Here we describe a novel analytic tool for PALM which integrates precisely drawn cell outlines, of either inner membrane or periplasm, labelled by PALM-compatible fluorescent protein fusions, with molecule data for >10,000 molecules from >100 cells by fitting each cell into an oval arc. In the vibrioid bacterium Vibrio cholerae, the polar anchor HubP constitutes a big polar complex which includes multiple proteins involved in chemotaxis and the flagellum. With this pipeline, HubP is shown to be slightly skewed towards the inner curvature side of the cell, while its interaction partners showed rather loose polar localization.
Collapse
Affiliation(s)
- Ipek Altinoglu
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Univ. Paris Sud, Gif sur Yvette, France.,Graduate School of Structure and Dynamics of Living Systems, Univ. Paris-Sud, Orsay, France
| | - Christien J Merrifield
- Department of Cell Biology, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Univ. Paris Sud, Gif sur Yvette, France
| | - Yoshiharu Yamaichi
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Univ. Paris Sud, Gif sur Yvette, France.
| |
Collapse
|
23
|
Passaris I, Tadesse WM, Gayán E, Aertsen A. Construction and validation of the Tn5-P LtetO-1-msfGFP transposon as a tool to probe protein expression and localization. J Microbiol Methods 2019; 161:56-62. [PMID: 31004623 DOI: 10.1016/j.mimet.2019.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 11/28/2022]
Abstract
In this study we report the design, construction and validation of a novel transposon aimed to systematically screen for protein localization and expression patterns in prokaryotes using fluorescence microscopy. Upon random insertion in an open reading frame in the proper frame and orientation, the transposon creates an N-terminal fluorescent protein fusion to the msfGFP reporter. Moreover, in order to examine the localization of fusion proteins whose native expression might be too low or absent, the transposon was fitted with a PLtetO-1 promoter that makes the expression of the generated fluorescent protein fusions controllable by anhydrotetracycline. Importantly, upon flipping out the PLtetO-1 promoter and neighboring antibiotic resistance marker, an in-frame "sandwich" msfGFP fusion is created in which the N- and C-terminal portions of the targeted protein are again controlled by its native promoter.
Collapse
Affiliation(s)
- Ioannis Passaris
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven. Faculty of Bioscience Engineering, Kasteelpark Arenberg 22, 3000 Leuven, Belgium
| | - Wubishet M Tadesse
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven. Faculty of Bioscience Engineering, Kasteelpark Arenberg 22, 3000 Leuven, Belgium
| | - Elisa Gayán
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven. Faculty of Bioscience Engineering, Kasteelpark Arenberg 22, 3000 Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven. Faculty of Bioscience Engineering, Kasteelpark Arenberg 22, 3000 Leuven, Belgium.
| |
Collapse
|
24
|
Stylianidou S, Lampo TJ, Spakowitz AJ, Wiggins PA. Strong disorder leads to scale invariance in complex biological systems. Phys Rev E 2018; 97:062410. [PMID: 30011517 DOI: 10.1103/physreve.97.062410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Indexed: 11/07/2022]
Abstract
Despite the innate complexity of the cell, emergent scale-invariant behavior is observed in many biological systems. We investigate one example of this phenomenon: the dynamics of large complexes in the bacterial cytoplasm. The observed dynamics of these complexes is scale invariant in three measures of dynamics: mean-squared displacement (MSD), velocity autocorrelation function, and the step-size distribution. To investigate the physical mechanism for this emergent scale invariance, we explore minimal models in which mobility is modeled as diffusion on a rough free-energy landscape in one dimension. We discover that all three scale-invariant characteristics emerge generically in the strong disorder limit. (Strong disorder is defined by the divergence of the ensemble-averaged hop time between lattice sites.) In particular, we demonstrate how the scale invariance of the relative step-size distribution can be understood from the perspective of extreme-value theory in statistics (EVT). We show that the Gumbel scale parameter is simply related to the MSD scaling parameter. The EVT mechanism of scale invariance is expected to be generic to strongly disordered systems and therefore a powerful tool for the analysis of other systems in biology and beyond.
Collapse
Affiliation(s)
- Stella Stylianidou
- Departments Physics, Bioengineering and Microbiology, University of Washington, Seattle, Washington 98195, USA
| | - Thomas J Lampo
- Department of Chemical Engineering, Applied Physics, Materials Science and Biophysics Program, Stanford University, Stanford, California 94305, USA
| | - Andrew J Spakowitz
- Department of Chemical Engineering, Applied Physics, Materials Science and Biophysics Program, Stanford University, Stanford, California 94305, USA
| | - Paul A Wiggins
- Departments Physics, Bioengineering and Microbiology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
25
|
Liu G, Ma Q, Xu Y. Physical properties of DNA may direct the binding of nucleoid-associated proteins along the E. coli genome. Math Biosci 2018; 301:50-58. [PMID: 29625128 DOI: 10.1016/j.mbs.2018.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/22/2018] [Accepted: 03/28/2018] [Indexed: 11/26/2022]
Abstract
Nucleoid-associated proteins (NAPs) play important roles in both chromosome packaging and gene regulation in bacteria. The underlying mechanisms, however, remain elusive particularly for how NAPs contribute to chromosome packaging. We report here a characterization of the binding sites for several major NAPs in E. coli, namely HNS, IHF, Fis, Dps and a non-NAP protein, FNR, in terms of the physical properties of their binding DNA. Our study shows that (i) as compared with flanking regions, the binding sites for IHF, Fis and FNR tend to have high intrinsic curvature, while no characterized pattern of intrinsic curvature distribution around those of HNS and Dps; (ii) all the binding sites analyzed in this study except those of HNS are characterized by high structural flexibility; (iii) the intrinsic curvature and flexibility at the binding sites for Fis and IHF are found to be coupled with the sequence specificity required in their binding, while the physical properties of the binding regions for both Dps and FNR are independent of sequence specificity. Our data suggest that physical properties of DNA sequence may contribute to binding of NAPs and mediate genome packaging and transcriptional regulation of the downstream genes. Our results should be informative for prediction of NAPs binding sites and understanding of the bacterial chromosome packaging.
Collapse
Affiliation(s)
- Guoqing Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China; Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, the University of Georgia, Athens, GA 30602, USA.
| | - Qin Ma
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, the University of Georgia, Athens, GA 30602, USA; Bioinformatics and Mathematical Biosciences Lab, Department of Agronomy, Horticulture and Plant Science, South Dakot State University, SD 57007, USA
| | - Ying Xu
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, the University of Georgia, Athens, GA 30602, USA; College of Computer Science and Technology, Jilin University, Changchun 130012, China.
| |
Collapse
|
26
|
Priest DG, Tanaka N, Tanaka Y, Taniguchi Y. Micro-patterned agarose gel devices for single-cell high-throughput microscopy of E. coli cells. Sci Rep 2017; 7:17750. [PMID: 29269838 PMCID: PMC5740163 DOI: 10.1038/s41598-017-17544-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/22/2017] [Indexed: 11/25/2022] Open
Abstract
High-throughput microscopy of bacterial cells elucidated fundamental cellular processes including cellular heterogeneity and cell division homeostasis. Polydimethylsiloxane (PDMS)-based microfluidic devices provide advantages including precise positioning of cells and throughput, however device fabrication is time-consuming and requires specialised skills. Agarose pads are a popular alternative, however cells often clump together, which hinders single cell quantitation. Here, we imprint agarose pads with micro-patterned ‘capsules’, to trap individual cells and ‘lines’, to direct cellular growth outwards in a straight line. We implement this micro-patterning into multi-pad devices called CapsuleHotel and LineHotel for high-throughput imaging. CapsuleHotel provides ~65,000 capsule structures per mm2 that isolate individual Escherichia coli cells. In contrast, LineHotel provides ~300 line structures per mm that direct growth of micro-colonies. With CapsuleHotel, a quantitative single cell dataset of ~10,000 cells across 24 samples can be acquired and analysed in under 1 hour. LineHotel allows tracking growth of > 10 micro-colonies across 24 samples simultaneously for up to 4 generations. These easy-to-use devices can be provided in kit format, and will accelerate discoveries in diverse fields ranging from microbiology to systems and synthetic biology.
Collapse
Affiliation(s)
- David G Priest
- Laboratory for Single Cell Gene Dynamics, Quantitative Biology Center (QBiC), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Nobuyuki Tanaka
- Laboratory for Integrated Biodevice, Quantitative Biology Center (QBiC), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yo Tanaka
- Laboratory for Integrated Biodevice, Quantitative Biology Center (QBiC), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuichi Taniguchi
- Laboratory for Single Cell Gene Dynamics, Quantitative Biology Center (QBiC), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan. .,PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
27
|
Lawson MJ, Camsund D, Larsson J, Baltekin Ö, Fange D, Elf J. In situ genotyping of a pooled strain library after characterizing complex phenotypes. Mol Syst Biol 2017; 13:947. [PMID: 29042431 PMCID: PMC5658705 DOI: 10.15252/msb.20177951] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/11/2017] [Accepted: 09/22/2017] [Indexed: 11/28/2022] Open
Abstract
In this work, we present a proof-of-principle experiment that extends advanced live cell microscopy to the scale of pool-generated strain libraries. We achieve this by identifying the genotypes for individual cells in situ after a detailed characterization of the phenotype. The principle is demonstrated by single-molecule fluorescence time-lapse imaging of Escherichia coli strains harboring barcoded plasmids that express a sgRNA which suppresses different genes in the E. coli genome through dCas9 interference. In general, the method solves the problem of characterizing complex dynamic phenotypes for diverse genetic libraries of cell strains. For example, it allows screens of how changes in regulatory or coding sequences impact the temporal expression, location, or function of a gene product, or how the altered expression of a set of genes impacts the intracellular dynamics of a labeled reporter.
Collapse
Affiliation(s)
- Michael J Lawson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Daniel Camsund
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jimmy Larsson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Özden Baltekin
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - David Fange
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johan Elf
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Goudsmits JMH, van Oijen AM, Robinson A. A Tool for Alignment and Averaging of Sparse Fluorescence Signals in Rod-Shaped Bacteria. Biophys J 2017; 110:1708-1715. [PMID: 27119631 DOI: 10.1016/j.bpj.2016.02.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/08/2016] [Accepted: 02/16/2016] [Indexed: 11/15/2022] Open
Abstract
Fluorescence microscopy studies have shown that many proteins localize to highly specific subregions within bacterial cells. Analyzing the spatial distribution of low-abundance proteins within cells is highly challenging because information obtained from multiple cells needs to be combined to provide well-defined maps of protein locations. We present (to our knowledge) a novel tool for fast, automated, and user-impartial analysis of fluorescent protein distribution across the short axis of rod-shaped bacteria. To demonstrate the strength of our approach in extracting spatial distributions and visualizing dynamic intracellular processes, we analyzed sparse fluorescence signals from single-molecule time-lapse images of individual Escherichia coli cells. In principle, our tool can be used to provide information on the distribution of signal intensity across the short axis of any rod-shaped object.
Collapse
Affiliation(s)
- Joris M H Goudsmits
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Antoine M van Oijen
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands; School of Chemistry, University of Wollongong, Wollongong, New South Wales, Australia
| | - Andrew Robinson
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands; School of Chemistry, University of Wollongong, Wollongong, New South Wales, Australia.
| |
Collapse
|
29
|
Cass JA, Kuwada NJ, Traxler B, Wiggins PA. Escherichia coli Chromosomal Loci Segregate from Midcell with Universal Dynamics. Biophys J 2017; 110:2597-2609. [PMID: 27332118 DOI: 10.1016/j.bpj.2016.04.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/31/2016] [Accepted: 04/28/2016] [Indexed: 12/31/2022] Open
Abstract
The structure of the Escherichia coli chromosome is inherently dynamic over the duration of the cell cycle. Genetic loci undergo both stochastic motion around their initial positions and directed motion to opposite poles of the rod-shaped cell during segregation. We developed a quantitative method to characterize cell-cycle dynamics of the E. coli chromosome to probe the chromosomal steady-state mobility and segregation process. By tracking fluorescently labeled chromosomal loci in thousands of cells throughout the entire cell cycle, our method allows for the statistical analysis of locus position and motion, the step-size distribution for movement during segregation, and the locus drift velocity. The robust statistics of our detailed analysis of the wild-type E. coli nucleoid allow us to observe loci moving toward midcell before segregation occurs, consistent with a replication factory model. Then, as segregation initiates, we perform a detailed characterization of the average segregation velocity of loci. Contrary to origin-centric models of segregation, which predict distinct dynamics for oriC-proximal versus oriC-distal loci, we find that the dynamics of loci were universal and independent of genetic position.
Collapse
Affiliation(s)
- Julie A Cass
- Departments of Physics, Bioengineering, and Microbiology, University of Washington, Seattle, Washington
| | - Nathan J Kuwada
- Departments of Physics, Bioengineering, and Microbiology, University of Washington, Seattle, Washington
| | - Beth Traxler
- Departments of Physics, Bioengineering, and Microbiology, University of Washington, Seattle, Washington
| | - Paul A Wiggins
- Departments of Physics, Bioengineering, and Microbiology, University of Washington, Seattle, Washington.
| |
Collapse
|
30
|
Reinke AW, Mak R, Troemel ER, Bennett EJ. In vivo mapping of tissue- and subcellular-specific proteomes in Caenorhabditis elegans. SCIENCE ADVANCES 2017; 3:e1602426. [PMID: 28508060 PMCID: PMC5425238 DOI: 10.1126/sciadv.1602426] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/09/2017] [Indexed: 06/07/2023]
Abstract
Multicellular organisms are composed of tissues that have distinct functions requiring specialized proteomes. To define the proteome of a live animal with tissue and subcellular resolution, we adapted a localized proteomics technology for use in the multicellular model organism Caenorhabditis elegans. This approach couples tissue- and location-specific expression of the enzyme ascorbate peroxidase (APX), which enables proximity-based protein labeling in vivo, and quantitative proteomics to identify tissue- and subcellular-restricted proteomes. We identified and localized more than 3000 proteins from strains of C. elegans expressing APX in either the nucleus or cytoplasm of the intestine, epidermis, body wall muscle, or pharyngeal muscle. We also identified several hundred proteins that were specifically localized to one of the four tissues analyzed or specifically localized to the cytoplasm or the nucleus. This approach resulted in the identification both of proteins with previously characterized localizations and of those not known to localize to the nucleus or cytoplasm. Further, we confirmed the tissue- and subcellular-specific localization of a subset of identified proteins using green fluorescent protein tagging and fluorescence microscopy, validating our in vivo proximity-based proteomics technique. Together, these results demonstrate a new approach that enables the tissue- and subcellular-specific identification and quantification of proteins within a live animal.
Collapse
Affiliation(s)
- Aaron W. Reinke
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Raymond Mak
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Emily R. Troemel
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Eric J. Bennett
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
31
|
Ursell T, Lee TK, Shiomi D, Shi H, Tropini C, Monds RD, Colavin A, Billings G, Bhaya-Grossman I, Broxton M, Huang BE, Niki H, Huang KC. Rapid, precise quantification of bacterial cellular dimensions across a genomic-scale knockout library. BMC Biol 2017; 15:17. [PMID: 28222723 PMCID: PMC5320674 DOI: 10.1186/s12915-017-0348-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/06/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The determination and regulation of cell morphology are critical components of cell-cycle control, fitness, and development in both single-cell and multicellular organisms. Understanding how environmental factors, chemical perturbations, and genetic differences affect cell morphology requires precise, unbiased, and validated measurements of cell-shape features. RESULTS Here we introduce two software packages, Morphometrics and BlurLab, that together enable automated, computationally efficient, unbiased identification of cells and morphological features. We applied these tools to bacterial cells because the small size of these cells and the subtlety of certain morphological changes have thus far obscured correlations between bacterial morphology and genotype. We used an online resource of images of the Keio knockout library of nonessential genes in the Gram-negative bacterium Escherichia coli to demonstrate that cell width, width variability, and length significantly correlate with each other and with drug treatments, nutrient changes, and environmental conditions. Further, we combined morphological classification of genetic variants with genetic meta-analysis to reveal novel connections among gene function, fitness, and cell morphology, thus suggesting potential functions for unknown genes and differences in modes of action of antibiotics. CONCLUSIONS Morphometrics and BlurLab set the stage for future quantitative studies of bacterial cell shape and intracellular localization. The previously unappreciated connections between morphological parameters measured with these software packages and the cellular environment point toward novel mechanistic connections among physiological perturbations, cell fitness, and growth.
Collapse
Affiliation(s)
- Tristan Ursell
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.,Department of Physics, University of Oregon, Eugene, OR, 97403, USA
| | - Timothy K Lee
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Daisuke Shiomi
- National Institute of Genetics, Shizuoka, Japan.,Current address: Department of Life Science, Rikkyo University, Tokyo, Japan
| | - Handuo Shi
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Carolina Tropini
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Russell D Monds
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.,Current address: Synthetic Genomics Inc., La Jolla, CA, 92037, USA
| | - Alexandre Colavin
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Gabriel Billings
- Department of Physics, Stanford University, Stanford, CA, 94305, USA
| | | | - Michael Broxton
- Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
| | | | | | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA. .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
32
|
Strain Library Imaging Protocol for high-throughput, automated single-cell microscopy of large bacterial collections arrayed on multiwell plates. Nat Protoc 2017; 12:429-438. [PMID: 28125106 DOI: 10.1038/nprot.2016.181] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Single-cell microscopy is a powerful tool for studying gene functions using strain libraries, but it suffers from throughput limitations. Here we describe the Strain Library Imaging Protocol (SLIP), which is a high-throughput, automated microscopy workflow for large strain collections that requires minimal user involvement. SLIP involves transferring arrayed bacterial cultures from multiwell plates onto large agar pads using inexpensive replicator pins and automatically imaging the resulting single cells. The acquired images are subsequently reviewed and analyzed by custom MATLAB scripts that segment single-cell contours and extract quantitative metrics. SLIP yields rich data sets on cell morphology and gene expression that illustrate the function of certain genes and the connections among strains in a library. For a library arrayed on 96-well plates, image acquisition can be completed within 4 min per plate.
Collapse
|
33
|
Mangiameli SM, Veit BT, Merrikh H, Wiggins PA. The Replisomes Remain Spatially Proximal throughout the Cell Cycle in Bacteria. PLoS Genet 2017; 13:e1006582. [PMID: 28114307 PMCID: PMC5293282 DOI: 10.1371/journal.pgen.1006582] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/06/2017] [Accepted: 01/13/2017] [Indexed: 11/23/2022] Open
Abstract
The positioning of the DNA replication machinery (replisome) has been the subject of several studies. Two conflicting models for replisome localization have been proposed: In the Factory Model, sister replisomes remain spatially co-localized as the replicating DNA is translocated through a stationary replication factory. In the Track Model, sister replisomes translocate independently along a stationary DNA track and the replisomes are spatially separated for the majority of the cell cycle. Here, we used time-lapse imaging to observe and quantify the position of fluorescently labeled processivity-clamp (DnaN) complexes throughout the cell cycle in two highly-divergent bacterial model organisms: Bacillus subtilis and Escherichia coli. Because DnaN is a core component of the replication machinery, its localization patterns should be an appropriate proxy for replisome positioning in general. We present automated statistical analysis of DnaN positioning in large populations, which is essential due to the high degree of cell-to-cell variation. We find that both bacteria show remarkably similar DnaN positioning, where any potential separation of the two replication forks remains below the diffraction limit throughout the majority of the replication cycle. Additionally, the localization pattern of several other core replisome components is consistent with that of DnaN. These data altogether indicate that the two replication forks remain spatially co-localized and mostly function in close proximity throughout the replication cycle. The conservation of the observed localization patterns in these highly divergent species suggests that the subcellular positioning of the replisome is a functionally critical feature of DNA replication. Cell proliferation depends on efficient replication of the genome. Bacteria typically have a single origin of replication on a circular chromosome. After replication initiation, two replisomes assemble at the origin and each copy one of the two arms of the chromosome until they reach the terminus. There have been conflicting reports about the subcellular positioning and putative co-localization of the two replication forks during this process. It has remained controversial whether the two replisomes remain relatively close to each other with the DNA being pulled through, or separate as they translocate along the DNA like a track. Existing studies have relied heavily on snapshot images and these experiments cannot unambiguously distinguish between these two models: i.e. two resolvable forks versus two pairs of co-localized forks. The ability of replication to re-initiate before cell division in bacterial cells further complicates the interpretation of these types of imaging studies. In this paper, we use a combination of snapshot imaging, time-lapse imaging, and quantitative analysis to measure the fraction of time forks are co-localized during each cell cycle. We find that the forks are co-localized for the majority (80%) of the replication cycle in two highly-divergent model organisms: B. subtilis and E. coli. Our observations are consistent with proximal localization of the two forks, but also some transient separations of sister forks during replication. The conserved behavior of sub-cellular positioning of the replisomes in these two highly divergent species implies a potential functional relevance of this feature.
Collapse
Affiliation(s)
- Sarah M. Mangiameli
- Department of Physics, University of Washington, Seattle, Washington, United States of America
| | - Brian T. Veit
- Department of Physics, University of Washington, Seattle, Washington, United States of America
| | - Houra Merrikh
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail: (HM); (PAW)
| | - Paul A. Wiggins
- Department of Physics, University of Washington, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
- * E-mail: (HM); (PAW)
| |
Collapse
|
34
|
Cass JA, Stylianidou S, Kuwada NJ, Traxler B, Wiggins PA. Probing bacterial cell biology using image cytometry. Mol Microbiol 2016; 103:818-828. [PMID: 27935200 DOI: 10.1111/mmi.13591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2016] [Indexed: 01/01/2023]
Abstract
Advances in automated fluorescence microscopy have made snapshot and time-lapse imaging of bacterial cells commonplace, yet fundamental challenges remain in analysis. The vast quantity of data collected in high-throughput experiments requires a fast and reliable automated method to analyze fluorescence intensity and localization, cell morphology and proliferation as well as other descriptors. Inspired by effective yet tractable methods of population-level analysis using flow cytometry, we have developed a framework and tools for facilitating analogous analyses in image cytometry. These tools can both visualize and gate (generate subpopulations) more than 70 cell descriptors, including cell size, age and fluorescence. The method is well suited to multi-well imaging, analysis of bacterial cultures with high cell density (thousands of cells per frame) and complete cell cycle imaging. We give a brief description of the analysis of four distinct applications to emphasize the broad applicability of the tool.
Collapse
Affiliation(s)
- Julie A Cass
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Stella Stylianidou
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Nathan J Kuwada
- Department of Physics, Central Washington University, Ellensburg, WA, 98926, USA
| | - Beth Traxler
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | - Paul A Wiggins
- Department of Physics, University of Washington, Seattle, WA, 98195, USA.,Department of Microbiology, University of Washington, Seattle, WA, 98195, USA.,Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
35
|
Stylianidou S, Brennan C, Nissen SB, Kuwada NJ, Wiggins PA. SuperSegger: robust image segmentation, analysis and lineage tracking of bacterial cells. Mol Microbiol 2016; 102:690-700. [PMID: 27569113 DOI: 10.1111/mmi.13486] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2016] [Indexed: 11/29/2022]
Abstract
Many quantitative cell biology questions require fast yet reliable automated image segmentation to identify and link cells from frame-to-frame, and characterize the cell morphology and fluorescence. We present SuperSegger, an automated MATLAB-based image processing package well-suited to quantitative analysis of high-throughput live-cell fluorescence microscopy of bacterial cells. SuperSegger incorporates machine-learning algorithms to optimize cellular boundaries and automated error resolution to reliably link cells from frame-to-frame. Unlike existing packages, it can reliably segment microcolonies with many cells, facilitating the analysis of cell-cycle dynamics in bacteria as well as cell-contact mediated phenomena. This package has a range of built-in capabilities for characterizing bacterial cells, including the identification of cell division events, mother, daughter and neighbouring cells, and computing statistics on cellular fluorescence, the location and intensity of fluorescent foci. SuperSegger provides a variety of postprocessing data visualization tools for single cell and population level analysis, such as histograms, kymographs, frame mosaics, movies and consensus images. Finally, we demonstrate the power of the package by analyzing lag phase growth with single cell resolution.
Collapse
Affiliation(s)
- Stella Stylianidou
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Connor Brennan
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Silas B Nissen
- Department of StemPhys, Niels Bohr Institute, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Nathan J Kuwada
- Department of Physics, Central Washington University, Ellensburg, WA, 98926, USA
| | - Paul A Wiggins
- Department of Physics, University of Washington, Seattle, WA, 98195, USA.,Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.,Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
36
|
Liang SY, Lin SY, Chiang IC, Shih YL. Quantitative inner membrane proteome datasets of the wild-type and the Δmin mutant of Escherichia coli. Data Brief 2016; 8:304-7. [PMID: 27331106 PMCID: PMC4906036 DOI: 10.1016/j.dib.2016.05.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/11/2016] [Accepted: 05/19/2016] [Indexed: 11/27/2022] Open
Abstract
This article presents data that were obtained through measuring the impact of the Min oscillation on membrane proteins in Escherichia coli by quantitative protemoics analysis. We isolated inner membranes from the wild-type and mutant strains to generate proteomics datasets based on NanoLC-nanoESI-MS/MS mass spectrometry using the isobaric tags for relative and absolute quantitation (iTRAQ) method. The datasets included the raw spectral files from four sample replicates and the processed files using Proteome Discoverer that contained a total of 40,072 MS/MS spectra with confident peptide identifier (FDR<0.01) and the peak intensity of the reporter ions. The data was further filtered, which resulted in an inner membrane proteome of unique proteins with quantitation. Proteins of interest, that show significant difference in protein abundance of the mutant membrane, were isolated through statistical filtering. The data is related to “Quantitative proteomics analysis reveals the Min system ofEscherichia colimodulates reversible protein association with the inner membrane” (Lee et al., 2016 [1]).
Collapse
Affiliation(s)
- Suh-Yuen Liang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Shu-Yu Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - I-Chen Chiang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Ling Shih
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan; Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
37
|
Sastre DE, Bisson-Filho A, de Mendoza D, Gueiros-Filho FJ. Revisiting the cell biology of the acyl-ACP:phosphate transacylase PlsX suggests that the phospholipid synthesis and cell division machineries are not coupled inBacillus subtilis. Mol Microbiol 2016; 100:621-34. [DOI: 10.1111/mmi.13337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Diego Emiliano Sastre
- Departamento de Bioquímica; Instituto de Química, Universidade de São Paulo; São Paulo SP Brazil
| | - Alexandre Bisson-Filho
- Department of Molecular and Cellular Biology and Faculty of Arts and Sciences (FAS) Center for Systems Biology; Harvard University; Cambridge MA 02138 USA
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, Ocampo y Esmeralda, Predio CONICET Rosario; 2000 Rosario Argentina
| | | |
Collapse
|
38
|
Lee HL, Chiang IC, Liang SY, Lee DY, Chang GD, Wang KY, Lin SY, Shih YL. Quantitative Proteomics Analysis Reveals the Min System of Escherichia coli Modulates Reversible Protein Association with the Inner Membrane. Mol Cell Proteomics 2016; 15:1572-83. [PMID: 26889046 PMCID: PMC4858940 DOI: 10.1074/mcp.m115.053603] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Indexed: 12/21/2022] Open
Abstract
The Min system of Escherichia coli mediates placement of the division septum at the midcell. It oscillates from pole to pole to establish a concentration gradient of the division inhibition that is high at the poles but low at the midcell; the cell middle thereby becomes the most favorable site for division. Although Min oscillation is well studied from molecular and biophysical perspectives, it is still an enigma as to whether such a continuous, energy-consuming, and organized movement of the Min proteins would affect cellular processes other than the division site selection. To tackle this question, we compared the inner membrane proteome of the wild-type and Δmin strains using a quantitative approach. Forty proteins that showed differential abundance on the inner membrane of the mutant cells were identified and defined as proteins of interest (POIs). More than half of the POIs were peripheral membrane proteins, suggesting that the Min system affects mainly reversible protein association with the inner membrane. In addition, 6 out of 10 selected POIs directly interacted with at least one of the Min proteins, confirming the correlation between POIs and the Min system.Further analysis revealed a functional relationship between metabolism and the Min system. Metabolic enzymes accounted for 45% of the POIs, and there was a change of metabolites in the related reactions. We hypothesize that the Min system could alter the membrane location of proteins to modulate their enzymatic activity. Thus, the metabolic modulation in the Δmin mutant is likely an adaptive phenotype in cells of abnormal size and chromosome number due to an imbalanced abundance of proteins on the inner membrane. Taken together, the current work reports novel interactions of the Min system and reveals a global physiological impact of the Min system in addition to the division site placement.
Collapse
Affiliation(s)
- Hsiao-Lin Lee
- From the ‡Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - I-Chen Chiang
- From the ‡Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Suh-Yuen Liang
- From the ‡Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Der-Yen Lee
- §Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan; ‖Department of Applied Chemistry, National Chiayi University, Chiayi 600, Taiwan
| | - Geen-Dong Chang
- §Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Kwan-Yu Wang
- From the ‡Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Shu-Yu Lin
- From the ‡Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Ling Shih
- From the ‡Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; §Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan; ¶Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| |
Collapse
|
39
|
Oliveira SMD, Neeli-Venkata R, Goncalves NSM, Santinha JA, Martins L, Tran H, Mäkelä J, Gupta A, Barandas M, Häkkinen A, Lloyd-Price J, Fonseca JM, Ribeiro AS. Increased cytoplasm viscosity hampers aggregate polar segregation inEscherichia coli. Mol Microbiol 2015; 99:686-99. [DOI: 10.1111/mmi.13257] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Samuel M. D. Oliveira
- Laboratory of Biosystem Dynamics; Department of Signal Processing; Tampere University of Technology; 33101 Tampere Finland
| | - Ramakanth Neeli-Venkata
- Laboratory of Biosystem Dynamics; Department of Signal Processing; Tampere University of Technology; 33101 Tampere Finland
| | - Nadia S. M. Goncalves
- Laboratory of Biosystem Dynamics; Department of Signal Processing; Tampere University of Technology; 33101 Tampere Finland
| | - João A. Santinha
- UNINOVA; Instituto de Desenvolvimento de Novas Tecnologias; Campus FCT-UNL; 2829-516 Caparica Portugal
| | - Leonardo Martins
- UNINOVA; Instituto de Desenvolvimento de Novas Tecnologias; Campus FCT-UNL; 2829-516 Caparica Portugal
| | - Huy Tran
- Laboratory of Biosystem Dynamics; Department of Signal Processing; Tampere University of Technology; 33101 Tampere Finland
| | - Jarno Mäkelä
- Laboratory of Biosystem Dynamics; Department of Signal Processing; Tampere University of Technology; 33101 Tampere Finland
| | - Abhishekh Gupta
- Laboratory of Biosystem Dynamics; Department of Signal Processing; Tampere University of Technology; 33101 Tampere Finland
| | - Marilia Barandas
- UNINOVA; Instituto de Desenvolvimento de Novas Tecnologias; Campus FCT-UNL; 2829-516 Caparica Portugal
| | - Antti Häkkinen
- Laboratory of Biosystem Dynamics; Department of Signal Processing; Tampere University of Technology; 33101 Tampere Finland
| | - Jason Lloyd-Price
- Laboratory of Biosystem Dynamics; Department of Signal Processing; Tampere University of Technology; 33101 Tampere Finland
| | - José M. Fonseca
- UNINOVA; Instituto de Desenvolvimento de Novas Tecnologias; Campus FCT-UNL; 2829-516 Caparica Portugal
| | - Andre S. Ribeiro
- Laboratory of Biosystem Dynamics; Department of Signal Processing; Tampere University of Technology; 33101 Tampere Finland
| |
Collapse
|
40
|
Transmembrane protein sorting driven by membrane curvature. Nat Commun 2015; 6:8728. [PMID: 26522943 PMCID: PMC4632190 DOI: 10.1038/ncomms9728] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 09/25/2015] [Indexed: 12/22/2022] Open
Abstract
The intricate structure of prokaryotic and eukaryotic cells depends on the ability to target proteins to specific cellular locations. In most cases, we have a poor understanding of the underlying mechanisms. A typical example is the assembly of bacterial chemoreceptors at cell poles. Here we show that the classical chemoreceptor TlpA of Bacillus subtilis does not localize according to the consensus stochastic nucleation mechanism but accumulates at strongly curved membrane areas generated during cell division. This preference was confirmed by accumulation at non-septal curved membranes. Localization appears to be an intrinsic property of the protein complex and does not rely on chemoreceptor clustering, as was previously shown for Escherichia coli. By constructing specific amino-acid substitutions, we demonstrate that the preference for strongly curved membranes arises from the curved shape of chemoreceptor trimer of dimers. These findings demonstrate that the intrinsic shape of transmembrane proteins can determine their cellular localization. The accumulation of chemoreceptor proteins at bacterial poles is thought to depend on their clustering into arrays. Strahl et al. show that in Bacillus subtilis, the chemoreceptor TlpA uses high membrane curvature as a spatial cue for polar localization, through the intrinsic curvature sensitivity of the receptor complex.
Collapse
|
41
|
Bradshaw N, Losick R. Asymmetric division triggers cell-specific gene expression through coupled capture and stabilization of a phosphatase. eLife 2015; 4. [PMID: 26465112 PMCID: PMC4714977 DOI: 10.7554/elife.08145] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 10/13/2015] [Indexed: 11/13/2022] Open
Abstract
Formation of a division septum near a randomly chosen pole during sporulation in Bacillus subtilis creates unequal sized daughter cells with dissimilar programs of gene expression. An unanswered question is how polar septation activates a transcription factor (σ(F)) selectively in the small cell. We present evidence that the upstream regulator of σ(F), the phosphatase SpoIIE, is compartmentalized in the small cell by transfer from the polar septum to the adjacent cell pole where SpoIIE is protected from proteolysis and activated. Polar recognition, protection from proteolysis, and stimulation of phosphatase activity are linked to oligomerization of SpoIIE. This mechanism for initiating cell-specific gene expression is independent of additional sporulation proteins; vegetative cells engineered to divide near a pole sequester SpoIIE and activate σ(F) in small cells. Thus, a simple model explains how SpoIIE responds to a stochastically-generated cue to activate σ(F) at the right time and in the right place.
Collapse
Affiliation(s)
- Niels Bradshaw
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Richard Losick
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| |
Collapse
|
42
|
Huang KC. Applications of imaging for bacterial systems biology. Curr Opin Microbiol 2015; 27:114-20. [PMID: 26356259 DOI: 10.1016/j.mib.2015.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 08/14/2015] [Accepted: 08/15/2015] [Indexed: 01/27/2023]
Abstract
Imaging has fueled exciting advances in bacterial cell biology, which have led to exquisite understanding of mechanisms of protein localization and cell growth in select cases. Nonetheless, it remains a challenge to connect subcellular dynamics to cellular phenotypes. In this review, I explore synergies between imaging and systems approaches to bacterial physiology. I highlight how single-cell, time-lapse imaging under environmental or chemical perturbations yields insights that complement traditional observations based on population-level growth on long time-scales. Next, I discuss applications of high-throughput fluorescence imaging to dissect genetic pathways and drug targets. Finally, I describe how confocal imaging is illuminating the role of spatial organization in the structure and function of bacterial communities, from biofilms to the intestinal microbiota.
Collapse
Affiliation(s)
- Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
43
|
Wu F, Van Rijn E, Van Schie BGC, Keymer JE, Dekker C. Multi-color imaging of the bacterial nucleoid and division proteins with blue, orange, and near-infrared fluorescent proteins. Front Microbiol 2015; 6:607. [PMID: 26136737 PMCID: PMC4469896 DOI: 10.3389/fmicb.2015.00607] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/02/2015] [Indexed: 12/28/2022] Open
Abstract
Studies of the spatiotemporal protein dynamics within live bacterial cells impose a strong demand for multi-color imaging. Despite the increasingly large collection of fluorescent protein (FP) variants engineered to date, only a few of these were successfully applied in bacteria. Here, we explore the performance of recently engineered variants with the blue (TagBFP), orange (TagRFP-T, mKO2), and far-red (mKate2) spectral colors by tagging HU, LacI, MinD, and FtsZ for visualizing the nucleoid and the cell division process. We find that, these FPs outperformed previous versions in terms of brightness and photostability at their respective spectral range, both when expressed as cytosolic label and when fused to native proteins. As this indicates that their folding is sufficiently fast, these proteins thus successfully expand the applicable spectra for multi-color imaging in bacteria. A near-infrared protein (eqFP670) is found to be the most red-shifted protein applicable to bacteria so far, with brightness and photostability that are advantageous for cell-body imaging, such as in microfluidic devices. Despite the multiple advantages, we also report the alarming observation that TagBFP directly interacts with TagRFP-T, causing interference of localization patterns between their fusion proteins. Our application of diverse FPs for endogenous tagging provides guidelines for future engineering of fluorescent fusions in bacteria, specifically: (1) The performance of newly developed FPs should be quantified in vivo for their introduction into bacteria; (2) spectral crosstalk and inter-variant interactions between FPs should be carefully examined for multi-color imaging; and (3) successful genomic fusion to the 5′-end of a gene strongly depends on the translational read-through of the inserted coding sequence.
Collapse
Affiliation(s)
- Fabai Wu
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology Delft, Netherlands
| | - Erwin Van Rijn
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology Delft, Netherlands
| | - Bas G C Van Schie
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology Delft, Netherlands
| | - Juan E Keymer
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology Delft, Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology Delft, Netherlands
| |
Collapse
|
44
|
High-throughput cell-cycle imaging opens new doors for discovery. Curr Genet 2015; 61:513-6. [DOI: 10.1007/s00294-015-0493-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
|