1
|
Chang C, Ramirez NA, Bhat AH, Nguyen MT, Kumari P, Ton-That H, Das A, Ton-That H. Biogenesis and Functionality of Sortase-Assembled Pili in Gram-Positive Bacteria. Annu Rev Microbiol 2024; 78:403-423. [PMID: 39141696 DOI: 10.1146/annurev-micro-112123-100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
A unique class of multimeric proteins made of covalently linked subunits known as pili, or fimbriae, are assembled and displayed on the gram-positive bacterial cell surface by a conserved transpeptidase enzyme named pilus-specific sortase. Sortase-assembled pili are produced by a wide range of gram-positive commensal and pathogenic bacteria inhabiting diverse niches such as the human oral cavity, gut, urogenital tract, and skin. These surface appendages serve many functions, including as molecular adhesins, immuno-modulators, and virulence determinants, that significantly contribute to both the commensal and pathogenic attributes of producer microbes. Intensive genetic, biochemical, physiological, and structural studies have been devoted to unveiling the assembly mechanism and functions, as well as the utility of these proteins in vaccine development and other biotechnological applications. We provide a comprehensive review of these topics and discuss the current status and future prospects of the field.
Collapse
Affiliation(s)
- Chungyu Chang
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA;
| | - Nicholas A Ramirez
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Aadil H Bhat
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA;
| | - Minh T Nguyen
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA;
| | - Poonam Kumari
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA;
| | - HyLam Ton-That
- Department of Chemistry, University of California, Irvine, California, USA
| | - Asis Das
- Department of Medicine, Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Hung Ton-That
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA;
| |
Collapse
|
2
|
Araújo MRB, Prates FD, Viana MVC, Santos LS, Mattos-Guaraldi AL, Camargo CH, Sacchi CT, Campos KR, Vieira VV, Santos MBN, Bokermann S, Ramos JN, Azevedo V. Genomic analysis of two penicillin- and rifampin-resistant Corynebacterium rouxii strains isolated from cutaneous infections in dogs. Res Vet Sci 2024; 179:105396. [PMID: 39213744 DOI: 10.1016/j.rvsc.2024.105396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Although diphtheria is a vaccine-preventable disease, numerous cases are still reported around the world, as well as outbreaks in countries, including European ones. Species of the Corynebacterium diphtheriae complex are potentially toxigenic and, therefore, must be considered given the possible consequences, such as the circulation of clones and transmission of antimicrobial resistance and virulence genes. Recently, Corynebacterium rouxii was characterized and included among the valid species of the complex. Therefore, two cases of C. rouxii infection arising from infections in domestic animals are presented here. We provide molecular characterization, phylogenetic analyses, genome sequencing, and CRISPR-Cas analyses to contribute to a better understanding of the molecular bases, pathogenesis, and epidemiological monitoring of this species, which is still little studied. We confirmed its taxonomic position with genome sequencing and in silico analysis and identified the ST-918 for both strains. The clinical isolates were sensitive resistance to benzylpenicillin and rifampin. Antimicrobial resistance genes, including tetB, rpoB2, and rbpA genes, were predicted. The bla and ampC genes were not found. Several virulence factors were also detected, including adhesion, iron uptake systems, gene regulation (dtxR), and post-translational modification (MdbA). Finally, one prophage and the Type I-E CRISPR-Cas system were identified.
Collapse
Affiliation(s)
- Max Roberto Batista Araújo
- Operational Technical Nucleus, Microbiology, Hermes Pardini Institute (Fleury Group), Av. das Nações, 2448, Santo Antônio, 33200-000 Vespasiano, MG, Brazil
| | - Fernanda Diniz Prates
- Operational Technical Nucleus, Microbiology, Hermes Pardini Institute (Fleury Group), Av. das Nações, 2448, Santo Antônio, 33200-000 Vespasiano, MG, Brazil; Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Marcus Vinícius Canário Viana
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Louisy Sanches Santos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Av. 28 de Setembro, 87, Fundos, 3° andar, Vila Isabel, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Ana Luiza Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Av. 28 de Setembro, 87, Fundos, 3° andar, Vila Isabel, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Carlos Henrique Camargo
- Center of Bacteriology, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, Av. Dr. Arnaldo, 355, Cerqueira César, 01246-000 São Paulo, SP, Brazil
| | - Cláudio Tavares Sacchi
- Strategic Laboratory, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, Av. Dr. Arnaldo, 355, Cerqueira César, 01246-000 São Paulo, SP, Brazil
| | - Karoline Rodrigues Campos
- Strategic Laboratory, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, Av. Dr. Arnaldo, 355, Cerqueira César, 01246-000 São Paulo, SP, Brazil
| | - Verônica Viana Vieira
- Interdisciplinary Laboratory of Medical Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, 21040-360 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marlon Benedito Nascimento Santos
- Strategic Laboratory, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, Av. Dr. Arnaldo, 355, Cerqueira César, 01246-000 São Paulo, SP, Brazil
| | - Sérgio Bokermann
- Center of Bacteriology, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, Av. Dr. Arnaldo, 355, Cerqueira César, 01246-000 São Paulo, SP, Brazil
| | - Juliana Nunes Ramos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Av. 28 de Setembro, 87, Fundos, 3° andar, Vila Isabel, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil..
| |
Collapse
|
3
|
Bhat AH, Chang C, Das A, Ton-That H. Molecular basis for sortase-catalyzed pilus tip assembly. mBio 2024; 15:e0148424. [PMID: 39092925 PMCID: PMC11389406 DOI: 10.1128/mbio.01484-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
During pilus assembly within the Gram-positive bacterial envelope, membrane-bound sortase enzymes sequentially crosslink specific pilus protein monomers through their cell wall sorting signals (CWSS), starting with a designated tip pilin, followed by the shaft made of another pilin, ultimately anchoring the fiber base pilin to the cell wall. To date, the molecular determinants that govern pilus tip assembly and the underlying mechanism remain unknown. Here, we addressed this in the model organism Actinomyces oris. This oral microbe assembles a pathogenically important pilus (known as type 2 fimbria) whose shafts, made of FimA pilins, display one of two alternate tip pilins-FimB or the coaggregation factor CafA-that share a markedly similar CWSS. We demonstrate that swapping the CWSS of CafA with that of FimB produces a functional hybrid, which localizes at the pilus tip and mediates polymicrobial coaggregation, whereas alanine-substitution of the conserved FLIAG motif within the CWSS hampers these processes. Remarkably, swapping the CWSS of the normal cell wall-anchored glycoprotein GspA with that of CafA promotes the assembly of hybrid GspA at the FimA pilus tip. Finally, exchanging the CWSS of the Corynebacterium diphtheriae shaft pilin SpaA with that of CafA leads to the FLIAG motif-dependent localization of the heterologous pilus protein SpaA at the FimA pilus tip in A. oris. Evidently, the CWSS and the FLIAG motif of CafA are both necessary and sufficient for its destination to the cognate pilus tip specifically assembled by a designated sortase in the organism. IMPORTANCE Gram-positive pili, whose precursors harbor a cell wall sorting signal (CWSS) needed for sortase-mediated pilus assembly, typically comprise a pilus shaft and a tip adhesin. How a pilin becomes a pilus tip, nevertheless, remains undetermined. We demonstrate here in Actinomyces oris that the CWSS of the tip pilin CafA is necessary and sufficient to promote pilus tip assembly, and this functional assembly involves a conserved FLIAG motif within the CWSS. This is evidenced by the fact that an A. oris cell-wall anchored glycoprotein, GspA, or a heterologous shaft pilin from Corynebacterium diphtheriae, SpaA, engineered to have the CWSS of CafA in place of their CWSS, localizes at the pilus tip in a process that requires the FLIAG motif. Our findings provide the molecular basis for sortase-catalyzed pilus tip assembly that is very likely employed by other Gram-positive bacteria and potential bioengineering applications to display antigens at controlled surface distance.
Collapse
Affiliation(s)
- Aadil H Bhat
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Chungyu Chang
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Asis Das
- Department of Medicine, Neag Comprehensive Cancer Center, School of Medicine, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Hung Ton-That
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
4
|
Araújo MRB, Prates FD, Ramos JN, Sousa EG, Bokermann S, Sacchi CT, de Mattos-Guaraldi AL, Campos KR, Sousa MÂB, Vieira VV, Santos MBN, Camargo CH, de Oliveira Sant'Anna L, Dos Santos LS, Azevedo V. Infection by a multidrug-resistant Corynebacterium diphtheriae strain: prediction of virulence factors, CRISPR-Cas system analysis, and structural implications of mutations conferring rifampin resistance. Funct Integr Genomics 2024; 24:145. [PMID: 39196424 DOI: 10.1007/s10142-024-01434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
Cases of diphtheria, even in immunized individuals, are still reported in several parts of the world, including in Brazil. New outbreaks occur in Europe and other continents. In this context, studies on Corynebacterium diphtheriae infections are highly relevant, both for a better understanding of the pathogenesis of the disease and for controlling the circulation of clones and antimicrobial resistance genes. Here we present a case of cutaneous infection by multidrug-resistant Corynebacterium diphtheriae and provide its whole-genome sequencing. Genomic analysis revealed resistance genes, including tet(W), sul1, cmx, rpoB2, rbpA and mutation in rpoB. We performed phylogenetic analyzes and used the BRIG to compare the predicted resistance genes with those found in genomes from other significant isolates, including those associated with some outbreaks. Virulence factors such as spaD, srtBC, spaH, srtDE, surface-anchored pilus proteins (sapD), nonfimbrial adhesins (DIP0733, DIP1281, and DIP1621), embC and mptC (putatively involved in CdiLAM), sigA, dtxR and MdbA (putatively involved) in post-translational modification, were detected. We identified the CRISPR-Cas system in our isolate, which was classified as Type II-U based on the database and contains 15 spacers. This system functions as an adaptive immune mechanism. The strain was attributed to a new sequence type ST-928, and phylogenetic analysis confirmed that it was related to ST-634 of C. diphtheriae strains isolated in French Guiana and Brazil. In addition, since infections are not always reported, studies with the sequence data might be a way to complement and inform C. diphtheriae surveillance.
Collapse
Affiliation(s)
- Max Roberto Batista Araújo
- Operational Technical Nucleus, Microbiology, Hermes Pardini Institute, Vespasiano, Minas Gerais, Brazil
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Diniz Prates
- Operational Technical Nucleus, Microbiology, Hermes Pardini Institute, Vespasiano, Minas Gerais, Brazil
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Nunes Ramos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Eduarda Guimarães Sousa
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sérgio Bokermann
- Center of Bacteriology, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, São Paulo, Brazil
| | - Cláudio Tavares Sacchi
- Strategic Laboratory, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, São Paulo, Brazil
| | - Ana Luiza de Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Karoline Rodrigues Campos
- Strategic Laboratory, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, São Paulo, Brazil
| | | | - Verônica Viana Vieira
- Interdisciplinary Laboratory of Medical Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Carlos Henrique Camargo
- Center of Bacteriology, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, São Paulo, Brazil
| | - Lincoln de Oliveira Sant'Anna
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Louisy Sanches Dos Santos
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Dyotima, Abulaila S, Mendoza J, Landeta C. Development of a sensor for disulfide bond formation in diverse bacteria. J Bacteriol 2024; 206:e0043323. [PMID: 38493438 PMCID: PMC11025322 DOI: 10.1128/jb.00433-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
In bacteria, disulfide bonds contribute to the folding and stability of proteins important for processes in the cellular envelope. In Escherichia coli, disulfide bond formation is catalyzed by DsbA and DsbB enzymes. DsbA is a periplasmic protein that catalyzes disulfide bond formation in substrate proteins, while DsbB is an inner membrane protein that transfers electrons from DsbA to quinones, thereby regenerating the DsbA active state. Actinobacteria including mycobacteria use an alternative enzyme named VKOR, which performs the same function as DsbB. Disulfide bond formation enzymes, DsbA and DsbB/VKOR, represent novel drug targets because their inhibition could simultaneously affect the folding of several cell envelope proteins including virulence factors, proteins involved in outer membrane biogenesis, cell division, and antibiotic resistance. We have previously developed a cell-based and target-based assay to identify molecules that inhibit the DsbB and VKOR in pathogenic bacteria, using E. coli cells expressing a periplasmic β-Galactosidase sensor (β-Galdbs), which is only active when disulfide bond formation is inhibited. Here, we report the construction of plasmids that allows fine-tuning of the expression of the β-Galdbs sensor and can be mobilized into other gram-negative organisms. As an example, when expressed in Pseudomonas aeruginosa UCBPP-PA14, which harbors two DsbB homologs, β-Galdbs behaves similarly as in E. coli, and the biosensor responds to the inhibition of the two DsbB proteins. Thus, these β-Galdbs reporter plasmids provide a basis to identify novel inhibitors of DsbA and DsbB/VKOR in multidrug-resistant gram-negative pathogens and to further study oxidative protein folding in diverse gram-negative bacteria. IMPORTANCE Disulfide bonds contribute to the folding and stability of proteins in the bacterial cell envelope. Disulfide bond-forming enzymes represent new drug targets against multidrug-resistant bacteria because inactivation of this process would simultaneously affect several proteins in the cell envelope, including virulence factors, toxins, proteins involved in outer membrane biogenesis, cell division, and antibiotic resistance. Identifying the enzymes involved in disulfide bond formation in gram-negative pathogens as well as their inhibitors can contribute to the much-needed antibacterial innovation. In this work, we developed sensors of disulfide bond formation for gram-negative bacteria. These tools will enable the study of disulfide bond formation and the identification of inhibitors for this crucial process in diverse gram-negative pathogens.
Collapse
Affiliation(s)
- Dyotima
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Sally Abulaila
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Jocelyne Mendoza
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Cristina Landeta
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
6
|
Jeong H, Kim Y, Lee HS. CdbC: a disulfide bond isomerase involved in the refolding of mycoloyltransferases in Corynebacterium glutamicum cells exposed to oxidative conditions. J Biochem 2024; 175:457-470. [PMID: 38227582 DOI: 10.1093/jb/mvae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
In Corynebacterium glutamicum cells, cdbC, which encodes a protein containing the CysXXCys motif, is regulated by the global redox-responsive regulator OsnR. In this study, we assessed the role of the periplasmic protein CdbC in disulfide bond formation and its involvement in mycomembrane biosynthesis. Purified CdbC efficiently refolded scrambled RNaseA, exhibiting prominent disulfide bond isomerase activity. The transcription of cdbC was decreased in cells grown in the presence of the reductant dithiothreitol (DTT). Moreover, unlike wild-type and cdbC-deleted cells, cdbC-overexpressing (P180-cdbC) cells grown in the presence of DTT exhibited retarded growth, abnormal cell morphology, increased cell surface hydrophobicity and altered mycolic acid composition. P180-cdbC cells cultured in a reducing environment accumulated trehalose monocorynomycolate, indicating mycomembrane deformation. Similarly, a two-hybrid analysis demonstrated the interaction of CdbC with the mycoloyltransferases MytA and MytB. Collectively, our findings suggest that CdbC, a periplasmic disulfide bond isomerase, refolds misfolded MytA and MytB and thereby assists in mycomembrane biosynthesis in cells exposed to oxidative conditions.
Collapse
Affiliation(s)
- Haeri Jeong
- Department of Biotechnology and Bioinformatics, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon, 65, Semyeong-ro, Chungbuk 27136, Republic of Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| |
Collapse
|
7
|
Xia J, Luo Y, Chen M, Liu Y, Wang Z, Deng S, Xu J, Han Y, Sun J, Jiang L, Song H, Cheng C. Characterization of a DsbA family protein reveals its crucial role in oxidative stress tolerance of Listeria monocytogenes. Microbiol Spectr 2023; 11:e0306023. [PMID: 37823664 PMCID: PMC10715225 DOI: 10.1128/spectrum.03060-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE The adaption and tolerance to various environmental stresses are the fundamental factors for the widespread existence of Listeria monocytogenes. Anti-oxidative stress is the critical mechanism for the survival and pathogenesis of L. monocytogenes. The thioredoxin (Trx) and glutaredoxin (Grx) systems are known to contribute to the anti-oxidative stress of L. monocytogenes, but whether the Dsb system has similar roles remains unknown. This study demonstrated that the DsbA family protein Lmo1059 of L. monocytogenes participates in bacterial oxidative stress tolerance, with Cys36 as the key amino acid of its catalytic activity and anti-oxidative stress ability. It is worth noting that Lmo1059 was involved in the invading and cell-to-cell spread of L. monocytogenes. This study lays a foundation for further understanding the specific mechanisms of oxidative cysteine repair and antioxidant stress regulation of L. monocytogenes, which contributes to an in-depth understanding of the environmental adaptation mechanisms for foodborne bacterial pathogens.
Collapse
Affiliation(s)
- Jing Xia
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Yaru Luo
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Mianmian Chen
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Yuqing Liu
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Zhe Wang
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Simin Deng
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Jiali Xu
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Yue Han
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Jing Sun
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Lingli Jiang
- Ningbo College of Health Sciences, Ningbo, Zhejiang, China
| | - Houhui Song
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Changyong Cheng
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Araújo MRB, Ramos JN, de Oliveira Sant'Anna L, Bokermann S, Santos MBN, Mattos-Guaraldi AL, Azevedo V, Prates FD, Rodrigues DLN, Aburjaile FF, Sacchi CT, Campos KR, Alvim LB, Vieira VV, Camargo CH, Dos Santos LS. Phenotypic and molecular characterization and complete genome sequence of a Corynebacterium diphtheriae strain isolated from cutaneous infection in an immunized individual. Braz J Microbiol 2023; 54:1325-1334. [PMID: 37597133 PMCID: PMC10485220 DOI: 10.1007/s42770-023-01086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023] Open
Abstract
Diphtheria is an infectious disease potentially fatal that constitutes a threat to global health security, with possible local and systemic manifestations that result mainly from the production of diphtheria toxin (DT). In the present work, we report a case of infection by Corynebacterium diphtheriae in a cutaneous lesion of a fully immunized individual and provided an analysis of the complete genome of the isolate. The clinical isolate was first identified by MALDI-TOF Mass Spectrometry. The commercial strip system and mPCR performed phenotypic and genotypic characterization, respectively. The antimicrobial susceptibility profile was determined by the disk diffusion method. Additionally, genomic DNA was sequenced and analyzed for species confirmation and sequence type (ST) determination. Detection of resistance and virulence genes was performed by comparisons against ResFinder and VFDB databases. The isolate was identified as a nontoxigenic C. diphtheriae biovar Gravis strain. Its genome presented a size of 2.46 Mbp and a G + C content of 53.5%. Ribosomal Multilocus Sequence Typing (rMLST) allowed the confirmation of species as C. diphtheriae with 100% identity. DDH in silico corroborated this identification. Moreover, MLST analyses revealed that the isolate belongs to ST-536. No resistance genes were predicted or mutations detected in antimicrobial-related genes. On the other hand, virulence genes, mostly involved in iron uptake and adherence, were found. Presently, we provided sufficient clinical data regarding the C. diphtheriae cutaneous infection in addition to the phenotypic and genomic data of the isolate. Our results indicate a possible circulation of ST-536 in Brazil, causing cutaneous infection. Considering that cases of C. diphtheriae infections, as well as diphtheria outbreaks, have still been reported in several regions of the world, studies focusing on taxonomic analyzes and predictions of resistance genes may help to improve the diagnosis and to monitor the propagation of resistant clones. In addition, they can contribute to understanding the association between variation in genetic factors and resistance to antimicrobials.
Collapse
Affiliation(s)
- Max Roberto Batista Araújo
- Operational Technical Nucleus (Microbiology), Hermes Pardini Institute, Vespasiano, Minas Gerais, Brazil
| | - Juliana Nunes Ramos
- Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lincoln de Oliveira Sant'Anna
- Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sérgio Bokermann
- Center of Bacteriology, Adolfo Lutz Institute, São Paulo, São Paulo, Brazil
| | | | - Ana Luiza Mattos-Guaraldi
- Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Diniz Prates
- Operational Technical Nucleus (Microbiology), Hermes Pardini Institute, Vespasiano, Minas Gerais, Brazil
| | - Diego Lucas Neres Rodrigues
- Department of Preventive Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flávia Figueira Aburjaile
- Department of Preventive Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Luige Biciati Alvim
- Operational Technical Nucleus (Research and Development), Hermes Pardini Institute, Vespasiano, Minas Gerais, Brazil
| | - Verônica Viana Vieira
- Interdisciplinary Medical Research Laboratory, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Louisy Sanches Dos Santos
- Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Reardon-Robinson ME, Nguyen MT, Sanchez BC, Osipiuk J, Rückert C, Chang C, Chen B, Nagvekar R, Joachimiak A, Tauch A, Das A, Ton-That H. A cryptic oxidoreductase safeguards oxidative protein folding in Corynebacterium diphtheriae. Proc Natl Acad Sci U S A 2023; 120:e2208675120. [PMID: 36787356 PMCID: PMC9974433 DOI: 10.1073/pnas.2208675120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
In many gram-positive Actinobacteria, including Actinomyces oris and Corynebacterium matruchotii, the conserved thiol-disulfide oxidoreductase MdbA that catalyzes oxidative folding of exported proteins is essential for bacterial viability by an unidentified mechanism. Intriguingly, in Corynebacterium diphtheriae, the deletion of mdbA blocks cell growth only at 37 °C but not at 30 °C, suggesting the presence of alternative oxidoreductase enzyme(s). By isolating spontaneous thermotolerant revertants of the mdbA mutant at 37 °C, we obtained genetic suppressors, all mapped to a single T-to-G mutation within the promoter region of tsdA, causing its elevated expression. Strikingly, increased expression of tsdA-via suppressor mutations or a constitutive promoter-rescues the pilus assembly and toxin production defects of this mutant, hence compensating for the loss of mdbA. Structural, genetic, and biochemical analyses demonstrated TsdA is a membrane-tethered thiol-disulfide oxidoreductase with a conserved CxxC motif that can substitute for MdbA in mediating oxidative folding of pilin and toxin substrates. Together with our observation that tsdA expression is upregulated at nonpermissive temperature (40 °C) in wild-type cells, we posit that TsdA has evolved as a compensatory thiol-disulfide oxidoreductase that safeguards oxidative protein folding in C. diphtheriae against thermal stress.
Collapse
Affiliation(s)
- Melissa E. Reardon-Robinson
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, TX77030
| | - Minh Tan Nguyen
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA90095
| | - Belkys C. Sanchez
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, TX77030
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
| | - Jerzy Osipiuk
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL60637
- Structural Biology Center, Argonne National Laboratory, Lemont, IL60439
| | - Christian Rückert
- Center for Biotechnology, Bielefeld University, D-33615Bielefeld, Germany
| | - Chungyu Chang
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA90095
| | - Bo Chen
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, TX77030
| | - Rahul Nagvekar
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, TX77030
- Stanford University, Stanford, CA94305
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL60637
- Structural Biology Center, Argonne National Laboratory, Lemont, IL60439
| | - Andreas Tauch
- Center for Biotechnology, Bielefeld University, D-33615Bielefeld, Germany
| | - Asis Das
- Department of Medicine, Neag Comprehensive Cancer Center, University of Connecticut Health Center, Farmington, CT06030
| | - Hung Ton-That
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA90095
| |
Collapse
|
10
|
Viana MVC, Galdino JH, Profeta R, Oliveira M, Tavares L, de Castro Soares S, Carneiro P, Wattam AR, Azevedo V. Analysis of Corynebacterium silvaticum genomes from Portugal reveals a single cluster and a clade suggested to produce diphtheria toxin. PeerJ 2023; 11:e14895. [PMID: 36919166 PMCID: PMC10008321 DOI: 10.7717/peerj.14895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/24/2023] [Indexed: 03/11/2023] Open
Abstract
Background Corynebacterium silvaticum is a pathogenic, gram-positive bacterial species that causes caseous lymphadenitis in wild boars, domestic pigs and roe deer in Western Europe. It can affect animal production and cause zoonosis. Genome analysis has suggested that one strain from Portugal and one from Austria could probably produce the diphtheria toxin (DT), which inhibits protein synthesis and can cause death. Methods To further investigate the species genetic diversity and probable production of DT by Portuguese strains, eight isolates from this country were sequenced and compared to 38 public ones. Results Strains from Portugal are monophyletic, nearly identical, form a unique cluster and have 27 out of 36 known Corynebacterium virulence or niche factors. All of them lack a frameshift in the tox gene and were suggested to produce DT. A phylogenetic analysis shows that the species has diverged into two clades. Clade 1 is composed of strains that were suggested to have the ability to produce DT, represented by the monophyletic strains from Portugal and strain 05-13 from Austria. Clade 2 is composed of strains unable to produce DT due to a frameshifted tox gene. The second clade is represented by strains from Austria, Germany and Switzerland. Ten genome clusters were detected, in which strains from Germany are the most diverse. Strains from Portugal belong to an exclusive cluster. The pangenome has 2,961 proteins and is nearly closed (α = 0.968). Exclusive genes shared by clusters 1 and 2, and Portuguese strains are probably not related to disease manifestation as they share the same host but could play a role in their extra-host environmental adaptation. These results show the potential of the species to cause zoonosis, possibly diphtheria. The identified clusters, exclusively shaded genes, and exclusive STs identified in Portugal could be applied in the identification and epidemiology of the species.
Collapse
Affiliation(s)
- Marcus Vinicius Canario Viana
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José Henrique Galdino
- Department of Biological Sciences, State University of Southwest of Bahia, Jequié, Bahia, Brazil
| | - Rodrigo Profeta
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Manuela Oliveira
- Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Luís Tavares
- Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Siomar de Castro Soares
- Department of Immunology, Microbiology and Parasitology, Institute of Biological Sciences and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Paulo Carneiro
- Department of Biological Sciences, State University of Southwest of Bahia, Jequié, Bahia, Brazil
| | - Alice Rebecca Wattam
- Biocomplexity Institute, University of Virginia, Charlottesville, VA, United States of America
| | - Vasco Azevedo
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
11
|
Shanmugasundarasamy T, Karaiyagowder Govindarajan D, Kandaswamy K. A review on pilus assembly mechanisms in Gram-positive and Gram-negative bacteria. Cell Surf 2022; 8:100077. [PMID: 35493982 PMCID: PMC9046445 DOI: 10.1016/j.tcsw.2022.100077] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 12/17/2022] Open
Abstract
The surface of Gram-positive and Gram-negative bacteria contains long hair-like proteinaceous protrusion known as pili or fimbriae. Historically, pilin proteins were considered to play a major role in the transfer of genetic material during bacterial conjugation. Recent findings however elucidate their importance in virulence, biofilm formation, phage transduction, and motility. Therefore, it is crucial to gain mechanistic insights on the subcellular assembly of pili and the localization patterns of their subunit proteins (major and minor pilins) that aid the macromolecular pilus assembly at the bacterial surface. In this article, we review the current knowledge of pilus assembly mechanisms in a wide range of Gram-positive and Gram-negative bacteria, including subcellular localization patterns of a few pilin subunit proteins and their role in virulence and pathogenesis.
Collapse
|
12
|
Al Mamun AAM, Wu C, Chang C, Sanchez BC, Das A, Ton-That H. A cell wall-anchored glycoprotein confers resistance to cation stress in Actinomyces oris biofilms. Mol Oral Microbiol 2022; 37:206-217. [PMID: 35289506 PMCID: PMC9474737 DOI: 10.1111/omi.12365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/27/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022]
Abstract
Actinomyces oris plays an important role in oral biofilm development. Like many gram-positive bacteria, A. oris produces a sizable number of surface proteins that are anchored to bacterial peptidoglycan by a conserved transpeptidase named the housekeeping sortase SrtA; however, the biological role of many A. oris surface proteins in biofilm formation is largely unknown. Here, we report that the glycoprotein GspA-a genetic suppressor of srtA deletion lethality-not only promotes biofilm formation but also maintains cell membrane integrity under cation stress. In comparison to wild-type cells, under elevated concentrations of mono- and divalent cations the formation of mono- and multi-species biofilms by mutant cells devoid of gspA was significantly diminished, although planktonic growth of both cell types in the presence of cations was indistinguishable. Because gspA overexpression is lethal to cells lacking gspA and srtA, we performed a genetic screen to identify GspA determinants involving cell viability. DNA sequencing and biochemical characterizations of viable clones revealed that mutations of two critical cysteine residues and a serine residue severely affected GspA glycosylation and biofilm formation. Furthermore, mutant cells lacking gspA were markedly sensitive to sodium dodecyl sulfate, a detergent that solubilizes the cytoplasmic membranes, suggesting the cell envelope of the gspA mutant was altered. Consistent with this observation, the gspA mutant exhibited increased membrane permeability, independent of GspA glycosylation, compared to the wild-type strain. Altogether, the results support the notion that the cell wall-anchored glycoprotein GspA provides a defense mechanism against cation stress in biofilm development promoted by A. oris.
Collapse
Affiliation(s)
- Abu Amar M. Al Mamun
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, TX, USA
| | - Chenggang Wu
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, TX, USA
| | - Chungyu Chang
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Belkys C. Sanchez
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | - Asis Das
- Department of Medicine, Neag Comprehensive Cancer Center, University of Connecticut Health Center, Farmington, CT, USA
| | - Hung Ton-That
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
13
|
Pradhan B, Liedtke J, Sleutel M, Lindbäck T, Zegeye ED, O´Sullivan K, Llarena A, Brynildsrud O, Aspholm M, Remaut H. Endospore Appendages: a novel pilus superfamily from the endospores of pathogenic Bacilli. EMBO J 2021; 40:e106887. [PMID: 34031903 PMCID: PMC8408608 DOI: 10.15252/embj.2020106887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 11/09/2022] Open
Abstract
Bacillus cereus sensu lato is a group of Gram-positive endospore-forming bacteria with high ecological diversity. Their endospores are decorated with micrometer-long appendages of unknown identity and function. Here, we isolate endospore appendages (Enas) from the food poisoning outbreak strain B. cereus NVH 0075-95 and find proteinaceous fibers of two main morphologies: S- and L-Ena. By using cryoEM and 3D helical reconstruction of S-Enas, we show these to represent a novel class of Gram-positive pili. S-Enas consist of single domain subunits with jellyroll topology that are laterally stacked by β-sheet augmentation. S-Enas are longitudinally stabilized by disulfide bonding through N-terminal connector peptides that bridge the helical turns. Together, this results in flexible pili that are highly resistant to heat, drought, and chemical damage. Phylogenomic analysis reveals a ubiquitous presence of the ena-gene cluster in the B. cereus group, which include species of clinical, environmental, and food importance. We propose Enas to represent a new class of pili specifically adapted to the harsh conditions encountered by bacterial spores.
Collapse
Affiliation(s)
- Brajabandhu Pradhan
- Structural and Molecular MicrobiologyVIB‐VUB Center for Structural Biology, VIBBrusselsBelgium
- Department of Bioengineering SciencesStructural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Janine Liedtke
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
| | - Mike Sleutel
- Structural and Molecular MicrobiologyVIB‐VUB Center for Structural Biology, VIBBrusselsBelgium
- Department of Bioengineering SciencesStructural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Toril Lindbäck
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
| | - Ephrem Debebe Zegeye
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
| | - Kristin O´Sullivan
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
| | - Ann‐Katrin Llarena
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
| | - Ola Brynildsrud
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
- Division of Infection Control and Environmental HealthNorwegian Institute of Public HealthOsloNorway
| | - Marina Aspholm
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
| | - Han Remaut
- Structural and Molecular MicrobiologyVIB‐VUB Center for Structural Biology, VIBBrusselsBelgium
- Department of Bioengineering SciencesStructural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
14
|
Identification of a Thiol-Disulfide Oxidoreductase (SdbA) Catalyzing Disulfide Bond Formation in the Superantigen SpeA in Streptococcus pyogenes. J Bacteriol 2021; 203:e0015321. [PMID: 34152832 DOI: 10.1128/jb.00153-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mechanisms of disulfide bond formation in the human pathogen Streptococcus pyogenes are currently unknown. To date, no disulfide bond-forming thiol-disulfide oxidoreductase (TDOR) has been described and at least one disulfide bonded protein is known in S. pyogenes. This protein is the superantigen SpeA, which contains 3 cysteine residues (Cys 87, Cys90, and Cys98) and has a disulfide bond formed between Cys87 and Cys98. In this study, candidate TDORs were identified from the genome sequence of S. pyogenes MGAS8232. Using mutational and biochemical approaches, one of the candidate proteins, SpyM18_2037 (named here SdbA), was shown to be the catalyst that introduces the disulfide bond in SpeA. SpeA in the culture supernatant remained reduced when sdbA was inactivated and restored to the oxidized state when a functional copy of sdbA was returned to the sdbA-knockout mutant. SdbA has a typical C46XXC49 active site motif commonly found in TDORs. Site-directed mutagenesis experiments showed that the cysteines in the CXXC motif were required for the disulfide bond in SpeA to form. Interactions between SdbA and SpeA were examined using cysteine variant proteins. The results showed that SdbAC49A formed a mixed disulfide with SpeAC87A, suggesting that the N-terminal Cys46 of SdbA and the C-terminal Cys98 of SpeA participated in the initial reaction. SpeA oxidized by SdbA displayed biological activities suggesting that SpeA was properly folded following oxidation by SdbA. In conclusion, formation of the disulfide bond in SpeA is catalyzed by SdbA and the findings represent the first report of disulfide bond formation in S. pyogenes. IMPORTANCE Here, we reported the first example of disulfide bond formation in Streptococcus pyogenes. The results showed that a thiol-disulfide oxidoreductase, named SdbA, is responsible for introducing the disulfide bond in the superantigen SpeA. The cysteine residues in the CXXC motif of SdbA are needed for catalyzing the disulfide bond in SpeA. The disulfide bond in SpeA and neighboring amino acids form a disulfide loop that is conserved among many superantigens, including those from Staphylococcus aureus. SpeA and staphylococcal enterotoxins lacking the disulfide bond are biologically inactive. Thus, the discovery of the enzyme that catalyzes the disulfide bond in SpeA is important for understanding the biochemistry of SpeA production and presents a target for mitigating the virulence of S. pyogenes.
Collapse
|
15
|
Chang C, Nguyen MT, Ton-That H. Genetic Manipulation of Corynebacterium diphtheriae and Other Corynebacterium Species. ACTA ACUST UNITED AC 2021; 58:e111. [PMID: 32865881 DOI: 10.1002/cpmc.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This article describes several established approaches for genetic manipulation of Corynebacterium diphtheriae, the causative agent of diphtheria that is known to have provided key evidence for Koch's postulates on the germ theory. First, it includes a detailed gene deletion method that generates nonpolar, in-frame, markerless deletion mutants, utilizing the levansucrase SacB as a counter-selectable marker. Second, it provides a thorough protocol for rescuing deletion mutants using Escherichia coli-Corynebacterium shuttle vectors. Finally, a Tn5 transposon mutagenesis procedure is described. In principle, these protocols can be used for other Corynebacterium species, including Corynebacterium glutamicum and Corynebacterium matruchotii. © 2020 Wiley Periodicals LLC Basic Protocol 1: Gene deletion in Corynebacterium diphtheriae Basic Protocol 2: Complementation of a mutant strain Basic Protocol 3: Tn5 transposon mutagenesis of Corynebacterium diphtheriae.
Collapse
Affiliation(s)
- Chungyu Chang
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California
| | - Minh Tan Nguyen
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California.,NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Hung Ton-That
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California.,Molecular Biology Institute, University of California, Los Angeles, California
| |
Collapse
|
16
|
Chen YW, Ton-That H. Corynebacterium diphtheriae Virulence Analyses Using a Caenorhabditis elegans Model. ACTA ACUST UNITED AC 2021; 58:e109. [PMID: 32658384 DOI: 10.1002/cpmc.109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Corynebacterium diphtheriae is the leading cause of pharyngeal diphtheria, a respiratory disease characterized by formation of a pseudomembrane at the site of infection. Although outbreaks of C. diphtheriae infections are rare nowadays, the emergence of multidrug-resistant C. diphtheriae strains is one of the most significant public health concerns worldwide. Although C. diphtheriae has been studied for more than a century and diphtheria toxin and pili have been identified as major virulence factors, little is known about factors involved in bacterial colonization and development of disease. Here, we describe the utilization of Caenorhabditis elegans as a cost-effective, versatile model of infection to evaluate C. diphtheriae virulence. We provide detailed protocols for nematode synchronization and for evaluation of nematode survival and formation of a deformed anal region induced by C. diphtheriae infection. These protocols will permit future high-throughput screenings of virulence factors in C. diphtheriae and advance our knowledge of C. diphtheriae pathogenesis. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Synchronization of nematodes Basic Protocol 2: Assay for nematode survival following C. diphtheriae infection Basic Protocol 3: Assays for bacterial colonization and formation of deformed anal region.
Collapse
Affiliation(s)
- Yi-Wei Chen
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California
| | - Hung Ton-That
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California
| |
Collapse
|
17
|
Anchoring surface proteins to the bacterial cell wall by sortase enzymes: how it started and what we know now. Curr Opin Microbiol 2021; 60:73-79. [PMID: 33611145 DOI: 10.1016/j.mib.2021.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 11/20/2022]
Abstract
In Gram-positive bacteria, the peptidoglycan serves as a placeholder for surface display of a unique class of monomeric and polymeric proteins, or pili - the precursors of which harbor a cell wall sorting signal with LPXTG motif that is recognized by a conserved transpeptidase enzyme called sortase. Since this original discovery over two decades ago, extensive genetic, biochemical and structural studies have illuminated the basic mechanisms of sortase-mediated cell wall anchoring of surface proteins and pili. We now know how LPXTG-containing surface proteins are folded post-translocationally, how sortase enzymes recognize substrates, and how a remnant of the cell wall sorting signal modulates intramembrane signaling. In this review, we will highlight new findings from a few model experimental paradigms and present future prospects for the field.
Collapse
|
18
|
Ribonuclease J-Mediated mRNA Turnover Modulates Cell Shape, Metabolism and Virulence in Corynebacterium diphtheriae. Microorganisms 2021; 9:microorganisms9020389. [PMID: 33672886 PMCID: PMC7917786 DOI: 10.3390/microorganisms9020389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/16/2023] Open
Abstract
Controlled RNA degradation is a crucial process in bacterial cell biology for maintaining proper transcriptome homeostasis and adaptation to changing environments. mRNA turnover in many Gram-positive bacteria involves a specialized ribonuclease called RNase J (RnJ). To date, however, nothing is known about this process in the diphtheria-causative pathogen Corynebacterium diphtheriae, nor is known the identity of this ribonuclease in this organism. Here, we report that C. diphtheriae DIP1463 encodes a predicted RnJ homolog, comprised of a conserved N-terminal β-lactamase domain, followed by β-CASP and C-terminal domains. A recombinant protein encompassing the β-lactamase domain alone displays 5'-exoribonuclease activity, which is abolished by alanine-substitution of the conserved catalytic residues His186 and His188. Intriguingly, deletion of DIP1463/rnj in C. diphtheriae reduces bacterial growth and generates cell shape abnormality with markedly augmented cell width. Comparative RNA-seq analysis revealed that RnJ controls a large regulon encoding many factors predicted to be involved in biosynthesis, regulation, transport, and iron acquisition. One upregulated gene in the ∆rnj mutant is ftsH, coding for a membrane protease (FtsH) involved in cell division, whose overexpression in the wild-type strain also caused cell-width augmentation. Critically, the ∆rnj mutant is severely attenuated in virulence in a Caenorhabditis elegans model of infection, while the FtsH-overexpressing and toxin-less strains exhibit full virulence as the wild-type strain. Evidently, RNase J is a key ribonuclease in C. diphtheriae that post-transcriptionally influences the expression of numerous factors vital to corynebacterial cell physiology and virulence. Our findings have significant implications for basic biological processes and mechanisms of corynebacterial pathogenesis.
Collapse
|
19
|
Proteomics of extracellular vesicles produced by Granulicatella adiacens, which causes infective endocarditis. PLoS One 2020; 15:e0227657. [PMID: 33216751 PMCID: PMC7679012 DOI: 10.1371/journal.pone.0227657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
When oral bacteria accidentally enter the bloodstream due to transient tissue damage during dental procedures, they have the potential to attach to the endocardium or an equivalent surface of an indwelling prosthesis and cause infection. Many bacterial species produce extracellular vesicles (EVs) as part of normal physiology, but also use it as a virulence strategy. In this study, it was hypothesized that Granulicatella adiacens produce EVs that possibly help it in virulence. Therefore, the objectives were to isolate and characterize EVs produced by G. adiacens and to investigate its immune-stimulatory effects. The reference strain G. adiacens CCUG 27809 was cultured on chocolate blood agar for 2 days. From subsequent broth culture, the EVs were isolated using differential centrifugation and filtration protocol and then observed using scanning electron microscopy. Proteins in the vesicle preparation were identified by nano LC-ESI-MS/MS. The EVs proteome was analyzed and characterized using different bioinformatics tools. The immune-stimulatory effect of the EVs was studied via ELISA quantification of IL-8, IL-1β and CCL5, major proinflammatory cytokines, produced from stimulated human PBMCs. It was revealed that G. adiacens produced EVs, ranging in diameter from 30 to 250 nm. Overall, G. adiacens EVs contained 112 proteins. The proteome consists of several ribosomal proteins, DNA associated proteins, binding proteins, and metabolic enzymes. It was also shown that these EVs carry putative virulence factors including moonlighting proteins. These EVs were able to induce the production of IL-8, IL-1β and CCL5 from human PBMCs. Further functional characterization of the G. adiacens EVs may provide new insights into virulence mechanisms of this important but less studied oral bacterial species.
Collapse
|
20
|
Ramirez NA, Das A, Ton-That H. New Paradigms of Pilus Assembly Mechanisms in Gram-Positive Actinobacteria. Trends Microbiol 2020; 28:999-1009. [PMID: 32499101 DOI: 10.1016/j.tim.2020.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023]
Abstract
Adhesive pili in Gram-positive bacteria represent a variety of extracellular multiprotein polymers that mediate bacterial colonization of specific host tissues and associated pathogenesis. Pili are assembled in two distinct but coupled steps, an orderly crosslinking of pilin monomers and subsequent anchoring of the polymer to peptidoglycan, catalyzed by two transpeptidase enzymes - the pilus-specific sortase and the housekeeping sortase. Here, we review this biphasic assembly mechanism based on studies of two prototypical models, the heterotrimeric pili in Corynebacterium diphtheriae and the heterodimeric pili in Actinomyces oris, highlighting some newly emerged basic paradigms. The disparate mechanisms of protein ligation mediated by the pilus-specific sortase and the spatial positioning of adhesive pili on the cell surface modulated by the housekeeping sortase are among the notable highlights.
Collapse
Affiliation(s)
- Nicholas A Ramirez
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Asis Das
- Department of Medicine, Neag Comprehensive Cancer Center, University of Connecticut Health Center, Farmington, CT, USA
| | - Hung Ton-That
- Molecular Biology Institute, University of California, Los Angeles, CA, USA; Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Nakamoto M, Ohishi K, Kunimura K, Amano H, Wakamatsu J. Identification and determination of antibacterial constituents in residue discharged from garlic-processing plant. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03460-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Méheust R, Burstein D, Castelle CJ, Banfield JF. The distinction of CPR bacteria from other bacteria based on protein family content. Nat Commun 2019; 10:4173. [PMID: 31519891 PMCID: PMC6744442 DOI: 10.1038/s41467-019-12171-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/22/2019] [Indexed: 11/26/2022] Open
Abstract
Candidate phyla radiation (CPR) bacteria separate phylogenetically from other bacteria, but the organismal distribution of their protein families remains unclear. Here, we leveraged sequences from thousands of uncultivated organisms and identified protein families that co-occur in genomes, thus are likely foundational for lineage capacities. Protein family presence/absence patterns cluster CPR bacteria together, and away from all other bacteria and archaea, partly due to proteins without recognizable homology to proteins in other bacteria. Some are likely involved in cell-cell interactions and potentially important for episymbiotic lifestyles. The diversity of protein family combinations in CPR may exceed that of all other bacteria. Over the bacterial tree, protein family presence/absence patterns broadly recapitulate phylogenetic structure, suggesting persistence of core sets of proteins since lineage divergence. The CPR could have arisen in an episode of dramatic but heterogeneous genome reduction or from a protogenote community and co-evolved with other bacteria. Recent studies have identified a large, phylogenetically distinct clade of bacteria, the candidate phyla radiation (CPR). Here, Méheust and colleagues analyze almost 3600 genomes to characterize the protein family content of CPR versus other bacteria and archaea.
Collapse
Affiliation(s)
- Raphaël Méheust
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA.,Innovative Genomics Institute, Berkeley, CA, 94704, USA
| | - David Burstein
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, 94720, USA.,School of Molecular and Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Cindy J Castelle
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA.,Innovative Genomics Institute, Berkeley, CA, 94704, USA.,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA. .,Innovative Genomics Institute, Berkeley, CA, 94704, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA. .,University of Melbourne, Melbourne, VIC, 3010, Australia. .,Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
23
|
May HC, Yu JJ, Zhang H, Wang Y, Cap AP, Chambers JP, Guentzel MN, Arulanandam BP. Thioredoxin-A is a virulence factor and mediator of the type IV pilus system in Acinetobacter baumannii. PLoS One 2019; 14:e0218505. [PMID: 31265467 PMCID: PMC6605650 DOI: 10.1371/journal.pone.0218505] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/04/2019] [Indexed: 01/08/2023] Open
Abstract
The Gram-negative pathogen, Acinetobacter baumannii has emerged as a global nosocomial health threat affecting the majority of hospitals in the U.S. and abroad. The redox protein thioredoxin has been shown to play several roles in modulation of cellular functions affecting various virulence factors in Gram-negative pathogens. This study aims to explore the role of thioredoxin-A protein (TrxA) in A. baumannii virulence. We determined that deletion of the TrxA gene did not significantly affect resistance to environmental stressors such as temperature, salt, and pH. However, TrxA was critical for survival in the presence of elevated levels of hydrogen peroxide. Lack of TrxA was associated with decreased expression of type IV pili related genes and an inability to undergo normal twitching motility. Interestingly, the TrxA-null mutant was able to form biofilms better than the wildtype (WT) and was observed to be significantly less virulent than the WT in a pulmonary infection model. These results are supportive of thioredoxin playing a key role in A. baumannii virulence.
Collapse
Affiliation(s)
- Holly C. May
- South Texas Center for Emerging Infectious Disease and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Disease and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Hao Zhang
- South Texas Center for Emerging Infectious Disease and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Yufeng Wang
- South Texas Center for Emerging Infectious Disease and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Andrew P. Cap
- Coagulation and Blood Research Program, US Army Institute for Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, United States of America
| | - James P. Chambers
- South Texas Center for Emerging Infectious Disease and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - M. Neal Guentzel
- South Texas Center for Emerging Infectious Disease and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Disease and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
24
|
Identification of Redox Partners of the Thiol-Disulfide Oxidoreductase SdbA in Streptococcus gordonii. J Bacteriol 2019; 201:JB.00030-19. [PMID: 30804044 DOI: 10.1128/jb.00030-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/18/2019] [Indexed: 12/13/2022] Open
Abstract
We previously identified a novel thiol-disulfide oxidoreductase, SdbA, in Streptococcus gordonii that formed disulfide bonds in substrate proteins and played a role in multiple phenotypes. In this study, we used mutational, phenotypic, and biochemical approaches to identify and characterize the redox partners of SdbA. Unexpectedly, the results showed that SdbA has multiple redox partners, forming a complex oxidative protein-folding pathway. The primary redox partners of SdbA that maintain its active site in an oxidized state are a surface-exposed thioredoxin family lipoprotein called SdbB (Sgo_1171) and an integral membrane protein annotated as CcdA2. Inactivation of sdbB and ccdA2 simultaneously, but not individually, recapitulated the sdbA mutant phenotype. The sdbB-ccdA2 mutant had defects in a range of cellular processes, including autolysis, bacteriocin production, genetic competence, and extracellular DNA (eDNA) release. AtlS, the natural substrate of SdbA produced by the sdbB-ccdA2 mutant lacked activity and an intramolecular disulfide bond. The redox state of SdbA in the sdbB-ccdA2 mutant was found to be in a reduced form and was restored when sdbB and ccdA2 were knocked back into the mutant. In addition, we showed that SdbB formed a disulfide-linked complex with SdbA in the cell. Recombinant SdbB and CcdA2 exhibited oxidase activity and reoxidized reduced SdbA in vitro Collectively, our results demonstrate that S. gordonii uses multiple redox partners for oxidative protein folding.IMPORTANCE Streptococcus gordonii is a commensal bacterium of the human dental plaque. Previously, we identified an enzyme, SdbA, that forms disulfide bonds in substrate proteins and plays a role in a number of cellular processes in S. gordonii Here, we identified the redox partners of SdbA. We showed that SdbA has multiple redox partners, SdbB and CcdA2, forming a complex oxidative protein-folding pathway. This pathway is essential for autolysis, bacteriocin production, genetic competence, and extracellular DNA (eDNA) release in S. gordonii These cellular processes are considered to be important for the success of S. gordonii as a dental plaque organism. This is the first example of an oxidative protein-folding pathway in Gram-positive bacteria that consists of an enzyme that uses multiple redox partners to function.
Collapse
|
25
|
Totsika M, Vagenas D, Paxman JJ, Wang G, Dhouib R, Sharma P, Martin JL, Scanlon MJ, Heras B. Inhibition of Diverse DsbA Enzymes in Multi-DsbA Encoding Pathogens. Antioxid Redox Signal 2018; 29:653-666. [PMID: 29237285 PMCID: PMC6067686 DOI: 10.1089/ars.2017.7104] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIMS DsbA catalyzes disulfide bond formation in secreted and outer membrane proteins in bacteria. In pathogens, DsbA is a major facilitator of virulence constituting a target for antivirulence antimicrobial development. However, many pathogens encode multiple and diverse DsbA enzymes for virulence factor folding during infection. The aim of this study was to determine whether our recently identified inhibitors of Escherichia coli K-12 DsbA can inhibit the diverse DsbA enzymes found in two important human pathogens and attenuate their virulence. RESULTS DsbA inhibitors from two chemical classes (phenylthiophene and phenoxyphenyl derivatives) inhibited the virulence of uropathogenic E. coli and Salmonella enterica serovar Typhimurium, encoding two and three diverse DsbA homologues, respectively. Inhibitors blocked the virulence of dsbA null mutants complemented with structurally diverse DsbL and SrgA, suggesting that they were not selective for prototypical DsbA. Structural characterization of DsbA-inhibitor complexes showed that compounds from each class bind in a similar region of the hydrophobic groove adjacent to the Cys30-Pro31-His32-Cys33 (CPHC) active site. Modeling of DsbL- and SrgA-inhibitor interactions showed that these accessory enzymes could accommodate the inhibitors in their different hydrophobic grooves, supporting our in vivo findings. Further, we identified highly conserved residues surrounding the active site for 20 diverse bacterial DsbA enzymes, which could be exploited in developing inhibitors with a broad spectrum of activity. Innovation and Conclusion: We have developed tools to analyze the specificity of DsbA inhibitors in bacterial pathogens encoding multiple DsbA enzymes. This work demonstrates that DsbA inhibitors can be developed to target diverse homologues found in bacteria. Antioxid. Redox Signal. 29, 653-666.
Collapse
Affiliation(s)
- Makrina Totsika
- 1 Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology , Queensland, Australia
| | - Dimitrios Vagenas
- 1 Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology , Queensland, Australia
| | - Jason J Paxman
- 2 Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University , Bundoora, Australia
| | - Geqing Wang
- 2 Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University , Bundoora, Australia
| | - Rabeb Dhouib
- 1 Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology , Queensland, Australia
| | - Pooja Sharma
- 3 Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Australia
| | - Jennifer L Martin
- 4 Institute for Molecular Bioscience, University of Queensland , Queensland, Australia
| | - Martin J Scanlon
- 3 Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Australia
| | - Begoña Heras
- 2 Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University , Bundoora, Australia
| |
Collapse
|
26
|
Molecular strategy for blocking isopeptide bond formation in nascent pilin proteins. Proc Natl Acad Sci U S A 2018; 115:9222-9227. [PMID: 30150415 DOI: 10.1073/pnas.1807689115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacteria anchor to their host cells through their adhesive pili, which must resist the large mechanical stresses induced by the host as it attempts to dislodge the pathogens. The pili of gram-positive bacteria are constructed as a single polypeptide made of hundreds of pilin repeats, which contain intramolecular isopeptide bonds strategically located in the structure to prevent their unfolding under force, protecting the pilus from degradation by extant proteases and oxygen radicals. Here, we demonstrate the design of a short peptide that blocks the formation of the isopeptide bond present in the pilin Spy0128 from the human pathogen Streptococcus pyogenes, resulting in mechanically labile pilin domains. We use a combination of protein engineering and atomic-force microscopy force spectroscopy to demonstrate that the peptide blocks the formation of the native isopeptide bond and compromises the mechanics of the domain. While an intact Spy0128 is inextensible at any force, peptide-modified Spy0128 pilins readily unfold at very low forces, marking the abrogation of the intramolecular isopeptide bond as well as the absence of a stable pilin fold. We propose that isopeptide-blocking peptides could be further developed as a type of highly specific antiadhesive antibiotics to treat gram-positive pathogens.
Collapse
|
27
|
Chang C, Amer BR, Osipiuk J, McConnell SA, Huang IH, Hsieh V, Fu J, Nguyen HH, Muroski J, Flores E, Ogorzalek Loo RR, Loo JA, Putkey JA, Joachimiak A, Das A, Clubb RT, Ton-That H. In vitro reconstitution of sortase-catalyzed pilus polymerization reveals structural elements involved in pilin cross-linking. Proc Natl Acad Sci U S A 2018; 115:E5477-E5486. [PMID: 29844180 PMCID: PMC6004493 DOI: 10.1073/pnas.1800954115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Covalently cross-linked pilus polymers displayed on the cell surface of Gram-positive bacteria are assembled by class C sortase enzymes. These pilus-specific transpeptidases located on the bacterial membrane catalyze a two-step protein ligation reaction, first cleaving the LPXTG motif of one pilin protomer to form an acyl-enzyme intermediate and then joining the terminal Thr to the nucleophilic Lys residue residing within the pilin motif of another pilin protomer. To date, the determinants of class C enzymes that uniquely enable them to construct pili remain unknown. Here, informed by high-resolution crystal structures of corynebacterial pilus-specific sortase (SrtA) and utilizing a structural variant of the enzyme (SrtA2M), whose catalytic pocket has been unmasked by activating mutations, we successfully reconstituted in vitro polymerization of the cognate major pilin (SpaA). Mass spectrometry, electron microscopy, and biochemical experiments authenticated that SrtA2M synthesizes pilus fibers with correct Lys-Thr isopeptide bonds linking individual pilins via a thioacyl intermediate. Structural modeling of the SpaA-SrtA-SpaA polymerization intermediate depicts SrtA2M sandwiched between the N- and C-terminal domains of SpaA harboring the reactive pilin and LPXTG motifs, respectively. Remarkably, the model uncovered a conserved TP(Y/L)XIN(S/T)H signature sequence following the catalytic Cys, in which the alanine substitutions abrogated cross-linking activity but not cleavage of LPXTG. These insights and our evidence that SrtA2M can terminate pilus polymerization by joining the terminal pilin SpaB to SpaA and catalyze ligation of isolated SpaA domains in vitro provide a facile and versatile platform for protein engineering and bio-conjugation that has major implications for biotechnology.
Collapse
Affiliation(s)
- Chungyu Chang
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, TX 77030
| | - Brendan R Amer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- University of California, Los Angeles-US Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - Jerzy Osipiuk
- Center for Structural Genomics of Infectious Diseases, Argonne National Laboratory, Argonne, IL 60439
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Scott A McConnell
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- University of California, Los Angeles-US Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - I-Hsiu Huang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Van Hsieh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- University of California, Los Angeles-US Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - Janine Fu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- University of California, Los Angeles-US Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - Hong H Nguyen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- University of California, Los Angeles-US Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - John Muroski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- University of California, Los Angeles-US Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - Erika Flores
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, TX 77030
| | - Rachel R Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- University of California, Los Angeles-US Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- University of California, Los Angeles-US Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - John A Putkey
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX 77030
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Argonne National Laboratory, Argonne, IL 60439
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Asis Das
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095;
- University of California, Los Angeles-US Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - Hung Ton-That
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, TX 77030;
| |
Collapse
|
28
|
Luong TT, Tirgar R, Reardon-Robinson ME, Joachimiak A, Osipiuk J, Ton-That H. Structural Basis of a Thiol-Disulfide Oxidoreductase in the Hedgehog-Forming Actinobacterium Corynebacterium matruchotii. J Bacteriol 2018; 200:e00783-17. [PMID: 29440253 PMCID: PMC5892113 DOI: 10.1128/jb.00783-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/07/2018] [Indexed: 12/27/2022] Open
Abstract
The actinobacterium Corynebacterium matruchotii has been implicated in nucleation of oral microbial consortia leading to biofilm formation. Due to the lack of genetic tools, little is known about basic cellular processes, including protein secretion and folding, in this organism. We report here a survey of the C. matruchotii genome, which encodes a large number of exported proteins containing paired cysteine residues, and identified an oxidoreductase that is highly homologous to the Corynebacterium diphtheriae thiol-disulfide oxidoreductase MdbA (MdbACd). Crystallization studies uncovered that the 1.2-Å resolution structure of C. matruchotii MdbA (MdbACm) possesses two conserved features found in actinobacterial MdbA enzymes, a thioredoxin-like fold and an extended α-helical domain. By reconstituting the disulfide bond-forming machine in vitro, we demonstrated that MdbACm catalyzes disulfide bond formation within the actinobacterial pilin FimA. A new gene deletion method supported that mdbA is essential in C. matruchotii Remarkably, heterologous expression of MdbACm in the C. diphtheriae ΔmdbA mutant rescued its known defects in cell growth and morphology, toxin production, and pilus assembly, and this thiol-disulfide oxidoreductase activity required the catalytic motif CXXC. Altogether, the results suggest that MdbACm is a major thiol-disulfide oxidoreductase, which likely mediates posttranslocational protein folding in C. matruchotii by a mechanism that is conserved in ActinobacteriaIMPORTANCE The actinobacterium Corynebacterium matruchotii has been implicated in the development of oral biofilms or dental plaque; however, little is known about the basic cellular processes in this organism. We report here a high-resolution structure of a C. matruchotii oxidoreductase that is highly homologous to the Corynebacterium diphtheriae thiol-disulfide oxidoreductase MdbA. By biochemical analysis, we demonstrated that C. matruchotii MdbA catalyzes disulfide bond formation in vitro Furthermore, a new gene deletion method revealed that deletion of mdbA is lethal in C. matruchotii Remarkably, C. matruchotii MdbA can replace C. diphtheriae MdbA to maintain normal cell growth and morphology, toxin production, and pilus assembly. Overall, our studies support the hypothesis that C. matruchotii utilizes MdbA as a major oxidoreductase to catalyze oxidative protein folding.
Collapse
Affiliation(s)
- Truc Thanh Luong
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA
| | - Reyhaneh Tirgar
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA
| | - Melissa E Reardon-Robinson
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Argonne National Laboratory, Argonne, Illinois, USA
- The University of Chicago, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Jerzy Osipiuk
- Center for Structural Genomics of Infectious Diseases, Argonne National Laboratory, Argonne, Illinois, USA
- The University of Chicago, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Hung Ton-That
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
29
|
Landeta C, Boyd D, Beckwith J. Disulfide bond formation in prokaryotes. Nat Microbiol 2018; 3:270-280. [PMID: 29463925 DOI: 10.1038/s41564-017-0106-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/21/2017] [Indexed: 12/25/2022]
Abstract
Interest in protein disulfide bond formation has recently increased because of the prominent role of disulfide bonds in bacterial virulence and survival. The first discovered pathway that introduces disulfide bonds into cell envelope proteins consists of Escherichia coli enzymes DsbA and DsbB. Since its discovery, variations on the DsbAB pathway have been found in bacteria and archaea, probably reflecting specific requirements for survival in their ecological niches. One variation found amongst Actinobacteria and Cyanobacteria is the replacement of DsbB by a homologue of human vitamin K epoxide reductase. Many Gram-positive bacteria express enzymes involved in disulfide bond formation that are similar, but non-homologous, to DsbAB. While bacterial pathways promote disulfide bond formation in the bacterial cell envelope, some archaeal extremophiles express proteins with disulfide bonds both in the cytoplasm and in the extra-cytoplasmic space, possibly to stabilize proteins in the face of extreme conditions, such as growth at high temperatures. Here, we summarize the diversity of disulfide-bond-catalysing systems across prokaryotic lineages, discuss examples for understanding the biological basis of such systems, and present perspectives on how such systems are enabling advances in biomedical engineering and drug development.
Collapse
Affiliation(s)
- Cristina Landeta
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Dana Boyd
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Jon Beckwith
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Lee SF, Davey L. Disulfide Bonds: A Key Modification in Bacterial Extracytoplasmic Proteins. J Dent Res 2017; 96:1465-1473. [PMID: 28797211 DOI: 10.1177/0022034517725059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Disulfide bonds are a common posttranslational modification that contributes to the folding and stability of extracytoplasmic proteins. Almost all organisms, from eukaryotes to prokaryotes, have evolved enzymes to make and break these bonds. Accurate and efficient disulfide bond formation can be vital for protein function; therefore, the enzymes that catalyze disulfide bond formation are involved in multiple biological processes. Recent advances clearly show that oral bacteria also have the ability to from disulfide bonds, and this ability has an effect on a range of dental plaque-related phenotypes. In the gram-positive Streptococcus gordonii, the ability to form disulfide bonds affected autolysis, extracellular DNA release, biofilm formation, genetic competence, and bacteriocin production. In Actinomyces oris, disulfide bond formation is needed for pilus assembly, coaggregation, and biofilm formation. In other gram-positive bacteria, such as Enterococcus faecalis, disulfide bonds are formed in secreted bacteriocins and required for activity. In these oral bacteria, the enzymes that catalyze the disulfide bonds are quite diverse and share little sequence homology, but all contain a CXXC catalytic active site motif and a conserved C-terminal cis-proline, signature features of a thiol-disulfide oxidoreductase. Emerging evidence also indicates that gram-negative oral bacteria, such as Porphyromonas gingivalis and Tannerella forsythia, use disulfide bonds to stabilize their outer membrane porin proteins. Bioinformatic screens reveal that these gram-negative bacteria carry genes coding for thiol-disulfide oxidoreductases in their genomes. In conclusion, disulfide bond formation in oral bacteria is an emerging field, and the ability to form disulfide bonds plays an important role in dental plaque formation and fitness for the bacteria.
Collapse
Affiliation(s)
- S F Lee
- 1 Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,2 Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada.,3 Department of Pediatrics, Faculty of Medicine, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada.,4 Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada
| | - L Davey
- 1 Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,2 Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada.,Current address: Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| |
Collapse
|
31
|
Anchoring of LPXTG-Like Proteins to the Gram-Positive Cell Wall Envelope. Curr Top Microbiol Immunol 2017; 404:159-175. [PMID: 27097813 DOI: 10.1007/82_2016_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In Gram-positive bacteria, protein precursors with a signal peptide and a cell wall sorting signal (CWSS)-which begins with an LPXTG motif, followed by a hydrophobic domain and a tail of positively charged residues-are targeted to the cell envelope by a transpeptidase enzyme call sortase. Evolution and selective pressure gave rise to six classes of sortase, i.e., SrtA-F. Only class C sortases are capable of polymerizing substrates harboring the pilin motif and CWSS into protein polymers known as pili or fimbriae, whereas the others perform cell wall anchoring functions. Regardless of the products generated from these sortases, the basic principle of sortase-catalyzed transpeptidation is the same. It begins with the cleavage of the LPXTG motif, followed by the cross-linking of this cleaved product at the threonine residue to a nucleophile, i.e., an active amino group of the peptidoglycan stem peptide or the lysine residue of the pilin motif. This chapter will summarize the efforts to identify and characterize sortases and their associated pathways with emphasis on the cell wall anchoring function.
Collapse
|
32
|
Electron Transport Chain Is Biochemically Linked to Pilus Assembly Required for Polymicrobial Interactions and Biofilm Formation in the Gram-Positive Actinobacterium Actinomyces oris. mBio 2017. [PMID: 28634238 PMCID: PMC5478893 DOI: 10.1128/mbio.00399-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Gram-positive actinobacteria Actinomyces spp. are key colonizers in the development of oral biofilms due to the inherent ability of Actinomyces to adhere to receptor polysaccharides on the surface of oral streptococci and host cells. This receptor-dependent bacterial interaction, or coaggregation, requires a unique sortase-catalyzed pilus consisting of the pilus shaft FimA and the coaggregation factor CafA forming the pilus tip. While the essential role of the sortase machine SrtC2 in pilus assembly, biofilm formation, and coaggregation has been established, little is known about trans-acting factors contributing to these processes. We report here a large-scale Tn5 transposon screen for mutants defective in Actinomyces oris coaggregation with Streptococcus oralis. We obtained 33 independent clones, 13 of which completely failed to aggregate with S. oralis, and the remainder of which exhibited a range of phenotypes from severely to weakly defective coaggregation. The former had Tn5 insertions in fimA, cafA, or srtC2, as expected; the latter were mapped to genes coding for uncharacterized proteins and various nuo genes encoding the NADH dehydrogenase subunits. Electron microscopy and biochemical analyses of mutants with nonpolar deletions of nuo genes and ubiE, a menaquinone C-methyltransferase-encoding gene downstream of the nuo locus, confirmed the pilus and coaggregation defects. Both nuoA and ubiE mutants were defective in oxidation of MdbA, the major oxidoreductase required for oxidative folding of pilus proteins. Furthermore, supplementation of the ubiE mutant with exogenous menaquinone-4 rescued the cell growth and pilus defects. Altogether, we propose that the A. oris electron transport chain is biochemically linked to pilus assembly via oxidative protein folding. The Gram-positive actinobacterium A. oris expresses adhesive pili, or fimbriae, that are essential to biofilm formation and Actinomyces interactions with other bacteria, termed coaggregation. While the critical role of the conserved sortase machine in pilus assembly and the disulfide bond-forming catalyst MdbA in oxidative folding of pilins has been established, little is known about other trans-acting factors involved in these processes. Using a Tn5 transposon screen for mutants defective in coaggregation with Streptococcus oralis, we found that genetic disruption of the NADH dehydrogenase and menaquinone biosynthesis detrimentally alters pilus assembly. Further biochemical characterizations determined that menaquinone is important for reactivation of MdbA. This study supports the notion that the electron transport chain is biochemically linked to pilus assembly in A. oris via oxidative folding of pilin precursors.
Collapse
|
33
|
Luong TT, Reardon-Robinson ME, Siegel SD, Ton-That H. Reoxidation of the Thiol-Disulfide Oxidoreductase MdbA by a Bacterial Vitamin K Epoxide Reductase in the Biofilm-Forming Actinobacterium Actinomyces oris. J Bacteriol 2017; 199:e00817-16. [PMID: 28289087 PMCID: PMC5405209 DOI: 10.1128/jb.00817-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/23/2017] [Indexed: 12/18/2022] Open
Abstract
Posttranslocational protein folding in the Gram-positive biofilm-forming actinobacterium Actinomyces oris is mediated by a membrane-bound thiol-disulfide oxidoreductase named MdbA, which catalyzes oxidative folding of nascent polypeptides transported by the Sec translocon. Reoxidation of MdbA involves a bacterial vitamin K epoxide reductase (VKOR)-like protein that contains four cysteine residues, C93/C101 and C175/C178, with the latter forming a canonical CXXC thioredoxin-like motif; however, the mechanism of VKOR-mediated reoxidation of MdbA is not known. We present here a topological view of the A. oris membrane-spanning protein VKOR with these four exoplasmic cysteine residues that participate in MdbA reoxidation. Like deletion of the VKOR gene, alanine replacement of individual cysteine residues abrogated polymicrobial interactions and biofilm formation, concomitant with the failure to form adhesive pili on the bacterial surface. Intriguingly, the mutation of the cysteine at position 101 to alanine (C101A mutation) resulted in a high-molecular-weight complex that was positive for MdbA and VKOR by immunoblotting and was absent in other alanine substitution mutants and the C93A C101A double mutation and after treatment with the reducing agent β-mercaptoethanol. Consistent with this observation, affinity purification followed by immunoblotting confirmed this MdbA-VKOR complex in the C101A mutant. Furthermore, ectopic expression of the Mycobacterium tuberculosis VKOR analog in the A. oris VKOR deletion (ΔVKOR) mutant rescued its defects, in contrast to the expression of M. tuberculosis VKOR variants known to be nonfunctional in the disulfide relay that mediates reoxidation of the disulfide bond-forming catalyst DsbA in Escherichia coli Altogether, the results support a model of a disulfide relay, from its start with the pair C93/C101 to the C175-X-X-C178 motif, that is required for MdbA reoxidation and appears to be conserved in members of the class ActinobacteriaIMPORTANCE It has recently been shown in the high-GC Gram-positive bacteria (or Actinobacteria) Actinomyces oris and Corynebacterium diphtheriae that oxidative folding of nascent polypeptides transported by the Sec machinery is catalyzed by a membrane-anchored oxidoreductase named MdbA. In A. oris, reoxidation of MdbA requires a bacterial VKOR-like protein, and yet, how VKOR mediates MdbA reoxidation is unknown. We show here that the A. oris membrane-spanning protein VKOR employs two pairs of exoplasmic cysteine residues, including the canonical CXXC thioredoxinlike motif, to oxidize MdbA via a disulfide relay mechanism. This mechanism of disulfide relay is essential for pilus assembly, polymicrobial interactions, and biofilm formation and appears to be conserved in members of the class Actinobacteria, including Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Truc Thanh Luong
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA
| | - Melissa E Reardon-Robinson
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sara D Siegel
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA
| | - Hung Ton-That
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
34
|
Siegel SD, Liu J, Ton-That H. Biogenesis of the Gram-positive bacterial cell envelope. Curr Opin Microbiol 2016; 34:31-37. [PMID: 27497053 PMCID: PMC5164837 DOI: 10.1016/j.mib.2016.07.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 01/29/2023]
Abstract
The Gram-positive cell envelope serves as a molecular platform for surface display of capsular polysaccharides, wall teichoic acids (WTAs), lipoteichoic acids (LTAs), lipoproteins, surface proteins and pili. WTAs, LTAs, and sortase-assembled pili are a few features that make the Gram-positive cell envelope distinct from the Gram-negative counterpart. Interestingly, a set of LytR-CpsA-Psr family proteins, found in all Gram-positives but limited to a minority of Gram-negative organisms, plays divergent functions, while decorating the cell envelope with glycans. Furthermore, a phylum of Gram-positive bacteria, the actinobacteria, appear to employ oxidative protein folding as the major folding mechanism, typically occurring in an oxidizing environment of the Gram-negative periplasm. These distinctive features will be highlighted, along with recent findings in the cell envelope biogenesis.
Collapse
Affiliation(s)
- Sara D Siegel
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, TX, USA
| | - Jun Liu
- Department of Pathology & Laboratory Medicine, University of Texas McGovern Medical School, Houston, TX, USA
| | - Hung Ton-That
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
35
|
Davey L, Halperin SA, Lee SF. Thiol-Disulfide Exchange in Gram-Positive Firmicutes. Trends Microbiol 2016; 24:902-915. [PMID: 27426970 DOI: 10.1016/j.tim.2016.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/08/2016] [Accepted: 06/28/2016] [Indexed: 11/17/2022]
Abstract
Extracytoplasmic thiol-disulfide oxidoreductases (TDORs) catalyze the oxidation, reduction, and isomerization of protein disulfide bonds. Although these processes have been characterized in Gram-negative bacteria, the majority of Gram-positive TDORs have only recently been discovered. Results from recent studies have revealed distinct trends in the types of TDOR used by different groups of Gram-positive bacteria, and in their biological functions. Actinobacteria TDORs can be essential for viability, while Firmicute TDORs influence various physiological processes, including protein stability, oxidative stress resistance, bacteriocin production, and virulence. In this review we discuss the diverse extracytoplasmic TDORs used by Gram-positive bacteria, with a focus on Gram-positive Firmicutes.
Collapse
Affiliation(s)
- Lauren Davey
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5 Canada; Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada
| | - Scott A Halperin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5 Canada; Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada
| | - Song F Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5 Canada; Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada; Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, B3H 4R2 Canada.
| |
Collapse
|
36
|
Abstract
Disulfide bonds are important for the stability and function of many secreted proteins. In Gram-negative bacteria, these linkages are catalyzed by thiol-disulfide oxidoreductases (Dsb) in the periplasm. Protein oxidation has been well studied in these organisms, but it has not fully been explored in Gram-positive bacteria, which lack traditional periplasmic compartments. Recent bioinformatics analyses have suggested that the high-GC-content bacteria (i.e., actinobacteria) rely on disulfide-bond-forming pathways. In support of this, Dsb-like proteins have been identified in Mycobacterium tuberculosis, but their functions are not known. Actinomyces oris and Corynebacterium diphtheriae have recently emerged as models to study disulfide bond formation in actinobacteria. In both organisms, disulfide bonds are catalyzed by the membrane-bound oxidoreductase MdbA. Remarkably, unlike known Dsb proteins, MdbA is important for pathogenesis and growth, which makes it a potential target for new antibacterial drugs. This review will discuss disulfide-bond-forming pathways in bacteria, with a special focus on Gram-positive bacteria.
Collapse
Affiliation(s)
- Melissa E Reardon-Robinson
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA
| | - Hung Ton-That
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|