1
|
Radler P, Loose M. A dynamic duo: Understanding the roles of FtsZ and FtsA for Escherichia coli cell division through in vitro approaches. Eur J Cell Biol 2024; 103:151380. [PMID: 38218128 DOI: 10.1016/j.ejcb.2023.151380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/15/2024] Open
Abstract
Bacteria divide by binary fission. The protein machine responsible for this process is the divisome, a transient assembly of more than 30 proteins in and on the surface of the cytoplasmic membrane. Together, they constrict the cell envelope and remodel the peptidoglycan layer to eventually split the cell into two. For Escherichia coli, most molecular players involved in this process have probably been identified, but obtaining the quantitative information needed for a mechanistic understanding can often not be achieved from experiments in vivo alone. Since the discovery of the Z-ring more than 30 years ago, in vitro reconstitution experiments have been crucial to shed light on molecular processes normally hidden in the complex environment of the living cell. In this review, we summarize how rebuilding the divisome from purified components - or at least parts of it - have been instrumental to obtain the detailed mechanistic understanding of the bacterial cell division machinery that we have today.
Collapse
Affiliation(s)
- Philipp Radler
- Institute for Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria; University of Vienna, Djerassiplatz 1, 1030 Wien, Austria.
| | - Martin Loose
- Institute for Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
2
|
Morrison JJ, Camberg JL. Building the Bacterial Divisome at the Septum. Subcell Biochem 2024; 104:49-71. [PMID: 38963483 DOI: 10.1007/978-3-031-58843-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Across living organisms, division is necessary for cell survival and passing heritable information to the next generation. For this reason, cell division is highly conserved among eukaryotes and prokaryotes. Among the most highly conserved cell division proteins in eukaryotes are tubulin and actin. Tubulin polymerizes to form microtubules, which assemble into cytoskeletal structures in eukaryotes, such as the mitotic spindle that pulls chromatids apart during mitosis. Actin polymerizes to form a morphological framework for the eukaryotic cell, or cytoskeleton, that undergoes reorganization during mitosis. In prokaryotes, two of the most highly conserved cell division proteins are the tubulin homolog FtsZ and the actin homolog FtsA. In this chapter, the functions of the essential bacterial cell division proteins FtsZ and FtsA and their roles in assembly of the divisome at the septum, the site of cell division, will be discussed. In most bacteria, including Escherichia coli, the tubulin homolog FtsZ polymerizes at midcell, and this step is crucial for recruitment of many other proteins to the division site. For this reason, both FtsZ abundance and polymerization are tightly regulated by a variety of proteins. The actin-like FtsA protein polymerizes and tethers FtsZ polymers to the cytoplasmic membrane. Additionally, FtsA interacts with later stage cell division proteins, which are essential for division and for building the new cell wall at the septum. Recent studies have investigated how actin-like polymerization of FtsA on the lipid membrane may impact division, and we will discuss this and other ways that division in bacteria is regulated through FtsZ and FtsA.
Collapse
Affiliation(s)
- Josiah J Morrison
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, USA
| | - Jodi L Camberg
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
3
|
Cameron TA, Margolin W. Insights into the assembly and regulation of the bacterial divisome. Nat Rev Microbiol 2024; 22:33-45. [PMID: 37524757 PMCID: PMC11102604 DOI: 10.1038/s41579-023-00942-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/02/2023]
Abstract
The ability to split one cell into two is fundamental to all life, and many bacteria can accomplish this feat several times per hour with high accuracy. Most bacteria call on an ancient homologue of tubulin, called FtsZ, to localize and organize the cell division machinery, the divisome, into a ring-like structure at the cell midpoint. The divisome includes numerous other proteins, often including an actin homologue (FtsA), that interact with each other at the cytoplasmic membrane. Once assembled, the protein complexes that comprise the dynamic divisome coordinate membrane constriction with synthesis of a division septum, but only after overcoming checkpoints mediated by specialized protein-protein interactions. In this Review, we summarize the most recent evidence showing how the divisome proteins of Escherichia coli assemble at the cell midpoint, interact with each other and regulate activation of septum synthesis. We also briefly discuss the potential of divisome proteins as novel antibiotic targets.
Collapse
Affiliation(s)
- Todd A Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
4
|
Naha A, Haeusser DP, Margolin W. Anchors: A way for FtsZ filaments to stay membrane bound. Mol Microbiol 2023; 120:525-538. [PMID: 37503768 PMCID: PMC10593102 DOI: 10.1111/mmi.15067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 07/29/2023]
Abstract
Most bacteria use the tubulin homolog FtsZ to organize their cell division. FtsZ polymers initially assemble into mobile complexes that circle around a ring-like structure at the cell midpoint, followed by the recruitment of other proteins that will constrict the cytoplasmic membrane and synthesize septal peptidoglycan to divide the cell. Despite the need for FtsZ polymers to associate with the membrane, FtsZ lacks intrinsic membrane binding ability. Consequently, FtsZ polymers have evolved to interact with the membrane through adaptor proteins that both bind FtsZ and the membrane. Here, we discuss recent progress in understanding the functions of these FtsZ membrane tethers. Some, such as FtsA and SepF, are widely conserved and assemble into varied oligomeric structures bound to the membrane through an amphipathic helix. Other less-conserved proteins, such as EzrA and ZipA, have transmembrane domains, make extended structures, and seem to bind to FtsZ through two separate interactions. This review emphasizes that most FtsZs use multiple membrane tethers with overlapping functions, which not only attach FtsZ polymers to the membrane but also organize them in specific higher-order structures that can optimize cell division activity. We discuss gaps in our knowledge of these concepts and how future studies can address them.
Collapse
Affiliation(s)
- Arindam Naha
- Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA
| | - Daniel P. Haeusser
- Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA
- Department of Biology, Canisius College, Buffalo, NY 14208, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA
| |
Collapse
|
5
|
Godino E, Danelon C. Gene-Directed FtsZ Ring Assembly Generates Constricted Liposomes with Stable Membrane Necks. Adv Biol (Weinh) 2023; 7:e2200172. [PMID: 36593513 DOI: 10.1002/adbi.202200172] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/15/2022] [Indexed: 01/04/2023]
Abstract
Mimicking bacterial cell division in well-defined cell-free systems has the potential to elucidate the minimal set of proteins required for cytoskeletal formation, membrane constriction, and final abscission. Membrane-anchored FtsZ polymers are often regarded as a sufficient system to realize this chain of events. By using purified FtsZ and its membrane-binding protein FtsA or the gain-of-function mutant FtsA* expressed in PURE (Protein synthesis Using Reconstituted Elements) from a DNA template, it is shown in this study that cytoskeletal structures are formed, and yield constricted liposomes exhibiting various morphologies. However, the resulting buds remain attached to the parental liposome by a narrow membrane neck. No division events can be monitored even after long-time tracking by fluorescence microscopy, nor when the osmolarity of the external solution is increased. The results provide evidence that reconstituted FtsA-FtsZ proto-rings coating the membrane necks are too stable to enable abscission. The prospect of combining a DNA-encoded FtsZ system with assisting mechanisms to achieve synthetic cell division is discussed.
Collapse
Affiliation(s)
- Elisa Godino
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2629HZ, The Netherlands
| | - Christophe Danelon
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2629HZ, The Netherlands
| |
Collapse
|
6
|
Construction and Characterization of Functional FtsA Sandwich Fusions for Studies of FtsA Localization and Dynamics during Escherichia coli Cell Division. J Bacteriol 2023; 205:e0037322. [PMID: 36622232 PMCID: PMC9879108 DOI: 10.1128/jb.00373-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
FtsA, a homolog of actin, is essential for cell division of Escherichia coli and is widely conserved among many bacteria. FtsA helps to tether polymers of the bacterial tubulin homolog FtsZ to the cytoplasmic membrane as part of the cytokinetic Z ring. GFP fusions to FtsA have illuminated FtsA's localization in live E. coli, but these fusions have not been fully functional and required the presence of the native FtsA. Here, we characterize "sandwich" fusions of E. coli FtsA to either mCherry or msfGFP that are functional for cell division and exhibit fluorescent rings at midcell that persist throughout constriction until cell separation. FtsA within the Z ring moved circumferentially like FtsZ, and FtsA outside the rings formed highly dynamic patches at the membrane. Notably, both FtsA-mCherrysw and FtsA-msfGFPsw acted as mild hypermorphs, as they were not toxic when overproduced, bypassed the essential cell division protein ZipA, and suppressed several thermosensitive fts alleles, although not as effectively as the prototypical hypermorph FtsA*. Overall, our results indicate that fluorescent FtsA sandwich fusions can be used as the sole FtsA in E. coli and thus should shed new light on FtsA dynamics during the cell division cycle in this model system. IMPORTANCE FtsA is a key conserved cell division protein, and E. coli is the most well studied model system for bacterial cell division. One obstacle to full understanding of this process is the lack of a fully functional fluorescent reporter for FtsA in vivo. Here, we describe a fluorescent fusion to E. coli FtsA that promotes efficient cell division in the absence of the native FtsA and can be used to monitor FtsA dynamics during cell division.
Collapse
|
7
|
In vitro studies of the protein-interaction network of cell-wall lytic transglycosylase RlpA of Pseudomonas aeruginosa. Commun Biol 2022; 5:1314. [PMID: 36451021 PMCID: PMC9712689 DOI: 10.1038/s42003-022-04230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
The protein networks of cell-wall-biosynthesis assemblies are largely unknown. A key class of enzymes in these assemblies is the lytic transglycosylases (LTs), of which eleven exist in P. aeruginosa. We have undertaken a pulldown strategy in conjunction with mass-spectrometry-based proteomics to identify the putative binding partners for the eleven LTs of P. aeruginosa. A total of 71 putative binding partners were identified for the eleven LTs. A systematic assessment of the binding partners of the rare lipoprotein A (RlpA), one of the pseudomonal LTs, was made. This 37-kDa lipoprotein is involved in bacterial daughter-cell separation by an unknown process. RlpA participates in both the multi-protein and multi-enzyme divisome and elongasome assemblies. We reveal an extensive protein-interaction network for RlpA involving at least 19 proteins. Their kinetic parameters for interaction with RlpA were assessed by microscale thermophoresis, surface-plasmon resonance, and isothermal-titration calorimetry. Notable RlpA binding partners include PBP1b, PBP4, and SltB1. Elucidation of the protein-interaction networks for each of the LTs, and specifically for RlpA, opens opportunities for the study of their roles in the complex protein assemblies intimately involved with the cell wall as a structural edifice critical for bacterial survival.
Collapse
|
8
|
Männik J, Pichoff S, Lutkenhaus J, Männik J. Cell Cycle-Dependent Recruitment of FtsN to the Divisome in Escherichia coli. mBio 2022; 13:e0201722. [PMID: 35968943 PMCID: PMC9426451 DOI: 10.1128/mbio.02017-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022] Open
Abstract
Cell division in Escherichia coli starts with the formation of an FtsZ protofilament network at midcell, the Z ring. However, only after a considerable lag period does the cell start to form a midcell constriction. The onset of constriction depends upon the arrival of so-called late divisome proteins, among which, FtsN is the last essential one. The timing and dependency of FtsN arrival to the divisome, along with genetic evidence, suggests it triggers cell division. In this study, we used high-throughput fluorescence microscopy to determine the arrival of FtsN and the early divisome protein ZapA to midcell at a single-cell level during the cell cycle. Our data show while the recruitment of ZapA/FtsZ is gradual in the cell cycle, recruitment of FtsN is rapid and begins at about the onset of constriction. At this time, the fraction of ZapA/FtsZ in the Z ring approaches its peak value. We also find a second increase in FtsN recruitment to the divisome, which begins once the amount of ZapA/FtsZ at midcell starts decreasing. Increasing hypermorphic FtsA* (FtsA R286W), but not FtsA, accelerates FtsN recruitment but not constriction. This finding is consistent with FtsA* recruiting FtsN with some other divisome component being rate-limiting for constriction under these conditions. Finally, our data support the recently proposed idea that ZapA/FtsZ and FtsN are part of physically separate complexes in midcell throughout the whole septation process. IMPORTANCE Cell division in most bacteria starts with the formation of an FtsZ protofilament network at midcell, the Z ring. However, cells only start to constrict after a considerable lag. A factor thought to trigger the onset of constriction in Escherichia coli is FtsN, which is the last essential protein to be recruited to the Z ring. Using a high-throughput quantitative fluorescence microscopy, we determine the cell cycle-dependent recruitment of FtsN to the Z ring. Our data show rapid accumulation of FtsN to the Z ring about a quarter of the cell cycle after the formation of the Z ring. This initial wave is followed by another increase in FtsN recruitment once the FtsZ protofilament network starts to disassemble. The presence of FtsA* accelerates FtsN recruitment to the Z ring but does not lead to earlier constrictions. Our data furthermore suggest FtsZ and FtsN are part of physically separate complexes throughout the division process.
Collapse
Affiliation(s)
- Jaana Männik
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, USA
| | - Sebastien Pichoff
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jaan Männik
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
9
|
Söderström B, Pittorino MJ, Daley DO, Duggin IG. Assembly dynamics of FtsZ and DamX during infection-related filamentation and division in uropathogenic E. coli. Nat Commun 2022; 13:3648. [PMID: 35752634 PMCID: PMC9233674 DOI: 10.1038/s41467-022-31378-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
During infection of bladder epithelial cells, uropathogenic Escherichia coli (UPEC) can stop dividing and grow into highly filamentous forms. Here, we find that some filaments of E. coli UTI89 released from infected cells grow very rapidly and by more than 100 μm before initiating division, whereas others do not survive, suggesting that infection-related filamentation (IRF) is a stress response that promotes bacterial dispersal. IRF is accompanied by unstable, dynamic repositioning of FtsZ division rings. In contrast, DamX, which is associated with normal cell division and is also essential for IRF, is distributed uniformly around the cell envelope during filamentation. When filaments initiate division to regenerate rod cells, DamX condenses into stable rings prior to division. The DamX rings maintain consistent thickness during constriction and remain at the septum until after membrane fusion. Deletion of damX affects vegetative cell division in UTI89 (but not in the model E. coli K-12), and, during infection, blocks filamentation and reduces bacterial cell integrity. IRF therefore involves DamX distribution throughout the membrane and prevention of FtsZ ring stabilization, leading to cell division arrest. DamX then reassembles into stable division rings for filament division, promoting dispersal and survival during infection.
Collapse
Affiliation(s)
- Bill Söderström
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, 2007, NSW, Australia.
| | - Matthew J Pittorino
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, 2007, NSW, Australia
| | - Daniel O Daley
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 106 91, Sweden
| | - Iain G Duggin
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, 2007, NSW, Australia
| |
Collapse
|
10
|
Corbin Goodman LC, Erickson HP. FtsZ at mid-cell is essential in Escherichia coli until the late stage of constriction. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35679326 DOI: 10.1099/mic.0.001194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There has been recent debate as to the source of constriction force during cell division. FtsZ can generate a constriction force on tubular membranes in vitro, suggesting it may generate the constriction force in vivo. However, another study showed that mutants of FtsZ did not affect the rate of constriction, whereas mutants of the PG assembly did, suggesting that PG assembly may push the constriction from the outside. Supporting this model, two groups found that cells that have initiated constriction can complete septation while the Z ring is poisoned with the FtsZ targeting antibiotic PC190723. PC19 arrests treadmilling but leaves FtsZ in place. We sought to determine if a fully assembled Z ring is necessary during constriction. To do this, we used a temperature-sensitive FtsZ mutant, FtsZ84. FtsZ84 supports cell division at 30 °C, but it disassembles from the Z ring within 1 min upon a temperature jump to 42 °C. Following the temperature jump we found that cells in early constriction stop constricting. Cells that had progressed to the later stage of division finished constriction without a Z ring. These results show that in Escherichia coli, an assembled Z ring is essential for constriction except in the final stage, contradicting the simplest interpretation of previous studies using PC19.
Collapse
Affiliation(s)
| | - Harold P Erickson
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.,Department of Cell Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
11
|
Morrison JJ, Conti J, Camberg JL. Assembly and architecture of Escherichia coli divisome proteins FtsA and FtsZ. J Biol Chem 2022; 298:101663. [PMID: 35104502 PMCID: PMC8897712 DOI: 10.1016/j.jbc.2022.101663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022] Open
Abstract
During Escherichia coli cell division, an intracellular complex of cell division proteins known as the Z-ring assembles at midcell during early division and serves as the site of constriction. While the predominant protein in the Z-ring is the widely conserved tubulin homolog FtsZ, the actin homolog FtsA tethers the Z-ring scaffold to the cytoplasmic membrane by binding to FtsZ. While FtsZ is known to function as a dynamic, polymerized GTPase, the assembly state of its partner, FtsA, and the role of ATP are still unclear. We report that a substitution mutation in the FtsA ATP-binding site impairs ATP hydrolysis, phospholipid vesicle remodeling in vitro, and Z-ring assembly in vivo. We demonstrate by transmission electron microscopy and Förster Resonance Energy Transfer that a truncated FtsA variant, FtsA(ΔMTS) lacking a C-terminal membrane targeting sequence, self assembles into ATP-dependent filaments. These filaments coassemble with FtsZ polymers but are destabilized by unassembled FtsZ. These findings suggest a model wherein ATP binding drives FtsA polymerization and membrane remodeling at the lipid surface, and FtsA polymerization is coregulated with FtsZ polymerization. We conclude that the coordinated assembly of FtsZ and FtsA polymers may serve as a key checkpoint in division that triggers cell wall synthesis and division progression.
Collapse
Affiliation(s)
- Josiah J Morrison
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Joseph Conti
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Jodi L Camberg
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA.
| |
Collapse
|
12
|
Levin PA, Janakiraman A. Localization, Assembly, and Activation of the Escherichia coli Cell Division Machinery. EcoSal Plus 2021; 9:eESP00222021. [PMID: 34910577 PMCID: PMC8919703 DOI: 10.1128/ecosalplus.esp-0022-2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/14/2021] [Indexed: 01/01/2023]
Abstract
Decades of research, much of it in Escherichia coli, have yielded a wealth of insight into bacterial cell division. Here, we provide an overview of the E. coli division machinery with an emphasis on recent findings. We begin with a short historical perspective into the discovery of FtsZ, the tubulin homolog that is essential for division in bacteria and archaea. We then discuss assembly of the divisome, an FtsZ-dependent multiprotein platform, at the midcell septal site. Not simply a scaffold, the dynamic properties of polymeric FtsZ ensure the efficient and uniform synthesis of septal peptidoglycan. Next, we describe the remodeling of the cell wall, invagination of the cell envelope, and disassembly of the division apparatus culminating in scission of the mother cell into two daughter cells. We conclude this review by highlighting some of the open questions in the cell division field, emphasizing that much remains to be discovered, even in an organism as extensively studied as E. coli.
Collapse
Affiliation(s)
- Petra Anne Levin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for Science & Engineering of Living Systems (CSELS), McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Anuradha Janakiraman
- Department of Biology, The City College of New York, New York, New York, USA
- Programs in Biology and Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA
| |
Collapse
|
13
|
Recruitment of the TolA protein to cell constriction sites in Escherichia coli via three separate mechanisms, and a critical role for FtsWI activity in recruitment of both TolA and TolQ. J Bacteriol 2021; 204:e0046421. [PMID: 34748387 DOI: 10.1128/jb.00464-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Tol-Pal system of Gram-negative bacteria helps maintain integrity of the cell envelope and ensures that invagination of the envelope layers during cell fission occurs in a well-coordinated manner. In E. coli, the five Tol-Pal proteins (TolQ, R, A, B and Pal) accumulate at cell constriction sites in a manner that normally requires the activity of the cell constriction initiation protein FtsN. While septal recruitment of TolR, TolB and Pal also requires the presence of TolQ and/or TolA, each of the the latter two can recognize constriction sites independently of the other system proteins. What attracts TolQ or TolA to these sites is unclear. We show that FtsN attracts both proteins in an indirect fashion, and that PBP1A, PBP1B and CpoB are dispensable for their septal recruitment. However, the β-lactam aztreonam readily interferes with septal accumulation of both TolQ and TolA, indicating that FtsN-stimulated production of septal peptidoglycan by the FtsWI synthase is critical to their recruitment. We also discovered that each of TolA's three domains can recognize division sites in a separate fashion. Notably, the middle domain (TolAII) is responsible for directing TolA to constriction sites in the absence of other Tol-Pal proteins and CpoB, while recruitment of TolAI and TolAIII requires TolQ and a combination of TolB, Pal, and CpoB, respectively. Additionally, we describe the construction and use of functional fluorescent sandwich fusions of the ZipA division protein, which should be more broadly valuable in future studies of the E. coli cell division machinery. IMPORTANCE Cell division (cytokinesis) is a fundamental biological process that is incompletely understood for any organism. Division of bacterial cells relies on a ring-like machinery called the septal ring or divisome that assembles along the circumference of the mother cell at the site where constriction will eventually occur. In the well-studied bacterium Escherichia coli, this machinery contains over thirty distinct proteins. We studied how two such proteins, TolA and TolQ, which also play a role in maintaining integrity of the outer-membrane, are recruited to the machinery. We find that TolA can be recruited by three separate mechanisms, and that both proteins rely on the activity of a well-studied cell division enzyme for their recruitment.
Collapse
|
14
|
Liang B, Quan B, Li J, Loton C, Bredeche MF, Lindner AB, Xu L. Artificial modulation of cell width significantly affects the division time of Escherichia coli. Sci Rep 2020; 10:17847. [PMID: 33082450 PMCID: PMC7576201 DOI: 10.1038/s41598-020-74778-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Bacterial cells have characteristic spatial and temporal scales. For instance, Escherichia coli, the typical rod-shaped bacteria, always maintains a relatively constant cell width and cell division time. However, whether the external physical perturbation of cell width has an impact on cell division time remains largely unexplored. In this work, we developed two microchannel chips, namely straight channels and ‘necked’ channels, to precisely regulate the width of E. coli cells and to investigate the correlation between cell width and division time of the cells. Our results show that, in the straight channels, the wide cells divide much slower than narrow cells. In the ‘necked’ channels, the cell division is remarkably promoted compared to that in straight channels with the same width. Besides, fluorescence time-lapse microscopy imaging of FtsZ dynamics shows that the cell pre-constriction time is more sensitive to cell width perturbation than cell constriction time. Finally, we revealed a significant anticorrelation between the death rate and the division rate of cell populations with different widths. Our work provides new insights into the correlation between the geometrical property and division time of E. coli cells and sheds new light on the future study of spatial–temporal correlation in cell physiology.
Collapse
Affiliation(s)
- Baihui Liang
- Center for Nano and Micro Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Baogang Quan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Junjie Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, People's Republic of China
| | - Chantal Loton
- Systems Engineering and Evolution Dynamics Lab, INSERM U1001, Paris Descartes University, 75014, Paris, France.,Faculty of Medicine, Paris Descartes University, 75014, Paris, France
| | - Marie-Florence Bredeche
- Systems Engineering and Evolution Dynamics Lab, INSERM U1001, Paris Descartes University, 75014, Paris, France.,Faculty of Medicine, Paris Descartes University, 75014, Paris, France
| | - Ariel B Lindner
- Systems Engineering and Evolution Dynamics Lab, INSERM U1001, Paris Descartes University, 75014, Paris, France.,Faculty of Medicine, Paris Descartes University, 75014, Paris, France.,Centre for Research and Interdisciplinarity (CRI), Paris Descartes University, 75014, Paris, France
| | - Luping Xu
- Center for Nano and Micro Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
15
|
Abstract
The FtsZ protein is a highly conserved bacterial tubulin homolog. In vivo, the functional form of FtsZ is the polymeric, ring-like structure (Z-ring) assembled at the future division site during cell division. While it is clear that the Z-ring plays an essential role in orchestrating cytokinesis, precisely what its functions are and how these functions are achieved remain elusive. In this article, we review what we have learned during the past decade about the Z-ring's structure, function, and dynamics, with a particular focus on insights generated by recent high-resolution imaging and single-molecule analyses. We suggest that the major function of the Z-ring is to govern nascent cell pole morphogenesis by directing the spatiotemporal distribution of septal cell wall remodeling enzymes through the Z-ring's GTP hydrolysis-dependent treadmilling dynamics. In this role, FtsZ functions in cell division as the counterpart of the cell shape-determining actin homolog MreB in cell elongation.
Collapse
Affiliation(s)
- Ryan McQuillen
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; ,
| | - Jie Xiao
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; ,
| |
Collapse
|
16
|
Sen BC, Wasserstrom S, Findlay K, Söderholm N, Sandblad L, von Wachenfeldt C, Flärdh K. Specific amino acid substitutions in β strand S2 of FtsZ cause spiraling septation and impair assembly cooperativity in Streptomyces spp. Mol Microbiol 2019; 112:184-198. [PMID: 31002418 DOI: 10.1111/mmi.14262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2019] [Indexed: 01/18/2023]
Abstract
Bacterial cell division is orchestrated by the Z ring, which is formed by single-stranded treadmilling protofilaments of FtsZ. In Streptomyces, during sporulation, multiple Z rings are assembled and lead to formation of septa that divide a filamentous hyphal cell into tens of prespore compartments. We describe here mutant alleles of ftsZ in Streptomyces coelicolor and Streptomyces venezuelae that perturb cell division in such a way that constriction is initiated along irregular spiral-shaped paths rather than as regular septa perpendicular to the cell length axis. This conspicuous phenotype is caused by amino acid substitutions F37I and F37R in β strand S2 of FtsZ. The F37I mutation leads, instead of regular Z rings, to formation of relatively stable spiral-shaped FtsZ structures that are capable of initiating cell constriction. Further, we show that the F37 mutations affect the polymerization properties and impair the cooperativity of FtsZ assembly in vitro. The results suggest that specific residues in β strand S2 of FtsZ affect the conformational switch in FtsZ that underlies assembly cooperativity and enable treadmilling of protofilaments, and that these features are required for formation of regular Z rings. However, the data also indicate FtsZ-directed cell constriction is not dependent on assembly cooperativity.
Collapse
Affiliation(s)
- Beer Chakra Sen
- Department of Biology, Lund University, Sölvegatan 35, Lund, 223 62, Sweden
| | | | - Kim Findlay
- Department of Cell & Molecular Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Niklas Söderholm
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Linda Sandblad
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | | | - Klas Flärdh
- Department of Biology, Lund University, Sölvegatan 35, Lund, 223 62, Sweden
| |
Collapse
|
17
|
Abstract
The peptidoglycan sacculus is a net-like polymer that surrounds the cytoplasmic membrane in most bacteria. It is essential to maintain the bacterial cell shape and protect from turgor. The peptidoglycan has a basic composition, common to all bacteria, with species-specific variations that can modify its biophysical properties or the pathogenicity of the bacteria. The synthesis of peptidoglycan starts in the cytoplasm and the precursor lipid II is flipped across the cytoplasmic membrane. The new peptidoglycan strands are synthesised and incorporated into the pre-existing sacculus by the coordinated activities of peptidoglycan synthases and hydrolases. In the model organism Escherichia coli there are two complexes required for the elongation and division. Each of them is regulated by different proteins from both the cytoplasmic and periplasmic sides that ensure the well-coordinated synthesis of new peptidoglycan.
Collapse
|
18
|
Streptococcus mutans yidC1
and
yidC2
Impact Cell Envelope Biogenesis, the Biofilm Matrix, and Biofilm Biophysical Properties. J Bacteriol 2019; 201:JB.00396-18. [DOI: 10.1128/jb.00396-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/28/2018] [Indexed: 01/25/2023] Open
Abstract
YidC proteins are membrane-localized chaperone insertases that are universally conserved in all bacteria and are traditionally studied in the context of membrane protein insertion and assembly. Both YidC paralogs of the cariogenic pathogen
Streptococcus mutans
are required for proper envelope biogenesis and full virulence, indicating that these proteins may also contribute to optimal biofilm formation in streptococci. Here, we show that the deletion of either
yidC
results in changes to the structure and physical properties of the EPS matrix produced by
S. mutans
, ultimately impairing optimal biofilm development, diminishing its mechanical stability, and facilitating its removal. Importantly, the universal conservation of bacterial
yidC
orthologs, combined with our findings, provide a rationale for YidC as a possible drug target for antibiofilm therapies.
Collapse
|
19
|
Structural Insights into the FtsQ/FtsB/FtsL Complex, a Key Component of the Divisome. Sci Rep 2018; 8:18061. [PMID: 30584256 PMCID: PMC6305486 DOI: 10.1038/s41598-018-36001-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/13/2018] [Indexed: 11/17/2022] Open
Abstract
Bacterial cell division is a fundamental process that results in the physical separation of a mother cell into two daughter cells and involves a set of proteins known as the divisome. Among them, the FtsQ/FtsB/FtsL complex was known as a scaffold protein complex, but its overall structure and exact function is not precisely known. In this study, we have determined the crystal structure of the periplasmic domain of FtsQ in complex with the C-terminal fragment of FtsB, and showed that the C-terminal region of FtsB is a key binding region of FtsQ via mutational analysis in vitro and in vivo. We also obtained the solution structure of the periplasmic FtsQ/FtsB/FtsL complex by small angle X-ray scattering (SAXS), which reveals its structural organization. Interestingly, the SAXS and analytical gel filtration data showed that the FtsQ/FtsB/FtsL complex forms a 2:2:2 heterohexameric assembly in solution with the “Y” shape. Based on the model, the N-terminal directions of FtsQ and the FtsB/FtsL complex should be opposite, suggesting that the Y-shaped FtsQ/FtsB/FtsL complex might fit well into the curved membrane for membrane anchoring.
Collapse
|
20
|
Söderström B, Badrutdinov A, Chan H, Skoglund U. Cell shape-independent FtsZ dynamics in synthetically remodeled bacterial cells. Nat Commun 2018; 9:4323. [PMID: 30337533 PMCID: PMC6193997 DOI: 10.1038/s41467-018-06887-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/03/2018] [Indexed: 11/26/2022] Open
Abstract
FtsZ is the main regulator of bacterial cell division. It has been implicated in acting as a scaffolding protein for other division proteins, a force generator during constriction, and more recently, as an active regulator of septal cell wall production. FtsZ assembles into a heterogeneous structure coined the Z-ring due to its resemblance to a ring confined by the midcell geometry. Here, to establish a framework for examining geometrical influences on proper Z-ring assembly and dynamics, we sculpted Escherichia coli cells into unnatural shapes using division- and cell wall-specific inhibitors in a micro-fabrication scheme. This approach allowed us to examine FtsZ behavior in engineered Z-squares and Z-hearts. We use stimulated emission depletion (STED) nanoscopy to show that FtsZ clusters in sculpted cells maintain the same dimensions as their wild-type counterparts. Based on our results, we propose that the underlying membrane geometry is not a deciding factor for FtsZ cluster maintenance and dynamics in vivo. The FtsZ protein assembles into a structure known as ‘Z-ring’ at midcell for bacterial cell division. Here, Söderström et al. show that Z-ring assembly and dynamics in E. coli cells with unnatural shapes, such as squares and hearts, are generally similar to those observed in cells with normal shape.
Collapse
Affiliation(s)
- Bill Söderström
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, 904-0495, Okinawa, Japan.
| | - Alexander Badrutdinov
- Mechanical Engineering and Microfabrication Support Section, Okinawa Institute of Science and Technology, 904-0495, Okinawa, Japan
| | - Helena Chan
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, 904-0495, Okinawa, Japan
| | - Ulf Skoglund
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, 904-0495, Okinawa, Japan
| |
Collapse
|
21
|
Super-resolution images of peptidoglycan remodelling enzymes at the division site of Escherichia coli. Curr Genet 2018; 65:99-101. [PMID: 30056491 PMCID: PMC6342862 DOI: 10.1007/s00294-018-0869-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 11/15/2022]
Abstract
Bacterial cells need to divide. This process requires more than 30 different proteins, which gather at the division site. It is widely assumed that these proteins assemble into a macromolecular complex (the divisome), but capturing the molecular layout of this complex has proven elusive. Super-resolution microscopy can provide spatial information, down to a few tens of nanometers, about how the division proteins assemble into complexes and how their activities are co-ordinated. Herein we provide insight into recent work from our laboratories, where we used super-resolution gSTED nanoscopy to explore the molecular organization of FtsZ, FtsI and FtsN. The resulting images show that all three proteins form discrete densities organised in patchy pseudo-rings at the division site. Significantly, two-colour imaging highlighted a radial separation between FtsZ and FtsN, indicating that there is more than one type of macromolecular complex operating during division. These data provide a first glimpse into the spatial organisation of PG-synthesising enzymes during division in Gram-negative bacteria.
Collapse
|
22
|
Holden S. Probing the mechanistic principles of bacterial cell division with super-resolution microscopy. Curr Opin Microbiol 2018; 43:84-91. [DOI: 10.1016/j.mib.2017.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/04/2017] [Accepted: 12/14/2017] [Indexed: 12/26/2022]
|
23
|
Ramirez-Diaz DA, García-Soriano DA, Raso A, Mücksch J, Feingold M, Rivas G, Schwille P. Treadmilling analysis reveals new insights into dynamic FtsZ ring architecture. PLoS Biol 2018; 16:e2004845. [PMID: 29775478 PMCID: PMC5979038 DOI: 10.1371/journal.pbio.2004845] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/31/2018] [Accepted: 04/27/2018] [Indexed: 12/05/2022] Open
Abstract
FtsZ, the primary protein of the bacterial Z ring guiding cell division, has been recently shown to engage in intriguing treadmilling dynamics along the circumference of the division plane. When coreconstituted in vitro with FtsA, one of its natural membrane anchors, on flat supported membranes, these proteins assemble into dynamic chiral vortices compatible with treadmilling of curved polar filaments. Replacing FtsA by a membrane-targeting sequence (mts) to FtsZ, we have discovered conditions for the formation of dynamic rings, showing that the phenomenon is intrinsic to FtsZ. Ring formation is only observed for a narrow range of protein concentrations at the bilayer, which is highly modulated by free Mg2+ and depends upon guanosine triphosphate (GTP) hydrolysis. Interestingly, the direction of rotation can be reversed by switching the mts from the C-terminus to the N-terminus of the protein, implying that the filament attachment must have a perpendicular component to both curvature and polarity. Remarkably, this chirality switch concurs with previously shown inward or outward membrane deformations by the respective FtsZ mutants. Our results lead us to suggest an intrinsic helicity of FtsZ filaments with more than one direction of curvature, supporting earlier hypotheses and experimental evidence. FtsZ is a tubulin homologue and the primary protein of the bacterial Z ring that guides cell division. In vivo, but also in reconstituted systems, FtsZ shows an intriguing treadmilling dynamic along circular tracks of approximately 1 micrometer in diameter. In cells, this treadmilling along the circumference of the division site is suggested to dynamically guide peptidoglycan—and thus new cell wall—synthesis. In vitro, when reconstituted along with its membrane adaptor FtsA on flat supported membranes, FtsZ self-organizes into similarly treadmilling vortices as observed in vivo but with a clear chirality. With the aim of thoroughly investigating these dynamics, revealing the origin of chirality, and potentially relating it to a membrane-transforming ability of FtsZ, we reconstituted different membrane-targeted mutants of FtsZ on flat membranes. In this minimized system, we found that dynamic ring formation is an intrinsic feature of FtsZ without the need of any other protein. However, self-organization into dynamic treadmilling only occurs within a specific protein, cation, and guanosine triphosphate (GTP) concentration range. Our work led us to propose that the observed chirality of FtsZ treadmilling may be explained by an inherent helical character of the filaments with more than one direction of curvature.
Collapse
Affiliation(s)
- Diego A. Ramirez-Diaz
- Department of Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Martinsried, Germany
- Graduate School for Quantitative Biosciences (QBM), Ludwig-Maximillians-University, Munich, Germany
| | - Daniela A. García-Soriano
- Department of Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Martinsried, Germany
- Graduate School for Quantitative Biosciences (QBM), Ludwig-Maximillians-University, Munich, Germany
| | - Ana Raso
- Department of Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Martinsried, Germany
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Jonas Mücksch
- Department of Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Mario Feingold
- Department of Physics, Ben Gurion University, Beer Sheva, Israel
| | - Germán Rivas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Martinsried, Germany
- * E-mail:
| |
Collapse
|
24
|
Neeli-Venkata R, Oliveira SMD, Martins L, Startceva S, Bahrudeen M, Fonseca JM, Minoia M, Ribeiro AS. The precision of the symmetry in Z-ring placement in Escherichia coli is hampered at critical temperatures. Phys Biol 2018; 15:056002. [PMID: 29717708 DOI: 10.1088/1478-3975/aac1cb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cell division in Escherichia coli is morphologically symmetric due to, among other things, the ability of these cells to place the Z-ring at midcell. Studies have reported that, at sub-optimal temperatures, this symmetry decreases at the single-cell level, but the causes remain unclear. Using fluorescence microscopy, we observe FtsZ-GFP and DAPI-stained nucleoids to assess the robustness of the symmetry of Z-ring formation and positioning in individual cells under sub-optimal and critical temperatures. We find the Z-ring formation and positioning to be robust at sub-optimal temperatures, as the Z-ring's mean width, density and displacement from midcell maintain similar levels of correlation to one another as at optimal temperatures. However, at critical temperatures, the Z-ring displacement from midcell is greatly increased. We present evidence showing that this is due to enhanced distance between the replicated nucleoids and, thus, reduced Z-ring density, which explains the weaker precision in setting a morphologically symmetric division site. This also occurs in rich media and is cumulative, i.e. combining richer media and critically high temperatures enhances the asymmetries in division, which is evidence that the causes are biophysical. To further support this, we show that the effects are reversible, i.e. shifting cells from optimal to critical, and then to optimal again, reduces and then enhances the symmetry in Z-ring positioning, respectively, as the width and density of the Z-ring return to normal values. Overall, our findings show that the Z-ring positioning in E. coli is a robust biophysical process under sub-optimal temperatures, and that critical temperatures cause significant asymmetries in division.
Collapse
Affiliation(s)
- Ramakanth Neeli-Venkata
- Laboratory of Biosystem Dynamics, BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, 33101, Tampere, Finland
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Conti J, Viola MG, Camberg JL. FtsA reshapes membrane architecture and remodels the Z-ring in Escherichia coli. Mol Microbiol 2018; 107:558-576. [PMID: 29280220 DOI: 10.1111/mmi.13902] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 12/14/2017] [Accepted: 12/17/2017] [Indexed: 12/20/2022]
Abstract
Cell division in prokaryotes initiates with assembly of the Z-ring at midcell, which, in Escherichia coli, is tethered to the inner leaflet of the cytoplasmic membrane through a direct interaction with FtsA, a widely conserved actin homolog. The Z-ring is comprised of polymers of tubulin-like FtsZ and has been suggested to provide the force for constriction. Here, we demonstrate that FtsA exerts force on membranes causing redistribution of membrane architecture, robustly hydrolyzes ATP and directly engages FtsZ polymers in a reconstituted system. Phospholipid reorganization by FtsA occurs rapidly and is mediated by insertion of a C-terminal membrane targeting sequence (MTS) into the bilayer and further promoted by a nucleotide-dependent conformational change relayed to the MTS. FtsA also recruits FtsZ to phospholipid vesicles via a direct interaction with the FtsZ C-terminus and regulates FtsZ assembly kinetics. These results implicate the actin homolog FtsA in establishment of a Z-ring scaffold, while directly remodeling the membrane and provide mechanistic insight into localized cell wall remodeling, invagination and constriction at the onset of division.
Collapse
Affiliation(s)
| | | | - Jodi L Camberg
- Departments of Cell and Molecular Biology.,Nutrition and Food Sciences, The University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
26
|
Söderström B, Chan H, Shilling PJ, Skoglund U, Daley DO. Spatial separation of FtsZ and FtsN during cell division. Mol Microbiol 2017; 107:387-401. [DOI: 10.1111/mmi.13888] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/24/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Bill Söderström
- Structural Cellular Biology Unit; Okinawa Institute of Science and Technology; Okinawa 904-0495 Japan
| | - Helena Chan
- Structural Cellular Biology Unit; Okinawa Institute of Science and Technology; Okinawa 904-0495 Japan
| | - Patrick J. Shilling
- Department of Biochemistry and Biophysics; Stockholm University; Stockholm 106 91 Sweden
| | - Ulf Skoglund
- Structural Cellular Biology Unit; Okinawa Institute of Science and Technology; Okinawa 904-0495 Japan
| | - Daniel O. Daley
- Department of Biochemistry and Biophysics; Stockholm University; Stockholm 106 91 Sweden
| |
Collapse
|
27
|
Erickson HP. How bacterial cell division might cheat turgor pressure - a unified mechanism of septal division in Gram-positive and Gram-negative bacteria. Bioessays 2017; 39. [PMID: 28699183 DOI: 10.1002/bies.201700045] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An important question for bacterial cell division is how the invaginating septum can overcome the turgor force generated by the high osmolarity of the cytoplasm. I suggest that it may not need to. Several studies in Gram-negative bacteria have shown that the periplasm is isoosmolar with the cytoplasm. Indirect evidence suggests that this is also true for Gram-positive bacteria. In this case the invagination of the septum takes place within the uniformly high osmotic pressure environment, and does not have to fight turgor pressure. A related question is how the V-shaped constriction of Gram-negative bacteria relates to the plate-like septum of Gram-positive bacteria. I collected evidence that Gram-negative bacteria have a latent capability of forming plate-like septa, and present a model in which septal division is the basic mechanism in both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Harold P Erickson
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| |
Collapse
|
28
|
Söderström B, Daley DO. The bacterial divisome: more than a ring? Curr Genet 2017; 63:161-164. [PMID: 27387519 DOI: 10.1007/s00294-016-0630-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 06/29/2016] [Accepted: 07/01/2016] [Indexed: 11/29/2022]
Abstract
Bacterial cells are critically dependent on their ability to divide. The process of division is carried out by a large and highly dynamic molecular machine, known as the divisome. An understanding of the divisomes' architecture is highly sought after, as it is essential for understanding molecular mechanisms and potentially designing antibiotic molecules that curb bacterial growth. Our current view, which is mainly based on high-resolution imaging of Escherichia coli, is that it is a patchy ring or toroid structure. However, recent super-resolution imaging has shown that the toroid structure contains at least three concentric rings, each containing a different set of proteins. Thus, the emerging picture is that the divisome has different functional modules that are spatially separated in concentric rings.
Collapse
Affiliation(s)
- Bill Söderström
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, Onna, 904-0495, Japan.
| | - Daniel O Daley
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden.
| |
Collapse
|
29
|
Abstract
The identification of the FtsZ ring by Bi and Lutkenhaus in 1991 was a defining moment for the field of bacterial cell division. Not only did the presence of the FtsZ ring provide fodder for the next 25 years of research, the application of a then cutting-edge approach-immunogold labeling of bacterial cells-inspired other investigators to apply similarly state-of-the-art technologies in their own work. These efforts have led to important advances in our understanding of the factors underlying assembly and maintenance of the division machinery. At the same time, significant questions about the mechanisms coordinating division with cell growth, DNA replication, and chromosome segregation remain. This review addresses the most prominent of these questions, setting the stage for the next 25 years.
Collapse
|
30
|
Kinetics of large-scale chromosomal movement during asymmetric cell division in Escherichia coli. PLoS Genet 2017; 13:e1006638. [PMID: 28234902 PMCID: PMC5345879 DOI: 10.1371/journal.pgen.1006638] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/10/2017] [Accepted: 02/15/2017] [Indexed: 11/19/2022] Open
Abstract
Coordination between cell division and chromosome replication is essential for a cell to produce viable progeny. In the commonly accepted view, Escherichia coli realize this coordination via the accurate positioning of its cell division apparatus relative to the nucleoids. However, E. coli lacking proper positioning of its cell division planes can still successfully propagate. Here, we characterize how these cells partition their chromosomes into daughters during such asymmetric divisions. Using quantitative time-lapse imaging, we show that DNA translocase, FtsK, can pump as much as 80% (3.7 Mb) of the chromosome between daughters at an average rate of 1700±800 bp/s. Pauses in DNA translocation are rare, and in no occasions did we observe reversals at experimental time scales of a few minutes. The majority of DNA movement occurs at the latest stages of cell division when the cell division protein ZipA has already dissociated from the septum, and the septum has closed to a narrow channel with a diameter much smaller than the resolution limit of the microscope (~250 nm). Our data suggest that the narrow constriction is necessary for effective translocation of DNA by FtsK. DNA translocases are conserved throughout bacteria. While at atomic and molecular levels they have been well characterized, their ability to partition DNA in vegetatively growing cells has remained less clear. Here we show that E. coli translocase, FtsK, can move as much as 80% (3.7 Mb) of the chromosomal DNA across the closing septum in asymmetrically dividing cells at an average rate of 1700 bp/s. The majority of DNA movement occurs at the latest stages of cell division when the septum has closed to a narrow channel. Our data implies that a narrow septal opening is needed for effective translocation of DNA by FtsK.
Collapse
|
31
|
Viola MG, LaBreck CJ, Conti J, Camberg JL. Proteolysis-Dependent Remodeling of the Tubulin Homolog FtsZ at the Division Septum in Escherichia coli. PLoS One 2017; 12:e0170505. [PMID: 28114338 PMCID: PMC5256927 DOI: 10.1371/journal.pone.0170505] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/05/2017] [Indexed: 11/18/2022] Open
Abstract
During bacterial cell division a dynamic protein structure called the Z-ring assembles at the septum. The major protein in the Z-ring in Escherichia coli is FtsZ, a tubulin homolog that polymerizes with GTP. FtsZ is degraded by the two-component ATP-dependent protease ClpXP. Two regions of FtsZ, located outside of the polymerization domain in the unstructured linker and at the C-terminus, are important for specific recognition and degradation by ClpXP. We engineered a synthetic substrate containing green fluorescent protein (Gfp) fused to an extended FtsZ C-terminal tail (residues 317–383), including the unstructured linker and the C-terminal conserved region, but not the polymerization domain, and showed that it is sufficient to target a non-native substrate for degradation in vitro. To determine if FtsZ degradation regulates Z-ring assembly during division, we expressed a full length Gfp-FtsZ fusion protein in wild type and clp deficient strains and monitored fluorescent Z-rings. In cells deleted for clpX or clpP, or cells expressing protease-defective mutant protein ClpP(S97A), Z-rings appear normal; however, after photobleaching a region of the Z-ring, fluorescence recovers ~70% more slowly in cells without functional ClpXP than in wild type cells. Gfp-FtsZ(R379E), which is defective for degradation by ClpXP, also assembles into Z-rings that recover fluorescence ~2-fold more slowly than Z-rings containing Gfp-FtsZ. In vitro, ClpXP cooperatively degrades and disassembles FtsZ polymers. These results demonstrate that ClpXP is a regulator of Z-ring dynamics and that the regulation is proteolysis-dependent. Our results further show that FtsZ-interacting proteins in E. coli fine-tune Z-ring dynamics.
Collapse
Affiliation(s)
- Marissa G. Viola
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Christopher J. LaBreck
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Joseph Conti
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Jodi L. Camberg
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
32
|
Roles of the Essential Protein FtsA in Cell Growth and Division in Streptococcus pneumoniae. J Bacteriol 2017; 199:JB.00608-16. [PMID: 27872183 DOI: 10.1128/jb.00608-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/16/2016] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae is an ovoid-shaped Gram-positive bacterium that grows by carrying out peripheral and septal peptidoglycan (PG) synthesis, analogous to model bacilli, such as Escherichia coli and Bacillus subtilis In the model bacilli, FtsZ and FtsA proteins assemble into a ring at midcell and are dedicated to septal PG synthesis but not peripheral PG synthesis; hence, inactivation of FtsZ or FtsA results in long filamentous cells unable to divide. Here, we demonstrate that FtsA and FtsZ colocalize at midcell in S. pneumoniae and that partial depletion of FtsA perturbs septum synthesis, resulting in elongated cells with multiple FtsZ rings that fail to complete septation. Unexpectedly, complete depletion of FtsA resulted in the delocalization of FtsZ rings and ultimately cell ballooning and lysis. In contrast, depletion or deletion of gpsB and sepF, which in B. subtilis are synthetically lethal with ftsA, resulted in enlarged and elongated cells with multiple FtsZ rings, with deletion of sepF mimicking partial depletion of FtsA. Notably, cell ballooning was not observed, consistent with later recruitment of these proteins to midcell after Z-ring assembly. The overproduction of FtsA stimulates septation and suppresses the cell division defects caused by the deletion of sepF and gpsB under some conditions, supporting the notion that FtsA shares overlapping functions with GpsB and SepF at later steps in the division process. Our results indicate that, in S. pneumoniae, both GpsB and SepF are involved in septal PG synthesis, whereas FtsA and FtsZ coordinate both peripheral and septal PG synthesis and are codependent for localization at midcell.IMPORTANCEStreptococcus pneumoniae (pneumococcus) is a clinically important human pathogen for which more therapies against unexploited essential targets, like cell growth and division proteins, are needed. Pneumococcus is an ovoid-shaped Gram-positive bacterium with cell growth and division properties that have important distinctions from those of rod-shaped bacteria. Gaining insights into these processes can thus provide valuable information to develop novel antimicrobials. Whereas rods use distinctly localized protein machines at different cellular locations to synthesize peripheral and septal peptidoglycans, we present evidence that S. pneumoniae organizes these two machines at a single location in the middle of dividing cells. Here, we focus on the properties of the actin-like protein FtsA as an essential orchestrator of peripheral and septal growth in this bacterium.
Collapse
|
33
|
Coltharp C, Xiao J. Beyond force generation: Why is a dynamic ring of FtsZ polymers essential for bacterial cytokinesis? Bioessays 2016; 39:1-11. [PMID: 28004447 DOI: 10.1002/bies.201600179] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We propose that the essential function of the most highly conserved protein in bacterial cytokinesis, FtsZ, is not to generate a mechanical force to drive cell division. Rather, we suggest that FtsZ acts as a signal-processing hub to coordinate cell wall synthesis at the division septum with a diverse array of cellular processes, ensuring that the cell divides smoothly at the correct time and place, and with the correct septum morphology. Here, we explore how the polymerization properties of FtsZ, which have been widely attributed to force generation, can also be advantageous in this signal processing role. We suggest mechanisms by which FtsZ senses and integrates both mechanical and biochemical signals, and conclude by proposing experiments to investigate how FtsZ contributes to the remarkable spatial and temporal precision of bacterial cytokinesis.
Collapse
Affiliation(s)
- Carla Coltharp
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
34
|
Xiao J, Goley ED. Redefining the roles of the FtsZ-ring in bacterial cytokinesis. Curr Opin Microbiol 2016; 34:90-96. [PMID: 27620716 DOI: 10.1016/j.mib.2016.08.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 02/05/2023]
Abstract
In most bacteria, cell division relies on the functions of an essential protein, FtsZ. FtsZ polymerizes at the future division site to form a ring-like structure, termed the Z-ring, that serves as a scaffold to recruit all other division proteins, and possibly generates force to constrict the cell. The scaffolding function of the Z-ring is well established, but the force generating function has recently been called into question. Additionally, new findings have demonstrated that the Z-ring is more directly linked to cell wall metabolism than simply recruiting enzymes to the division site. Here we review these advances and suggest that rather than generating a rate-limiting constrictive force, the Z-ring's function may be redefined as an orchestrator of septum synthesis.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
35
|
FtsZ does not initiate membrane constriction at the onset of division. Sci Rep 2016; 6:33138. [PMID: 27609565 PMCID: PMC5016829 DOI: 10.1038/srep33138] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/22/2016] [Indexed: 01/01/2023] Open
Abstract
The source of constriction required for division of a bacterial cell remains enigmatic. FtsZ is widely believed to be a key player, because in vitro experiments indicate that it can deform liposomes when membrane tethered. However in vivo evidence for such a role has remained elusive as it has been challenging to distinguish the contribution of FtsZ from that of peptidoglycan-ingrowth. To differentiate between these two possibilities we studied the early stages of division in Escherichia coli, when FtsZ is present at the division site but peptidoglycan synthesizing enzymes such as FtsI and FtsN are not. Our approach was to use correlative cryo-fluorescence and cryo-electron microscopy (cryo-CLEM) to monitor the localization of fluorescently labeled FtsZ, FtsI or FtsN correlated with the septal ultra-structural geometry in the same cell. We noted that the presence of FtsZ at the division septum is not sufficient to deform membranes. This observation suggests that, although FtsZ can provide a constrictive force, the force is not substantial at the onset of division. Conversely, the presence of FtsN always correlated with membrane invagination, indicating that allosteric activation of peptidoglycan ingrowth is the trigger for constriction of the cell envelope during cell division in E. coli.
Collapse
|