1
|
Qiao J, Sallet H, Meibom KL, Bernier-Latmani R. Growth substrate limitation enhances anaerobic arsenic methylation by Paraclostridium bifermentans strain EML. Appl Environ Microbiol 2024:e0096124. [PMID: 39513722 DOI: 10.1128/aem.00961-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/19/2024] [Indexed: 11/15/2024] Open
Abstract
Microbial arsenic methylation is established as a detoxification process under aerobic conditions (converting arsenite to monomethylated arsenate) but is proposed to be a microbial warfare strategy under anoxic conditions due to the toxicity of its main product, monomethylarsonous acid (MMAs(III)). Here we leveraged a paddy soil-derived anaerobic arsenic methylator, Paraclostridium bifermentans strain EML, to gain insights into this process. Strain EML was inoculated into a series of media involving systematic dilutions of Reinforced Clostridial Broth (RCB) with 25 µM arsenite to assess the impact of growth substrate concentration on arsenic methylation. Growth curves evidenced the sensitivity of strain EML to arsenite, and arsenic speciation analysis revealed the production of MMAs(III). Concentrations of MMAs(III) and arsenic methylation gene (arsM) transcription were found to be positively correlated with RCB dilution, suggesting that substrate limitation enhances arsM gene expression and associated anaerobic arsenic methylation. We propose that growth substrate competition among microorganisms may also contribute to an increase in anaerobic arsenic methylation. This hypothesis was further evaluated in an anaerobic co-culture system involving strain EML and either wild-type Escherichia coli K-12 MG1655 (WT) or E. coli expressing the MMAs(III)-resistance gene (arsP) (ArsP E. coli). We observed increased MMAs(III) production in the presence of E. coli than its absence and growth inhibition of WT E. coli to a greater extent than ArsP E. coli, presumably due to the MMAs(III) produced by strain EML. Collectively, our findings suggest an ecological role for anaerobic arsenic methylation, highlighting the significance of microbe-microbe competition and interaction in this process.IMPORTANCEMicrobial arsenic methylation is highly active in rice paddy fields under flooded conditions, leading to increased accumulation of methylated arsenic in rice grains. In contrast to the known detoxification process for aerobic arsenic methylation, the ecological role of anaerobic arsenic methylation remains elusive and is proposed to be an antibiotic-producing process involved in microbial warfare. In this study, we interrogated a rice paddy soil-derived anaerobic arsenic-methylating bacterium, Paraclostridium bifermentans strain EML, to explore the effect of growth substrate limitation on arsenic methylation in the context of the microbial warfare hypothesis. We provide direct evidence for the role of growth substrate competition in anaerobic arsenic methylation via anaerobic prey-predator co-culture experiments. Moreover, we demonstrate a feedback loop, in which a bacterium resistant to MMAs(III) enhances its production, presumably through enhanced expression of arsM resulting from substrate limitation. Our work uncovers the complex interactions between an anaerobic arsenic methylator and its potential competitors.
Collapse
Affiliation(s)
- Jiangtao Qiao
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, China
| | - Hugo Sallet
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Karin Lederballe Meibom
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
2
|
Yang BY, Chen C, Gao A, Xue XM, Huang K, Zhang J, Zhao FJ. Arsenic Methylation by a Sulfate-Reducing Bacterium from Paddy Soil Harboring a Novel ArsSM Fusion Protein. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19266-19276. [PMID: 39404172 DOI: 10.1021/acs.est.4c04730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Microbial arsenic (As) methylation is an important process of As biogeochemistry. Only a few As-methylating microorganisms have been isolated from paddy soil, hindering the mechanistic understanding of the process involved. We isolated 54 anaerobic and 32 aerobic bacteria from paddy soil with a high As methylation potential. Among the 86 isolates, 14 anaerobes, including 7 sulfate-reducing bacteria (SRB), but none of the aerobes were able to methylate arsenite [As(III)] or monomethylarsenite [MMA(III)] or both, suggesting that the As-methylating ability is much more prevalent in anaerobes than in aerobes. We performed a detailed investigation on As methylation by a SRB isolate, Solidesulfovibrio sp. TC1, and identified a novel bifunctional enzyme consisting of a fusion of As(III) S-adenosylmethionine (SAM) methyltransferase (ArsM) and a radical SAM protein. The enzyme (ArsSM) can catalyze As(III) methylation to MMA and DMA and subsequent adenosylation of DMA to form 5'-deoxy-5'-dimethylarsinoyl-adenosine (DDMAA), which is a key intermediate in the biosynthesis of arsenosugars. High concentrations of sulfide produced by SRB did not affect As(III) methylation to MMA but inhibited MMA methylation to DMA. Genes encoding ArsSM fusion proteins are widespread in anaerobes, particularly SRB, suggesting that ArsSM-carrying anaerobes may play an important role in As methylation in an anoxic environment.
Collapse
Affiliation(s)
- Bao-Yun Yang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuan Chen
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Axiang Gao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi-Mei Xue
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ke Huang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Zhang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Hemmat-Jou MH, Liu S, Liang Y, Chen G, Fang L, Li F. Microbial arsenic methylation in soil-water systems and its environmental significance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173873. [PMID: 38879035 DOI: 10.1016/j.scitotenv.2024.173873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
In this review, we have summarized the current knowledge about the environmental importance, relevance, and consequences of microbial arsenic (As) methylation in various ecosystems. In this regard, we have presented As biomethylation in terrestrial and aquatic ecosystems particularly in rice paddy soils and wetlands. The functions of As biomethylation by microbial consortia in anaerobic and aerobic conditions are extensively discussed. In addition, we have tried to explain the interconnections between As transformation and carbon (C), such as microbial degradation of organic compounds and methane (CH4) emission. These processes can cause As release because of the reduction of arsenate (As(V)) to the more mobile arsenite (As(III)) as well as As methylation and the formation of toxic trivalent methylated As species in anaerobic conditions. Furthermore, the sulfur (S) transformation can form highly toxic thiolated As species owing to its interference with As biomethylation. Besides, we have focused on many other mutual interlinks that remain elusive between As and C, including As biomethylation, thiolation, and CH4 emission, in the soil-water systems. Recent developments have clarified the significant and complex interactions between the coupled microbial process in anoxic and submerged soils. These processes, performed by little-known/unknown microbial taxa or well-known members of microbial communities with unrecognized metabolic pathways, conducted several concurrent reactions that contributed to global warming on our planet and have unfavorable impacts on water quality and human food resources. Finally, some environmental implications in rice production and arsenic removal from soil-water systems are discussed. Generally, our understanding of the ecological and metabolic evidence for the coupling and synchronous processes of As, C, and S are involved in environmental contamination-caused toxicity in human food, including high As content in rice grain, water resources, and global warming through methanogenesis elucidate combating global rice safety, drinking water, and climate changes.
Collapse
Affiliation(s)
- Mohammad Hossein Hemmat-Jou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Sujie Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yongmei Liang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guanhong Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
4
|
Shen J, Tang ST, Wang YN, Li XT, Chen J, Sarkarai Nadar V, Rosen BP, Zhang J, Zhao FJ. Bifunctional ArsI Dioxygenase from Acidovorax sp. ST3 with Both Methylarsenite [MAs(III)] Demethylation and MAs(III) Oxidation Activities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16444-16453. [PMID: 39226438 DOI: 10.1021/acs.est.4c04835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Methylated arsenicals, including highly toxic species, such as methylarsenite [MAs(III)], are pervasive in the environment. Certain microorganisms possess the ability to detoxify MAs(III) by ArsI-catalyzed demethylation. Here, we characterize a bifunctional enzyme encoded by the arsI gene from Acidovorax sp. ST3, which can detoxify MAs(III) through both the demethylation and oxidation pathways. Deletion of the 22 C-terminal amino acids of ArsI increased its demethylation activity while reducing the oxidation activity. Further deletion of 44 C-terminal residues enhanced the MAs(III) demethylation activity. ArsI has four vicinal cysteine pairs, with the first pair being necessary for MAs(III) demethylation, while at least one of the other three pairs contributes to MAs(III) oxidation. Molecular modeling and site-directed mutagenesis indicated that one of the C-terminal vicinal cysteine pairs is involved in modulating the switch between oxidase and demethylase activity. These findings underscore the critical role of the C-terminal region in modulating the enzymatic activities of ArsI, particularly in MAs(III) demethylation. This research reveals the structure-function relationship of the ArsI enzyme and advances our understanding of the MAs(III) metabolism in bacteria.
Collapse
Affiliation(s)
- Jie Shen
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Shi-Tong Tang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Ya-Nan Wang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xue-Ting Li
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Venkadesh Sarkarai Nadar
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Jun Zhang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
5
|
León Ninin JM, Muehe EM, Kölbl A, Higa Mori A, Nicol A, Gilfedder B, Pausch J, Urbanski L, Lueders T, Planer-Friedrich B. Changes in arsenic mobility and speciation across a 2000-year-old paddy soil chronosequence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168351. [PMID: 37939938 DOI: 10.1016/j.scitotenv.2023.168351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Rice accumulates arsenic (As) when cultivated under flooded conditions in paddy soils threatening rice yield or its safety for human consumption, depending on As speciation. During long-term paddy use, repeated redox cycles systematically alter soil biogeochemistry and microbiology. In the present study, incubation experiments from a 2000-year-old paddy soil chronosequence revealed that As mobilization and speciation also change with paddy soil age. Younger paddies (≤100 years) showed the highest total As mobilization, with speciation dominated by carcinogenic inorganic oxyarsenic species and highly mobile inorganic thioarsenates. Inorganic thioarsenates formed by a high availability of reduced sulfur (S) due to low concentrations of reducible iron (Fe) and soil organic carbon (SOC). Long-term paddy use (>100 years) resulted in higher microbial activity and SOC, increasing the share of phytotoxic methylated As. Methylated oxyarsenic species are precursors for cytotoxic methylated thioarsenates. Methylated thioarsenates formed in soils of all ages being limited either by the availability of methylated As in young soils or that of reduced-S in older ones. The present study shows that via a linkage of As to the biogeochemistry of Fe, S, and C, paddy soil age can influence the kind and the extent of threat that As poses for rice cultivation.
Collapse
Affiliation(s)
- José M León Ninin
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - E Marie Muehe
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research (UFZ), 04318 Leipzig, Germany; Department of Geosciences, University of Tübingen, 72076 Tübingen, Germany
| | - Angelika Kölbl
- Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Alejandra Higa Mori
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Alan Nicol
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Ben Gilfedder
- Limnological Research Station, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Johanna Pausch
- Agroecology, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Livia Urbanski
- Chair of Soil Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
| | - Tillmann Lueders
- Ecological Microbiology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95448 Bayreuth, Germany
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany.
| |
Collapse
|
6
|
Ge ZB, Zhai ZQ, Xie WY, Dai J, Huang K, Johnson DR, Zhao FJ, Wang P. Two-tiered mutualism improves survival and competitiveness of cross-feeding soil bacteria. THE ISME JOURNAL 2023; 17:2090-2102. [PMID: 37737252 PMCID: PMC10579247 DOI: 10.1038/s41396-023-01519-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Metabolic cross-feeding is a pervasive microbial interaction type that affects community stability and functioning and directs carbon and energy flows. The mechanisms that underlie these interactions and their association with metal/metalloid biogeochemistry, however, remain poorly understood. Here, we identified two soil bacteria, Bacillus sp. BP-3 and Delftia sp. DT-2, that engage in a two-tiered mutualism. Strain BP-3 has low utilization ability of pyruvic acid while strain DT-2 lacks hexokinase, lacks a phosphotransferase system, and is defective in glucose utilization. When strain BP-3 is grown in isolation with glucose, it releases pyruvic acid to the environment resulting in acidification and eventual self-killing. However, when strain BP-3 is grown together with strain DT-2, strain DT-2 utilizes the released pyruvic acid to meet its energy requirements, consequently rescuing strain BP-3 from pyruvic acid-induced growth inhibition. The two bacteria further enhance their collective competitiveness against other microbes by using arsenic as a weapon. Strain DT-2 reduces relatively non-toxic methylarsenate [MAs(V)] to highly toxic methylarsenite [MAs(III)], which kills or suppresses competitors, while strain BP-3 detoxifies MAs(III) by methylation to non-toxic dimethylarsenate [DMAs(V)]. These two arsenic transformations are enhanced when strains DT-2 and BP-3 are grown together. The two strains, along with their close relatives, widely co-occur in soils and their abundances increase with the soil arsenic concentration. Our results reveal that these bacterial types employ a two-tiered mutualism to ensure their collective metabolic activity and maintain their ecological competitive against other soil microbes. These findings shed light on the intricateness of bacterial interactions and their roles in ecosystem functioning.
Collapse
Affiliation(s)
- Zhan-Biao Ge
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Centre for Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Qiang Zhai
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Centre for Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wan-Ying Xie
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Dai
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ke Huang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
- Institute of Ecology and Evolution, University of Bern, 3012, Bern, Switzerland
| | - Fang-Jie Zhao
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng Wang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
- Centre for Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Chen C, Li L, Wang Y, Dong X, Zhao FJ. Methylotrophic methanogens and bacteria synergistically demethylate dimethylarsenate in paddy soil and alleviate rice straighthead disease. THE ISME JOURNAL 2023; 17:1851-1861. [PMID: 37604918 PMCID: PMC10579292 DOI: 10.1038/s41396-023-01498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
Microorganisms play a key role in arsenic (As) biogeochemistry, transforming As species between inorganic and organic forms and different oxidation states. Microbial As methylation is enhanced in anoxic paddy soil, producing primarily dimethylarsenic (DMAs), which can cause rice straighthead disease and large yield losses. DMAs can also be demethylated in paddy soil, but the microorganisms driving this process remain unclear. In this study, we showed that the enrichment culture of methylotrophic methanogens from paddy soil demethylated pentavalent DMAs(V) efficiently. DMAs(V) was reduced to DMAs(III) before demethylation. 16S rRNA gene diversity and metagenomic analysis showed that Methanomassiliicoccus dominated in the enrichment culture, with Methanosarcina and Methanoculleus also being present. We isolated Methanomassiliicoccus luminyensis CZDD1 and Methanosarcina mazei CZ1 from the enrichment culture; the former could partially demethylate trivalent DMAs(III) but not DMAs(V) and the latter could demethylate neither. Addition of strain CZDD1 to the enrichment culture greatly accelerated DMAs(V) demethylation. Demethylation of DMAs(V) in the enrichment culture was suppressed by ampicillin, suggesting the involvement of bacteria. We isolated three anaerobic bacterial strains including Clostridium from the enrichment culture, which could produce hydrogen and reduce DMAs(V) to DMAs(III). Furthermore, augmentation of the Methanomassiliicoccus-Clostridium coculture to a paddy soil decreased DMAs accumulation by rice and alleviated straighthead disease. The results reveal a synergistic relationship whereby anaerobic bacteria reduce DMAs(V) to DMAs(III) for demethylation by Methanomassiliicoccus and also produce hydrogen to promote the growth of Methanomassiliicoccus; enhancing their populations in paddy soil can help alleviate rice straighthead disease.
Collapse
Affiliation(s)
- Chuan Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lingyan Li
- College of Life Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, 100049, Beijing, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yanfen Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, 100049, Beijing, China
| | - Xiuzhu Dong
- College of Life Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, 100049, Beijing, China.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Vigneron A, Vincent WF, Lovejoy C. Discovery of a novel bacterial class with the capacity to drive sulfur cycling and microbiome structure in a paleo-ocean analog. ISME COMMUNICATIONS 2023; 3:82. [PMID: 37596370 PMCID: PMC10439189 DOI: 10.1038/s43705-023-00287-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/20/2023]
Abstract
Uncultivated microbial taxa represent a large fraction of global microbial diversity and likely drive numerous biogeochemical transformations in natural ecosystems. Geographically isolated, polar ecosystems are complex microbial biomes and refuges of underexplored taxonomic and functional biodiversity. Combining amplicon sequencing with genome-centric metagenomic analysis of samples from one of the world's northernmost lakes (Lake A, Ellesmere Island, Canadian High Arctic), we identified a novel bacterial taxon that dominates in the bottom layer of anoxic, sulfidic, relict sea water that was isolated from the Arctic Ocean some 3000 years ago. Based on phylogenomic comparative analyses, we propose that these bacteria represent a new Class within the poorly described Electryoneota/AABM5-125-24 candidate phylum. This novel class, for which we propose the name Tariuqbacteria, may be either a relict of ancient ocean conditions or endemic to this High Arctic system, provisionally providing a rare example of high-taxonomy level endemism. Consistent with the geochemistry of the bottom water, the genetic composition of the Candidatus Tariuqbacter genome revealed a strictly anaerobic lifestyle with the potential for sulfate and sulfur reduction, a versatile carbon metabolism and the capability to eliminate competing bacteria through methylarsenite production, suggesting an allelochemical influence on microbiome structure by this planktonic microbe.
Collapse
Affiliation(s)
- Adrien Vigneron
- Département de Biologie, Université Laval, Québec, QC, Canada.
- Centre d'études nordiques (CEN), Université Laval, Québec, QC, Canada.
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.
- Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada.
| | - Warwick F Vincent
- Département de Biologie, Université Laval, Québec, QC, Canada
- Centre d'études nordiques (CEN), Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada
| | - Connie Lovejoy
- Département de Biologie, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada
- Québec Océan, Université Laval, Québec, QC, Canada
| |
Collapse
|
9
|
Ge ZB, Chen MM, Xie WY, Huang K, Zhao FJ, Wang P. Natural Microbial Reactor-Based Sensing Platform for Highly Sensitive Detection of Inorganic Arsenic in Rice Grains. Anal Chem 2023; 95:11467-11474. [PMID: 37462477 DOI: 10.1021/acs.analchem.3c01857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Rice is a major dietary source of inorganic arsenic (iAs), a highly toxic arsenical that accumulates in rice and poses health risks to rice-based populations. However, the availability of detection methods for iAs in rice grains is limited. In this study, we developed a novel approach utilizing a natural bacterial biosensor, Escherichia coli AW3110 (pBB-ArarsR-mCherry), in conjunction with amylase hydrolysis for efficient extraction, enabling high-throughput and quantitative detection of iAs in rice grains. The biosensor exhibits high specificity for arsenic and distinguishes between arsenite [As(III)] and arsenate [As(V)] by modulating the concentration of PO43- in the detection system. We determined the iAs concentrations in 19 rice grain samples with varying total As concentrations and compared our method with the standard technique of microwave digestion coupled with HPLC-ICP-MS. Both methods exhibited comparable results, without no significant bias in the concentrations of As(III) and As(V). The whole-cell biosensor demonstrated excellent reproducibility and a high signal-to-noise ratio, achieving a limit of detection of 16 μg kg-1 [As(III)] and 29 μg kg-1 [As(V)]. These values are considerably lower than the maximum allowable level (100 μg kg-1) for infant rice supplements established by the European Union. Our straightforward sensing strategy presents a promising tool for detecting iAs in other food samples.
Collapse
Affiliation(s)
- Zhan-Biao Ge
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming-Ming Chen
- Centre for Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Wan-Ying Xie
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ke Huang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Centre for Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
Wang L, Guo Q, Wu G, Yu Z, Ninin JML, Planer-Friedrich B. Methanogens-Driven Arsenic Methylation Preceding Formation of Methylated Thioarsenates in Sulfide-Rich Hot Springs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7410-7420. [PMID: 37134202 DOI: 10.1021/acs.est.2c08814] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Hot springs represent a major source of arsenic release into the environment. Speciation is typically reported to be dominated by arsenite, arsenate, and inorganic thiolated arsenates. Much less is known about the relevance and formation of methylated thioarsenates, a group with species of high mobility and toxicity. In hot spring samples taken from the Tengchong volcanic region in China, methylated thioarsenates contributed up to 13% to total arsenic. Enrichment cultures were obtained from the corresponding sediment samples and incubated to assess their capability to convert arsenite into methylated thioarsenates over time and in the presence of different microbial inhibitors. In contrast to observations in other environmental systems (e.g., paddy soils), there was no solid evidence, supporting that the sulfate-reducing bacteria contributed to the arsenic methylation. Methanosarcina, the sole genus of methanogens detected in the enrichment cultures, as well as Methanosarcina thermophila TM-1, a pure strain within the genus, did methylate arsenic. We propose that methylated thioarsenates in a typical sulfide-rich hot spring environment like Tengchong form via a combination of biotic arsenic methylation driven by thermophilic methanogens and arsenic thiolation with either geogenic sulfide or sulfide produced by sulfate-reducing bacteria.
Collapse
Affiliation(s)
- Luxia Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, Hubei, P. R. China
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, P. R. China
| | - Qinghai Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, Hubei, P. R. China
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, P. R. China
| | - Geng Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, Hubei, P. R. China
| | - Zhicheng Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, Hubei, P. R. China
| | - José Miguel Léon Ninin
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
11
|
Paul NP, Galván AE, Yoshinaga-Sakurai K, Rosen BP, Yoshinaga M. Arsenic in medicine: past, present and future. Biometals 2023; 36:283-301. [PMID: 35190937 PMCID: PMC8860286 DOI: 10.1007/s10534-022-00371-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/05/2022] [Indexed: 12/17/2022]
Abstract
Arsenicals are one of the oldest treatments for a variety of human disorders. Although infamous for its toxicity, arsenic is paradoxically a therapeutic agent that has been used since ancient times for the treatment of multiple diseases. The use of most arsenic-based drugs was abandoned with the discovery of antibiotics in the 1940s, but a few remained in use such as those for the treatment of trypanosomiasis. In the 1970s, arsenic trioxide, the active ingredient in a traditional Chinese medicine, was shown to produce dramatic remission of acute promyelocytic leukemia similar to the effect of all-trans retinoic acid. Since then, there has been a renewed interest in the clinical use of arsenicals. Here the ancient and modern medicinal uses of inorganic and organic arsenicals are reviewed. Included are antimicrobial, antiviral, antiparasitic and anticancer applications. In the face of increasing antibiotic resistance and the emergence of deadly pathogens such as the severe acute respiratory syndrome coronavirus 2, we propose revisiting arsenicals with proven efficacy to combat emerging pathogens. Current advances in science and technology can be employed to design newer arsenical drugs with high therapeutic index. These novel arsenicals can be used in combination with existing drugs or serve as valuable alternatives in the fight against cancer and emerging pathogens. The discovery of the pentavalent arsenic-containing antibiotic arsinothricin, which is effective against multidrug-resistant pathogens, illustrates the future potential of this new class of organoarsenical antibiotics.
Collapse
Affiliation(s)
- Ngozi P Paul
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Adriana E Galván
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Kunie Yoshinaga-Sakurai
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
12
|
Paul NP, Viswanathan T, Chen J, Yoshinaga M, Rosen BP. The ArsQ permease and transport of the antibiotic arsinothricin. Mol Microbiol 2023; 119:505-514. [PMID: 36785875 PMCID: PMC10101903 DOI: 10.1111/mmi.15045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
The pentavalent organoarsenical arsinothricin (AST) is a natural product synthesized by the rhizosphere bacterium Burkholderia gladioli GSRB05. AST is a broad-spectrum antibiotic effective against human pathogens such as carbapenem-resistant Enterobacter cloacae. It is a non-proteogenic amino acid and glutamate mimetic that inhibits bacterial glutamine synthetase. The AST biosynthetic pathway is composed of a three-gene cluster, arsQML. ArsL catalyzes synthesis of reduced trivalent hydroxyarsinothricin (R-AST-OH), which is methylated by ArsM to the reduced trivalent form of AST (R-AST). In the culture medium of B. gladioli, both trivalent species appear as the corresponding pentavalent arsenicals, likely due to oxidation in air. ArsQ is an efflux permease that is proposed to transport AST or related species out of the cells, but the chemical nature of the actual transport substrate is unclear. In this study, B. gladioli arsQ was expressed in Escherichia coli and shown to confer resistance to AST and its derivatives. Cells of E. coli accumulate R-AST, and exponentially growing cells expressing arsQ take up less R-AST. The cells exhibit little transport of their pentavalent forms. Transport was independent of cellular energy and appears to be equilibrative. A homology model of ArsQ suggests that Ser320 is in the substrate binding site. A S320A mutant exhibits reduced R-AST-OH transport, suggesting that it plays a role in ArsQ function. The ArsQ permease is proposed to be an energy-independent uniporter responsible for downhill transport of the trivalent form of AST out of cells, which is oxidized extracellularly to the active form of the antibiotic.
Collapse
Affiliation(s)
- Ngozi P. Paul
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, U.S.A
| | - Thiruselvam Viswanathan
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, U.S.A
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, U.S.A
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, U.S.A
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, U.S.A
| |
Collapse
|
13
|
Zhang C, Liu X, Shi LD, Li J, Xiao X, Shao Z, Dong X. Unexpected genetic and microbial diversity for arsenic cycling in deep sea cold seep sediments. NPJ Biofilms Microbiomes 2023; 9:13. [PMID: 36991068 PMCID: PMC10060404 DOI: 10.1038/s41522-023-00382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Cold seeps, where cold hydrocarbon-rich fluid escapes from the seafloor, show strong enrichment of toxic metalloid arsenic (As). The toxicity and mobility of As can be greatly altered by microbial processes that play an important role in global As biogeochemical cycling. However, a global overview of genes and microbes involved in As transformation at seeps remains to be fully unveiled. Using 87 sediment metagenomes and 33 metatranscriptomes derived from 13 globally distributed cold seeps, we show that As detoxification genes (arsM, arsP, arsC1/arsC2, acr3) were prevalent at seeps and more phylogenetically diverse than previously expected. Asgardarchaeota and a variety of unidentified bacterial phyla (e.g. 4484-113, AABM5-125-24 and RBG-13-66-14) may also function as the key players in As transformation. The abundances of As cycling genes and the compositions of As-associated microbiome shifted across different sediment depths or types of cold seep. The energy-conserving arsenate reduction or arsenite oxidation could impact biogeochemical cycling of carbon and nitrogen, via supporting carbon fixation, hydrocarbon degradation and nitrogen fixation. Overall, this study provides a comprehensive overview of As cycling genes and microbes at As-enriched cold seeps, laying a solid foundation for further studies of As cycling in deep sea microbiome at the enzymatic and processual levels.
Collapse
Affiliation(s)
- Chuwen Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xinyue Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Ling-Dong Shi
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jiwei Li
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Xi Xiao
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
14
|
Raturi G, Chaudhary A, Rana V, Mandlik R, Sharma Y, Barvkar V, Salvi P, Tripathi DK, Kaur J, Deshmukh R, Dhar H. Microbial remediation and plant-microbe interaction under arsenic pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160972. [PMID: 36566865 DOI: 10.1016/j.scitotenv.2022.160972] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Arsenic contamination in aquatic and terrestrial ecosystem is a serious environmental issue. Both natural and anthropogenic processes can introduce it into the environment. The speciation of the As determine the level of its toxicity. Among the four oxidation states of As (-3, 0, +3, and + 5), As(III) and As(V) are the common species found in the environment, As(III) being the more toxic with adverse impact on the plants and animals including human health. Therefore, it is very necessary to remediate arsenic from the polluted water and soil. Different physicochemical as well as biological strategies can be used for the amelioration of arsenic polluted soil. Among the microbial approaches, oxidation of arsenite, methylation of arsenic, biosorption, bioprecipitation and bioaccumulation are the promising transformation activities in arsenic remediation. The purpose of this review is to discuss the significance of the microorganisms in As toxicity amelioration in soil, factors affecting the microbial remediation, interaction of the plants with As resistant bacteria, and the effect of microorganisms on plant arsenic tolerance mechanism. In addition, the exploration of genetic engineering of the bacteria has a huge importance in bioremediation strategies, as the engineered microbes are more potent in terms of remediation activity along with quick adaptively in As polluted sites.
Collapse
Affiliation(s)
- Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI), Mohali, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Anchal Chaudhary
- National Agri-Food Biotechnology Institute (NABI), Mohali, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Varnika Rana
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Rushil Mandlik
- National Agri-Food Biotechnology Institute (NABI), Mohali, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Yogesh Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Vitthal Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | - Prafull Salvi
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | | | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, India; Plaksha University, SAS Nagar, Punjab, India; Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India.
| | - Hena Dhar
- National Agri-Food Biotechnology Institute (NABI), Mohali, India.
| |
Collapse
|
15
|
Huang K, Liu W, Zhao FJ. Methylarsenite is a broad-spectrum antibiotic disrupting cell wall biosynthesis and cell membrane potential. Environ Microbiol 2023; 25:562-574. [PMID: 36510854 DOI: 10.1111/1462-2920.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Methylarsenite (MAs(III)), a product of arsenic biomethylation or bioreduction of methylarsenate (MAs(V)), has been proposed as a primitive antibiotic. However, the antibacterial property and the bactericidal mechanism of MAs(III) remain largely unclear. In this study, we found that MAs(III) is highly toxic to 14 strains of bacteria, especially against 9 strains of Gram-positive bacteria with half maximal inhibitory concentration (IC50) in the sub micromolar range for Staphyloccocus aureus, Microbacterium sp., Pseudarthrobacter siccitolerans and several Bacillus species. In a co-culture of B. subtilis 168 and MAs(III)-producer Enterobacter sp. CZ-1, the later reduced non-toxic MAs(V) to highly toxic MAs(III) to kill the former and gain a competitive advantage. MAs(III) induced autolysis of B. subtilis 168. Deletion of the autolysins LytC, LytD, LytE, and LytF suppressed MAs(III)-induced autolysis in B. subtilis 168. Transcriptomic analysis showed that MAs(III) downregulated the expression of the major genes involved in the biosynthesis of the cell wall peptidoglycan. Overexpression of an UDP-N-acetylglucosamine enolpyruvyl transferase gene murAA alleviated MAs(III)-induced autolysis in B. subtilis 168. MAs(III) disrupted the membrane potential of B. subtilis 168 and caused severe membrane damage. The results suggest that MAs(III) is a broad-spectrum antibiotic preferentially against Gram-positive bacteria by disrupting the cell wall biosynthesis pathway and cell membrane potential.
Collapse
Affiliation(s)
- Ke Huang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wei Liu
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Chen C, Yu Y, Wang Y, Gao A, Yang B, Tang Z, Zhao FJ. Reduction of Dimethylarsenate to Highly Toxic Dimethylarsenite in Paddy Soil and Rice Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:822-830. [PMID: 36490306 DOI: 10.1021/acs.est.2c07418] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Dimethylarsenate [DMAs(V)] is a common methylated As species in soils and plants and can cause the physiological disorder straighthead disease in rice. Because DMAs(V) is relatively noncytotoxic, we hypothesize that phytotoxicity of DMAs(V) may arise from trivalent dimethylarsenite [DMAs(III)]. DMAs(III) has been detected in human urine samples but not in environmental samples, likely due to its instability under oxic conditions. We first established methods for preservation and detections of DMAs(III) in soil and plant samples. We showed that DMAs(III) was a major As species in soil solution from an anoxic paddy soil. Enrichment cultures for fermentative, sulfate-reducing, and denitrifying bacteria from the paddy soil could reduce DMAs(V) to DMAs(III). Twenty-two strains of anaerobic bacteria isolated from the soil showed some ability to reduce DMAs(V). Rice plants grown in hydroponic culture with DMAs(V) also showed the ability to reduce DMAs(V) to DMAs(III). Rice plants and grains grown in a flooded paddy soil contained both DMAs(V) and DMAs(III); their concentrations were higher in the spikelets with straighthead disease than those without. DMAs(III) was much more toxic to the protoplasts isolated from rice plants than DMAs(V). Taken together, the ability to reduce DMAs(V) to highly toxic DMAs(III) is common to soil anaerobes and rice plants.
Collapse
Affiliation(s)
- Chuan Chen
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Yu
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yijie Wang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Axiang Gao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Baoyun Yang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhu Tang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
Chen C, Yang B, Gao A, Yu Y, Zhao FJ. Transformation of arsenic species by diverse endophytic bacteria of rice roots. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119825. [PMID: 35870529 DOI: 10.1016/j.envpol.2022.119825] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Rice growing in flooded paddy soil often accumulates considerable levels of inorganic and organic arsenic (As) species, which may cause toxicity to plants and/or pose a risk to human health. The bioavailability and toxicity of As in soil depends on its chemical species, which undergo multiple transformations driven primarily by soil microbes. However, the role of endophytes inside rice roots in As species transformation remains largely unknown. We quantified the abundances of microbial functional genes involved in As transformation in the endosphere and rhizosphere of rice roots growing in three paddy soils in a pot experiment. We also isolated 46 different bacterial endophytes and tested their abilities to transform various As species. The absolute abundances of the arsenate reductase gene arsC and the dissimilatory arsenate reductase gene arrA in the endosphere were comparable to those in the rhizosphere, whereas the absolute abundances of the arsenite methylation gene arsM and arsenite oxidation gene aioA in the endosphere were lower. After normalization based on the bacterial 16S rRNA gene, all four As transformation genes showed higher relative abundances in the endosphere than in the rhizosphere. Consistent with the functional gene data, all of the 30 aerobic endophytic isolates were able to reduce arsenate, but only 3 strains could oxidize arsenite. Among the 16 anaerobic endophytic isolates, 4 strains belonging to Desulfovibrio, Terrisporobacter or Clostridium could methylate arsenite and/or methylarsenite. Six strains of aerobic endophytes could demethylate methylarsenite, among which three strains also could reduce and demethylate methylarsenate. None of the isolates could demethylate dimethylarsenate. These results suggest that diverse endophytes living inside rice roots could participate in As species transformation and affect As accumulation and species distribution in rice plants.
Collapse
Affiliation(s)
- Chuan Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baoyun Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Axiang Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
18
|
Zhou Q, Zhang J, Chen J. Methylation of arsenic differs with substrates in Arcticibacter tournemirensis R1 from an As-contaminated paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156527. [PMID: 35679924 DOI: 10.1016/j.scitotenv.2022.156527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Arsenic can be methylated by arsenite (As(III)) S-adenosylmethionine methyltransferases (ArsMs) among various kingdoms of life. The intermediate product methylarsenite (MAs(III)) is highly toxic and can be utilized as an antibiotic by some microbes. ArsM gene is widely distributed in the members of every kingdom from bacteria to humans and displays a high diversity of sequence. Based on arsenic methylating capacity, ArsM proteins can be divided into two phylogenetically distinct clades (Groups 1 and 2). In this study, we show that Arcticibacter tournemirensis R1 isolated from arsenic contaminated paddy soil is resistant to both As(III) and MAs(III), but exhibits different methylation activities for As(III) and MAs(III). The A. tournemirensis R1 shows low As(III) methylation activity and produces an unknown arsenic compound. In contrast, it shows high methylation activity with MAs(III), with the main product of dimethylarsenate (DMAs(V)). An AtarsM gene is found in ars operon of A. tournemirensis R1 genome and is regulated by an atypical transcriptional repressor ArsR. Expressed in Escherichia coli AtArsM confers resistance to As(III) and MAs(III). Both in vivo and in vitro assays show that AtArsM methylates As(III) and MAs(III) to dimethyl- and trimethyl‑arsenicals. AtArsM has four conserved cysteine residues, which are present in most ArsMs and can be classified into phylogenetic group 2 family, producing trimethylated arsenic metabolites. The high arsenic methylation and volatilization activity of AtArsM provides a potential strategy for arsenic bioremediation. The methylation activity differs with As(III) and MAs(III) in A. tournemirensis R1 indicates that there may have different detoxification mechanisms for As(III) and MAs(III), which are worth investigating in the future.
Collapse
Affiliation(s)
- Qiang Zhou
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
| | - Jun Zhang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
19
|
van den Berg NI, Machado D, Santos S, Rocha I, Chacón J, Harcombe W, Mitri S, Patil KR. Ecological modelling approaches for predicting emergent properties in microbial communities. Nat Ecol Evol 2022; 6:855-865. [PMID: 35577982 PMCID: PMC7613029 DOI: 10.1038/s41559-022-01746-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/23/2022] [Indexed: 12/20/2022]
Abstract
Recent studies have brought forward the critical role of emergent properties in shaping microbial communities and the ecosystems of which they are a part. Emergent properties-patterns or functions that cannot be deduced linearly from the properties of the constituent parts-underlie important ecological characteristics such as resilience, niche expansion and spatial self-organization. While it is clear that emergent properties are a consequence of interactions within the community, their non-linear nature makes mathematical modelling imperative for establishing the quantitative link between community structure and function. As the need for conservation and rational modulation of microbial ecosystems is increasingly apparent, so is the consideration of the benefits and limitations of the approaches to model emergent properties. Here we review ecosystem modelling approaches from the viewpoint of emergent properties. We consider the scope, advantages and limitations of Lotka-Volterra, consumer-resource, trait-based, individual-based and genome-scale metabolic models. Future efforts in this research area would benefit from capitalizing on the complementarity between these approaches towards enabling rational modulation of complex microbial ecosystems.
Collapse
Affiliation(s)
| | - Daniel Machado
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sophia Santos
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Isabel Rocha
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Jeremy Chacón
- Ecology, Evolution and Behavior, University of Minnesota, Minneapolis, MN, USA
| | - William Harcombe
- Ecology, Evolution and Behavior, University of Minnesota, Minneapolis, MN, USA
| | - Sara Mitri
- Département de Microbiologie Fondamentale, University of Lausanne, Lausanne, Switzerland
| | - Kiran R Patil
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
20
|
Zhang J, Li YN, Chen J, Yan Y, Rosen BP, Zhao FJ. ArsZ from Ensifer adhaerens ST2 is a novel methylarsenite oxidase. Environ Microbiol 2022; 24:3013-3021. [PMID: 35355385 DOI: 10.1111/1462-2920.15983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022]
Abstract
Trivalent methylarsenite (MAs(III)) produced by biomethylation is more toxic than inorganic arsenite (As(III)). Hence, MAs(III) has been proposed to be a primordial antibiotic. Other bacteria evolved mechanisms to detoxify MAs(III). In this study, the molecular mechanisms of MAs(III) resistance of Ensifer adhaerens ST2 were investigated. In the chromosome of E. adhaerens ST2 is a gene encoding a protein of unknown function. Here we show that this gene, designated arsZ, encodes a novel MAs(III) oxidase that confers resistance by oxidizing highly toxic MAs(III) to relatively nontoxic MAs(V). Two other genes, arsRK, are adjacent to arsZ but are divergently encoded in the opposite direction. Heterologous expression of arsZ in Escherichia coli confers resistance to MAs(III) but not to As(III). Purified ArsZ catalyzes thioredoxin- and NAPD+ -dependent oxidation of MAs(III). Mutational analysis of ArsZ suggests that Cys59 and Cys123 are involved in oxidation of MAs(III). Expression of arsZ, arsR and arsK genes is induced by MAs(III) and As(III), and is likely controlled by the ArsR transcriptional repressor. These results demonstrate that ArsZ is a novel MAs(III) oxidase that contributes to E. adhaerens tolerance to environmental organoarsenicals. The arsZRK operon is widely present in bacteria within the Rhizobiaceae family. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jun Zhang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan-Ning Li
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199
| | - Yu Yan
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
21
|
Chen J, Zhang J, Rosen BP. Organoarsenical tolerance in Sphingobacterium wenxiniae, a bacterium isolated from activated sludge. Environ Microbiol 2022; 24:762-771. [PMID: 33998126 PMCID: PMC8890440 DOI: 10.1111/1462-2920.15599] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 02/03/2023]
Abstract
Organoarsenicals enter the environment from biogenic and anthropogenic sources. Trivalent inorganic arsenite (As(III)) is microbially methylated to more toxic methylarsenite (MAs(III)) and dimethylarsenite (DMAs(III)) that oxidize in air to MAs(V) and DMAs(V). Sources include the herbicide monosodium methylarsenate (MSMA or MAs(V)), which is microbially reduced to MAs(III), and the aromatic arsenical roxarsone (3-nitro-4-hydroxybenzenearsonic acid or Rox), an antimicrobial growth promoter for poultry and swine. Here we show that Sphingobacterium wenxiniae LQY-18T , isolated from activated sludge, is resistant to trivalent MAs(III) and Rox(III). Sphingobacterium wenxiniae detoxifies MAs(III) and Rox(III) by oxidation to MAs(V) and Rox(V). Sphingobacterium wenxiniae has a novel chromosomal gene, termed arsU1. Expressed in Escherichia coli arsU1 confers resistance to MAs(III) and Rox(III) but not As(III) or pentavalent organoarsenicals. Purified ArsU1 catalyses oxidation of trivalent methylarsenite and roxarsone. ArsU1 has six conserved cysteine residues. The DNA sequence for the three C-terminal cysteines was deleted, and the other three were mutated to serines. Only C45S and C122S lost activity, suggesting that Cys45 and Cys122 play a role in ArsU1 function. ArsU1 requires neither FMN nor FAD for activity. These results demonstrate that ArsU1 is a novel MAs(III) oxidase that contributes to S. wenxiniae tolerance to organoarsenicals.
Collapse
Affiliation(s)
- Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199
- Institute of Environment Remediation and Human Health, and College of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Jun Zhang
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199
| |
Collapse
|
22
|
Zhang J, Chen J, Wu YF, Wang ZP, Qiu JG, Li XL, Cai F, Xiao KQ, Sun XX, Rosen BP, Zhao FJ. Oxidation of organoarsenicals and antimonite by a novel flavin monooxygenase widely present in soil bacteria. Environ Microbiol 2022; 24:752-761. [PMID: 33769668 PMCID: PMC8862597 DOI: 10.1111/1462-2920.15488] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 02/03/2023]
Abstract
Arsenic can be biomethylated to form a variety of organic arsenicals differing in toxicity and environmental mobility. Trivalent methylarsenite (MAs(III)) produced in the methylation process is more toxic than inorganic arsenite (As(III)). MAs(III) also serves as a primitive antibiotic and, consequently, some environmental microorganisms have evolved mechanisms to detoxify MAs(III). However, the mechanisms of MAs(III) detoxification are not well understood. In this study, we identified an arsenic resistance (ars) operon consisting of three genes, arsRVK, that contribute to MAs(III) resistance in Ensifer adhaerens ST2. ArsV is annotated as an NADPH-dependent flavin monooxygenase with unknown function. Expression of arsV in the arsenic hypersensitive Escherichia coli strain AW3110Δars conferred resistance to MAs(III) and the ability to oxidize MAs(III) to MAs(V). In the presence of NADPH and either FAD or FMN, purified ArsV protein was able to oxidize both MAs(III) to MAs(V) and Sb(III) to Sb(V). Genes with arsV-like sequences are widely present in soils and environmental bacteria. Metagenomic analysis of five paddy soils showed the abundance of arsV-like sequences of 0.12-0.25 ppm. These results demonstrate that ArsV is a novel enzyme for the detoxification of MAs(III) and Sb(III) and the genes encoding ArsV are widely present in soil bacteria.
Collapse
Affiliation(s)
- Jun Zhang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199
| | - Yi-Fei Wu
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zi-Ping Wang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ji-Guo Qiu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao-Long Li
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Cai
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ke-Qing Xiao
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
| | - Xiao-Xu Sun
- Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
23
|
Glutathione is involved in the reduction of methylarsenate to generate antibiotic methylarsenite in Enterobacter sp. CZ-1. Appl Environ Microbiol 2022; 88:e0246721. [PMID: 35080903 DOI: 10.1128/aem.02467-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methylarsenate (MAs(V)) is a product of microbial arsenic (As) biomethylation and has also been widely used as an herbicide. Some microbes are able to reduce nontoxic MAs(V) to highly toxic methylarsenite (MAs(III)) possibly as an antibiotic. The mechanism of MAs(V) reduction in microbes has not been elucidated. Here, we found that the bacterium Enterobacter sp. CZ-1 isolated from an As-contaminated paddy soil has a strong ability to reduce MAs(V) to MAs(III). Using a MAs(III)-responsive biosensor to detect MAs(V) reduction in E. coli Trans5α transformants of a genomic library of Enterobacter sp. CZ-1, we identified gshA, encoding a glutamate-cysteine ligase, as a key gene involved in MAs(V) reduction. Heterologous expression of gshA increased the biosynthesis of glutathione (GSH) and MAs(V) reduction in E. coli Trans5α. Deletion of gshA in Enterobacter sp. CZ-1 abolished its ability to synthesize GSH and decreased its MAs(V) reduction ability markedly, which could be restored by supplementation of exogenous GSH. In the presence of MAs(V), Enterobacter sp. CZ-1 was able to inhibit the growth of Bacillus subtilis 168; this ability was lost in the gshA-deleted mutant. In addition, deletion of gshA greatly decreased the reduction of arsenate to arsenite. These results indicate that GSH plays an important role in MAs(V) reduction to generate MAs(III) as an antibiotic. IMPORTANCE Arsenic is a ubiquitous environmental toxin. Some microbes detoxify inorganic arsenic through biomethylation, generating relatively nontoxic pentavalent methylated arsenicals, such as methylarsenate. Methylarsenate has also been widely used as an herbicide. Surprisingly, some microbes reduce methylarsenate to highly toxic methylarsenite possibly to use the latter as an antibiotic. How microbes reduce methylarsenate to methylarsenite is unknown. Here, we show that gshA encoding a glutamate-cysteine ligase in the glutathione biosynthesis pathway is involved in methylarsenate reduction in Enterobacter sp. CZ-1. Our study provides new insights into the crucial role of glutathione in the transformation of a common arsenic compound to a natural antibiotic.
Collapse
|
24
|
Identification of a MarR Subfamily That Regulates Arsenic Resistance Genes. Appl Environ Microbiol 2021; 87:e0158821. [PMID: 34613763 DOI: 10.1128/aem.01588-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In this study, comprehensive analyses were performed to determine the function of an atypical MarR homolog in Achromobacter sp. strain As-55. Genomic analyses of Achromobacter sp. As-55 showed that this marR is located adjacent to an arsV gene. ArsV is a flavin-dependent monooxygenase that confers resistance to the antibiotic methylarsenite [MAs(III)], the organoarsenic compound roxarsone(III) [Rox(III)], and the inorganic antimonite [Sb(III)]. Similar marR genes are widely distributed in arsenic-resistant bacteria. Phylogenetic analyses showed that these MarRs are found in operons predicted to be involved in resistance to inorganic and organic arsenic species, so the subfamily was named MarRars. MarRars orthologs have three conserved cysteine residues, which are Cys36, Cys37, and Cys157 in Achromobacter sp. As-55, mutation of which compromises the response to MAs(III)/Sb(III). GFP-fluorescent biosensor assays show that AdMarRars (MarR protein of Achromobacter deleyi As-55) responds to trivalent As(III) and Sb(III) but not to pentavalent As(V) or Sb(V). The results of RT-qPCR assays show that arsV is expressed constitutively in a marR deletion mutant, indicating that marR represses transcription of arsV. Moreover, electrophoretic mobility shift assays (EMSAs) demonstrate that AdMarRars binds to the promoters of both marR and arsV in the absence of ligands and that DNA binding is relieved upon binding of As(III) and Sb(III). Our results demonstrate that AdMarRars is a novel As(III)/Sb(III)-responsive transcriptional repressor that controls expression of arsV, which confers resistance to MAs(III), Rox(III), and Sb(III). AdMarRars and its orthologs form a subfamily of MarR proteins that regulate genes conferring resistance to arsenic-containing antibiotics. IMPORTANCE In this study, a MarR family member, AdMarRars was shown to regulate the arsV gene, which confers resistance to arsenic-containing antibiotics. It is a founding member of a distinct subfamily that we refer to as MarRars, regulating genes conferring resistance to arsenic and antimony antibiotic compounds. AdMarRars was shown to be a repressor containing conserved cysteine residues that are required to bind As(III) and Sb(III), leading to a conformational change and subsequent derepression. Here we show that members of the MarR family are involved in regulating arsenic-containing compounds.
Collapse
|
25
|
Chen C, Shen Y, Li Y, Zhang W, Zhao FJ. Demethylation of the Antibiotic Methylarsenite is Coupled to Denitrification in Anoxic Paddy Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15484-15494. [PMID: 34730345 DOI: 10.1021/acs.est.1c04167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Arsenic (As) biomethylation is an important component of the As biogeochemical cycle, which produces methylarsenite [MAs(III)] as an intermediate product. Its high toxicity is used by some microbes as an antibiotic to kill off other microbes and gain a competitive advantage. Some aerobic microbes have evolved a detoxification mechanism to demethylate MAs(III) via the dioxygenase C-As lyase ArsI. How MAs(III) is demethylated under anoxic conditions is unclear. We found that nitrate addition to a flooded paddy soil enhanced MAs(III) demethylation. A facultative anaerobe Bacillus sp. CZDM1 isolated from the soil was able to demethylate MAs(III) under anoxic nitrate-reducing conditions. A putative C-As lyase gene (BcarsI) was identified in the genome of strain CZDM1. The expression of BcarsI in the As-sensitive Escherichia coli AW3110 conferred the bacterium the ability to demethylate MAs(III) under anoxic nitrate-reducing condition and enhanced its resistance to MAs(III). Both Bacillus sp. CZDM1 and E. coli AW3110 harboring BcarsI could not demethylate MAs(III) under fermentative conditions. Five conserved amino acid resides of cysteine, histidine, and glutamic acid are essential for MAs(III) demethylation under anoxic nitrate-reducing conditions. Putative arsI genes are widely present in denitrifying bacteria, with 75% of the sequenced genomes containing arsI, also possessing dissimilatory nitrate reductase genes narG or napA. These results reveal a novel mechanism in which MAs(III) is demethylated via ArsI by coupling to denitrification, and such a mechanism is likely to be common in an anoxic environment such as paddy soils and wetlands.
Collapse
Affiliation(s)
- Chuan Chen
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Shen
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanhe Li
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwen Zhang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
26
|
Chen J, Zhang J, Wu YF, Zhao FJ, Rosen BP. ArsV and ArsW provide synergistic resistance to the antibiotic methylarsenite. Environ Microbiol 2021; 23:7550-7562. [PMID: 34676971 DOI: 10.1111/1462-2920.15817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/23/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022]
Abstract
Toxic organoarsenicals enter the environment from biogenic and anthropogenic activities such as microbial methylation of inorganic arsenic and pentavalent herbicides such as monosodium methylarsenate (MSMA or MAs(V)). Trivalent MAs(III) is considerably more toxic than arsenite or arsenate. Microbes have evolved mechanisms to detoxify organoarsenicals. We previously identified ArsV, a flavin-linked monooxygenase and demonstrated that it confers resistance to methylarsenite by oxidation to methylarsenate. The arsV gene is usually in an arsenic resistance (ars) operon controlled by an ArsR repressor and adjacent to a methylarsenite efflux gene, either arsK or a gene for a putative transporter. Here we show that Paracoccus sp. SY oxidizes methylarsenite. It has an ars operon with three genes, arsR, arsV and a transport gene termed arsW. Heterologous expression of arsV in Escherichia coli conferred resistance to MAs(III), while arsW did not. Co-expression of arsV and arsW increased resistance compared with either alone. The cells oxidized methylarsenite and accumulated less methylarsenate. Everted membrane vesicles from E. coli cells expressing arsW-accumulated methylarsenate. We propose that ArsV is a monooxygenase that oxidizes methylarsenite to methylarsenate, which is extruded by ArsW, one of only a few known pentavalent organoarsenical efflux permeases, a novel pathway of organoarsenical resistance.
Collapse
Affiliation(s)
- Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.,Institute of Environment Remediation and Human Health, and College of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Jun Zhang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi-Fei Wu
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
27
|
Li C, Shen J, Zhang J, Lei P, Kong Y, Zhang J, Tang W, Chen T, Xiang X, Wang S, Zhang W, Zhong H. The silver linings of mercury: Reconsideration of its impacts on living organisms from a multi-timescale perspective. ENVIRONMENT INTERNATIONAL 2021; 155:106670. [PMID: 34090260 DOI: 10.1016/j.envint.2021.106670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/28/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Research on mercury (Hg), a naturally occurring element in Earth's lithosphere, has been extremely hot in the past few decades due to the outbreak of a series of disastrous poisoning incidents. However, such studies might provide us a biased view towards Hg if no thorough review about its long-term effects on living organisms from a multi-timescale perspective was performed. Hg might have played a mysterious role in critical intervals (e.g., mass extinction and oceanic anoxia events) in several geologic periods due to the elevated Hg levels induced by volcanism whereas it has long been used for various purposes in human history. Therefore, it is necessary to go through previous studies and historical records of different timescales (100 to 106 yr). In this work, we conducted a thorough review of Hg knowledge at three different timescales, i.e., geologic periods (106 yr), human history (103 yr), and contemporary history (100 yr), summarizing recent advances and indicated potential research gaps. By doing so, we demonstrated that it is possible to achieve safe and sustainable Hg applications despite the current Hg crisis. However, such silver linings depend on a better understanding of ecosystem dynamics. Besides, considering the possible dire consequences of erupted Hg levels as suggested in geological periods, swift actions to mitigate the impacts of anthropogenic activities on the Hg cycle will be another key point. Overall, this review presented a unique perspective of Hg combining different timescales, shedding light on the importance of a better understanding of the global ecosystem as a whole and maintaining the sustainability of planet Earth in the future.
Collapse
Affiliation(s)
- Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jun Shen
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Jin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Pei Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yaqi Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jichao Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Wenli Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tianyu Chen
- School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Xin Xiang
- School of Information Management, Nanjing University, Nanjing 210023, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Environmental and Life Sciences Program (EnLS), Trent University, Peterborough, Ontario, Canada.
| |
Collapse
|
28
|
Galván AE, Paul NP, Chen J, Yoshinaga-Sakurai K, Utturkar SM, Rosen BP, Yoshinaga M. Identification of the Biosynthetic Gene Cluster for the Organoarsenical Antibiotic Arsinothricin. Microbiol Spectr 2021; 9:e0050221. [PMID: 34378964 PMCID: PMC8552651 DOI: 10.1128/spectrum.00502-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/15/2021] [Indexed: 01/11/2023] Open
Abstract
The soil bacterium Burkholderia gladioli GSRB05 produces the natural compound arsinothricin [2-amino-4-(hydroxymethylarsinoyl) butanoate] (AST), which has been demonstrated to be a broad-spectrum antibiotic. To identify the genes responsible for AST biosynthesis, a draft genome sequence of B. gladioli GSRB05 was constructed. Three genes, arsQML, in an arsenic resistance operon were found to be a biosynthetic gene cluster responsible for synthesis of AST and its precursor, hydroxyarsinothricin [2-amino-4-(dihydroxyarsinoyl) butanoate] (AST-OH). The arsL gene product is a noncanonical radical S-adenosylmethionine (SAM) enzyme that is predicted to transfer the 3-amino-3-carboxypropyl (ACP) group from SAM to the arsenic atom in inorganic arsenite, forming AST-OH, which is methylated by the arsM gene product, a SAM methyltransferase, to produce AST. Finally, the arsQ gene product is an efflux permease that extrudes AST from the cells, a common final step in antibiotic-producing bacteria. Elucidation of the biosynthetic gene cluster for this novel arsenic-containing antibiotic adds an important new tool for continuation of the antibiotic era. IMPORTANCE Antimicrobial resistance is an emerging global public health crisis, calling for urgent development of novel potent antibiotics. We propose that arsinothricin and related arsenic-containing compounds may be the progenitors of a new class of antibiotics to extend our antibiotic era. Here, we report identification of the biosynthetic gene cluster for arsinothricin and demonstrate that only three genes, two of which are novel, are required for the biosynthesis and transport of arsinothricin, in contrast to the phosphonate counterpart, phosphinothricin, which requires over 20 genes. Our discoveries will provide insight for the development of more effective organoarsenical antibiotics and illustrate the previously unknown complexity of the arsenic biogeochemical cycle, as well as bring new perspective to environmental arsenic biochemistry.
Collapse
Affiliation(s)
- Adriana E. Galván
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, Florida, USA
| | - Ngozi P. Paul
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, Florida, USA
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, Florida, USA
| | - Kunie Yoshinaga-Sakurai
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, Florida, USA
| | - Sagar M. Utturkar
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, Florida, USA
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, Florida, USA
| |
Collapse
|
29
|
Li YP, Fekih IB, Fru EC, Moraleda-Munoz A, Li X, Rosen BP, Yoshinaga M, Rensing C. Antimicrobial Activity of Metals and Metalloids. Annu Rev Microbiol 2021; 75:175-197. [PMID: 34343021 DOI: 10.1146/annurev-micro-032921-123231] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Competition shapes evolution. Toxic metals and metalloids have exerted selective pressure on life since the rise of the first organisms on the Earth, which has led to the evolution and acquisition of resistance mechanisms against them, as well as mechanisms to weaponize them. Microorganisms exploit antimicrobial metals and metalloids to gain competitive advantage over other members of microbial communities. This exerts a strong selective pressure that drives evolution of resistance. This review describes, with a focus on arsenic and copper, how microorganisms exploit metals and metalloids for predation and how metal- and metalloid-dependent predation may have been a driving force for evolution of microbial resistance against metals and metalloids. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yuan Ping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 35002, China;
| | - Ibtissem Ben Fekih
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 35002, China;
| | - Ernest Chi Fru
- Centre for Geobiology and Geochemistry, School of Earth and Ocean Sciences, Cardiff University, CF10 3AT Cardiff, United Kingdom
| | - Aurelio Moraleda-Munoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada 18071, Spain
| | - Xuanji Li
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 35002, China;
| |
Collapse
|
30
|
Shi K, Radhakrishnan M, Dai X, Rosen BP, Wang G. NemA Catalyzes Trivalent Organoarsenical Oxidation and Is Regulated by the Trivalent Organoarsenical-Selective Transcriptional Repressor NemR. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6485-6494. [PMID: 33851826 PMCID: PMC8879406 DOI: 10.1021/acs.est.1c00574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Synthetic aromatic arsenicals such as roxarsone (Rox(V)) and nitarsone (Nit(V)) have been used as animal growth enhancers and herbicides. Microbes contribute to redox cycling between the relatively less toxic pentavalent and highly toxic trivalent arsenicals. In this study, we report the identification of nemRA operon from Enterobacter sp. Z1 and show that it is involved in trivalent organoarsenical oxidation. Expression of nemA is induced by chromate (Cr(VI)), Rox(III), and Nit(III). Heterologous expression of NemA in Escherichia coli confers resistance to Cr(VI), methylarsenite (MAs(III)), Rox(III), and Nit(III). Purified NemA catalyzes simultaneous Cr(VI) reduction and MAs(III)/Rox(III)/Nit(III) oxidation, and oxidation was enhanced in the presence of Cr(VI). The results of electrophoretic mobility shift assays and fluorescence assays demonstrate that the transcriptional repressor, NemR, binds to either Rox(III) or Nit(III). NemR has three conserved cysteine residues, Cys21, Cys106, and Cys116. Mutation of any of the three resulted in loss of response to Rox(III)/Nit(III), indicating that they form an Rox(III)/Nit(III) binding site. These results show that NemA is a novel trivalent organoarsenical oxidase that is regulated by the trivalent organoarsenical-selective repressor NemR. This discovery expands our knowledge of the molecular mechanisms of organoarsenical oxidation and provides a basis for studying the redox coupling of environmental toxic compounds.
Collapse
Affiliation(s)
- Kaixiang Shi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Manohar Radhakrishnan
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Xingli Dai
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
31
|
Chen J, Nadar VS, Rosen BP. Aquaglyceroporin AqpS from Sinorhizobium meliloti conducts both trivalent and pentavalent methylarsenicals. CHEMOSPHERE 2021; 270:129379. [PMID: 33418223 PMCID: PMC7946777 DOI: 10.1016/j.chemosphere.2020.129379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Arsenic is a toxic metalloid that enters cells adventitiously via uptake systems for phosphate transporters, aquaglyceroporins (AQPs) or sugar permeases. However, transport of highly toxic methylarsenite (MAs(III)) and relatively nontoxic methylarsenate (MAs(V)) by bacterial AQPs has not been characterized. MAs(V) has a history of use as an herbicide. Here we used whole genome sequence analysis of AQPs in arsenic resistance (ars) operons. The aqp genes are frequently located next to MAs(III) resistance genes such as arsH, which suggests that they could be involved in MAs(III) uptake. Bacterial AQPs encoded by ars operons can be classified into two subgroups. One subgroup includes AqpS from the plant symbiont Sinorhizobium meliloti 1021. Our data suggests that AqpS has a substrate selectivity filter different from that of other bacterial AQPs. Both Escherichia coli GlpF and AqpS conduct MAs(III) efficiently, but GlpF conducts the MAs(V) anion poorly, so E. coli takes up MAs(V) inefficiently. In contrast, AqpS conducts MAs(V) under physiological conditions. A homology model of AqpS indicates that it has a substrate channel with a selectivity filter containing the nonpolar residue Val177 instead of the charged arginine residue found in other AQPs. While the selectivity filter in most AQPs prevents movement of anions, Val177 is predicted to allow movement of the MAs(V) anion through the channel. We propose that AqpS is a component of an MAs(III) resistance pathway in which MAs(III) enters cells of S. meliloti via AqpS, is oxidized by ArsH to MAs(V), which exits the cells via AqpS.
Collapse
Affiliation(s)
- Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, United States; Institute of Environment Remediation and Human Health, And College of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China.
| | - Venkadesh Sarkarai Nadar
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, United States
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, United States.
| |
Collapse
|
32
|
Viswanathan T, Chen J, Wu M, An L, Kandavelu P, Sankaran B, Radhakrishnan M, Li M, Rosen BP. Functional and structural characterization of AntR, an Sb(III) responsive transcriptional repressor. Mol Microbiol 2021; 116:427-437. [PMID: 33786926 DOI: 10.1111/mmi.14721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 12/01/2022]
Abstract
The ant operon of the antimony-mining bacterium Comamonas testosterone JL40 confers resistance to Sb(III). The operon is transcriptionally regulated by the product of the first gene in the operon, antR. AntR is a member of ArsR/SmtB family of metal/metalloid-responsive repressors resistance. We purified and characterized C. testosterone AntR and demonstrated that it responds to metalloids in the order Sb(III) = methylarsenite (MAs(III) >> As(III)). The protein was crystallized, and the structure was solved at 2.1 Å resolution. The homodimeric structure of AntR adopts a classical ArsR/SmtB topology architecture. The protein has five cysteine residues, of which Cys103a from one monomer and Cys113b from the other monomer, are proposed to form one Sb(III) binding site, and Cys113a and Cys103b forming a second binding site. This is the first report of the structure and binding properties of a transcriptional repressor with high selectivity for environmental antimony.
Collapse
Affiliation(s)
- Thiruselvam Viswanathan
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Minghan Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Lijin An
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Palani Kandavelu
- SER-CAT and the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley Laboratory, Berkeley Center for Structural Biology, Berkeley, CA, USA
| | - Manohar Radhakrishnan
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Mingshun Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
33
|
Stýblo M, Venkatratnam A, Fry RC, Thomas DJ. Origins, fate, and actions of methylated trivalent metabolites of inorganic arsenic: progress and prospects. Arch Toxicol 2021; 95:1547-1572. [PMID: 33768354 DOI: 10.1007/s00204-021-03028-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022]
Abstract
The toxic metalloid inorganic arsenic (iAs) is widely distributed in the environment. Chronic exposure to iAs from environmental sources has been linked to a variety of human diseases. Methylation of iAs is the primary pathway for metabolism of iAs. In humans, methylation of iAs is catalyzed by arsenic (+ 3 oxidation state) methyltransferase (AS3MT). Conversion of iAs to mono- and di-methylated species (MAs and DMAs) detoxifies iAs by increasing the rate of whole body clearance of arsenic. Interindividual differences in iAs metabolism play key roles in pathogenesis of and susceptibility to a range of disease outcomes associated with iAs exposure. These adverse health effects are in part associated with the production of methylated trivalent arsenic species, methylarsonous acid (MAsIII) and dimethylarsinous acid (DMAsIII), during AS3MT-catalyzed methylation of iAs. The formation of these metabolites activates iAs to unique forms that cause disease initiation and progression. Taken together, the current evidence suggests that methylation of iAs is a pathway for detoxification and for activation of the metalloid. Beyond this general understanding of the consequences of iAs methylation, many questions remain unanswered. Our knowledge of metabolic targets for MAsIII and DMAsIII in human cells and mechanisms for interactions between these arsenicals and targets is incomplete. Development of novel analytical methods for quantitation of MAsIII and DMAsIII in biological samples promises to address some of these gaps. Here, we summarize current knowledge of the enzymatic basis of MAsIII and DMAsIII formation, the toxic actions of these metabolites, and methods available for their detection and quantification in biomatrices. Major knowledge gaps and future research directions are also discussed.
Collapse
Affiliation(s)
- Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Abhishek Venkatratnam
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rebecca C Fry
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David J Thomas
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
34
|
Hao X, Zhu J, Rensing C, Liu Y, Gao S, Chen W, Huang Q, Liu YR. Recent advances in exploring the heavy metal(loid) resistant microbiome. Comput Struct Biotechnol J 2020; 19:94-109. [PMID: 33425244 PMCID: PMC7771044 DOI: 10.1016/j.csbj.2020.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/18/2022] Open
Abstract
Heavy metal(loid)s exert selective pressure on microbial communities and evolution of metal resistance determinants. Despite increasing knowledge concerning the impact of metal pollution on microbial community and ecological function, it is still a challenge to identify a consistent pattern of microbial community composition along gradients of elevated metal(loid)s in natural environments. Further, our current knowledge of the microbial metal resistome at the community level has been lagging behind compared to the state-of-the-art genetic profiling of bacterial metal resistance mechanisms in a pure culture system. This review provides an overview of the core metal resistant microbiome, development of metal resistance strategies, and potential factors driving the diversity and distribution of metal resistance determinants in natural environments. The impacts of biotic factors regulating the bacterial metal resistome are highlighted. We finally discuss the advances in multiple technologies, research challenges, and future directions to better understand the interface of the environmental microbiome with the metal resistome. This review aims to highlight the diversity and wide distribution of heavy metal(loid)s and their corresponding resistance determinants, helping to better understand the resistance strategy at the community level.
Collapse
Affiliation(s)
- Xiuli Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
- Corresponding authors at: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiaojiao Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ying Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shenghan Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
- Corresponding authors at: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
35
|
Viacava K, Meibom KL, Ortega D, Dyer S, Gelb A, Falquet L, Minton NP, Mestrot A, Bernier-Latmani R. Variability in Arsenic Methylation Efficiency across Aerobic and Anaerobic Microorganisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14343-14351. [PMID: 33125231 DOI: 10.1021/acs.est.0c03908] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microbially-mediated methylation of arsenic (As) plays an important role in the As biogeochemical cycle, particularly in rice paddy soils where methylated As, generated microbially, is translocated into rice grains. The presence of the arsenite (As(III)) methyltransferase gene (arsM) in soil microbes has been used as an indication of their capacity for As methylation. Here, we evaluate the ability of seven microorganisms encoding active ArsM enzymes to methylate As. Amongst those, only the aerobic species were efficient methylators. The anaerobic microorganisms presented high resistance to As exposure, presumably through their efficient As(III) efflux, but methylated As poorly. The only exception were methanogens, for which efficient As methylation was seemingly an artifact of membrane disruption. Deletion of an efflux pump gene (acr3) in one of the anaerobes, Clostridium pasteurianum, rendered the strain sensitive to As and capable of more efficiently methylating As. Our results led to the following conclusions: (i) encoding a functional ArsM enzyme does not guarantee that a microorganism will actively drive As methylation in the presence of the metalloid and (ii) there is an inverse relationship between efficient microbial As efflux and its methylation, because the former prevents the intracellular accumulation of As.
Collapse
Affiliation(s)
- Karen Viacava
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Karin Lederballe Meibom
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - David Ortega
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, Nottingham, United Kingdom
| | - Shannon Dyer
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Arnaud Gelb
- Laboratory for Environmental Biotechnology, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Leia Falquet
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Nigel P Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, Nottingham, United Kingdom
| | - Adrien Mestrot
- Institute of Geography, University of Bern, 3012, Bern, Switzerland
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
36
|
Dykes GE, Chari NR, Seyfferth AL. Si-induced DMA desorption is not the driver for enhanced DMA availability after Si addition to flooded soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139906. [PMID: 32758940 DOI: 10.1016/j.scitotenv.2020.139906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/26/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Silicon (Si) addition to flooded rice paddy soil tends to decrease grain inorganic arsenic (iAs) and increase grain dimethylarsinic acid (DMA) concentrations, but the mechanism for the increase in plant-available DMA is unresolved. It has been suggested that Si displaces DMA from soil solids, rendering it plant-available; however, we hypothesize that Si desorbs primarily iAs from soil solids, which stimulates methylation to DMA. We added silicic acid to a contaminated paddy soil and a flooded upland soil that had been historically contaminated with lead arsenate in a batch incubation experiment, and measured changes in solid-phase As speciation, porewater As speciation, and As-methylating microbial (AsMM) abundance over time. We found that DMA was not detectable in soils prior to the start of the experiment nor throughout the experiment, so it comprised a trace amount of total soil As. Upon Si addition to paddy soil, total As increased in porewater following Si spike and this increase was mainly due to iAs desorption, and an order of magnitude less MMA and DMA was desorbed. The upland soil transitioned to reducing conditions throughout the experiment, but when they were achieved, iAs was desorbed first and this was followed by an increase of MMA and then DMA compared to control soils. Total microbial community abundance increased over the course of the experiments and arsM gene abundance increased from initial conditions, but did not differ between treatments. In the paddy soil, the ratio of arsM:16S gene abundance decreased from the initial conditions, but it increased in the upland soil with historic As contamination. These results suggest that Si-induced desorption of DMA is small and likely does not explain the increases of plant-available DMA upon Si fertilization in prior work. Likely, Si-induced iAs desorption drives microorganisms to methylate iAs, but degree of methylation will differ between soils.
Collapse
Affiliation(s)
- Gretchen E Dykes
- Department of Plant and Soil Sciences, University of Delaware, 531 South College Avenue, Newark, DE 19716, United States
| | - Nikhil R Chari
- Department of Chemistry, University of California, Berkeley, 419 Latimer Hall, Berkeley, CA 94720, United States
| | - Angelia L Seyfferth
- Department of Plant and Soil Sciences, University of Delaware, 531 South College Avenue, Newark, DE 19716, United States.
| |
Collapse
|
37
|
Garbinski LD, Rosen BP, Yoshinaga M. Organoarsenicals inhibit bacterial peptidoglycan biosynthesis by targeting the essential enzyme MurA. CHEMOSPHERE 2020; 254:126911. [PMID: 32957300 PMCID: PMC7509207 DOI: 10.1016/j.chemosphere.2020.126911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Trivalent organoarsenicals such as methylarsenite (MAs(III)) are considerably more toxic than inorganic arsenate (As(V)) or arsenite (As(III)). In microbial communities MAs(III) exhibits significant antimicrobial activity. Although MAs(III) and other organoarsenicals contribute to the global arsenic biogeocycle, how they exert antibiotic-like properties is largely unknown. To identify possible targets of MAs(III), a genomic library of the gram-negative bacterium, Shewanella putrefaciens 200, was expressed in Escherichia coli with selection for MAs(III) resistance. One clone contained the S. putrefaciens murA gene (SpmurA), which catalyzes the first committed step in peptidoglycan biosynthesis. Overexpression of SpmurA conferred MAs(III) resistance to E. coli. Purified SpMurA was inhibited by MAs(III), phenylarsenite (PhAs(III)) or the phosphonate antibiotic fosfomycin but not by inorganic As(III). Fosfomycin inhibits MurA by binding to a conserved residue that corresponds to Cys117 in SpMurA. A C117D mutant was resistant to fosfomycin but remained sensitive to MAs(III), indicating that the two compounds have different mechanisms of action. New inhibitors of peptidoglycan biosynthesis are highly sought after as antimicrobial drugs, and organoarsenicals represent a new area for the development of novel compounds for combating the threat of antibiotic resistance.
Collapse
Affiliation(s)
- Luis D Garbinski
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
38
|
Páez-Espino AD, Nikel PI, Chavarría M, de Lorenzo V. ArsH protects Pseudomonas putida from oxidative damage caused by exposure to arsenic. Environ Microbiol 2020; 22:2230-2242. [PMID: 32202357 DOI: 10.1111/1462-2920.14991] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 01/01/2023]
Abstract
The two As resistance arsRBC operons of Pseudomonas putida KT2440 are followed by a downstream gene called arsH that encodes an NADPH-dependent flavin mononucleotide reductase. In this work, we show that the arsH1 and (to a lesser extent) arsH2 genes of P. putida KT2440 strengthened its tolerance to both inorganic As(V) and As(III) and relieved the oxidative stress undergone by cells exposed to either oxyanion. Furthermore, overexpression of arsH1 and arsH2 endowed P. putida with a high tolerance to the oxidative stress caused by diamide (a drainer of metabolic NADPH) in the absence of any arsenic. To examine whether the activity of ArsH was linked to a direct action on the arsenic compounds tested, arsH1 and arsH2 genes were expressed in Escherichia coli, which has an endogenous arsRBC operon but lacks an arsH ortholog. The resulting clones both deployed a lower production of reactive oxygen species (ROS) when exposed to As salts and had a superior endurance to physiological redox insults. These results suggest that besides the claimed direct action on organoarsenicals, ArsH contributes to relieve toxicity of As species by mediating reduction of ROS produced in vivo upon exposure to the oxyanion, e.g. by generating FMNH2 to fuel ROS-quenching activities.
Collapse
Affiliation(s)
- A David Páez-Espino
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, 28049, Spain
- Mammoth Biosciences Inc. South San Francisco, CA, 94080, USA
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Max Chavarría
- Escuela de Química & CIPRONA, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Víctor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
39
|
The Great Oxidation Event expanded the genetic repertoire of arsenic metabolism and cycling. Proc Natl Acad Sci U S A 2020; 117:10414-10421. [PMID: 32350143 PMCID: PMC7229686 DOI: 10.1073/pnas.2001063117] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise of oxygen on the early Earth about 2.4 billion years ago reorganized the redox cycle of harmful metal(loids), including that of arsenic, which doubtlessly imposed substantial barriers to the physiology and diversification of life. Evaluating the adaptive biological responses to these environmental challenges is inherently difficult because of the paucity of fossil records. Here we applied molecular clock analyses to 13 gene families participating in principal pathways of arsenic resistance and cycling, to explore the nature of early arsenic biogeocycles and decipher feedbacks associated with planetary oxygenation. Our results reveal the advent of nascent arsenic resistance systems under the anoxic environment predating the Great Oxidation Event (GOE), with the primary function of detoxifying reduced arsenic compounds that were abundant in Archean environments. To cope with the increased toxicity of oxidized arsenic species that occurred as oxygen built up in Earth's atmosphere, we found that parts of preexisting detoxification systems for trivalent arsenicals were merged with newly emerged pathways that originated via convergent evolution. Further expansion of arsenic resistance systems was made feasible by incorporation of oxygen-dependent enzymatic pathways into the detoxification network. These genetic innovations, together with adaptive responses to other redox-sensitive metals, provided organisms with novel mechanisms for adaption to changes in global biogeocycles that emerged as a consequence of the GOE.
Collapse
|
40
|
McDermott TR, Stolz JF, Oremland RS. Arsenic and the gastrointestinal tract microbiome. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:136-159. [PMID: 31773890 DOI: 10.1111/1758-2229.12814] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Arsenic is a toxin, ranking first on the Agency for Toxic Substances and Disease Registry and the Environmental Protection Agency Priority List of Hazardous Substances. Chronic exposure increases the risk of a broad range of human illnesses, most notably cancer; however, there is significant variability in arsenic-induced disease among exposed individuals. Human genetics is a known component, but it alone cannot account for the large inter-individual variability in the presentation of arsenicosis symptoms. Each part of the gastrointestinal tract (GIT) may be considered as a unique environment with characteristic pH, oxygen concentration, and microbiome. Given the well-established arsenic redox transformation activities of microorganisms, it is reasonable to imagine how the GIT microbiome composition variability among individuals could play a significant role in determining the fate, mobility and toxicity of arsenic, whether inhaled or ingested. This is a relatively new field of research that would benefit from early dialogue aimed at summarizing what is known and identifying reasonable research targets and concepts. Herein, we strive to initiate this dialogue by reviewing known aspects of microbe-arsenic interactions and placing it in the context of potential for influencing host exposure and health risks. We finish by considering future experimental approaches that might be of value.
Collapse
Affiliation(s)
- Timothy R McDermott
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - John F Stolz
- Department of Biological Sciences and Center for Environmental Research and Education, Duquesne University, Pittsburgh, PA, USA
| | | |
Collapse
|
41
|
Yan Y, Chen J, Galván AE, Garbinski LD, Zhu YG, Rosen BP, Yoshinaga M. Reduction of Organoarsenical Herbicides and Antimicrobial Growth Promoters by the Legume Symbiont Sinorhizobium meliloti. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13648-13656. [PMID: 31682413 DOI: 10.1021/acs.est.9b04026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Massive amounts of methyl [e.g., methylarsenate, MAs(V)] and aromatic arsenicals [e.g., roxarsone (4-hydroxy-3-nitrophenylarsonate, Rox(V)] have been utilized as herbicides for weed control and growth promotors for poultry and swine, respectively. The majority of these organoarsenicals degrade into more toxic inorganic species. Here, we demonstrate that the legume symbiont Sinorhizobium meliloti both reduces MAs(V) to MAs(III) and catalyzes sequential two-step reduction of nitro and arsenate groups in Rox(V), producing the highly toxic trivalent amino aromatic derivative 4-hydroxy-3-aminophenylarsenite (HAPA(III)). The existence of this process suggests that S. meliloti possesses the ability to transform pentavalent methyl and aromatic arsenicals into antibiotics to provide a competitive advantage over other microbes, which would be a critical process for the synthetic aromatic arsenicals to function as antimicrobial growth promoters. The activated trivalent aromatic arsenicals are degraded into less-toxic inorganic species by an MAs(III)-demethylating aerobe, suggesting that environmental aromatic arsenicals also undergo a multiple-step degradation pathway, in analogy with the previously reported demethylation pathway of the methylarsenate herbicide. We further show that an FAD-NADPH-dependent nitroreductase encoded by mdaB gene catalyzes nitroreduction of roxarsone both in vivo and in vitro. Our results demonstrate that environmental organoarsenicals trigger competition between members of microbial communities, resulting in gradual degradation of organoarsenicals and contamination by inorganic arsenic.
Collapse
Affiliation(s)
- Yu Yan
- Department of Environmental Science and Engineering , Huaqiao University , Xiamen 361021 , Fujian , China
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Adriana E Galván
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Luis D Garbinski
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen 361021 , Fujian , China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environ-mental Sciences , Chinese Academy of Sciences , Beijing 100085 , Hebei , China
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| |
Collapse
|
42
|
Coryell M, Roggenbeck BA, Walk ST. The Human Gut Microbiome's Influence on Arsenic Toxicity. CURRENT PHARMACOLOGY REPORTS 2019; 5:491-504. [PMID: 31929964 PMCID: PMC6953987 DOI: 10.1007/s40495-019-00206-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Arsenic exposure is a public health concern of global proportions with a high degree of interindividual variability in pathologic outcomes. Arsenic metabolism is a key factor underlying toxicity, and the primary purpose of this review is to summarize recent discoveries concerning the influence of the human gut microbiome on the metabolism, bioavailability, and toxicity of ingested arsenic. We review and discuss the current state of knowledge along with relevant methodologies for studying these phenomena. RECENT FINDINGS Bacteria in the human gut can biochemically transform arsenic-containing compounds (arsenicals). Recent publications utilizing culture-based approaches combined with analytical biochemistry and molecular genetics have helped identify several arsenical transformations by bacteria that are at least possible in the human gut and are likely to mediate arsenic toxicity to the host. Other studies that directly incubate stool samples in vitro also demonstrate the gut microbiome's potential to alter arsenic speciation and bioavailability. In vivo disruption or elimination of the microbiome has been shown to influence toxicity and body burden of arsenic through altered excretion and biotransformation of arsenicals. Currently, few clinical or epidemiological studies have investigated relationships between the gut microbiome and arsenic-related health outcomes in humans, although current evidence provides strong rationale for this research in the future. SUMMARY The human gut microbiome can metabolize arsenic and influence arsenical oxidation state, methylation status, thiolation status, bioavailability, and excretion. We discuss the strength of current evidence and propose that the microbiome be considered in future epidemiologic and toxicologic studies of human arsenic exposure.
Collapse
Affiliation(s)
- Michael Coryell
- Department of Microbiology and Immunology, Montana State University, 109 Lewis Hall, Bozeman, MT 59717, USA
| | - Barbara A. Roggenbeck
- Department of Microbiology and Immunology, Montana State University, 109 Lewis Hall, Bozeman, MT 59717, USA
| | - Seth T. Walk
- Department of Microbiology and Immunology, Montana State University, 109 Lewis Hall, Bozeman, MT 59717, USA
| |
Collapse
|
43
|
Efflux proteins MacAB confer resistance to arsenite and penicillin/macrolide-type antibiotics in Agrobacterium tumefaciens 5A. World J Microbiol Biotechnol 2019; 35:115. [PMID: 31332542 DOI: 10.1007/s11274-019-2689-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/07/2019] [Indexed: 10/26/2022]
Abstract
Antibiotic and arsenic (As) contaminations are worldwide public health problems. Previously, the bacterial ABC-type efflux protein MacAB reportedly conferred resistance to macrolide-type antibiotics but not to other metal(loid)s. In this study, the roles of MacAB for the co-resistance of different antibiotics and several metal(loid)s were analyzed in Agrobacterium tumefaciens 5A, a strain resistant to arsenite [As(III)] and several types of antibiotics. The macA and macB genes were cotranscribed, and macB was deleted in A. tumefaciens 5A and heterologously expressed in Escherichia coli AW3110 and E. coli S17-1. Compared to the wild-type strain 5A, the macB deletion strain reduced bacterial resistance levels to several macrolide-type and penicillin-type antibiotics but not to cephalosporin-type antibiotics. In addition, the macB deletion strain showed lower resistance to As(III) but not to arsenate [As(V)], antimonite [Sb(III)] and cadmium chloride [Cd(II)]. The mutant strain 5A-ΔmacB cells accumulated more As(III) than the cells of the wild-type. Furthermore, heterologous expression of MacAB in E. coli S17-1 showed that MacAB was essential for resistance to macrolide, several penicillin-type antibiotics and As(III) but not to As(V). Heterologous expression of MacAB in E. coli AW3110 reduced the cellular accumulation of As(III) but not of As(V), indicating that MacAB is responsible for the efflux of As(III). These results demonstrated that, in addition to macrolide-type antibiotics, MacAB also conferred resistance to penicillin-type antibiotics and As(III) by extruding them out of cells. This finding contributes to a better understanding of the bacterial resistance mechanisms of antibiotics and metal(loid)s.
Collapse
|
44
|
Garbinski LD, Rosen BP, Chen J. Pathways of arsenic uptake and efflux. ENVIRONMENT INTERNATIONAL 2019; 126:585-597. [PMID: 30852446 PMCID: PMC6472914 DOI: 10.1016/j.envint.2019.02.058] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 05/19/2023]
Abstract
Arsenic is a non-essential, environmentally ubiquitous toxic metalloid. In response to this pervasive environmental challenge, organisms evolved mechanisms to confer resistance to arsenicals. Inorganic pentavalent arsenate is taken into most cells adventitiously by phosphate uptake systems. Similarly, inorganic trivalent arsenite is taken into most cells adventitiously, primarily via aquaglyceroporins or sugar permeases. The most common strategy for tolerance to both inorganic and organic arsenicals is by efflux that extrude them from the cytosol. These efflux transporters span across kingdoms and belong to various families such as aquaglyceroporins, major facilitator superfamily (MFS) transporters, ATP-binding cassette (ABC) transporters and potentially novel, yet to be discovered families. This review will outline the properties and substrates of known arsenic transport systems, the current knowledge gaps in the field, and aims to provide insight into the importance of arsenic transport in the context of the global arsenic biogeocycle and human health.
Collapse
Affiliation(s)
- Luis D Garbinski
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
45
|
Nadar VS, Chen J, Dheeman DS, Galván AE, Yoshinaga-Sakurai K, Kandavelu P, Sankaran B, Kuramata M, Ishikawa S, Rosen BP, Yoshinaga M. Arsinothricin, an arsenic-containing non-proteinogenic amino acid analog of glutamate, is a broad-spectrum antibiotic. Commun Biol 2019; 2:131. [PMID: 30993215 PMCID: PMC6465285 DOI: 10.1038/s42003-019-0365-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/01/2019] [Indexed: 01/07/2023] Open
Abstract
The emergence and spread of antimicrobial resistance highlights the urgent need for new antibiotics. Organoarsenicals have been used as antimicrobials since Paul Ehrlich's salvarsan. Recently a soil bacterium was shown to produce the organoarsenical arsinothricin. We demonstrate that arsinothricin, a non-proteinogenic analog of glutamate that inhibits glutamine synthetase, is an effective broad-spectrum antibiotic against both Gram-positive and Gram-negative bacteria, suggesting that bacteria have evolved the ability to utilize the pervasive environmental toxic metalloid arsenic to produce a potent antimicrobial. With every new antibiotic, resistance inevitably arises. The arsN1 gene, widely distributed in bacterial arsenic resistance (ars) operons, selectively confers resistance to arsinothricin by acetylation of the α-amino group. Crystal structures of ArsN1 N-acetyltransferase, with or without arsinothricin, shed light on the mechanism of its substrate selectivity. These findings have the potential for development of a new class of organoarsenical antimicrobials and ArsN1 inhibitors.
Collapse
Affiliation(s)
- Venkadesh Sarkarai Nadar
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
| | - Dharmendra S. Dheeman
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
- Present Address: Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - Adriana Emilce Galván
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Tucumán, T4001MVB Argentina
| | - Kunie Yoshinaga-Sakurai
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
| | - Palani Kandavelu
- SER-CAT and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Lawrence Berkeley Laboratory, Berkeley, CA 94720 USA
| | - Masato Kuramata
- Division of Hazardous Chemicals, National Institute for Agro-Environmental Sciences, NARO, Tsukuba, Ibaraki, 305-8604 Japan
| | - Satoru Ishikawa
- Division of Hazardous Chemicals, National Institute for Agro-Environmental Sciences, NARO, Tsukuba, Ibaraki, 305-8604 Japan
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
| |
Collapse
|