1
|
Secli V, Michetti E, Pacello F, Iacovelli F, Falconi M, Astolfi ML, Visaggio D, Visca P, Ammendola S, Battistoni A. Investigation of Zur-regulated metal transport systems reveals an unexpected role of pyochelin in zinc homeostasis. mBio 2024; 15:e0239524. [PMID: 39315802 PMCID: PMC11481552 DOI: 10.1128/mbio.02395-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Limiting the availability of transition metals at infection sites serves as a critical defense mechanism employed by the innate immune system to combat microbial infections. Pseudomonas aeruginosa exhibits a remarkable ability to thrive in zinc-deficient environments, facilitated by intricate cellular responses governed by numerous genes regulated by the zinc-responsive transcription factor Zur. Many of these genes have unknown functions, including those within the predicted PA2911-PA2914 and PA4063-PA4066 operons. A structural bioinformatics investigation revealed that PA2911-PA2914 comprises a TonB-dependent outer membrane receptor and inner membrane ABC-permeases responsible for importing metal-chelating molecules, whereas PA4063-PA4066 contains genes encoding a MacB transporter, likely involved in the export of large molecules. Molecular genetics and biochemical experiments, feeding assays, and intracellular metal content measurements support the hypothesis that PA2911-PA2914 and PA4063-PA4066 are engaged in the import and export of the pyochelin-cobalt complex, respectively. Notably, cobalt can reduce zinc demand and promote the growth of P. aeruginosa strains unable to import zinc, highlighting pyochelin-mediated cobalt import as a novel bacterial strategy to counteract zinc deficiency. These results unveil an unexpected role for pyochelin in zinc homeostasis and challenge the traditional view of this metallophore exclusively as an iron transporter. IMPORTANCE The mechanisms underlying the remarkable ability of Pseudomonas aeruginosa to resist the zinc sequestration mechanisms implemented by the vertebrate innate immune system to control bacterial infections are still far from being fully understood. This study reveals that the Zur-regulated gene clusters PA2911-2914 and PA4063-PA4066 encode systems for the import and export of cobalt-bound pyochelin, respectively. This proves to be a useful strategy to counteract conditions of severe zinc deficiency since cobalt can replace zinc in many proteins. The discovery that pyochelin may contribute to cellular responses to zinc deficiency leads to a reevaluation of the paradigm that pyochelin is a siderophore involved exclusively in iron acquisition and suggests that this molecule has a broader role in modulating the homeostasis of multiple metals.
Collapse
Affiliation(s)
- Valerio Secli
- Department of Biology, Tor Vergata University of Rome, Rome, Italy
| | - Emma Michetti
- Department of Biology, Tor Vergata University of Rome, Rome, Italy
| | | | | | - Mattia Falconi
- Department of Biology, Tor Vergata University of Rome, Rome, Italy
| | | | - Daniela Visaggio
- Department of Science, Roma Tre University, Rome, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Serena Ammendola
- Department of Biology, Tor Vergata University of Rome, Rome, Italy
| | | |
Collapse
|
2
|
Adamiak JW, Ajmal L, Zgurskaya HI. Non-interchangeable functions of efflux transporters of Pseudomonas aeruginosa in survival under infection-associated stress. J Bacteriol 2024; 206:e0005424. [PMID: 38874367 PMCID: PMC11323973 DOI: 10.1128/jb.00054-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Pseudomonas aeruginosa is a challenging opportunistic pathogen due to its intrinsic and acquired mechanisms of antibiotic resistance. A large repertoire of efflux transporters actively expels antibiotics, toxins, and metabolites from cells and enables growth of P. aeruginosa in diverse environments. In this study, we analyzed the roles of representative efflux pumps from the Resistance-Nodulation-Division (RND), Major Facilitator Superfamily (MFS), and Small Multidrug Resistance (SMR) families of proteins in the susceptibility of P. aeruginosa to antibiotics and bacterial growth under stresses imposed by human hosts during bacterial infections: an elevated temperature, osmotic stress, low iron, bile salts, and acidic pH. We selected five RND pumps MexAB-OprM, MexEF-OprN, MexCD-OprJ, MuxABC-OpmB, and TriABC-OpmH that differ in their substrate specificities and expression profiles, two MFS efflux pumps PA3136-3137 and PA5158-5160 renamed here into MfsAB and MfsCD-OpmG, respectively, and an SMR efflux transporter PA1540-1541 (MdtJI). We found that the most promiscuous RND pumps such as MexEF-OprN and MexAB-OprM are integrated into diverse survival mechanisms and enable P. aeruginosa growth under various stresses. MuxABC-OpmB and TriABC-OpmH pumps with narrower substrate spectra are beneficial only in the presence of the iron chelator 2,2'-dipyridyl and bile salts, respectively. MFS pumps do not contribute to antibiotic efflux but play orthogonal roles in acidic pH, low iron, and in the presence of bile salts. In contrast, MdtJI protects against polycationic antibiotics but does not contribute to survival under stress. Thus, efflux pumps play specific, non-interchangeable functions in P. aeruginosa cell physiology and bacterial survival under stresses. IMPORTANCE The role of multidrug efflux pumps in the intrinsic and clinical levels of antibiotic resistance in Pseudomonas aeruginosa and other gram-negative bacteria is well-established. Their functions in bacterial physiology, however, remain unclear. The P. aeruginosa genome comprises an arsenal of efflux pumps from different protein families, the substrate specificities of which are typically assessed by measuring their impact on susceptibility to antibiotics. In this study, we analyzed how deletions and overproductions of efflux pumps affect P. aeruginosa growth under human-infection-induced stresses. Our results show that the physiological functions of multidrug efflux pumps are non-redundant and essential for the survival of this important human pathogen under stress.
Collapse
Affiliation(s)
- Justyna W. Adamiak
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Laiba Ajmal
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
3
|
Liu Y, Zhu R, Liu X, Li D, Guo M, Fei B, Ren Y, You X, Li Y. Effect of piperine on the inhibitory potential of MexAB-OprM efflux pump and imipenem resistance in carbapenem-resistant Pseudomonas aeruginosa. Microb Pathog 2023; 185:106397. [PMID: 37852553 DOI: 10.1016/j.micpath.2023.106397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/25/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
The escalating prevalence of carbapenem-resistant Pseudomonas aeruginosa (CRPA) poses a significant threat to global public health through the spread of its 'high-risk' clones. Immediate and decisive research into antimicrobial agents against CRPA is crucial for the development of effective measures and interventions. Overexpression of the MexAB-OprM efflux pump is one of the major mechanisms of CRPA. Since the active efflux of antibacterial agents plays a significant role in mediating drug resistance in CRPA, the inhibition of efflux pumps has become a promising strategy to restore antibacterial potency. Piperine (PIP) has been proven to be a promising efflux pump inhibitor in some bacteria. However, there are no studies on whether PIP can act as a potential efflux pump inhibitor in CRPA. The present study aimed to identify the antibacterial activity of PIP against CRPA and to evaluate the effect on the MexAB-OprM efflux pump. Molecular docking was used to analyze the possible interaction of PIP with the proteins of the MexAB-OprM efflux pump in CRPA. The effect of PIP on the expression of the MexAB-OprM efflux pump was investigated by real-time quantitative PCR (qPCR) and ethidium bromide accumulation efflux assay. The effect of PIP on CRPA imipenem (IPM) resistance was investigated by the checkerboard dilution method. The results demonstrated that PIP exhibited the lowest binding affinity of -9.1 kcal towards efflux pump proteins. A synergistic effect between PIP and IPM on CRPA was observed. More importantly, PIP effectively hindered the efflux of ethidium bromide and IPM by up-regulating MexR gene expression while down-regulating MexA, MexB, and OprM gene expressions. In conclusion, PIP could enhance the antibacterial activity of IPM by inhibiting the MexAB-OprM efflux pump. Our work proved that PIP had the potential to be an efflux pump inhibitor of CRPA.
Collapse
Affiliation(s)
- Ying Liu
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China; Henan Engineering Research Center for Identification of Pathogenic Microbes, Zhengzhou, 450002, China
| | - Rui Zhu
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China; The Key Laboratory of Pathogenic Microbes &Antimicrobial Resistance Surveillance of Zhengzhou, Zhengzhou, 450002, China; Henan Engineering Research Center for Identification of Pathogenic Microbes, Zhengzhou, 450002, China
| | - Xinwei Liu
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China; Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China; The Key Laboratory of Pathogenic Microbes &Antimicrobial Resistance Surveillance of Zhengzhou, Zhengzhou, 450002, China; Henan Engineering Research Center for Identification of Pathogenic Microbes, Zhengzhou, 450002, China; Henan Provincial Key Laboratory of Antimicrobials-Resistant Bacterial Infection Prevention & Therapy with Traditional Chinese Medicine, Zhengzhou, 450002, China
| | - Dengzhou Li
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China; The Key Laboratory of Pathogenic Microbes &Antimicrobial Resistance Surveillance of Zhengzhou, Zhengzhou, 450002, China; Henan Engineering Research Center for Identification of Pathogenic Microbes, Zhengzhou, 450002, China
| | - Mengyu Guo
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China; Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Bing Fei
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China; Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Yanying Ren
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China; Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Xiaojuan You
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China; Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China; The Key Laboratory of Pathogenic Microbes &Antimicrobial Resistance Surveillance of Zhengzhou, Zhengzhou, 450002, China; Henan Engineering Research Center for Identification of Pathogenic Microbes, Zhengzhou, 450002, China.
| | - Yongwei Li
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China; Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China; The Key Laboratory of Pathogenic Microbes &Antimicrobial Resistance Surveillance of Zhengzhou, Zhengzhou, 450002, China; Henan Engineering Research Center for Identification of Pathogenic Microbes, Zhengzhou, 450002, China; Henan Provincial Key Laboratory of Antimicrobials-Resistant Bacterial Infection Prevention & Therapy with Traditional Chinese Medicine, Zhengzhou, 450002, China.
| |
Collapse
|
4
|
Hossain S, Morey JR, Neville SL, Ganio K, Radin JN, Norambuena J, Boyd JM, McDevitt CA, Kehl-Fie TE. Host subversion of bacterial metallophore usage drives copper intoxication. mBio 2023; 14:e0135023. [PMID: 37737591 PMCID: PMC10653882 DOI: 10.1128/mbio.01350-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/02/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE During infection, bacteria must overcome the dual threats of metal starvation and intoxication. This work reveals that the zinc-withholding response of the host sensitizes S. aureus to copper intoxication. In response to zinc starvation, S. aureus utilizes the metallophore staphylopine. The current work revealed that the host can leverage the promiscuity of staphylopine to intoxicate S. aureus during infection. Significantly, staphylopine-like metallophores are produced by a wide range of pathogens, suggesting that this is a conserved weakness that the host can leverage to toxify invaders with copper. Moreover, it challenges the assumption that the broad-spectrum metal binding of metallophores is inherently beneficial to bacteria.
Collapse
Affiliation(s)
- Saika Hossain
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jacqueline R. Morey
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Stephanie L. Neville
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jana N. Radin
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Javiera Norambuena
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Jeff M. Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Christopher A. McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas E. Kehl-Fie
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
5
|
Hossain S, Morey JR, Neville SL, Ganio K, Radin JN, Norambuena J, Boyd JM, McDevitt CA, Kehl-Fie TE. Host subversion of bacterial metallophore usage drives copper intoxication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542972. [PMID: 37398167 PMCID: PMC10312489 DOI: 10.1101/2023.05.30.542972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Microorganisms can acquire metal ions in metal-limited environments using small molecules called metallophores. While metals and their importers are essential, metals can also be toxic, and metallophores have limited ability to discriminate metals. The impact of the metallophore-mediated non-cognate metal uptake on bacterial metal homeostasis and pathogenesis remains to be defined. The globally significant pathogen Staphylococcus aureus uses the Cnt system to secrete the metallophore staphylopine in zinc-limited host niches. Here, we show that staphylopine and the Cnt system facilitate bacterial copper uptake, potentiating the need for copper detoxification. During in vivo infection, staphylopine usage increased S. aureus susceptibility to host-mediated copper stress, indicating that the innate immune response can harness the antimicrobial potential of altered elemental abundances in host niches. Collectively, these observations show that while the broad-spectrum metal-chelating properties of metallophores can be advantageous, the host can exploit these properties to drive metal intoxication and mediate antibacterial control. IMPORTANCE During infection bacteria must overcome the dual threats of metal starvation and intoxication. This work reveals that the zinc-withholding response of the host sensitizes Staphylococcus aureus to copper intoxication. In response to zinc starvation S. aureus utilizes the metallophore staphylopine. The current work revealed that the host can leverage the promiscuity of staphylopine to intoxicate S. aureus during infection. Significantly, staphylopine-like metallophores are produced by a wide range of pathogens, suggesting that this is a conserved weakness that the host can leverage to toxify invaders with copper. Moreover, it challenges the assumption that the broad-spectrum metal binding of metallophores is inherently beneficial to bacteria.
Collapse
Affiliation(s)
- Saika Hossain
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jacqueline R Morey
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Stephanie L Neville
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Jana N Radin
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Javiera Norambuena
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Thomas E Kehl-Fie
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
6
|
Derdouri N, Ginet N, Denis Y, Ansaldi M, Battesti A. The prophage-encoded transcriptional regulator AppY has pleiotropic effects on E. coli physiology. PLoS Genet 2023; 19:e1010672. [PMID: 36930675 PMCID: PMC10057817 DOI: 10.1371/journal.pgen.1010672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2023] [Accepted: 02/18/2023] [Indexed: 03/18/2023] Open
Abstract
Bacterial genome diversity is influenced by prophages, which are viral genomes integrated into the bacterial chromosome. Most prophage genes are silent but those that are expressed can provide unexpected properties to their host. Using as a model E. coli K-12 that carries 9 defective prophages in its genome, we aimed at highlighting the impact of genes encoded by prophages on host physiology. We focused our work on AppY, a transcriptional regulator encoded on the DLP12 prophage. By performing RNA-Seq experiments, we showed that AppY production modulates the expression of more than 200 genes. Among them, 11 were identified by ChIP-Seq as direct AppY targets. AppY directly and positively regulates several genes involved in the acid stress response including the master regulator gene gadE but also nhaR and gadY, two genes important for biofilm formation. Moreover, AppY indirectly and negatively impacts bacterial motility by favoring the degradation of FlhDC, the master regulator of the flagella biosynthesis. As a consequence of these regulatory effects, AppY increases acid stress resistance and biofilm formation while also causing a strong defect in motility. Our research shed light on the importance to consider the genetic interactions occurring between prophages and bacteria to fully understand bacterial physiology. It also highlights how a prophage-encoded transcriptional regulator integrates in a complex manner into the host regulatory network and how it benefits its host, allowing it to cope with changing environmental conditions.
Collapse
Affiliation(s)
- Naoual Derdouri
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Nicolas Ginet
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Yann Denis
- Aix Marseille Université, Centre National de la Recherche Scientifique, Plateforme Transcriptome, Institut de Microbiologie de la Méditerranée-, Marseille, France
| | - Mireille Ansaldi
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Aurélia Battesti
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
- * E-mail:
| |
Collapse
|
7
|
Ducret V, Gonzalez D, Perron K. Zinc homeostasis in Pseudomonas. Biometals 2022:10.1007/s10534-022-00475-5. [PMID: 36472780 PMCID: PMC10393844 DOI: 10.1007/s10534-022-00475-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
AbstractIn the genus Pseudomonas, zinc homeostasis is mediated by a complete set of import and export systems, whose expression is precisely controlled by three transcriptional regulators: Zur, CzcR and CadR. In this review, we describe in detail our current knowledge of these systems, their regulation, and the biological significance of zinc homeostasis, taking Pseudomonas aeruginosa as our paradigm. Moreover, significant parts of this overview are dedicated to highlight interactions and cross-regulations between zinc and copper import/export systems, and to shed light, through a review of the literature and comparative genomics, on differences in gene complement and function across the whole Pseudomonas genus. The impact and importance of zinc homeostasis in Pseudomonas and beyond will be discussed throughout this review.
Graphical abstract
Collapse
|
8
|
Gong B, Tan Z, Yang X, Liang L, Wu P, Li Y. Induction of zincophore pseudopaline secretion by Cr(VI) and intracellular formation of granules from nanocrystal aggregation by Cr(III) in Pseudomonas aeruginosa. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116201. [PMID: 36099868 DOI: 10.1016/j.jenvman.2022.116201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
When microorganisms are challenged with toxic metals, intracellular granules are commonly observed, however, the exact nature of these granules is poorly understood. Here we show that when Pseudomonas aeruginosa CCTCC AB93066 were exposed to Cr(VI), Cr can enter the cell in the form of both Cr(VI) and Cr(III), and intracellular granules of several hundred nanometers were formed in the nucleoid region and were built up by aggregation of nanocrystals. We suggested that these nanocrystals are organic crystals. Transcriptomic profiles and liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis indicated that pseudopaline (a metallophore that can complex with Zn2+) production and pseudopaline-Zn2+ import into bacterial cells were enhanced upon Cr(VI) exposure. It was proposed that pseudopaline can scavenge Zn2+ which is essential for transcription alteration and DNA repair. Excessive pseudopaline might precipitate as nanospheres in the nuclear region that are further agglomerated by Cr(III) to form larger granules. During this process, Cr(III) is sequestered and immobilized. Hence we revealed pseudopaline production and zinc acquisition is crucial for alleviation of Cr(VI) toxicity and intracellular granules are composed of organic nanospheres which are aggregated by Cr(III).
Collapse
Affiliation(s)
- Beini Gong
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Zewen Tan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xiuyue Yang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Lingling Liang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China.
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
9
|
A Review of Pseudomonas aeruginosa Metallophores: Pyoverdine, Pyochelin and Pseudopaline. BIOLOGY 2022; 11:biology11121711. [PMID: 36552220 PMCID: PMC9774294 DOI: 10.3390/biology11121711] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
P. aeruginosa is a common Gram-negative bacterium found in nature that causes severe infections in humans. As a result of its natural resistance to antibiotics and the ability of biofilm formation, the infection with this pathogen can be therapeutic challenging. During infection, P. aeruginosa produces secondary metabolites such as metallophores that play an important role in their virulence. Metallophores are metal ions chelating molecules secreted by bacteria, thus allowing them to survive in the host under metal scarce conditions. Pyoverdine, pyochelin and pseudopaline are the three metallophores secreted by P. aeruginosa. Pyoverdines are the primary siderophores that acquire iron from the surrounding medium. These molecules scavenge and transport iron to the bacterium intracellular compartment. Pyochelin is another siderophore produced by this bacterium, but in lower quantities and its affinity for iron is less than that of pyoverdine. The third metallophore, pseudopaline, is an opine narrow spectrum ion chelator that enables P. aeruginosa to uptake zinc in particular but can transport nickel and cobalt as well. This review describes all the aspects related to these three metallophore, including their main features, biosynthesis process, secretion and uptake when loaded by metals, in addition to the genetic regulation responsible for their synthesis and secretion.
Collapse
|
10
|
Fiorillo A, Battistoni A, Ammendola S, Secli V, Rinaldo S, Cutruzzolà F, Demitri N, Ilari A. Structure and metal-binding properties of PA4063, a novel player in periplasmic zinc trafficking by Pseudomonas aeruginosa. Acta Crystallogr D Struct Biol 2021; 77:1401-1410. [PMID: 34726168 PMCID: PMC8561739 DOI: 10.1107/s2059798321009608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023] Open
Abstract
The capability to obtain essential nutrients in hostile environments is a critical skill for pathogens. Under zinc-deficient conditions, Pseudomonas aeruginosa expresses a pool of metal homeostasis control systems that is complex compared with other Gram-negative bacteria and has only been partially characterized. Here, the structure and zinc-binding properties of the protein PA4063, the first component of the PA4063-PA4066 operon, are described. PA4063 has no homologs in other organisms and is characterized by the presence of two histidine-rich sequences. ITC titration detected two zinc-binding sites with micromolar affinity. Crystallographic characterization, performed both with and without zinc, revealed an α/β-sandwich structure that can be classified as a noncanonical ferredoxin-like fold since it differs in size and topology. The histidine-rich stretches located at the N-terminus and between β3 and β4 are disordered in the apo structure, but a few residues become structured in the presence of zinc, contributing to coordination in one of the two sites. The ability to bind two zinc ions at relatively low affinity, the absence of catalytic cavities and the presence of two histidine-rich loops are properties and structural features which suggest that PA4063 might play a role as a periplasmic zinc chaperone or as a concentration sensor useful for optimizing the response of the pathogen to zinc deficiency.
Collapse
Affiliation(s)
- Annarita Fiorillo
- Department of Biochemical Sciences, Sapienza University of Rome, Pizzale Aldo Moro 5, 00185 Rome, Italy
- Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR), Pizzale Aldo Moro 5, Rome, Italy
| | - Andrea Battistoni
- Department of Biology, University of Tor Vegata, Via delle Ricerca Scientifica 1, Rome, Italy
| | - Serena Ammendola
- Department of Biology, University of Tor Vegata, Via delle Ricerca Scientifica 1, Rome, Italy
| | - Valerio Secli
- Department of Biology, University of Tor Vegata, Via delle Ricerca Scientifica 1, Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences, Sapienza University of Rome, Pizzale Aldo Moro 5, 00185 Rome, Italy
- Laboratory Affiliated To Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Rome, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences, Sapienza University of Rome, Pizzale Aldo Moro 5, 00185 Rome, Italy
- Laboratory Affiliated To Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Rome, Italy
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, Basovizza, 34149 Trieste, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR), Pizzale Aldo Moro 5, Rome, Italy
| |
Collapse
|
11
|
Wang S, Cheng J, Niu Y, Li P, Zhang X, Lin J. Strategies for Zinc Uptake in Pseudomonas aeruginosa at the Host-Pathogen Interface. Front Microbiol 2021; 12:741873. [PMID: 34566943 PMCID: PMC8456098 DOI: 10.3389/fmicb.2021.741873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
As a structural, catalytic, and signaling component, zinc is necessary for the growth and development of plants, animals, and microorganisms. Zinc is also essential for the growth of pathogenic microorganisms and is involved in their metabolism as well as the regulation of various virulence factors. Additionally, zinc is necessary for infection and colonization of pathogenic microorganisms in the host. Upon infection in healthy organisms, the host sequesters zinc both intracellularly and extracellularly to enhance the immune response and prevent the proliferation and infection of the pathogen. Intracellularly, the host manipulates zinc levels through Zrt/Irt-like protein (ZIP)/ZnT family proteins and various zinc storage proteins. Extracellularly, members of the S100 protein family, such as calgranulin C, sequester zinc to inhibit microbial growth. In the face of these nutritional limitations, bacteria rely on an efficient zinc transport system to maintain zinc supplementation for proliferation and disruption of the host defense system to establish infection. Here, we summarize the strategies for zinc uptake in conditional pathogenic Pseudomonas aeruginosa, including known zinc uptake systems (ZnuABC, HmtA, and ZrmABCD) and the zinc uptake regulator (Zur). In addition, other potential zinc uptake pathways were analyzed. This review systematically summarizes the process of zinc uptake by P. aeruginosa to provide guidance for the development of new drug targets.
Collapse
Affiliation(s)
- Shuaitao Wang
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Juanli Cheng
- College of Life Sciences, Yan'an University, Yan'an, China.,Shaanxi Key Laboratory of Chinese Jujube, Yan'an University, Yan'an, China
| | - Yanting Niu
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Panxin Li
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Xiangqian Zhang
- College of Life Sciences, Yan'an University, Yan'an, China.,Shaanxi Key Laboratory of Chinese Jujube, Yan'an University, Yan'an, China
| | - Jinshui Lin
- College of Life Sciences, Yan'an University, Yan'an, China.,Shaanxi Key Laboratory of Chinese Jujube, Yan'an University, Yan'an, China
| |
Collapse
|
12
|
Johnstone KF, Wei Y, Bittner-Eddy PD, Vreeman GW, Stone IA, Clayton JB, Reilly CS, Walbon TB, Wright EN, Hoops SL, Boyle WS, Costalonga M, Herzberg MC. Calprotectin (S100A8/A9) Is an Innate Immune Effector in Experimental Periodontitis. Infect Immun 2021; 89:e0012221. [PMID: 34097505 PMCID: PMC8445179 DOI: 10.1128/iai.00122-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/12/2021] [Indexed: 01/26/2023] Open
Abstract
Upregulated in inflammation, calprotectin (complexed S100A8 and S100A9; S100A8/A9) functions as an innate immune effector molecule, promoting inflammation, and also as an antimicrobial protein. We hypothesized that antimicrobial S100A8/A9 would mitigate change to the local microbial community and promote resistance to experimental periodontitis in vivo. To test this hypothesis, S100A9-/- and wild-type (WT; S100A9+/+) C57BL/6 mice were compared using a model of ligature-induced periodontitis. On day 2, WT mice showed fewer infiltrating innate immune cells than S100A9-/- mice; by day 5, the immune cell numbers were similar. At 5 days post ligature placement, oral microbial communities sampled with swabs differed significantly in beta diversity between the mouse genotypes. Ligatures recovered from molar teeth of S100A9-/- and WT mice contained significantly dissimilar microbial genera from each other and the overall oral communities from swabs. Concomitantly, the S100A9-/- mice had significantly greater alveolar bone loss than WT mice around molar teeth in ligated sites. When the oral microflora was ablated by antibiotic pretreatment, differences disappeared between WT and S100A9-/- mice in their immune cell infiltrates and alveolar bone loss. Calprotectin, therefore, suppresses emergence of a dysbiotic, proinflammatory oral microbial community, which reduces innate immune effector activity, including early recruitment of innate immune cells, mitigating subsequent alveolar bone loss and protecting against experimental periodontitis.
Collapse
Affiliation(s)
- Karen F. Johnstone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yuping Wei
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Peter D. Bittner-Eddy
- Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gerrit W. Vreeman
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ian A. Stone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jonathan B. Clayton
- BioTechnology Institute, Computer Science and Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| | - Cavan S. Reilly
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Travis B. Walbon
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elisa N. Wright
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Susan L. Hoops
- BioTechnology Institute, Computer Science and Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| | - William S. Boyle
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Massimo Costalonga
- Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
13
|
Albat D, Neudörfl J, Schmalz H. A General Stereocontrolled Synthesis of Opines through Asymmetric Pd‐Catalyzed N‐Allylation of Amino Acid Esters. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Dominik Albat
- Department of Chemistry University of Cologne Greinstrasse 4 50939 Köln Germany
| | | | | |
Collapse
|