1
|
Zhang J, Yuan L, Li D, Yang X, Li J, Wu Z, Du Z. The C5 protein of euphorbia leaf curl virus is a virulence factor and gene silencing suppressor. Virology 2024; 600:110252. [PMID: 39383774 DOI: 10.1016/j.virol.2024.110252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024]
Abstract
The genome of a monopartite begomovirus, or the DNA-A component of a bipartite begomovirus, typically encodes six proteins: two on the viral strand (AV1/V1 and AV2/V2) and four on the complementary strand (AC1/C1, AC2/C2, AC3/C3, AC4/C4). Recent studies, however, have identified additional begomoviral proteins with various functions. This paper reports that euphorbia leaf curl virus (EuLCV), a monopartite begomovirus, encodes a seventh protein, C5. Promoter activity of the upstream fragment of the EuLCV C5 gene was shown using a GUS expression vector. EuLCV C5 also enhanced the pathogenicity and accumulation of potato virus X (PVX) in Nicotiana benthamiana. Localization studies revealed that EuLCV C5 localizes to the cytoplasm and nucleus, forming granular structures on the cell membrane. Additionally, C5 acts as a post-transcriptional gene silencing (PTGS) suppressor. A C5 deletion mutant of EuLCV (EuLCV-ΔC5) exhibited reduced pathogenicity and viral accumulation compared to wild-type EuLCV in N. benthamiana.
Collapse
Affiliation(s)
- Jie Zhang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Linkai Yuan
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dingshan Li
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xueying Yang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingyuan Li
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zujian Wu
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenguo Du
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Wang X, Wang B, Jin B, Wang W, Zhu X, Liu W, Yang L, Wei X. AmiRNA Technology Enhances Tomato Disease Resistance by Suppressing Plant-Pathogen Interaction Pathways through Inhibiting TYLCV Replication. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26558-26571. [PMID: 39545825 DOI: 10.1021/acs.jafc.4c07332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Tomato yellow leaf curl virus disease has seriously threatened the quality and yield of tomatoes. In this study, we investigated the role of amiRNA technology in disease resistance in tomatoes (cherry tomato and large-fruited tomato) and analyzed the physiological and molecular mechanisms of disease resistance in transgenic plants. TYLCV contains six functional genes, of which the C1, C2, and V1 genes have more phosphorylation sites and glycosylation sites, and the protein structure is more complex. The virus replication was inhibited, the peroxidation of membrane lipids was reduced, and disease resistance was enhanced in all transgenic cherry tomato (J6) plants in which the C1, C2, and V1 genes were silenced, respectively. Similarly, silencing of the C1 gene enhanced disease resistance in large-fruited tomatoes. In conclusion, amiRNA technology hinders viral replication, leading to reduced activity of the tomato plant-pathogen interaction pathway and weakening tomato-virus interactions, thereby improving disease resistance.
Collapse
Affiliation(s)
- Xian Wang
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
| | - Baoqiang Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Baoxia Jin
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Weijie Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaolin Zhu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenyu Liu
- Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Ling Yang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xiaohong Wei
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Sattar MN, Almaghasla MI, Tahir MN, El-Ganainy SM, Chellappan BV, Arshad M, Drou N. High-throughput sequencing discovered diverse monopartite and bipartite begomoviruses infecting cucumbers in Saudi Arabia. FRONTIERS IN PLANT SCIENCE 2024; 15:1375405. [PMID: 39450090 PMCID: PMC11499130 DOI: 10.3389/fpls.2024.1375405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024]
Abstract
Limited research in Saudi Arabia has devolved into the prevalence and genetic diversity of begomoviruses. Utilizing Illumina MiSeq sequencing, we obtained 21 full-length begomovirus sequences (2.7-2.8 kb) from eight cucumber plants grown in fields and greenhouses. We found that two complete begomovirus genomes were variants of the Boushehr strain of tomato yellow leaf curl virus (TYLCV) with nucleotide (nt) sequence identities of 94.7-95.9%. Another full-length genome was a variant of TYLCV-Iran with 94.6% identity. Five full-length sequences closely matched the DNA-A of watermelon chlorotic stunt virus (WmCSV) isolates with 97.9-98.7% nt sequence identities, while five sequences had their highest nt sequence identities (95.8-96.3%) with the DNA-B of WmCSV isolates. Simultaneously, four sequences were 99.1-99.6% identical to the DNA-A of tomato leaf curl Palampur virus (ToLCPalV). Four sequences matched the DNA-B of ToLCPalV reported from Iran and Saudi Arabia with identities ranging from 96.2-100%. Four plants showed a mixed infection of these begomoviruses. Most ORFs showed evidence of negative selection pressure, suggesting that purifying selection plays a crucial role in shaping the diversity of these begomoviruses. Additionally, potential intra- and interspecies recombination events were detected in the TYLCV and WmCSV DNA-B genomic regions. The ToLCPalV isolates identified in this study formed a cluster with the other ToLCPalV isolates reported from Saudi Arabia, Iran and Iraq, representing a unique lineage distinct from ToLCPalV reported from Southeast Asia. High mutation rate and robust selection facilitated the independent evolution of ToLCPalV without recombination. Overall, this study offers valuable insights into the diversity and evolutionary dynamics of begomoviruses infecting cucumber crops in Al-Ahsa, Saudi Arabia.
Collapse
Affiliation(s)
| | - Mostafa I. Almaghasla
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Muhammad Nouman Tahir
- Department of Plant Protection, Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Sherif M. El-Ganainy
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | | | - Muhammad Arshad
- Bioinformatics Core, Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Nizar Drou
- Bioinformatics Core, Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Zenda MF, Masamba P, Allie F, Kappo AP. Geminiviruses and Food Security: A Molecular Genetics Perspective for Sustainable Agriculture in Africa. PLANTS (BASEL, SWITZERLAND) 2024; 13:2768. [PMID: 39409638 PMCID: PMC11478365 DOI: 10.3390/plants13192768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024]
Abstract
The African continent is vulnerable to food insecurity. Increased food costs, job losses, and climate change force Africans to chronic hunger. Biotechnology can be used to mitigate this by using techniques such as CRISPR/Cas9 systems, TALENs, and ZFNs. Biotechnology can utilize geminiviruses to deliver the necessary reagents for precise genome alteration. Additionally, plants infected with geminiviruses can withstand harsher weather conditions such as drought. Therefore, this article discusses geminivirus replication and its use as beneficial plant DNA viruses. It focuses explicitly on genome editing to increase plant resistance by manipulating plants' salicylic acid and jasmonic acid pathways.
Collapse
Affiliation(s)
| | | | - Farhahna Allie
- Department of Biochemistry, Auckland Park Kingsway Campus, University of Johannesburg, P.O. Box 524, Johannesburg 2006, South Africa
| | - Abidemi Paul Kappo
- Department of Biochemistry, Auckland Park Kingsway Campus, University of Johannesburg, P.O. Box 524, Johannesburg 2006, South Africa
| |
Collapse
|
5
|
Crespo-Bellido A, Hoyer JS, Burgos-Amengual Y, Duffy S. Phylogeographic analysis of Begomovirus coat and replication-associated proteins. J Gen Virol 2024; 105:002037. [PMID: 39446128 PMCID: PMC11500754 DOI: 10.1099/jgv.0.002037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
Begomoviruses are globally distributed plant pathogens that significantly limit crop production. These viruses are traditionally described according to phylogeographic distribution and categorized into two groups: begomoviruses from the Africa, Asia, Europe and Oceania (AAEO) region and begomoviruses from the Americas. Monopartite begomoviruses are more common in the AAEO region, while bipartite viruses predominate in the Americas, where the begomoviruses lack the V2/AV2 gene involved in inter-cellular movement and RNA silencing suppression found in AAEO begomoviruses. While these features are generally accepted as lineage-defining, the number of known species has doubled due to sequence-based discovery since 2010. To re-evaluate the geographic groupings after the rapid expansion of the genus, we conducted phylogenetic analyses for begomovirus species representatives of the two longest and most conserved begomovirus proteins: the coat and replication-associated proteins. Both proteins still largely support the broad AAEO and Americas begomovirus groupings, except for sweet potato-infecting begomoviruses that form an independent, well-supported clade for their coat protein regardless of the region they were isolated from. Our analyses do not support more fine-scaled phylogeographic groupings. Monopartite and bipartite genome organizations are broadly interchanged throughout the phylogenies, and the absence of the V2/AV2 gene is highly reflective of the split between Americas and AAEO begomoviruses. We observe significant evidence of recombination within the Americas and within the AAEO region but rarely between the regions. We speculate that increased globalization of agricultural trade, the invasion of polyphagous whitefly vector biotypes and recombination will blur begomovirus phylogeographic delineations in the future.
Collapse
Affiliation(s)
- Alvin Crespo-Bellido
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - J. Steen Hoyer
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Yeissette Burgos-Amengual
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
- Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
6
|
Yin ZN, Han PY, Han TT, Huang Y, Yang JJ, Zhang MS, Fang M, Zhong K, Zhang J, Lu QY. V2 Protein Enhances the Replication of Genomic DNA of Mulberry Crinkle Leaf Virus. Int J Mol Sci 2024; 25:10521. [PMID: 39408850 PMCID: PMC11476850 DOI: 10.3390/ijms251910521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 10/20/2024] Open
Abstract
Mulberry crinkle leaf virus (MCLV), identified in mulberry plants (Morus alba L.), is a member of the genus Mulcrilevirus in the family Geminiviridae. The functions of the V2 protein encoded by MCLV remain unclear. Here, Agrobacterium-mediated infectious clones of a wild-type MCLV vII (MCLVWT) and two V2 mutant MCLV vIIs, including MCLVmV2 (with a mutation of the start codon of the V2 ORF) and MCLVdV2 (5'-end partial deletion of the V2 ORF sequence), were constructed to investigate the roles of V2 both in planta and at the cellular level. Although all three constructs (pCA-1.1MCLVWT, pCA-MCLVmV2, and pCA-MCLVdV2) were able to infect both natural host mulberry plants and experimental tomato plants systematically, the replication of the MCLVmV2 and MCLVdV2 genomes in these hosts was significantly reduced compared to that of MCLVWT. Similarly, the accumulation of MCLVmV2 and MCLVdV2 in protoplasts of Nicotiana benthamiana plants was significantly lower than that of MCLVWT either 24 h or 48 h post-transfection. A complementation experiment further confirmed that the decreased accumulation of MCLV in the protoplasts was due to the absence of V2 expression. These results revealed that MCLV-encoded V2 greatly enhances the level of MCLV DNA accumulation and is designated the replication enhancer protein of MCLV.
Collapse
Affiliation(s)
- Zhen-Ni Yin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
| | - Pei-Yu Han
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
| | - Tao-Tao Han
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
| | - Ying Huang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
| | - Jing-Jing Yang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
| | - Meng-Si Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
| | - Miao Fang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Kui Zhong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jian Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Quan-You Lu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
7
|
Renukadevi P, Devi RG, Jothika C, Karthikeyan G, Malathi VG, Balakrishnan N, Rajagopal B, Nakkeeran S, Abd-Allah EF. Genomic distinctiveness and recombination in tomato leaf curl New Delhi virus (ToLCNDV-BG) isolates infecting bitter gourd. 3 Biotech 2024; 14:184. [PMID: 39070236 PMCID: PMC11282025 DOI: 10.1007/s13205-024-04009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/14/2024] [Indexed: 07/30/2024] Open
Abstract
There are two begomoviruses, tomato leaf curl New Delhi virus (ToLCNDV) and bitter gourd yellow mosaic virus (BgYMV) infecting bitter gourd in India. An extensive survey conducted from 2019 to 2022 clearly established that infection by ToLCNDV is more predominant (92.43%) than BgYMV (44%). The ToLCNDV isolates infecting bitter gourd shared only 88% identity in the DNA-A component with other ToLCNDV isolates and were found to be a distinct variant. The predicted amino acid sequence of the viral proteins, replication initiation protein, coat protein, and the symptom determinant protein in the study isolates are markedly different. Especially the RCR motif I and RCR motif III are different from other geminiviruses. Infectivity of cloned components of one of the isolates ToLCNDV-BG NP was demonstrated in bitter gourd. Recombination analysis clearly revealed that the study isolates are recombinants with the major parent predicted as squash leaf curl Yunnan virus (GenBank Accession Number: MK064241) and the minor parent as ToLCNDV from Pakistan (GenBank Accession Number: AM747291). Due to distinct genomic features and less than 90% identity with the majority of ToLCNDV isolates, the study isolates deserve to be raised to the status of a distinct strain, designated as ToLCNDV-BG. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04009-3.
Collapse
Affiliation(s)
- P. Renukadevi
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - R. Gomathi Devi
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - C. Jothika
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - G. Karthikeyan
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - V. G. Malathi
- GI, Sree Kumaran Hill Crest Apartment, Coimbatore, Tamil Nadu 641046 India
| | - N. Balakrishnan
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| | - B. Rajagopal
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| | - S. Nakkeeran
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - Elsayed Fathi Abd-Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Mahmood MA, Ahmed N, Hussain A, Naqvi RZ, Amin I, Mansoor S. Dominance of Cotton leaf curl Multan virus-Rajasthan strain associated with third epidemic of cotton leaf curl disease in Pakistan. Sci Rep 2024; 14:13532. [PMID: 38866855 PMCID: PMC11169534 DOI: 10.1038/s41598-024-63211-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Cotton (Gossypium hirsutum) is an economically potent crop in many countries including Pakistan, India, and China. For the last three decades, cotton production is under the constant stress of cotton leaf curl disease (CLCuD) caused by begomoviruses/satellites complex that is transmitted through the insect pest, whitefly (Bemisia tabaci). In 2018, we identified a highly recombinant strain; Cotton leaf curl Multan virus-Rajasthan (CLCuMuV-Raj), associated with the Cotton leaf curl Multan betasatellite-Vehari (CLCuMuBVeh). This strain is dominant in cotton-growing hub areas of central Punjab, Pakistan, causing the third epidemic of CLCuD. In the present study, we have explored the CLCuD diversity from central to southern districts of Punjab (Faisalabad, Lodhran, Bahawalpur, Rahimyar Khan) and the major cotton-growing region of Sindh (Tandojam), Pakistan for 2 years (2020-2021). Interestingly, we found same virus (CLCuMuV-Raj) and associated betasatellite (CLCuMuBVeh) strain that was previously reported with the third epidemic in the central Punjab region. Furthermore, we found minor mutations in two genes of CLCuMuV-Raj C4 and C1 in 2020 and 2021 respectively as compared to its isolates in 2018, which exhibited virus evolution. Surprisingly, we did not find these mutations in CLCuMuV-Raj isolates identified from Sindh province. The findings of the current study represent the stability of CLCuMuV-Raj and its spread toward the Sindh province where previously Cotton leaf curl Kokhran virus (CLCuKoV) and Cotton leaf curl Shahdadpur virus (CLCuShV) have been reported. The findings of the current study demand future research on CLCuD complex to explore the possible reasons for prevalence in the field and how the virus-host-vector compatible interaction can be broken to develop resistant cultivars.
Collapse
Affiliation(s)
- Muhammad Arslan Mahmood
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Department of Biological Sciences, University of Sialkot, Sialkot, 51310, Pakistan
| | - Nasim Ahmed
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan
- Biotechnology and Microbiology Group, Department of Zoology, University of Poonch Rawalakot, Rawalakot, Azad Jammu and Kashmir, Pakistan
- Department of Biotechnology, Mohi-ud-Din Islamic University, Nerian Sharif, Azad Jammu and Kashmir, Pakistan
| | - Athar Hussain
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan
- School of Food and Agricultural Sciences (SFAS), University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan.
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| |
Collapse
|
9
|
Wang X, Kotta-Loizou I, Coutts RHA, Deng H, Han Z, Hong N, Shafik K, Wang L, Guo Y, Yang M, Xu W, Wang G. A circular single-stranded DNA mycovirus infects plants and confers broad-spectrum fungal resistance. MOLECULAR PLANT 2024; 17:955-971. [PMID: 38745413 DOI: 10.1016/j.molp.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Circular single-stranded DNA (ssDNA) viruses have been rarely found in fungi, and the evolutionary and ecological relationships among ssDNA viruses infecting fungi and other organisms remain unclear. In this study, a novel circular ssDNA virus, tentatively named Diaporthe sojae circular DNA virus 1 (DsCDV1), was identified in the phytopathogenic fungus Diaporthe sojae isolated from pear trees. DsCDV1 has a monopartite genome (3185 nt in size) encapsidated in isometric virions (21-26 nm in diameter). The genome comprises seven putative open reading frames encoding a discrete replicase (Rep) split by an intergenic region, a putative capsid protein (CP), several proteins of unknown function (P1-P4), and a long intergenic region. Notably, the two split parts of DsCDV1 Rep share high identities with the Reps of Geminiviridae and Genomoviridae, respectively, indicating an evolutionary linkage with both families. Phylogenetic analysis based on Rep or CP sequences placed DsCDV1 in a unique cluster, supporting the establishment of a new family, tentatively named Gegemycoviridae, intermediate to both families. DsCDV1 significantly attenuates fungal growth and nearly erases fungal virulence when transfected into the host fungus. Remarkably, DsCDV1 can systematically infect tobacco and pear seedlings, providing broad-spectrum resistance to fungal diseases. Subcellular localization analysis revealed that DsCDV1 P3 is systematically localized in the plasmodesmata, while its expression in trans-complementation experiments could restore systematic infection of a movement-deficient plant virus, suggesting that P3 is a movement protein. DsCDV1 exhibits unique molecular and biological traits not observed in other ssDNA viruses, serving as a link between fungal and plant ssDNA viruses and presenting an evolutionary connection between ssDNA viruses and fungi. These findings contribute to expanding our understanding of ssDNA virus diversity and evolution, offering potential biocontrol applications for managing crucial plant diseases.
Collapse
Affiliation(s)
- Xianhong Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK; Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Robert H A Coutts
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Huifang Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Zhenhao Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Ni Hong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Karim Shafik
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China; Department of Plant Pathology, Faculty of Agriculture, Alexandria University, Alexandria 21526, Egypt
| | - Liping Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Yashuang Guo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Mengmeng Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Wenxing Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China.
| | - Guoping Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
10
|
Frascati F, Rotunno S, Accotto GP, Noris E, Vaira AM, Miozzi L. Exogenous Application of dsRNA for Protection against Tomato Leaf Curl New Delhi Virus. Viruses 2024; 16:436. [PMID: 38543801 PMCID: PMC10974794 DOI: 10.3390/v16030436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 05/23/2024] Open
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) is an emerging plant pathogen, fast spreading in Asian and Mediterranean regions, and is considered the most harmful geminivirus of cucurbits in the Mediterranean. ToLCNDV infects several plant and crop species from a range of families, including Solanaceae, Cucurbitaceae, Fabaceae, Malvaceae and Euphorbiaceae. Up to now, protection from ToLCNDV infection has been achieved mainly by RNAi-mediated transgenic resistance, and non-transgenic fast-developing approaches are an urgent need. Plant protection by the delivery of dsRNAs homologous to a pathogen target sequence is an RNA interference-based biotechnological approach that avoids cultivating transgenic plants and has been already shown effective against RNA viruses and viroids. However, the efficacy of this approach against DNA viruses, particularly Geminiviridae family, is still under study. Here, the protection induced by exogenous application of a chimeric dsRNA targeting all the coding regions of the ToLCNDV DNA-A was evaluated in zucchini, an important crop strongly affected by this virus. A reduction in the number of infected plants and a delay in symptoms appearance, associated with a tendency of reduction in the viral titer, was observed in the plants treated with the chimeric dsRNA, indicating that the treatment is effective against geminiviruses but requires further optimization. Limits of RNAi-based vaccinations against geminiviruses and possible causes are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Anna Maria Vaira
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Torino, Italy (S.R.); (G.P.A.); (E.N.)
| | - Laura Miozzi
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Torino, Italy (S.R.); (G.P.A.); (E.N.)
| |
Collapse
|
11
|
Nadeem S, Riaz Ahmed S, Luqman T, Tan DKY, Maryum Z, Akhtar KP, Muhy Ud Din Khan S, Tariq MS, Muhammad N, Khan MKR, Liu Y. A comprehensive review on Gossypium hirsutum resistance against cotton leaf curl virus. Front Genet 2024; 15:1306469. [PMID: 38440193 PMCID: PMC10909863 DOI: 10.3389/fgene.2024.1306469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
Cotton (Gossypium hirsutum L.) is a significant fiber crop. Being a major contributor to the textile industry requires continuous care and attention. Cotton is subjected to various biotic and abiotic constraints. Among these, biotic factors including cotton leaf curl virus (CLCuV) are dominant. CLCuV is a notorious disease of cotton and is acquired, carried, and transmitted by the whitefly (Bemisia tabaci). A cotton plant affected with CLCuV may show a wide range of symptoms such as yellowing of leaves, thickening of veins, upward or downward curling, formation of enations, and stunted growth. Though there are many efforts to protect the crop from CLCuV, long-term results are not yet obtained as CLCuV strains are capable of mutating and overcoming plant resistance. However, systemic-induced resistance using a gene-based approach remained effective until new virulent strains of CLCuV (like Cotton Leaf Curl Burewala Virus and others) came into existence. Disease control by biological means and the development of CLCuV-resistant cotton varieties are in progress. In this review, we first discussed in detail the evolution of cotton and CLCuV strains, the transmission mechanism of CLCuV, the genetic architecture of CLCuV vectors, and the use of pathogen and nonpathogen-based approaches to control CLCuD. Next, we delineate the uses of cutting-edge technologies like genome editing (with a special focus on CRISPR-Cas), next-generation technologies, and their application in cotton genomics and speed breeding to develop CLCuD resistant cotton germplasm in a short time. Finally, we delve into the current obstacles related to cotton genome editing and explore forthcoming pathways for enhancing precision in genome editing through the utilization of advanced genome editing technologies. These endeavors aim to enhance cotton's resilience against CLCuD.
Collapse
Affiliation(s)
- Sahar Nadeem
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
- Pakistan Agriculture Research Council (PARC), Horticulture Research Institute Khuzdar Baghbana, Khuzdar, Pakistan
| | - Tahira Luqman
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Daniel K. Y. Tan
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Zahra Maryum
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Khalid Pervaiz Akhtar
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Sana Muhy Ud Din Khan
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Sayyam Tariq
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Nazar Muhammad
- Agriculture and Cooperative Department, Quetta, Pakistan
| | - Muhammad Kashif Riaz Khan
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
- Plant Breeding and Genetics Division, Cotton Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Yongming Liu
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
12
|
Torralba B, Blanc S, Michalakis Y. Reassortments in single-stranded DNA multipartite viruses: Confronting expectations based on molecular constraints with field observations. Virus Evol 2024; 10:veae010. [PMID: 38384786 PMCID: PMC10880892 DOI: 10.1093/ve/veae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/23/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
Single-stranded DNA multipartite viruses, which mostly consist of members of the genus Begomovirus, family Geminiviridae, and all members of the family Nanoviridae, partly resolve the cost of genomic integrity maintenance through two remarkable capacities. They are able to systemically infect a host even when their genomic segments are not together in the same host cell, and these segments can be separately transmitted by insect vectors from host to host. These capacities potentially allow such viruses to reassort at a much larger spatial scale, since reassortants could arise from parental genotypes that do not co-infect the same cell or even the same host. To assess the limitations affecting reassortment and their implications in genome integrity maintenance, the objective of this review is to identify putative molecular constraints influencing reassorted segments throughout the infection cycle and to confront expectations based on these constraints with empirical observations. Trans-replication of the reassorted segments emerges as the major constraint, while encapsidation, viral movement, and transmission compatibilities appear more permissive. Confronting the available molecular data and the resulting predictions on reassortments to field population surveys reveals notable discrepancies, particularly a surprising rarity of interspecific natural reassortments within the Nanoviridae family. These apparent discrepancies unveil important knowledge gaps in the biology of ssDNA multipartite viruses and call for further investigation on the role of reassortment in their biology.
Collapse
Affiliation(s)
- Babil Torralba
- PHIM, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Avenue du Campus d’Agropolis - ZAC de Baillarguet, Montpellier 34980, France
| | - Stéphane Blanc
- PHIM, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Avenue du Campus d’Agropolis - ZAC de Baillarguet, Montpellier 34980, France
| | - Yannis Michalakis
- MIVEGEC, Université Montpellier, CNRS, IRD, 911, Avenue Agropolis, Montpellier 34394, France
| |
Collapse
|
13
|
Tian Y, Fang Y, Zhang K, Zhai Z, Yang Y, He M, Cao X. Applications of Virus-Induced Gene Silencing in Cotton. PLANTS (BASEL, SWITZERLAND) 2024; 13:272. [PMID: 38256825 PMCID: PMC10819639 DOI: 10.3390/plants13020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
Virus-induced gene silencing (VIGS) is an RNA-mediated reverse genetics technique that has become an effective tool to investigate gene function in plants. Cotton is one of the most important economic crops globally. In the past decade, VIGS has been successfully applied in cotton functional genomic studies, including those examining abiotic and biotic stress responses and vegetative and reproductive development. This article summarizes the traditional vectors used in the cotton VIGS system, the visible markers used for endogenous gene silencing, the applications of VIGS in cotton functional genomics, and the limitations of VIGS and how they can be addressed in cotton.
Collapse
Affiliation(s)
- Yue Tian
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Yao Fang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Kaixin Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Zeyang Zhai
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Yujie Yang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Meiyu He
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Xu Cao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| |
Collapse
|
14
|
Iqbal Z, Shafiq M, Briddon RW. Cotton leaf curl Multan betasatellite impaired ToLCNDV ability to maintain cotton leaf curl Multan alphasatellite. BRAZ J BIOL 2024; 84:e260922. [DOI: 10.1590/1519-6984.260922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 05/13/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract Alphasatellites (family Alphasatellitidae) are circular, single-stranded (ss) DNA molecules of ~1350 nucleotide in size that have been characterized in both the Old and New Worlds. Alphasatellites have inherent ability to self-replicate, which is accomplished by a single protein, replication-associated protein (Rep). Although the precise function of alphasatellite is yet unknown, and these consider dispensable for infectivity, however, their Rep protein functions as a suppressor of host defence. While alphasatellites are most frequently associated with begomoviruses, particularly with monopartite than bipartite begomoviruses, they have recently been found associated with mastreviruses. The in planta maintenance of alphasatellites by helper geminivirus is still an enigma, with no available study on the topic. This study aimed to investigate whether a widely distributed bipartite begomovirus, tomato leaf curl New Delhi virus (ToLCNDV), can maintain cotton leaf curl Multan alphasatellite (CLCuMuA) in the presence or absence of cotton leaf curl Multan betasatellite (CLCuMuB). The findings of this study demonstrated that ToLCNDV or its DNA A could maintain CLCuMuA in Nicotiana benthamiana plants. However, the presence of CLCuMuB interferes with the maintenance of CLCuMuA, and mutations in the CP of ToLCNDV further reduces it. Our study highlighted that the maintenance of alphasatellites is impaired in the presence of a betasatellite by ToLCNDV. Further investigation is needed to unravel all the interactions between a helper virus and an alphasatellites.
Collapse
Affiliation(s)
- Z. Iqbal
- National Institute for Biotechnology and Genetic Engineering, Pakistan; King Faisal University, Saudi Arabia
| | - M. Shafiq
- National Institute for Biotechnology and Genetic Engineering, Pakistan; University of Sialkot, Pakistan
| | - R. W. Briddon
- National Institute for Biotechnology and Genetic Engineering, Pakistan
| |
Collapse
|
15
|
Ruiz-Padilla A, Turina M, Ayllón MA. Molecular characterization of a tetra segmented ssDNA virus infecting Botrytis cinerea worldwide. Virol J 2023; 20:306. [PMID: 38114992 PMCID: PMC10731770 DOI: 10.1186/s12985-023-02256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/02/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Family Genomoviridae was recently established, and only a few mycoviruses have been described and characterized, and almost all of them (Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1, Fusarium graminearum gemyptripvirus 1 and Botrytis cinerea gemydayirivirus 1) induced hypovirulence in their host. Botrytis cinerea ssDNA virus 1 (BcssDV1), a tetrasegmented single-stranded DNA virus infecting the fungus Botrytis cinerea, has been molecularly characterized in this work. METHODS BcssDV1 was detected in Spanish and Italian B. cinerea field isolates obtained from grapevine. BcssDV1 variants genomes were molecularly characterized via NGS and Sanger sequencing. Nucleotide and amino acid sequences were used for diversity and phylogenetic analysis. Prediction of protein tertiary structures and putative associated functions were performed by AlphaFold2 and DALI. RESULTS BcssDV1 is a tetrasegmented single-stranded DNA virus. The mycovirus was composed by four genomic segments of approximately 1.7 Kb each, which are DNA-A, DNA-B, and DNA-C and DNA-D, that coded, respectively, for the rolling-circle replication initiation protein (Rep), capsid protein (CP) and two hypothetical proteins. BcssDV1 was present in several Italian and Spanish regions with high incidence and low variability among the different viral variants. DNA-A and DNA-D were found to be the more conserved genomic segments among variants, while DNA-B and DNA-C segments were shown to be the most variable ones. Tertiary structures of the proteins encoded by each segment suggested specific functions associated with each of them. CONCLUSIONS This study presented the first complete sequencing and characterization of a tetrasegmented ssDNA mycovirus, its incidence in Spain and Italy, its presence in other countries and its high conservation among regions.
Collapse
Affiliation(s)
- Ana Ruiz-Padilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (UPM-INIA/CSIC), Pozuelo de Alarcón, Madrid, Spain
| | - Massimo Turina
- Institute for Sustainable Plant Protection, National Research Council of Italy, Torino, Italy
| | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (UPM-INIA/CSIC), Pozuelo de Alarcón, Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain.
| |
Collapse
|
16
|
Prasad A, Sharma S, Prasad M. Post translational modifications at the verge of plant-geminivirus interaction. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194983. [PMID: 37717937 DOI: 10.1016/j.bbagrm.2023.194983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Plant-virus interaction is a complex phenomenon and involves the communication between plant and viral factors. Viruses have very limited coding ability yet, they are able to cause infection which results in huge agro-economic losses throughout the globe each year. Post-translational modifications (PTMs) are covalent modifications of proteins that have a drastic effect on their conformation, stability and function. Like the host proteins, geminiviral proteins are also subject to PTMs and these modifications greatly expand the diversity of their functions. Additionally, these viral proteins can also interact with the components of PTM pathways and modulate them. Several studies have highlighted the importance of PTMs such as phosphorylation, ubiquitination, SUMOylation, myristoylation, S-acylation, acetylation and methylation in plant-geminivirus interaction. PTMs also regulate epigenetic modifications during geminivirus infection which determines viral gene expression. In this review, we have summarized the role of PTMs in regulating geminiviral protein function, influence of PTMs on viral gene expression and how geminiviral proteins interact with the components of PTM pathways to modulate their function.
Collapse
Affiliation(s)
- Ashish Prasad
- Department of Botany, Kurukshetra University, Kurukshetra, India.
| | | | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India; Department of Plant Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
17
|
Zhang W, Liu S, Xie G, Li X, Zhai Y, Lin W, Wu Z, Du Z, Zhang J. Size Restriction Is Required for Proper Functioning of a Bipartite Begomovirus AC4 Protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:774-778. [PMID: 37665597 DOI: 10.1094/mpmi-02-23-0020-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Many geminiviruses, including members of the genus Begomovirus, produce a protein known as C4 or AC4. Whereas C4/AC4 typically consists of more than 80 amino acid residues, a few are much shorter. The significance of these shorter C4/AC4 proteins in viral infection and why the virus maintains their abbreviated length is not yet understood. The AC4 of the begomovirus Tomato leaf curl Hsinchu virus contains only 65 amino acids, but it extends to 96 amino acids when the natural termination codon is replaced with a normal codon. We discovered that both interrupting and extending AC4 were harmful to tomato leaf curl Hsinchu virus (ToLCHsV). The extended AC4 (EAC4) also showed a reduced ability to promote the infection of the heterologous virus Potato virus X than the wild-type AC4. When the wild-type AC4 was fused with yellow fluorescent protein (AC4-YFP), it was predominantly found in chloroplasts, whereas EAC4-YFP was mainly localized to the cell periphery. These results suggest that ToLCHsV's AC4 protein is important for viral infection, and the virus may benefit from the abbreviated length, because it may lead to chloroplast localization. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Wenwen Zhang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shunmin Liu
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou 318020, China
| | - Guohui Xie
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiuyu Li
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingying Zhai
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenzhong Lin
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zujian Wu
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenguo Du
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Zhang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
18
|
Iqbal Z, Shafiq M, Sattar MN, Ali I, Khurshid M, Farooq U, Munir M. Genetic Diversity, Evolutionary Dynamics, and Ongoing Spread of Pedilanthus Leaf Curl Virus. Viruses 2023; 15:2358. [PMID: 38140599 PMCID: PMC10747432 DOI: 10.3390/v15122358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Pedilanthus leaf curl virus (PeLCV) is a monopartite begomovirus (family Geminiviridae) discovered just a few decades ago. Since then, it has become a widely encountered virus, with reports from ca. 25 plant species across Pakistan and India, indicative of its notable evolutionary success. Viruses mutate at such a swift rate that their ecological and evolutionary behaviors are inextricably linked, and all of these behaviors are imprinted on their genomes as genetic diversity. So, all these imprints can be mapped by computational methods. This study was designed to map the sequence variation dynamics, genetic heterogeneity, regional diversity, phylogeny, and recombination events imprinted on the PeLCV genome. Phylogenetic and network analysis grouped the full-length genome sequences of 52 PeLCV isolates into 7 major clades, displaying some regional delineation but lacking host-specific demarcation. The progenitor of PeLCV was found to have originated in Multan, Pakistan, in 1977, from where it spread concurrently to India and various regions of Pakistan. A high proportion of recombination events, distributed unevenly throughout the genome and involving both inter- and intraspecies recombinants, were inferred. The findings of this study highlight that the PeLCV population is expanding under a high degree of genetic diversity (π = 0.073%), a high rate of mean nucleotide substitution (1.54 × 10-3), demographic selection, and a high rate of recombination. This sets PeLCV apart as a distinctive begomovirus among other begomoviruses. These factors could further exacerbate the PeLCV divergence and adaptation to new hosts. The insights of this study that pinpoint the emergence of PeLCV are outlined.
Collapse
Affiliation(s)
- Zafar Iqbal
- Central Laboratories, King Faisal University, Al-Ahsa P.O. Box 55110, Saudi Arabia;
| | - Muhammad Shafiq
- Department of Biotechnology, University of Management and Technology, Sialkot Campus, Sialkot P.O. Box 51340, Pakistan;
| | | | - Irfan Ali
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad P.O. Box 38000, Pakistan;
| | - Muhammad Khurshid
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore P.O. Box 54590, Pakistan;
| | - Umer Farooq
- Department of Biotechnology, University of Sialkot, Sialkot P.O. Box 51340, Pakistan;
| | - Muhammad Munir
- Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa P.O. Box 31982, Saudi Arabia;
| |
Collapse
|
19
|
Breves SS, Silva FA, Euclydes NC, Saia TFF, Jean-Baptiste J, Andrade Neto ER, Fontes EPB. Begomovirus-Host Interactions: Viral Proteins Orchestrating Intra and Intercellular Transport of Viral DNA While Suppressing Host Defense Mechanisms. Viruses 2023; 15:1593. [PMID: 37515277 PMCID: PMC10384534 DOI: 10.3390/v15071593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Begomoviruses, which belong to the Geminiviridae family, are intracellular parasites transmitted by whiteflies to dicotyledonous plants thatsignificantly damage agronomically relevant crops. These nucleus-replicating DNA viruses move intracellularly from the nucleus to the cytoplasm and then, like other plant viruses, cause disease by spreading systemically throughout the plant. The transport proteins of begomoviruses play a crucial role in recruiting host components for the movement of viral DNA within and between cells, while exhibiting functions that suppress the host's immune defense. Pioneering studies on species of the Begomovirus genus have identified specific viral transport proteins involved in intracellular transport, cell-to-cell movement, and systemic spread. Recent research has primarily focused on viral movement proteins and their interactions with the cellular host transport machinery, which has significantly expanded understanding on viral infection pathways. This review focuses on three components within this context: (i) the role of viral transport proteins, specifically movement proteins (MPs) and nuclear shuttle proteins (NSPs), (ii) their ability to recruit host factors for intra- and intercellular viral movement, and (iii) the suppression of antiviral immunity, with a particular emphasis on bipartite begomoviral movement proteins.
Collapse
Affiliation(s)
- Sâmera S Breves
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Fredy A Silva
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Nívea C Euclydes
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Thainá F F Saia
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - James Jean-Baptiste
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Eugenio R Andrade Neto
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Elizabeth P B Fontes
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| |
Collapse
|
20
|
Namgial T, Singh AK, Singh NP, Francis A, Chattopadhyay D, Voloudakis A, Chakraborty S. Differential expression of genes during recovery of Nicotiana tabacum from tomato leaf curl Gujarat virus infection. PLANTA 2023; 258:37. [PMID: 37405593 PMCID: PMC10322791 DOI: 10.1007/s00425-023-04182-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/10/2023] [Indexed: 07/06/2023]
Abstract
MAIN CONCLUSION Nicotiana tabacum exhibits recovery response towards tomato leaf curl Gujarat virus. Transcriptome analysis revealed the differential expression of defense-related genes. Genes encoding for cysteine protease inhibitor, hormonal- and stress-related to DNA repair mechanism are found to be involved in the recovery process. Elucidating the role of host factors in response to viral infection is crucial in understanding the plant host-virus interaction. Begomovirus, a genus in the family Geminiviridae, is reported throughout the globe and is known to cause serious crop diseases. Tomato leaf curl Gujarat virus (ToLCGV) infection in Nicotiana tabacum resulted in initial symptom expression followed by a quick recovery in the systemic leaves. Transcriptome analysis using next-generation sequencing (NGS) revealed a large number of differentially expressed genes both in symptomatic as well as recovered leaves when compared to mock-inoculated plants. The virus infected N. tabacum results in alteration of various metabolic pathways, phytohormone signaling pathway, defense related protein, protease inhibitor, and DNA repair pathway. RT-qPCR results indicated that Germin-like protein subfamily T member 2 (NtGLPST), Cysteine protease inhibitor 1-like (NtCPI), Thaumatin-like protein (NtTLP), Kirola-like (NtKL), and Ethylene-responsive transcription factor ERF109-like (NtERTFL) were down-regulated in symptomatic leaves when compared to recovered leaves of ToLCGV-infected plants. In contrast, the Auxin-responsive protein SAUR71-like (NtARPSL) was found to be differentially down-regulated in recovered leaves when compared to symptomatic leaves and the mock-inoculated plants. Lastly, Histone 2X protein like (NtHH2L) gene was found to be down-regulated, whereas Uncharacterized (NtUNCD) was up-regulated in both symptomatic as well as recovered leaves compared to the mock-inoculated plants. Taken together, the present study suggests potential roles of the differentially expressed genes that might govern tobacco's susceptibility and/or recovery response towards ToLCGV infection.
Collapse
Affiliation(s)
- T Namgial
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, 11855, Greece
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - A K Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - N P Singh
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - A Francis
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - D Chattopadhyay
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - A Voloudakis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, 11855, Greece.
| | - S Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
21
|
Liu H, Chang Z, Zhao S, Gong P, Zhang M, Lozano-Durán R, Yan H, Zhou X, Li F. Functional identification of a novel C7 protein of tomato yellow leaf curl virus. Virology 2023; 585:117-126. [PMID: 37331112 DOI: 10.1016/j.virol.2023.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) is a monopartite geminivirus, and one of the most devastating plant viruses in the world. TYLCV is traditionally known to encode six viral proteins in bidirectional and partially overlapping open reading frames (ORFs). However, recent studies have shown that TYLCV encodes additional small proteins with specific subcellular localizations and potential virulence functions. Here, a novel protein named C7, encoded by a newly-described ORF in the complementary strand, was identified as part of the TYLCV proteome using mass spectrometry. The C7 protein localized to the nucleus and cytoplasm, both in the absence and presence of the virus. C7 was found to interact with two other TYLCV-encoded proteins: with C2 in the nucleus, and with V2 in the cytoplasm, forming conspicuous granules. Mutation of C7 start codon ATG to ACG to block the translation of C7 delayed the onset of viral infection, and the mutant virus caused milder virus symptoms and less accumulations of viral DNAs and proteins. Using the potato virus X (PVX)-based recombinant vector, we found that ectopic overexpression of C7 resulted in more severe mosaic symptoms and promoted a higher accumulation of PVX-encoded coat protein in the late virus infection stage. In addition, C7 was also found to inhibit GFP-induced RNA silencing moderately. This study demonstrates that the novel C7 protein encoded by TYLCV is a pathogenicity factor and a weak RNA silencing suppressor, and that it plays a critical role during TYLCV infection.
Collapse
Affiliation(s)
- He Liu
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, 071000, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhaoyang Chang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Siwen Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Pan Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mingzhen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Rosa Lozano-Durán
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, D-72076 Tübingen, Germany
| | - Hongfei Yan
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, 071000, China.
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
22
|
Chang HH, Gustian D, Chang CJ, Jan FJ. Virus-virus interactions alter the mechanical transmissibility and host range of begomoviruses. FRONTIERS IN PLANT SCIENCE 2023; 14:1092998. [PMID: 37332697 PMCID: PMC10275492 DOI: 10.3389/fpls.2023.1092998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/05/2023] [Indexed: 06/20/2023]
Abstract
Introduction Begomoviruses are mainly transmitted by whiteflies. However, a few begomoviruses can be transmitted mechanically. Mechanical transmissibility affects begomoviral distribution in the field. Materials and methods In this study, two mechanically transmissible begomoviruses, tomato leaf curl New Delhi virus-oriental melon isolate (ToLCNDV-OM) and tomato yellow leaf curl Thailand virus (TYLCTHV), and two nonmechanically transmissible begomoviruses, ToLCNDV-cucumber isolate (ToLCNDV-CB) and tomato leaf curl Taiwan virus (ToLCTV), were used to study the effects of virus-virus interactions on mechanical transmissibility. Results Nicotiana benthamiana and host plants were coinoculated through mechanical transmission with inoculants derived from plants that were mix-infected or inoculants derived from individually infected plants, and the inoculants were mixed immediately before inoculation. Our results showed that ToLCNDV-CB was mechanically transmitted with ToLCNDV-OM to N. benthamiana, cucumber, and oriental melon, whereas ToLCTV was mechanically transmitted with TYLCTHV to N. benthamiana and tomato. For crossing host range inoculation, ToLCNDV-CB was mechanically transmitted with TYLCTHV to N. benthamiana and its nonhost tomato, while ToLCTV with ToLCNDV-OM was transmitted to N. benthamiana and its nonhost oriental melon. For sequential inoculation, ToLCNDV-CB and ToLCTV were mechanically transmitted to N. benthamiana plants that were either preinfected with ToLCNDV-OM or TYLCTHV. The results of fluorescence resonance energy transfer analyses showed that the nuclear shuttle protein of ToLCNDV-CB (CBNSP) and the coat protein of ToLCTV (TWCP) localized alone to the nucleus. When coexpressed with movement proteins of ToLCNDV-OM or TYLCTHV, CBNSP and TWCP relocalized to both the nucleus and the cellular periphery and interacted with movement proteins. Discussion Our findings indicated that virus-virus interactions in mixed infection circumstances could complement the mechanical transmissibility of nonmechanically transmissible begomoviruses and alter their host range. These findings provide new insight into complex virus-virus interactions and will help us to understand the begomoviral distribution and to reevaluate disease management strategies in the field.
Collapse
Affiliation(s)
- Ho-Hsiung Chang
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Deri Gustian
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Chung-Jan Chang
- Department of Plant Pathology, University of Georgia, Griffin, GA, United States
| | - Fuh-Jyh Jan
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
23
|
Atabekova AK, Solovieva AD, Chergintsev DA, Solovyev AG, Morozov SY. Role of Plant Virus Movement Proteins in Suppression of Host RNAi Defense. Int J Mol Sci 2023; 24:ijms24109049. [PMID: 37240394 DOI: 10.3390/ijms24109049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
One of the systems of plant defense against viral infection is RNA silencing, or RNA interference (RNAi), in which small RNAs derived from viral genomic RNAs and/or mRNAs serve as guides to target an Argonaute nuclease (AGO) to virus-specific RNAs. Complementary base pairing between the small interfering RNA incorporated into the AGO-based protein complex and viral RNA results in the target cleavage or translational repression. As a counter-defensive strategy, viruses have evolved to acquire viral silencing suppressors (VSRs) to inhibit the host plant RNAi pathway. Plant virus VSR proteins use multiple mechanisms to inhibit silencing. VSRs are often multifunctional proteins that perform additional functions in the virus infection cycle, particularly, cell-to-cell movement, genome encapsidation, or replication. This paper summarizes the available data on the proteins with dual VSR/movement protein activity used by plant viruses of nine orders to override the protective silencing response and reviews the different molecular mechanisms employed by these proteins to suppress RNAi.
Collapse
Affiliation(s)
- Anastasia K Atabekova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna D Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Denis A Chergintsev
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Sergey Y Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
24
|
Al-Ali E, Al-Hashash H, Akbar A, Al-Aqeel H, Al-Shayji N, Alotaibi M, Ben Hejji A. Genetic recombination among tomato yellow leaf curl virus isolates in commercial tomato crops in Kuwait drives emergence of virus diversity: a comparative genomic analysis. BMC Res Notes 2023; 16:71. [PMID: 37150821 PMCID: PMC10164301 DOI: 10.1186/s13104-023-06319-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
OBJECTIVE Whitefly-transmitted tomato yellow leaf curl virus (TYLCV) continues to be a major constraint to tomato production in Kuwait. However, very limited information is available about the population structure and genetic diversity of TYLCV infecting tomato in Kuwait. RESULTS Whole genome sequences of 31 isolates of TYLCV, collected from commercial tomato crops grown in northern (Abdally) and southern (Al Wafra) parts of Kuwait, were deciphered. Eighteen isolates of TYLCV are identified as potential genetic recombinants. The isolates Abdally 6A and Abdally 3B reported in this study were identified to be potential recombinants. Compared to the 15 isolates from the Abdally area, and the three previously reported KISR isolates of Kuwait, six out of sixteen Al Wafra isolates showed an insertion of 19 extra nucleotides near the 5'-end. There are also four nucleotide variations before the 19-extra-nucleotides. The additional 19 nucleotides observed in nine isolates indicate that these isolates might have resulted from a single gene recombination/insertion event. Molecular phylogeny based on complete genome sequences of TYLCV isolates suggests transboundary movement of virus isolates due to geographic proximity. The information presented herein is quite useful for the comprehension of TYLCV biology, epidemiology and would aid in the management of disease in the long run.
Collapse
Affiliation(s)
- Ebtisam Al-Ali
- Kuwait Institute for Scientific Research, Environmental and Life Science Research Center, Biotechnology Program, 13109, Safat, Kuwait.
| | - Hanadi Al-Hashash
- Kuwait Institute for Scientific Research, Environmental and Life Science Research Center, Biotechnology Program, 13109, Safat, Kuwait
| | - Abrar Akbar
- Kuwait Institute for Scientific Research, Environmental and Life Science Research Center, Biotechnology Program, 13109, Safat, Kuwait
| | - Hamed Al-Aqeel
- Kuwait Institute for Scientific Research, Environmental and Life Science Research Center, Biotechnology Program, 13109, Safat, Kuwait
| | - Nabila Al-Shayji
- Kuwait Institute for Scientific Research, Environmental and Life Science Research Center, Biotechnology Program, 13109, Safat, Kuwait
| | - Mohammed Alotaibi
- Kuwait Institute for Scientific Research, Environmental and Life Science Research Center, Biotechnology Program, 13109, Safat, Kuwait
| | - Ahmed Ben Hejji
- Kuwait Institute for Scientific Research, Environmental and Life Science Research Center, Biotechnology Program, 13109, Safat, Kuwait
| |
Collapse
|
25
|
Ren R, Zheng L, Han J, Perdoncini Carvalho C, Miyashita S, Zhang D, Qu F. Intracellular bottlenecking permits no more than three tomato yellow leaf curl virus genomes to initiate replication in a single cell. PLoS Pathog 2023; 19:e1011365. [PMID: 37126519 PMCID: PMC10174518 DOI: 10.1371/journal.ppat.1011365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/11/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023] Open
Abstract
Viruses are constantly subject to natural selection to enrich beneficial mutations and weed out deleterious ones. However, it remains unresolved as to how the phenotypic gains or losses brought about by these mutations cause the viral genomes carrying the very mutations to become more or less numerous. Previous investigations by us and others suggest that viruses with plus strand (+) RNA genomes may compel such selection by bottlenecking the replicating genome copies in each cell to low single digits. Nevertheless, it is unclear if similarly stringent reproductive bottlenecks also occur in cells invaded by DNA viruses. Here we investigated whether tomato yellow leaf curl virus (TYLCV), a small virus with a single-stranded DNA genome, underwent population bottlenecking in cells of its host plants. We engineered a TYLCV genome to produce two replicons that express green fluorescent protein and mCherry, respectively, in a replication-dependent manner. We found that among the cells entered by both replicons, less than 65% replicated both, whereas at least 35% replicated either of them alone. Further probability computation concluded that replication in an average cell was unlikely to have been initiated with more than three replicon genome copies. Furthermore, sequential inoculations unveiled strong mutual exclusions of these two replicons at the intracellular level. In conclusion, the intracellular population of the small DNA virus TYLCV is actively bottlenecked, and such bottlenecking may be a virus-encoded, evolutionarily conserved trait that assures timely selection of new mutations emerging through error-prone replication.
Collapse
Affiliation(s)
- Ruifan Ren
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, United States of America
- Hunan Plant Protection Institute, Changsha, China
| | - Limin Zheng
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, United States of America
| | - Junping Han
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, United States of America
| | | | - Shuhei Miyashita
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Deyong Zhang
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Plant Protection Institute, Changsha, China
| | - Feng Qu
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, United States of America
| |
Collapse
|
26
|
Rosas-Diaz T, Cana-Quijada P, Wu M, Hui D, Fernandez-Barbero G, Macho AP, Solano R, Castillo AG, Wang XW, Lozano-Duran R, Bejarano ER. The transcriptional regulator JAZ8 interacts with the C2 protein from geminiviruses and limits the geminiviral infection in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36946519 DOI: 10.1111/jipb.13482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/17/2023] [Indexed: 05/06/2023]
Abstract
Jasmonates (JAs) are phytohormones that finely regulate critical biological processes, including plant development and defense. JASMONATE ZIM-DOMAIN (JAZ) proteins are crucial transcriptional regulators that keep JA-responsive genes in a repressed state. In the presence of JA-Ile, JAZ repressors are ubiquitinated and targeted for degradation by the ubiquitin/proteasome system, allowing the activation of downstream transcription factors and, consequently, the induction of JA-responsive genes. A growing body of evidence has shown that JA signaling is crucial in defending against plant viruses and their insect vectors. Here, we describe the interaction of C2 proteins from two tomato-infecting geminiviruses from the genus Begomovirus, tomato yellow leaf curl virus (TYLCV) and tomato yellow curl Sardinia virus (TYLCSaV), with the transcriptional repressor JAZ8 from Arabidopsis thaliana and its closest orthologue in tomato, SlJAZ9. Both JAZ and C2 proteins colocalize in the nucleus, forming discrete nuclear speckles. Overexpression of JAZ8 did not lead to altered responses to TYLCV infection in Arabidopsis; however, knock-down of JAZ8 favors geminiviral infection. Low levels of JAZ8 likely affect the viral infection specifically, since JAZ8-silenced plants neither display obvious developmental phenotypes nor present differences in their interaction with the viral insect vector. In summary, our results show that the geminivirus-encoded C2 interacts with JAZ8 in the nucleus, and suggest that this plant protein exerts an anti-geminiviral effect.
Collapse
Affiliation(s)
- Tabata Rosas-Diaz
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Pepe Cana-Quijada
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Mengshi Wu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Du Hui
- Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Gemma Fernandez-Barbero
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, 28049, Spain
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Roberto Solano
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, 28049, Spain
| | - Araceli G Castillo
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Xiao-Wei Wang
- Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, Tübingen, D-72076, Germany
| | - Eduardo R Bejarano
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| |
Collapse
|
27
|
Siskos L, Antoniou M, Riado J, Enciso M, Garcia C, Liberti D, Esselink D, Baranovskiy AG, Tahirov TH, Visser RGF, Kormelink R, Bai Y, Schouten HJ. DNA primase large subunit is an essential plant gene for geminiviruses, putatively priming viral ss-DNA replication. FRONTIERS IN PLANT SCIENCE 2023; 14:1130723. [PMID: 37008458 PMCID: PMC10064052 DOI: 10.3389/fpls.2023.1130723] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
The family of Geminiviridae consists of more than 500 circular single-stranded (ss) DNA viral species that can infect numerous dicot and monocot plants. Geminiviruses replicate their genome in the nucleus of a plant cell, taking advantage of the host's DNA replication machinery. For converting their DNA into double-stranded DNA, and subsequent replication, these viruses rely on host DNA polymerases. However, the priming of the very first step of this process, i.e. the conversion of incoming circular ssDNA into a dsDNA molecule, has remained elusive for almost 30 years. In this study, sequencing of melon (Cucumis melo) accession K18 carrying the Tomato leaf curl New Delhi virus (ToLCNDV) recessive resistance quantitative trait locus (QTL) in chromosome 11, and analyses of DNA sequence data from 100 melon genomes, showed a conservation of a shared mutation in the DNA Primase Large subunit (PRiL) of all accessions that exhibited resistance upon a challenge with ToLCNDV. Silencing of (native) Nicotiana benthamiana PriL and subsequent challenging with three different geminiviruses showed a severe reduction in titers of all three viruses, altogether emphasizing an important role of PRiL in geminiviral replication. A model is presented explaining the role of PriL during initiation of geminiviral DNA replication, i.e. as a regulatory subunit of primase that generates an RNA primer at the onset of DNA replication in analogy to DNA Primase-mediated initiation of DNA replication in all living organisms.
Collapse
Affiliation(s)
- Lampros Siskos
- Laboratory of Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Maria Antoniou
- Laboratory of Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Jose Riado
- Sakata Vegetables Europe, Almeria, Spain
| | | | | | | | - Danny Esselink
- Laboratory of Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Andrey G. Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tahir H. Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Richard G. F. Visser
- Laboratory of Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| | - Yuling Bai
- Laboratory of Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Henk J. Schouten
- Laboratory of Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
28
|
Molecular characterization of chilli leaf curl Ahmedabad virus: homology modelling and evaluation of viral proteins interacting with host protein SnRK1 and docking against flavonoids-an in silico approach. Theory Biosci 2023; 142:47-60. [PMID: 36607541 DOI: 10.1007/s12064-022-00383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/26/2022] [Indexed: 01/07/2023]
Abstract
Chilli leaf curl Ahmedabad virus (ChiLCAV), a begomovirus belonging to the family Geminiviridae, has been reported for its occurrence in India, infecting chilli and tomato plants. The viral proteins associated with ChiLCAV involves in the primary pathogenesis and transmission of the virus by whitefly. Viral protein interactions with host proteins show the dynamics of structural binding and interaction in their infection cycle. At the same time, plants have multiple defence mechanisms against bacterial and viral infections. Secondary metabolites play a significant role in the inborne defence mechanism of plants. Host proteins are also the prime producers of secondary metabolites. In the present study, we evaluated the host protein SnRK1 interaction with all six viral proteins (V1, V2, C1, C2, C3 and C4). Apart from C4, all the other viral proteins showed appreciable binding and interaction with SnRK1. SnRK1 has the regulation mechanism for the accumulation of diterpenoids, secondary metabolites. Flavonoids are secondary metabolites produced by the plant under stress conditions. Further, we studied the binding and interaction of six selected flavonoids produced by Solanaceae family members with all the ChiLCAV proteins. All six selected flavonoids showed considerable binding energy with all viral proteins. Each flavonoid showed high binding energy with different viral proteins. Molecular docking is carried out for both flavonoids and the host protein SnRK1. These in silico interactions and docking studies could be useful for understanding the plants defence mechanism against viral infections at the molecular level.
Collapse
|
29
|
Vo TTB, Cho WK, Jo Y, Lal A, Nattanong B, Qureshi MA, Tabssum M, Troiano E, Parrella G, Kil EJ, Lee TK, Lee S. Transcriptional Analysis of the Differences between ToLCNDV-India and ToLCNDV-ES Leading to Contrary Symptom Development in Cucumber. Int J Mol Sci 2023; 24:ijms24032181. [PMID: 36768502 PMCID: PMC9916722 DOI: 10.3390/ijms24032181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Tomato leaf curl New Delhi virus-ES (ToLCNDV-ES), a high threat to cucurbits in the Mediterranean Basin, is listed as a different strain from the Asian ToLCNDV isolates. In this study, the infectivity of two clones previously isolated from Italy and Pakistan were compared in cucumbers, which resulted in the opposite symptom appearance. The swapping subgenome was processed; however, the mechanisms related to the disease phenotype remain unclear. To identify the disease-associated genes that could contribute to symptom development under the two ToLCNDV infections, the transcriptomes of ToLCNDV-infected and mock-inoculated cucumber plants were compared 21 days postinoculation. The number of differentially expressed genes in ToLCNDV-India-infected plants was 10 times higher than in ToLCNDV-ES-infected samples. The gene ontology (GO) and pathway enrichment were analyzed using the Cucurbits Genomics Database. The flavonoid pathway-related genes were upregulated in ToLCNDV-ES, but some were downregulated in ToLCNDV-India infection, suggesting their role in resistance to the two ToLCNDV infections. The relative expression levels of the selected candidate genes were validated by qRT-PCR under two ToLCNDV-infected conditions. Our results reveal the different infectivity of the two ToLCNDVs in cucumber and also provide primary information based on RNA-seq for further analysis related to different ToLCNDV infections.
Collapse
Affiliation(s)
- Thuy T. B. Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Won Kyong Cho
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yeonhwa Jo
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bupi Nattanong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Muhammad Amir Qureshi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Marjia Tabssum
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Elisa Troiano
- Institute for Sustainable Plant Protection of the National Research Council (IPSP-CNR), 80055 Portici, Italy
| | - Giuseppe Parrella
- Institute for Sustainable Plant Protection of the National Research Council (IPSP-CNR), 80055 Portici, Italy
| | - Eui-Joon Kil
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| | - Taek-Kyun Lee
- Risk Assessment Research Center, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
- Correspondence: (T.-K.L.); (S.L.)
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence: (T.-K.L.); (S.L.)
| |
Collapse
|
30
|
Dubey D, Hoyer JS, Duffy S. Limited role of recombination in the global diversification of begomovirus DNA-B proteins. Virus Res 2023; 323:198959. [PMID: 36209920 PMCID: PMC10194223 DOI: 10.1016/j.virusres.2022.198959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Approximately half of the characterized begomoviruses have bipartite genomes, but the second genomic segment, the DNA-B, is understudied relative to the DNA-A, which is homologous to the entire genome of monopartite begomoviruses. We examined the evolutionary history of the two proteins encoded by the DNA-B, the genes of which make up ∼60% of the DNA-B segment, from all bipartite begomovirus species. Our dataset of 131 movement protein (MP) and nuclear shuttle protein (NSP) sequences confirmed the deep split between Old World (OW) and New World (NW) species, and showed strong support for deep, congruent branches among the OW sequences of the MP and NSP. NW sequences were much less diverse and had poor phylogenetic resolution; over half of nodes in both the NSP and MP NW clades were supported by <50% bootstrap support. This poor resolution hampered our ability to detect incongruent phylogenies between the MP and NSP datasets, and we found no statistical evidence for recombination within our MP and NSP datasets. Finally, we quantified the sequence diversity between the NW and OW proteins, showing that the NW MP has particularly low diversity, suggesting it has been subject to different evolutionary pressures than the NW NSP.
Collapse
Affiliation(s)
- Divya Dubey
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - J Steen Hoyer
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
31
|
AlHudaib KA, Almaghasla MI, El-Ganainy SM, Arshad M, Drou N, Sattar MN. High-Throughput Sequencing Identified Distinct Bipartite and Monopartite Begomovirus Variants Associated with DNA-Satellites from Tomato and Muskmelon Plants in Saudi Arabia. PLANTS (BASEL, SWITZERLAND) 2022; 12:6. [PMID: 36616136 PMCID: PMC9824426 DOI: 10.3390/plants12010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The studies on the prevalence and genetic diversity of begomoviruses in Saudi Arabia are minimal. In this study, field-grown symptomatic tomato and muskmelon plants were collected, and initially, begomovirus infection was confirmed by the core coat protein sequences. Four tomato and two muskmelon plants with viral infections were further evaluated for Illumina MiSeq sequencing, and twelve sequences (2.7-2.8 kb) equivalent to the full-length DNA-A or DNA-B components of begomoviruses were obtained along with eight sequences (~1.3-1.4 kb) equivalent to the begomovirus-associated DNA-satellite components. Four begomovirus sequences obtained from tomato plants were variants of tomato yellow leaf curl virus (TYLCV) with nt sequence identities of 95.3-100%. Additionally, two tomato plants showed a mixed infection of TYLCV and cotton leaf curl Gezira virus (CLCuGeV), okra yellow crinkle Cameroon alphasatellite (OYCrCMA), and okra leaf curl Oman betasatellite (OLCuOMB). Meanwhile, from muskmelon plants, two sequences were closely related (99-99.6%) to the tomato leaf curl Palampur virus (ToLCPalV) DNA-A, whereas two other sequences showed 97.9-100% sequence identities to DNA-B of ToLCPalV, respectively. Complete genome sequences of CLCuGeV and associated DNA-satellites were also obtained from these muskmelon plants. The nt sequence identities of the CLCuGeV, OYCrCMA, and OLCuOMB isolates obtained were 98.3-100%, 99.5-100%, and 95.6-99.7% with their respective available variants. The recombination was only detected in TYLCV and OLCuOMB isolates. To our knowledge, this is the first identification of a mixed infection of bipartite and monopartite begomoviruses associated with DNA-satellites from tomato and muskmelon in Saudi Arabia. The begomovirus variants reported in this study were clustered with Iranian isolates of respective begomovirus components in the phylogenetic dendrogram. Thus, the Iranian agroecological route can be a possible introduction of these begomoviruses and/or their associated DNA-satellites into Saudi Arabia.
Collapse
Affiliation(s)
- Khalid A. AlHudaib
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
| | - Mostafa I. Almaghasla
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
| | - Sherif M. El-Ganainy
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Muhammad Arshad
- Bioinformatics Core, Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Nizar Drou
- Bioinformatics Core, Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Muhammad N. Sattar
- Central Laboratories, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
32
|
Wang Y, Zafar N, Ali Q, Manghwar H, Wang G, Yu L, Ding X, Ding F, Hong N, Wang G, Jin S. CRISPR/Cas Genome Editing Technologies for Plant Improvement against Biotic and Abiotic Stresses: Advances, Limitations, and Future Perspectives. Cells 2022; 11:3928. [PMID: 36497186 PMCID: PMC9736268 DOI: 10.3390/cells11233928] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Crossbreeding, mutation breeding, and traditional transgenic breeding take much time to improve desirable characters/traits. CRISPR/Cas-mediated genome editing (GE) is a game-changing tool that can create variation in desired traits, such as biotic and abiotic resistance, increase quality and yield in less time with easy applications, high efficiency, and low cost in producing the targeted edits for rapid improvement of crop plants. Plant pathogens and the severe environment cause considerable crop losses worldwide. GE approaches have emerged and opened new doors for breeding multiple-resistance crop varieties. Here, we have summarized recent advances in CRISPR/Cas-mediated GE for resistance against biotic and abiotic stresses in a crop molecular breeding program that includes the modification and improvement of genes response to biotic stresses induced by fungus, virus, and bacterial pathogens. We also discussed in depth the application of CRISPR/Cas for abiotic stresses (herbicide, drought, heat, and cold) in plants. In addition, we discussed the limitations and future challenges faced by breeders using GE tools for crop improvement and suggested directions for future improvements in GE for agricultural applications, providing novel ideas to create super cultivars with broad resistance to biotic and abiotic stress.
Collapse
Affiliation(s)
- Yaxin Wang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Naeem Zafar
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qurban Ali
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hakim Manghwar
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanying Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Yu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Ding
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Ding
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ni Hong
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoping Wang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
33
|
Lal A, Kil EJ, Vo TTB, Wira Sanjaya IGNP, Qureshi MA, Nattanong B, Ali M, Shuja MN, Lee S. Interspecies Recombination-Led Speciation of a Novel Geminivirus in Pakistan. Viruses 2022; 14:v14102166. [PMID: 36298721 PMCID: PMC9612148 DOI: 10.3390/v14102166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Recombination between isolates of different virus species has been known to be one of the sources of speciation. Weeds serve as mixing vessels for begomoviruses, infecting a wide range of economically important plants, thereby facilitating recombination. Chenopodium album is an economically important weed spread worldwide. Here, we present the molecular characterization of a novel recombinant begomovirus identified from C. album in Lahore, Pakistan. The complete DNA- A genome of the virus associated with the leaf distortion occurred in the infected C. album plants was cloned and sequenced. DNA sequence analysis showed that the nucleotide sequence of the virus shared 93% identity with those of the rose leaf curl virus and the duranta leaf curl virus. Interestingly, this newly identified virus is composed of open reading frames (ORFs) from different origins. Phylogenetic networks and complementary recombination detection methods revealed extensive recombination among the sequences. The infectious clone of the newly detected virus was found to be fully infectious in C. album and Nicotiana benthamiana as the viral DNA was successfully reconstituted from systemically infected tissues of inoculated plants, thus fulfilling Koch's postulates. Our study reveals a new speciation of an emergent ssDNA plant virus associated with C. album through recombination and therefore, proposed the tentative name 'Chenopodium leaf distortion virus' (CLDV).
Collapse
Affiliation(s)
- Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong 36729, Korea
- Agricultural Science and Technology Research Institute, Andong National University, Andong 36729, Korea
| | - Eui-Joon Kil
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong 36729, Korea
| | - Thuy T. B. Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | | | - Muhammad Amir Qureshi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Bupi Nattanong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Muhammad Ali
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore 54770, Pakistan
| | - Malik Nawaz Shuja
- Department of Microbiology, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
- Correspondence:
| |
Collapse
|
34
|
Qureshi MA, Lal A, Nawaz-ul-Rehman MS, Vo TTB, Sanjaya GNPW, Ho PT, Nattanong B, Kil EJ, Jahan SMH, Lee KY, Tsai CW, Dao HT, Hoat TX, Aye TT, Win NK, Lee J, Kim SM, Lee S. Emergence of Asian endemic begomoviruses as a pandemic threat. FRONTIERS IN PLANT SCIENCE 2022; 13:970941. [PMID: 36247535 PMCID: PMC9554542 DOI: 10.3389/fpls.2022.970941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
Plant viruses are responsible for the most devastating and commercially significant plant diseases, especially in tropical and subtropical regions. The genus begomovirus is the largest one in the family Geminiviridae, with a single-stranded DNA genome, either monopartite or bipartite. Begomoviruses are transmitted by insect vectors, such as Bemisia tabaci. Begomoviruses are the major causative agents of diseases in agriculture globally. Because of their diversity and mode of evolution, they are thought to be geographic specific. The emerging begomoviruses are of serious concern due to their increasing host range and geographical expansion. Several begomoviruses of Asiatic origin have been reported in Europe, causing massive economic losses; insect-borne transmission of viruses is a critical factor in virus outbreaks in new geographical regions. This review highlights crucial information regarding Asia's four emerging and highly destructive begomoviruses. We also provided information regarding several less common but still potentially important pathogens of different crops. This information will aid possible direction of future studies in adopting preventive measures to combat these emerging viruses.
Collapse
Affiliation(s)
- Muhammad Amir Qureshi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | | | - Thuy Thi Bich Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | | | - Phuong Thi Ho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Bupi Nattanong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Eui-Joon Kil
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | | | - Kyeong-Yeoll Lee
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Chi-Wei Tsai
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Hang Thi Dao
- Plant Protection Research Institute, Hanoi, Vietnam
| | | | - Tin-Tin Aye
- Department of Entomology, Yezin Agricultural University, Yezin, Myanmar
| | - Nang Kyu Win
- Department of Plant Pathology, Yezin Agricultural University, Yezin, Myanmar
| | - Jangha Lee
- Crop Breeding Research Center, NongWoo Bio, Yeoju, South Korea
| | - Sang-Mok Kim
- Plant Quarantine Technology Center, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
35
|
Li Y, Wu X, Zhang Y, Zhang Q. CRISPR/Cas genome editing improves abiotic and biotic stress tolerance of crops. Front Genome Ed 2022; 4:987817. [PMID: 36188128 PMCID: PMC9524261 DOI: 10.3389/fgeed.2022.987817] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Abiotic stress such as cold, drought, saline-alkali stress and biotic stress including disease and insect pest are the main factors that affect plant growth and limit agricultural productivity. In recent years, with the rapid development of molecular biology, genome editing techniques have been widely used in botany and agronomy due to their characteristics of high efficiency, controllable and directional editing. Genome editing techniques have great application potential in breeding resistant varieties. These techniques have achieved remarkable results in resistance breeding of important cereal crops (such as maize, rice, wheat, etc.), vegetable and fruit crops. Among them, CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) provides a guarantee for the stability of crop yield worldwide. In this paper, the development of CRISRR/Cas and its application in different resistance breeding of important crops are reviewed, the advantages and importance of CRISRR/Cas technology in breeding are emphasized, and the possible problems are pointed out.
Collapse
Affiliation(s)
- Yangyang Li
- Hunan Tobacco Research Institute, Changsha, China
| | - Xiuzhe Wu
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Yan Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- *Correspondence: Qiang Zhang, ; Yan Zhang,
| | - Qiang Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- *Correspondence: Qiang Zhang, ; Yan Zhang,
| |
Collapse
|
36
|
Pedersen CJ, Marzano SYL. Characterization of Transcriptional Responses to Genomovirus Infection of the White Mold Fungus, Sclerotinia sclerotiorum. Viruses 2022; 14:v14091892. [PMID: 36146699 PMCID: PMC9506476 DOI: 10.3390/v14091892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Soybean leaf-associated gemygorvirus-1 (SlaGemV−1) is a CRESS-DNA virus classified in the family Genomoviridae, which causes hypovirulence and abolishes sclerotia formation in infected fungal pathogens under the family Sclerotiniaceae. To investigate the mechanisms involved in the induction of hypovirulence, RNA-Seq was compared between virus-free and SlaGemV−1-infected Sclerotinia sclerotiorum strain DK3. Overall, 4639 genes were differentially expressed, with 50.5% up regulated and 49.5% down regulated genes. GO enrichments suggest changes in integral membrane components and transmission electron microscopy images reveal virus-like particles localized near the inner cell membrane. Differential gene expression analysis focused on genes responsible for cell cycle and DNA replication and repair pathways, ubiquitin proteolysis, gene silencing, methylation, pathogenesis-related, sclerotial development, carbohydrate metabolism, and oxalic acid biosynthesis. Carbohydrate metabolism showed the most changes, with two glycoside hydrolase genes being the most down regulated by −2396.1- and −648.6-fold. Genes relating to pathogenesis showed consistent down regulation with the greatest being SsNep1, SsSSVP1, and Endo2 showing, −4555-, −14.7-, and −12.3-fold changes. The cell cycle and DNA replication/repair pathways were almost entirely up regulated including a putative cyclin and separase being up regulated 8.3- and 5.2-fold. The oxalate decarboxylase genes necessary for oxalic acid catabolism and oxalic acid precursor biosynthesis genes and its metabolism show down regulations of −17.2- and −12.1-fold changes. Sclerotial formation genes also appear differentially regulated including a melanin biosynthesis gene Pks1 and a sclerotia formation gene Sl2 with fold changes of 3.8 and −2.9.
Collapse
Affiliation(s)
- Connor J. Pedersen
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
- United States Department of Agriculture/Agricultural Research Service, Toledo, OH 43606, USA
| | - Shin-Yi Lee Marzano
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
- United States Department of Agriculture/Agricultural Research Service, Toledo, OH 43606, USA
- Department of Horticulture, and Plant Science, South Dakota State University, Brookings, SD 57007, USA
- Correspondence:
| |
Collapse
|
37
|
Maachi A, Donaire L, Hernando Y, Aranda MA. Genetic Differentiation and Migration Fluxes of Viruses from Melon Crops and Crop Edge Weeds. J Virol 2022; 96:e0042122. [PMID: 35924924 PMCID: PMC9400485 DOI: 10.1128/jvi.00421-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/03/2022] [Indexed: 11/20/2022] Open
Abstract
Weeds surrounding crops may act as alternative hosts, playing important epidemiological roles as virus reservoirs and impacting virus evolution. We used high-throughput sequencing to identify viruses in Spanish melon crops and plants belonging to three pluriannual weed species, Ecballium elaterium, Malva sylvestris, and Solanum nigrum, sampled at the edges of the crops. Melon and E. elaterium, both belonging to the family Cucurbitaceae, shared three virus species, whereas there was no virus species overlap between melon and the other two weeds. The diversity of cucurbit aphid-borne yellows virus (CABYV) and tomato leaf curl New Delhi virus (ToLCNDV), both in melon and E. elaterium, was further studied by amplicon sequencing. Phylogenetic and population genetics analyses showed that the CABYV population was structured by the host, identifying three sites in the CABYV RNA-dependent RNA polymerase under positive selection, perhaps reflecting host adaptation. The ToLCNDV population was much less diverse than the CABYV one, likely as a consequence of the relatively recent introduction of ToLCNDV in Spain. In spite of its low diversity, we identified geographical but no host differentiation for ToLCNDV. Potential virus migration fluxes between E. elaterium and melon plants were also analyzed. For CABYV, no evidence of migration between the populations of the two hosts was found, whereas important fluxes were identified between geographically distant subpopulations for each host. For ToLCNDV, in contrast, evidence of migration from melon to E. elaterium was found, but not the other way around. IMPORTANCE It has been reported that about half of the emerging diseases affecting plants are caused by viruses. Alternative hosts often play critical roles in virus emergence as virus reservoirs, bridging host species that are otherwise unconnected and/or favoring virus diversification. In spite of this, the viromes of potential alternative hosts remain largely unexplored. In the case of crops, pluriannual weeds at the crop edges may play these roles. Here, we took advantage of the power of high-throughput sequencing to characterize the viromes of three weed species frequently found at the edges of melon crops. We identified three viruses shared by melon and the cucurbit weed, with two of them being epidemiologically relevant for melon crops. Further genetic analyses showed that these two viruses had contrasting patterns of diversification and migration, providing an interesting example on the role that weeds may play in the ecology and evolution of viruses affecting crops.
Collapse
Affiliation(s)
- Ayoub Maachi
- Abiopep S.L., Parque Científico de Murcia, Complejo de Espinardo, Espinardo, Murcia, Spain
| | - Livia Donaire
- Abiopep S.L., Parque Científico de Murcia, Complejo de Espinardo, Espinardo, Murcia, Spain
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Department of Stress Biology and Plant Pathology, Espinardo, Murcia, Spain
| | - Yolanda Hernando
- Abiopep S.L., Parque Científico de Murcia, Complejo de Espinardo, Espinardo, Murcia, Spain
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Department of Stress Biology and Plant Pathology, Espinardo, Murcia, Spain
| |
Collapse
|
38
|
Wu H, Liu M, Kang B, Liu L, Hong N, Peng B, Gu Q. AC5 protein encoded by squash leaf curl China virus is an RNA silencing suppressor and a virulence determinant. Front Microbiol 2022; 13:980147. [PMID: 36060769 PMCID: PMC9437540 DOI: 10.3389/fmicb.2022.980147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/05/2022] [Indexed: 11/26/2022] Open
Abstract
Squash leaf curl China virus (SLCCNV) is a bipartite Begomovirus. The function of the protein AC5, which is encoded by SLCCNV, is unknown. Here, we confirmed that the 172-amino acids (aa) long AC5 protein of SLCCNV could suppress single-stranded RNA but not double-stranded RNA-induced post-transcriptional gene silencing (PTGS). Furthermore, we determined that the C-terminal domain (96–172 aa) of the AC5 protein was responsible for RNA silencing suppressor (RSS) activity via deletion mutant analysis. The AC5 protein can reverse GFP silencing and inhibit systemic silencing of GFP by interfering with the systemic spread of the GFP silencing signal. The SLCCNV AC5 protein was localized to both the nucleus and cytoplasm of Nicotiana benthamiana cells. Furthermore, deletion analysis showed that the putative nuclear localization signal (NLS, 102–155 aa) was crucial for the RNA silencing suppression activity of AC5. In addition, the AC5 protein elicited a hypersensitive response and enhanced potoao virus X (PVX) RNA accumulation in infected N. benthamiana plants. Using the infectious clones of the SLCCNV and SLCCNV-AC5 null mutants, mutational analysis confirmed that knockout of the AC5 gene abolished SLCCNV-induced leaf curl symptoms, showing SLCCNV AC5 is also a virulence determinant.
Collapse
Affiliation(s)
- Huijie Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Mei Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Baoshan Kang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Liming Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ni Hong
- College of Plant Science and Technology, Huazhong Agricultural University/Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Bin Peng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Bin Peng,
| | - Qinsheng Gu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- *Correspondence: Qinsheng Gu,
| |
Collapse
|
39
|
The Rep and C1 of Beet curly top Iran virus represent pathogenicity factors and induce hypersensitive response in Nicotiana benthamiana plants. Virus Genes 2022; 58:550-559. [PMID: 35960462 DOI: 10.1007/s11262-022-01927-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
Abstract
Beet curly top Iran virus (BCTIV) is a member of the genus Becurtovirus (Family Geminiviridae) with a circular single-strand DNA genome. BCTIV causes leaf curling and vein swelling symptoms in plants. However, the potential pathogenicity factor/s in BCTIV is/are not known. This study presents characterization of complementary-sense transcripts of BCTIV and the viral factors in directing the pathogenicity and hypersensitive response (HR) in Nicotiana benthamiana plants. In both local and systemic infection, splicing of the complementary transcripts of BCTIV was observed. Notably, a small number (8.3%) of transcripts were spliced to produce Rep (C1:C2) transcripts after deletion of 155 nt (position 1892-2046 from BCTIV). Expression of BCTIV genes in N. benthamiana using tobacco rattle virus (TRV)-based vector showed that Rep together with C1 are the main pathogenicity factors which cause typical viral leaf curling symptoms. In addition, the V2 caused a mild leaf curling, thickening, and asymmetric leaves, while the V1, V3, and C2 had no clear effect on the plant phenotype. Transient expression of individual viral genes showed that both the C1 and Rep trigger a HR response in N. benthamiana. The higher expression of HR marker genes, harpin-induced 1 (Hin1) and hypersensitivity-related (Hsr203JI), supported the role of C1 and Rep in HR response in plants. It is concluded that Rep and C1 are the main pathogenicity factors that also trigger HR response in plants.
Collapse
|
40
|
Shingote PR, Wasule DL, Parma VS, Holkar SK, Karkute SG, Parlawar ND, Senanayake DMJB. An Overview of Chili Leaf Curl Disease: Molecular Mechanisms, Impact, Challenges, and Disease Management Strategies in Indian Subcontinent. Front Microbiol 2022; 13:899512. [PMID: 35847087 PMCID: PMC9277185 DOI: 10.3389/fmicb.2022.899512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Leaf curl disease in a chili plant is caused mainly by Chili leaf curl virus (ChiLCV) (Family: Geminiviridae, Genus: Begomovirus). ChiLCV shows a widespread occurrence in most of the chili (Capsicum spp.) growing regions. ChiLCV has a limited host range and infects tomatoes (Solanum lycopersicum), potatoes (S. tuberosum), and amaranth (Amaranthus tricolor). The virus genome is a monopartite circular single-stranded DNA molecule of 2.7 kb and associated with α and β-satellites of 1.3 and 1.4 kb, respectively. The virus genome is encapsulated in distinct twinned icosahedral particles of around 18-30 nm in size and transmitted by Bemisia tabaci (Family: Aleyrodidae, Order: Hemiptera). Recently, bipartite begomovirus has been found to be associated with leaf curl disease. The leaf curl disease has a widespread distribution in the major equatorial regions viz., Australia, Asia, Africa, Europe, and America. Besides the PCR, qPCR, and LAMP-based detection systems, recently, localized surface-plasmon-resonance (LPSR) based optical platform is used for ChiLCV detection in a 20-40 μl of sample volume using aluminum nanoparticles. Management of ChiLCV is more challenging due to the vector-borne nature of the virus, therefore integrated disease management strategies need to be followed to contain the spread and heavy crop loss. CRISPR/Cas-mediated virus resistance has gained importance in disease management of DNA and RNA viruses due to certain advantages over the conventional approaches. Therefore, CRISPR/Cas system-mediated resistance needs to be explored in chili against ChiLCV.
Collapse
Affiliation(s)
- Prashant Raghunath Shingote
- Department of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Veedyapeeth, Akola, India.,Department of Agricultural Biotechnology, Vasantrao Naik College of Agricultural Biotechnology, Yavatmal, India
| | - Dhiraj Lalji Wasule
- Department of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Veedyapeeth, Akola, India
| | - Vaishnavi Sanjay Parma
- Department of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Veedyapeeth, Akola, India
| | - Somnath Kadappa Holkar
- Indian Council of Agricultural Research (ICAR)-National Research Centre for Grapes, Pune, India
| | - Suhas Gorakh Karkute
- Division of Vegetable Improvement, Indian Council of Agricultural Research (ICAR)-Indian Institute of Vegetable Research, Varanasi, India
| | - Narsing Devanna Parlawar
- Department of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Veedyapeeth, Akola, India
| | - D M J B Senanayake
- Deparment of Agriculture, Rice Research and Development Institute, Bathalagoda, Sri Lanka
| |
Collapse
|
41
|
Delgado-Martín J, Ruiz L, Janssen D, Velasco L. Exogenous Application of dsRNA for the Control of Viruses in Cucurbits. FRONTIERS IN PLANT SCIENCE 2022; 13:895953. [PMID: 35832223 PMCID: PMC9272007 DOI: 10.3389/fpls.2022.895953] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The recurrent emergence of viral diseases in intensive horticultural crops requires alternative control strategies. The topical application of double-stranded RNA (dsRNA) molecules homologous to pathogens has been proposed as a tool for virus control in plants. These dsRNAs induce the silencing mechanism, the RNA interference (RNAi), that degrades homologous dsRNAs. Cucumber green mottle mosaic virus (CGMMV) represents a serious threat to cucurbit crops. Since genetic resistance to the virus is not yet available in commercial varieties, we aimed to control this virus by RNAi. For this purpose, we obtained constructions both for expressing dsRNA in bacteria to treat cucumber plants by topical application and for agroinoculation in experiments done in the growth chamber. Besides, greenhouse tests were performed in spring and in summer when plants were challenged with the virus, and differences in several parameters were investigated, including the severity of symptoms, dry weight, total height, virus accumulation, and virus-derived small interfering RNAs (vsiRNAs). Spraying of plants with dsRNA reduced significatively CGMMV symptoms in the plants in growth chamber tests. Agroinfiltration experiments done under identical conditions were also effective in limiting the progress of CGMMV disease. In the greenhouse assay performed in spring, symptoms were significantly reduced in dsRNA-sprayed plants, and the development of the plants improved with respect to non-treated plants. Virus titers and vsiRNAs were clearly reduced in dsRNA-treated plants. The effect of protection of the dsRNA was less evident in the greenhouse assay carried out in the summer. Besides, we investigated the mobility of long (ds)RNA derived from spraying or agroinfiltrated dsRNA and found that it could be detected in local, close distal, and far distal points from the site of application. VsiRNAs were also detected in local and distal points and the differences in accumulation were compared. In parallel, we investigated the capacity of dsRNAs derived from genes of tomato leaf curl New Delhi virus (ToLCNDV), another economically important virus in cucurbits, to limit the disease in zucchini, both by agroinfiltration or by direct spraying, but found no protective effect. In view of the results, the topical application of dsRNAs is postulated as a promising strategy for CGMMV control in the cucumber.
Collapse
Affiliation(s)
- Josemaría Delgado-Martín
- Instituto Andaluz de Investigación y Formación Agraria (IFAPA) Centro de Málaga, Málaga, Spain
- Universidad de Málaga, Málaga, Spain
| | - Leticia Ruiz
- Instituto Andaluz de Investigación y Formación Agraria (IFAPA) Centro La Mojonera, Almería, Spain
| | - Dirk Janssen
- Instituto Andaluz de Investigación y Formación Agraria (IFAPA) Centro La Mojonera, Almería, Spain
| | - Leonardo Velasco
- Instituto Andaluz de Investigación y Formación Agraria (IFAPA) Centro de Málaga, Málaga, Spain
| |
Collapse
|
42
|
Expression, Purification, and Characterisation of South African Cassava Mosaic Virus Cell-to-Cell Movement Protein. Curr Issues Mol Biol 2022; 44:2717-2729. [PMID: 35735627 PMCID: PMC9221656 DOI: 10.3390/cimb44060186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
South African cassava mosaic virus (SACMV) is a circular ssDNA bipartite begomovirus, whose genome comprises DNA-A (encodes six genes) and DNA-B (encodes BC1 cell-to-cell movement and BV1 nuclear shuttle proteins) components. A few secondary and tertiary structural and physicochemical characteristics of partial but not full-length begomovirus proteins have been elucidated to date. The full-length codon-optimised SACMV BC1 gene was cloned into a pET-28a (+) expression vector and transformed into expression host cells E. coli BL21 (DE3). The optimal expression of the full-length BC1-encoded movement protein (MP) was obtained via induction with 0.25 mM IPTG at an OD600 of ~0.45 at 37 °C for four hours. Denatured protein fractions (dialysed in 4 M urea), passed through an IMAC column, successfully bound to the nickel resin, and eluted using 250 mM imidazole. The protein was refolded using stepwise dialysis. The molecular weight of MP was confirmed to be 35 kDa using SDS-PAGE. The secondary structure of SACMV MP presented as predominantly β-strands. An ANS (1-anilino-8-naphthalene sulphonate)-binding assay confirmed that MP possesses hydrophobic pockets with the ability to bind ligands such as ANS (8-anilino-1-naphthalenesulphonic acid). A 2' (3')-N-methylanthraniloyl-ATP (mant-ATP) assay showed binding of mant-ATP to MP and indicated that, while hydrophobic pockets are present, MP also exhibits hydrophilic regions. Intrinsic tryptophan fluorescence indicated a significant conformational change in the denatured form of BC1 in the presence of ATP. In addition, a phosphatase assay showed that MP possessed ATPase activity.
Collapse
|
43
|
Guevara-Rivera EA, Rodríguez-Negrete EA, Aréchiga-Carvajal ET, Leyva-López NE, Méndez-Lozano J. From Metagenomics to Discovery of New Viral Species: Galium Leaf Distortion Virus, a Monopartite Begomovirus Endemic in Mexico. Front Microbiol 2022; 13:843035. [PMID: 35547137 PMCID: PMC9083202 DOI: 10.3389/fmicb.2022.843035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
Begomoviruses (Family Geminiviridae) are a major group of emerging plant viruses worldwide. The knowledge of begomoviruses is mostly restricted to crop plant systems. Nevertheless, it has been described that non-cultivated plants are important reservoirs and vessels of viral evolution that leads to the emergence of new diseases. High-throughput sequencing (HTS) has provided a powerful tool for speeding up the understanding of molecular ecology and epidemiology of plant virome and for discovery of new viral species. In this study, by performing earlier metagenomics library data mining, followed by geminivirus-related signature single plant searching and RCA-based full-length viral genome cloning, and based on phylogenetic analysis, genomes of two isolates of a novel monopartite begomovirus species tentatively named Galium leaf distortion virus (GLDV), which infects non-cultivated endemic plant Galium mexicanum, were identified in Colima, Mexico. Analysis of the genetic structure of both isolates (GLDV-1 and GLDV-2) revealed that the GLDV genome displays a DNA-A-like structure shared with the new world (NW) bipartite begomoviruses. Nonetheless, phylogenetic analysis using representative members of the main begomovirus American clades for tree construction grouped both GLDV isolates in a clade of the monopartite NW begomovirus, Tomato leaf deformation virus (ToLDeV). A comparative analysis of viral replication regulatory elements showed that the GLDV-1 isolate possesses an array and sequence conservation of iterons typical of NW begomovirus infecting the Solanaceae and Fabaceae families. Interestingly, GLDV-2 showed iteron sequences described only in monopartite begomovirus from OW belonging to a sweepovirus clade that infects plants of the Convolvulaceae family. In addition, the rep iteron related-domain (IRD) of both isolates display FRVQ or FRIS amino acid sequences corresponding to NW and sweepobegomovirus clades for GMV-1 and GMV-2, respectively. Finally, the lack of the GLDV DNA-B segment (tested by molecular detection and biological assays using GLDV-1/2 infectious clones) confirmed the monopartite nature of GLDV. This is the first time that a monopartite begomovirus is described in Mexican ecosystems, and “in silico” geometagenomics analysis indicates that it is restricted to a specific region. These data revealed additional complexity in monopartite begomovirus genetics and geographic distribution and highlighted the importance of metagenomic approaches in understanding global virome ecology and evolution.
Collapse
Affiliation(s)
- Enrique A Guevara-Rivera
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Mexico
| | - Edgar A Rodríguez-Negrete
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Mexico
| | - Elva T Aréchiga-Carvajal
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología-Unidad de Manipulación Genética, San Nicolás de los Garza, Mexico
| | - Norma E Leyva-López
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Mexico
| | - Jesús Méndez-Lozano
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Mexico
| |
Collapse
|
44
|
Chiu CW, Li YR, Lin CY, Yeh HH, Liu MJ. Translation initiation landscape profiling reveals hidden open-reading frames required for the pathogenesis of tomato yellow leaf curl Thailand virus. THE PLANT CELL 2022; 34:1804-1821. [PMID: 35080617 PMCID: PMC9048955 DOI: 10.1093/plcell/koac019] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/06/2022] [Indexed: 05/12/2023]
Abstract
Plant viruses with densely packed genomes employ noncanonical translational strategies to increase the coding capacity for viral function. However, the diverse translational strategies used make it challenging to define the full set of viral genes. Here, using tomato yellow leaf curl Thailand virus (TYLCTHV, genus Begomovirus) as a model system, we identified genes beyond the annotated gene sets by experimentally profiling in vivo translation initiation sites (TISs). We found that unanticipated AUG TISs were prevalent and determined that their usage involves alternative transcriptional and/or translational start sites and is associated with flanking mRNA sequences. Specifically, two downstream in-frame TISs were identified in the viral gene AV2. These TISs were conserved in the begomovirus lineage and led to the translation of different protein isoforms localized to cytoplasmic puncta and at the cell periphery, respectively. In addition, we found translational evidence of an unexplored gene, BV2. BV2 is conserved among TYLCTHV isolates and localizes to the endoplasmic reticulum and plasmodesmata. Mutations of AV2 isoforms and BV2 significantly attenuated disease symptoms in tomato (Solanum lycopersicum). In conclusion, our study pinpointing in vivo TISs untangles the coding complexity of a plant viral genome and, more importantly, illustrates the biological significance of the hidden open-reading frames encoding viral factors for pathogenicity.
Collapse
Affiliation(s)
- Ching-Wen Chiu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Ya-Ru Li
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Cheng-Yuan Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Hsin-Hung Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | | |
Collapse
|
45
|
Prasad A, Prasad M. Interaction of ToLCNDV TrAP with SlATG8f marks it susceptible to degradation by autophagy. Cell Mol Life Sci 2022; 79:241. [PMID: 35428912 PMCID: PMC11072827 DOI: 10.1007/s00018-022-04281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) is a devastating plant pathogen which causes significant losses in tomato yield. According to previous reports, proteins of geminiviruses like βC1 of Cotton leaf curl Multan virus and C1 of Tomato leaf curl Yunnan virus are degraded by the autophagy pathway. There are no reports on the role of autophagy in ToLCNDV pathogenesis. In this study, we have shown that SlATG8f interacts with the ToLCNDV Transcription activator protein (TrAP; AC2) to mediate its degradation by the autophagy pathway. Silencing of SlATG8f in a ToLCNDV tolerant tomato cultivar; H-88-78-1 resulted in enhanced viral symptoms and ToLCNDV accumulation suggesting an anti-viral role for SlATG8f against ToLCNDV. TrAP is a nucleus localized protein, but it interacts with SlATG8f in and outside the nucleus indicating its nuclear export. This export might be mediated by Exportin1 as treatment with Exportin1 inhibitor inhibits TrAP export outside the nucleus. ToLCNDV TrAP is known to possess host RNA silencing suppression (RSS) activity. Degradation of TrAP results in the attenuation of its RSS activity. To the best of our knowledge, we have shown for the first time that SlATG8f-TrAP interaction leads to TrAP degradation providing defence against ToLCNDV.
Collapse
Affiliation(s)
- Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
46
|
Bhattacharjee B, Hallan V. Geminivirus-Derived Vectors as Tools for Functional Genomics. Front Microbiol 2022; 13:799345. [PMID: 35432267 PMCID: PMC9010885 DOI: 10.3389/fmicb.2022.799345] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
A persistent issue in the agricultural sector worldwide is the intensive damage caused to crops by the geminivirus family of viruses. The diverse types of viruses, rapid virus evolution rate, and broad host range make this group of viruses one of the most devastating in nature, leading to millions of dollars' worth of crop damage. Geminiviruses have a small genome and can be either monopartite or bipartite, with or without satellites. Their ability to independently replicate within the plant without integration into the host genome and the relatively easy handling make them excellent candidates for plant bioengineering. This aspect is of great importance as geminiviruses can act as natural nanoparticles in plants which can be utilized for a plethora of functions ranging from vaccine development systems to geminivirus-induced gene silencing (GIGS), through deconstructed viral vectors. Thus, the investigation of these plant viruses is pertinent to understanding their crucial roles in nature and subsequently utilizing them as beneficial tools in functional genomics. This review, therefore, highlights some of the characteristics of these viruses that can be deemed significant and the subsequent successful case studies for exploitation of these potentially significant pathogens for role mining in functional biology.
Collapse
Affiliation(s)
- Bipasha Bhattacharjee
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Plant Virology Laboratory, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vipin Hallan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Plant Virology Laboratory, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
47
|
Gene Overlapping as a Modulator of Begomovirus Evolution. Microorganisms 2022; 10:microorganisms10020366. [PMID: 35208820 PMCID: PMC8875319 DOI: 10.3390/microorganisms10020366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
In RNA viruses, which have high mutation—and fast evolutionary— rates, gene overlapping (i.e., genomic regions that encode more than one protein) is a major factor controlling mutational load and therefore the virus evolvability. Although DNA viruses use host high-fidelity polymerases for their replication, and therefore should have lower mutation rates, it has been shown that some of them have evolutionary rates comparable to those of RNA viruses. Notably, these viruses have large proportions of their genes with at least one overlapping instance. Hence, gene overlapping could be a modulator of virus evolution beyond the RNA world. To test this hypothesis, we use the genus Begomovirus of plant viruses as a model. Through comparative genomic approaches, we show that terminal gene overlapping decreases the rate of virus evolution, which is associated with lower frequency of both synonymous and nonsynonymous mutations. In contrast, terminal overlapping has little effect on the pace of virus evolution. Overall, our analyses support a role for gene overlapping in the evolution of begomoviruses and provide novel information on the factors that shape their genetic diversity.
Collapse
|
48
|
Sun S, Ren Y, Wang D, Farooq T, He Z, Zhang C, Li S, Yang X, Zhou X. A group I WRKY transcription factor regulates mulberry mosaic dwarf-associated virus-triggered cell death in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2022; 23:237-253. [PMID: 34738705 PMCID: PMC8743015 DOI: 10.1111/mpp.13156] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 05/27/2023]
Abstract
Geminiviruses constitute the largest group of known plant viruses and cause devastating losses to a wide range of crops and woody plants globally. Mulberry mosaic dwarf-associated virus (MMDaV), identified from Chinese mulberry trees via small RNA-based deep sequencing, is a divergent monopartite geminivirus belonging to the genus Mulcrilevirus of the family Geminiviridae. Previous studies have shown that plants employ multiple layers of defence to protect themselves from geminivirus infection. The interplay between plant and MMDaV is nevertheless less studied. This study presents evidence that MMDaV triggers hypersensitive response (HR)-mediated antiviral defence in Nicotiana benthamiana plants. We show that the RepA protein of MMDaV is engaged in HR-type cell death induction. We find that the RepA mutants with compromised nuclear localization ability impair their capabilities of cell death induction. Virus-induced gene silencing of the key components of the R protein-mediated signalling pathway reveals that down-regulation of the nucleus-targeting NbWRKY1 alleviates the cell death induction activity of RepA. We further demonstrate that RepA up-regulates the transcript level of NbWRKY1. Furthermore, expression of RepA in N. benthamiana confers plant resistance against two begomoviruses. We propose that plant resistance against RepA can be potentially used to improve plant defence against geminiviruses in crops.
Collapse
Affiliation(s)
- Shaoshuang Sun
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Yanxiang Ren
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Dongxue Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Tahir Farooq
- Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Zifu He
- Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Chao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouChina
| |
Collapse
|
49
|
Ouattara A, Tiendrébéogo F, Becker N, Urbino C, Thébaud G, Hoareau M, Allibert A, Chiroleu F, Vernerey MS, Traoré EV, Barro N, Traoré O, Lefeuvre P, Lett JM. Synergy between an emerging monopartite begomovirus and a DNA-B component. Sci Rep 2022; 12:695. [PMID: 35027584 PMCID: PMC8758689 DOI: 10.1038/s41598-021-03957-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022] Open
Abstract
In recent decades, a legion of monopartite begomoviruses transmitted by the whitefly Bemisia tabaci has emerged as serious threats to vegetable crops in Africa. Recent studies in Burkina Faso (West Africa) reported the predominance of pepper yellow vein Mali virus (PepYVMLV) and its frequent association with a previously unknown DNA-B component. To understand the role of this DNA-B component in the emergence of PepYVMLV, we assessed biological traits related to virulence, virus accumulation, location in the tissue and transmission. We demonstrate that the DNA-B component is not required for systemic movement and symptom development of PepYVMLV (non-strict association), but that its association produces more severe symptoms including growth arrest and plant death. The increased virulence is associated with a higher viral DNA accumulation in plant tissues, an increase in the number of contaminated nuclei of the phloem parenchyma and in the transmission rate by B. tabaci. Our results suggest that the association of a DNA-B component with the otherwise monopartite PepYVMLV is a key factor of its emergence.
Collapse
Affiliation(s)
- Alassane Ouattara
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de l'Environnement et de Recherches Agricoles (INERA), 01 BP 476, Ouagadougou 01, Burkina Faso
- CIRAD, UMR PVBMT, 97410, St Pierre, La Réunion, France
- Université de La Réunion, UMR PVBMT, 97410, Saint-Pierre, La Réunion, France
- Université Joseph Ki-Zerbo, 03 BP 7021, Ouagadougou 03, Burkina Faso
- Laboratoire Mixte International Patho-Bios, IRD-INERA, 01 BP 476, Ouagadougou 01, Burkina Faso
| | - Fidèle Tiendrébéogo
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de l'Environnement et de Recherches Agricoles (INERA), 01 BP 476, Ouagadougou 01, Burkina Faso
- Laboratoire Mixte International Patho-Bios, IRD-INERA, 01 BP 476, Ouagadougou 01, Burkina Faso
| | - Nathalie Becker
- UMR Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005, Paris, France
| | - Cica Urbino
- CIRAD, UMR PHIM, 34090, Montpellier, France
- PHIM Plant Health Institute, INRAE, Univ Montpellier, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Gaël Thébaud
- PHIM Plant Health Institute, INRAE, Univ Montpellier, CIRAD, Institut Agro, IRD, Montpellier, France
| | | | | | | | - Marie-Stéphanie Vernerey
- PHIM Plant Health Institute, INRAE, Univ Montpellier, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Edgar Valentin Traoré
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de l'Environnement et de Recherches Agricoles (INERA), 01 BP 476, Ouagadougou 01, Burkina Faso
- Laboratoire Mixte International Patho-Bios, IRD-INERA, 01 BP 476, Ouagadougou 01, Burkina Faso
| | - Nicolas Barro
- Université Joseph Ki-Zerbo, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Oumar Traoré
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de l'Environnement et de Recherches Agricoles (INERA), 01 BP 476, Ouagadougou 01, Burkina Faso
- Laboratoire National de Biosécurité (LNB), 06 BP 10798, Ouagadougou 06, Burkina Faso
| | | | | |
Collapse
|
50
|
Zhai Y, Roy A, Peng H, Mullendore DL, Kaur G, Mandal B, Mukherjee SK, Pappu HR. Identification and Functional Analysis of Four RNA Silencing Suppressors in Begomovirus Croton Yellow Vein Mosaic Virus. FRONTIERS IN PLANT SCIENCE 2022; 12:768800. [PMID: 35069624 PMCID: PMC8777275 DOI: 10.3389/fpls.2021.768800] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/30/2021] [Indexed: 06/01/2023]
Abstract
Croton yellow vein mosaic virus (CYVMV), a species in the genus Begomovirus, is a prolific monopartite begomovirus in the Indian sub-continent. CYVMV infects multiple crop plants to cause leaf curl disease. Plants have developed host RNA silencing mechanisms to defend the threat of viruses, including CYVMV. We characterized four RNA silencing suppressors, namely, V2, C2, and C4 encoded by CYVMV and betasatellite-encoded C1 protein (βC1) encoded by the cognate betasatellite, croton yellow vein betasatellite (CroYVMB). Their silencing suppressor functions were verified by the ability of restoring the β-glucuronidase (GUS) activity suppressed by RNA silencing. We showed here for the first time that V2 was capable of self-interacting, as well as interacting with the V1 protein, and could be translocalized to the plasmodesmata in the presence of CYVMV. The knockout of either V2 or V1 impaired the intercellular mobility of CYVMV, indicating their novel coordinated roles in the cell-to-cell movement of the virus. As pathogenicity determinants, each of V2, C2, and C4 could induce typical leaf curl symptoms in Nicotiana benthamiana plants even under transient expression. Interestingly, the transcripts and proteins of all four suppressors could be detected in the systemically infected leaves with no correlation to symptom induction. Overall, our work identifies four silencing suppressors encoded by CYVMV and its cognate betasatellite and reveals their subcellular localizations, interaction behavior, and roles in symptom induction and intercellular virus movement.
Collapse
Affiliation(s)
- Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Anirban Roy
- Advanced Center for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Hao Peng
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Daniel L. Mullendore
- Franceschi Microscopy and Imaging Center, Washington State University, Pullman, WA, United States
| | - Gurpreet Kaur
- Advanced Center for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Bikash Mandal
- Advanced Center for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Sunil Kumar Mukherjee
- Advanced Center for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|