1
|
Li J, Wyatt NA, Skiba RM, Kariyawasam GK, Richards JK, Effertz K, Rehman S, Liu Z, Brueggeman RS, Friesen TL. Variability in Chromosome 1 of Select Moroccan Pyrenophora teres f. teres Isolates Overcomes a Highly Effective Barley Chromosome 6H Source of Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:676-687. [PMID: 38888557 DOI: 10.1094/mpmi-10-23-0159-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Barley net form net blotch (NFNB) is a destructive foliar disease caused by Pyrenophora teres f. teres. Barley line CIho5791, which harbors the broadly effective chromosome 6H resistance gene Rpt5, displays dominant resistance to P. teres f. teres. To genetically characterize P. teres f. teres avirulence/virulence on the barley line CIho5791, we generated a P. teres f. teres mapping population using a cross between the Moroccan CIho5791-virulent isolate MorSM40-3 and the avirulent reference isolate 0-1. Full genome sequences were generated for 103 progenies. Saturated chromosome-level genetic maps were generated, and quantitative trait locus (QTL) mapping identified two major QTL associated with P. teres f. teres avirulence/virulence on CIho5791. The most significant QTL mapped to chromosome (Ch) 1, where the virulent allele was contributed by MorSM40-3. A second QTL mapped to Ch8; however, this virulent allele was contributed by the avirulent parent 0-1. The Ch1 and Ch8 loci accounted for 27 and 15% of the disease variation, respectively, and the avirulent allele at the Ch1 locus was epistatic over the virulent allele at the Ch8 locus. As a validation, we used a natural P. teres f. teres population in a genome-wide association study that identified the same Ch1 and Ch8 loci. We then generated a new reference quality genome assembly of parental isolate MorSM40-3 with annotation supported by deep transcriptome sequencing of infection time points. The annotation identified candidate genes predicted to encode small, secreted proteins, one or more of which are likely responsible for overcoming the CIho5791 resistance. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.
Collapse
Affiliation(s)
- Jinling Li
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Nathan A Wyatt
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
- Sugarbeet and Potato Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND 58102, U.S.A
| | - Ryan M Skiba
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND 58102, U.S.A
| | - Gayan K Kariyawasam
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Jonathan K Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A
| | - Karl Effertz
- Department of Crop and Soil Science, Washington State University, Pullman, WA 99164, U.S.A
| | - Sajid Rehman
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10100, Morocco
- Field Crop Development Center of the Olds College, Lacombe, Alberta T4L1W8, Canada
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Robert S Brueggeman
- Department of Crop and Soil Science, Washington State University, Pullman, WA 99164, U.S.A
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND 58102, U.S.A
| |
Collapse
|
2
|
Clare SJ, Alhashel AF, Li M, Effertz KM, Poudel RS, Zhang J, Brueggeman RS. High resolution mapping of a novel non-transgressive hybrid susceptibility locus in barley exploited by P. teres f. maculata. BMC PLANT BIOLOGY 2024; 24:622. [PMID: 38951756 PMCID: PMC11218204 DOI: 10.1186/s12870-024-05303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
Hybrid genotypes can provide significant yield gains over conventional inbred varieties due to heterosis or hybrid vigor. However, hybrids can also display unintended negative attributes or phenotypes such as extreme pathogen susceptibility. The necrotrophic pathogen Pyrenophora teres f. maculata (Ptm) causes spot form net blotch, which has caused significant yield losses to barley worldwide. Here, we report on a non-transgressive hybrid susceptibility locus in barley identified between the three parental lines CI5791, Tifang and Golden Promise that are resistant to Ptm isolate 13IM.3. However, F2 progeny from CI5791 × Tifang and CI5791 × Golden Promise crosses exhibited extreme susceptibility. The susceptible phenotype segregated in a ratio of 1 resistant:1 susceptible representing a genetic segregation ratio of 1 parental (res):2 heterozygous (sus):1 parental (res) suggesting a single hybrid susceptibility locus. Genetic mapping using a total of 715 CI5791 × Tifang F2 individuals (1430 recombinant gametes) and 149 targeted SNPs delimited the hybrid susceptibility locus designated Susceptibility to Pyrenophora teres 2 (Spt2) to an ~ 198 kb region on chromosome 5H of the Morex V3 reference assembly. This single locus was independently mapped with 83 CI5791 × Golden Promise F2 individuals (166 recombinant gametes) and 180 genome wide SNPs that colocalized to the same Spt2 locus. The CI5791 genome was sequenced using PacBio Continuous Long Read technology and comparative analysis between CI5791 and the publicly available Golden Promise genome assembly determined that the delimited region contained a single high confidence Spt2 candidate gene predicted to encode a pentatricopeptide repeat-containing protein.
Collapse
Affiliation(s)
- Shaun J Clare
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Abdullah F Alhashel
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mengyuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Karl M Effertz
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
- Dewey Scientific, Pullman, WA, 99163, USA
| | - Roshan Sharma Poudel
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
- Syngenta Seed Inc, Durham, NC, 27709, USA
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Robert S Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
3
|
Richards JK, Li J, Koladia V, Wyatt NA, Rehman S, Brueggeman RS, Friesen TL. A Moroccan Pyrenophora teres f. teres Population Defeats Rpt5, the Broadly Effective Resistance on Barley Chromosome 6H. PHYTOPATHOLOGY 2024; 114:193-199. [PMID: 37386751 DOI: 10.1094/phyto-04-23-0117-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Net form net blotch (NFNB), caused by Pyrenophora teres f. teres, is an important barley disease. The centromeric region of barley chromosome 6H has often been associated with resistance or susceptibility to NFNB, including the broadly effective dominant resistance gene Rpt5 derived from barley line CIho 5791. We characterized a population of Moroccan P. teres f. teres isolates that had overcome Rpt5 resistance and identified quantitative trait loci (QTL) that were effective against these isolates. Eight Moroccan P. teres f. teres isolates were phenotyped on barley lines CIho 5791 and Tifang. Six isolates were virulent on CIho 5791, and two were avirulent. A CIho 5791 × Tifang recombinant inbred line (RIL) population was phenotyped with all eight isolates and confirmed the defeat of the 6H resistance locus formerly mapped as Rpt5 in barley line CI9819. A major QTL on chromosome 3H with the resistance allele derived from Tifang, as well as minor QTL, was identified and provided resistance against these isolates. F2 segregation ratios supported dominant inheritance for both the 3H and 6H resistance. Furthermore, inoculation of progeny isolates derived from a cross of P. teres f. teres isolates 0-1 (virulent on Tifang/avirulent on CIho 5791) and MorSM 40-3 (avirulent on Tifang/virulent on CIho 5791) onto the RIL and F2 populations determined that recombination between isolates can generate novel genotypes that overcome both resistance genes. Markers linked to the QTL identified in this study can be used to incorporate both resistance loci into elite barley cultivars for durable resistance.
Collapse
Affiliation(s)
- Jonathan K Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A
| | - Jinling Li
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Vaidehi Koladia
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Nathan A Wyatt
- Cereal Crops Research Unit, Edward T. Schaffer Agricultural Research Center, USDA-ARS, Fargo, ND 58102, U.S.A
| | - Sajid Rehman
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco 10010
| | - Robert S Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, U.S.A
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
- Cereal Crops Research Unit, Edward T. Schaffer Agricultural Research Center, USDA-ARS, Fargo, ND 58102, U.S.A
| |
Collapse
|
4
|
Anderegg J, Kirchgessner N, Kronenberg L, McDonald BA. Automated Quantitative Measurement of Yellow Halos Suggests Activity of Necrotrophic Effectors in Septoria tritici Blotch. PHYTOPATHOLOGY 2022; 112:2560-2573. [PMID: 35793150 DOI: 10.1094/phyto-11-21-0465-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many necrotrophic plant pathogens utilize host-selective toxins or necrotrophic effectors during the infection process. We hypothesized that the chlorotic yellow halos frequently observed around necrotic lesions caused by the wheat pathogen Zymoseptoria tritici could result from the activity of necrotrophic effectors interacting with the products of toxin sensitivity genes. As an initial step toward testing this hypothesis, we developed an automated image analysis (AIA) workflow that could quantify the degree of yellow halo formation occurring in wheat leaves naturally infected by a highly diverse pathogen population under field conditions. This AIA based on statistical learning was applied to more than 10,000 naturally infected leaves collected from 335 wheat cultivars grown in a replicated field experiment. We estimated a high heritability (h2 = 0.71) for the degree of yellow halo formation, suggesting that this quantitative trait has a significant genetic component. Using genome-wide association mapping, we identified six chromosome segments significantly associated with the yellow halo phenotype. Most of these segments contained candidate genes associated with targets of necrotrophic effectors in other necrotrophic pathogens. Our findings conform with the hypothesis that toxin sensitivity genes could account for a significant fraction of the observed variation in quantitative resistance to Septoria tritici blotch. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Jonas Anderegg
- Plant Pathology Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Norbert Kirchgessner
- Crop Science Group, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Lukas Kronenberg
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Bruce A McDonald
- Plant Pathology Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Rafiqi M, Jelonek L, Diouf AM, Mbaye A, Rep M, Diarra A. Profile of the in silico secretome of the palm dieback pathogen, Fusarium oxysporum f. sp. albedinis, a fungus that puts natural oases at risk. PLoS One 2022; 17:e0260830. [PMID: 35617325 PMCID: PMC9135196 DOI: 10.1371/journal.pone.0260830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
Understanding biotic changes that occur alongside climate change constitute a research priority of global significance. Here, we address a plant pathogen that poses a serious threat to life on natural oases, where climate change is already taking a toll and severely impacting human subsistence. Fusarium oxysporum f. sp. albedinis is a pathogen that causes dieback disease on date palms, a tree that provides several critical ecosystem services in natural oases; and consequently, of major importance in this vulnerable habitat. Here, we assess the current state of global pathogen spread, we annotate the genome of a sequenced pathogen strain isolated from the native range and we analyse its in silico secretome. The palm dieback pathogen secretes a large arsenal of effector candidates including a variety of toxins, a distinguished profile of secreted in xylem proteins (SIX) as well as an expanded protein family with an N-terminal conserved motif [SG]PC[KR]P that could be involved in interactions with host membranes. Using agrobiodiversity as a strategy to decrease pathogen infectivity, while providing short term resilient solutions, seems to be widely overcome by the pathogen. Hence, the urgent need for future mechanistic research on the palm dieback disease and a better understanding of pathogen genetic diversity.
Collapse
Affiliation(s)
- Maryam Rafiqi
- Plant Pathology Program, Agrobiosciences, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Lukas Jelonek
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Aliou Moussa Diouf
- Plant Pathology Program, Agrobiosciences, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - AbdouLahat Mbaye
- Plant Pathology Program, Agrobiosciences, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Martijn Rep
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Alhousseine Diarra
- Digital 4 Research Labs, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| |
Collapse
|
6
|
Clare SJ, Duellman KM, Richards JK, Poudel RS, Merrick LF, Friesen TL, Brueggeman RS. Association mapping reveals a reciprocal virulence/avirulence locus within diverse US Pyrenophora teres f. maculata isolates. BMC Genomics 2022; 23:285. [PMID: 35397514 PMCID: PMC8994276 DOI: 10.1186/s12864-022-08529-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/17/2022] [Indexed: 12/31/2022] Open
Abstract
Abstract
Background
Spot form net blotch (SFNB) caused by the necrotrophic fungal pathogen Pyrenophora teres f. maculata (Ptm) is an economically important disease of barley that also infects wheat. Using genetic analysis to characterize loci in Ptm genomes associated with virulence or avirulence is an important step to identify pathogen effectors that determine compatible (virulent) or incompatible (avirulent) interactions with cereal hosts. Association mapping (AM) is a powerful tool for detecting virulence loci utilizing phenotyping and genotyping data generated for natural populations of plant pathogenic fungi.
Results
Restriction-site associated DNA genotyping-by-sequencing (RAD-GBS) was used to generate 4,836 single nucleotide polymorphism (SNP) markers for a natural population of 103 Ptm isolates collected from Idaho, Montana and North Dakota. Association mapping analyses were performed utilizing the genotyping and infection type data generated for each isolate when challenged on barley seedlings of thirty SFNB differential barley lines. A total of 39 marker trait associations (MTAs) were detected across the 20 barley lines corresponding to 30 quantitative trait loci (QTL); 26 novel QTL and four that were previously mapped in Ptm biparental populations. These results using diverse US isolates and barley lines showed numerous barley-Ptm genetic interactions with seven of the 30 Ptm virulence/avirulence loci falling on chromosome 3, suggesting that it is a reservoir of diverse virulence effectors. One of the loci exhibited reciprocal virulence/avirulence with one haplotype predominantly present in isolates collected from Idaho increasing virulence on barley line MXB468 and the alternative haplotype predominantly present in isolates collected from North Dakota and Montana increasing virulence on barley line CI9819.
Conclusions
Association mapping provided novel insight into the host pathogen genetic interactions occurring in the barley-Ptm pathosystem. The analysis suggests that chromosome 3 of Ptm serves as an effector reservoir in concordance with previous reports for Pyrenophora teres f. teres, the causal agent of the closely related disease net form net blotch. Additionally, these analyses identified the first reported case of a reciprocal pathogen virulence locus. However, further investigation of the pathosystem is required to determine if multiple genes or alleles of the same gene are responsible for this genetic phenomenon.
Collapse
|
7
|
Ameen G, Solanki S, Sager-Bittara L, Richards J, Tamang P, Friesen TL, Brueggeman RS. Mutations in a barley cytochrome P450 gene enhances pathogen induced programmed cell death and cutin layer instability. PLoS Genet 2021; 17:e1009473. [PMID: 34914713 PMCID: PMC8769293 DOI: 10.1371/journal.pgen.1009473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/19/2022] [Accepted: 11/26/2021] [Indexed: 12/04/2022] Open
Abstract
Disease lesion mimic mutants (DLMMs) are characterized by the spontaneous development of necrotic spots with various phenotypes designated as necrotic (nec) mutants in barley. The nec mutants were traditionally considered to have aberrant regulation of programmed cell death (PCD) pathways, which have roles in plant immunity and development. Most barley nec3 mutants express cream to orange necrotic lesions contrasting them from typical spontaneous DLMMs that develop dark pigmented lesions indicative of serotonin/phenolics deposition. Barley nec3 mutants grown under sterile conditions did not exhibit necrotic phenotypes until inoculated with adapted pathogens, suggesting that they are not typical DLMMs. The F2 progeny of a cross between nec3-γ1 and variety Quest segregated as a single recessive susceptibility gene post-inoculation with Bipolaris sorokiniana, the causal agent of the disease spot blotch. Nec3 was genetically delimited to 0.14 cM representing 16.5 megabases of physical sequence containing 149 annotated high confidence genes. RNAseq and comparative analysis of the wild type and five independent nec3 mutants identified a single candidate cytochrome P450 gene (HORVU.MOREX.r2.6HG0460850) that was validated as nec3 by independent mutations that result in predicted nonfunctional proteins. Histology studies determined that nec3 mutants had an unstable cutin layer that disrupted normal Bipolaris sorokiniana germ tube development. At the site of pathogen infection, plant defense mechanisms rely on controlled programmed cell death (PCD) to sequester biotrophic pathogens that require living cells to extract nutrients from the host. However, these defense mechanisms are hijacked by necrotrophic plant pathogens that purposefully induce PCD to feed on the dead cells, thus facilitating further disease development. Thus, understanding PCD responses is important for resistance to both classes of pathogens. We characterized five independent disease lesion mimic mutants of barley designated necrotic 3 (nec3) that show aberrant regulation of PCD responses upon pathogen challenge. A cytochrome P450 gene was identified as Nec3 encoding a Tryptamine 5-Hydroxylase that functions as a terminal serotonin biosynthetic enzyme in the Tryptophan pathway of plants. We posit that nec3 mutants have disrupted serotonin biosynthesis resulting in expanded PCD, necrotrophic pathogen susceptibility and cutin layer instability. The nec3 mutants show expanded PCD and disease susceptibility of pathogen-induced necrotic lesions, suggesting a role of serotonin to sequester PCD and suppress pathogen colonization. The identification of Nec3 will facilitate functional analysis to elucidate the role that serotonin plays in the elicitation or suppression of PCD immunity responses to diverse pathogens and the effects it has on cutin layer biosynthesis.
Collapse
Affiliation(s)
- Gazala Ameen
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, South Dakota, United States of America
| | - Shyam Solanki
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, South Dakota, United States of America
| | - Lauren Sager-Bittara
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - Jonathan Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Prabin Tamang
- USDA-ARS, Natural Products Utilization Research Unit, Oxford, Mississippi, United States of America
| | - Timothy L. Friesen
- USDA-ARS, Red River Valley Agricultural Research Center, Cereal Crops Research Unit, Fargo, North Dakota, United States of America
| | - Robert S. Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
8
|
Pandey C, Großkinsky DK, Westergaard JC, Jørgensen HJL, Svensgaard J, Christensen S, Schulz A, Roitsch T. Identification of a bio-signature for barley resistance against Pyrenophora teres infection based on physiological, molecular and sensor-based phenotyping. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111072. [PMID: 34763864 DOI: 10.1016/j.plantsci.2021.111072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 09/19/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Necrotic and chlorotic symptoms induced during Pyrenophora teres infection in barley leaves indicate a compatible interaction that allows the hemi-biotrophic fungus Pyrenophora teres to colonise the host. However, it is unexplored how this fungus affects the physiological responses of resistant and susceptible cultivars during infection. To assess the degree of resistance in four different cultivars, we quantified visible symptoms and fungal DNA and performed expression analyses of genes involved in plant defence and ROS scavenging. To obtain insight into the interaction between fungus and host, we determined the activity of 19 key enzymes of carbohydrate and antioxidant metabolism. The pathogen impact was also phenotyped non-invasively by sensor-based multireflectance and -fluorescence imaging. Symptoms, regulation of stress-related genes and pathogen DNA content distinguished the cultivar Guld as being resistant. Severity of net blotch symptoms was also strongly correlated with the dynamics of enzyme activities already within the first day of infection. In contrast to the resistant cultivar, the three susceptible cultivars showed a higher reflectance over seven spectral bands and higher fluorescence intensities at specific excitation wavelengths. The combination of semi high-throughput physiological and molecular analyses with non-invasive phenotyping enabled the identification of bio-signatures that discriminates the resistant from susceptible cultivars.
Collapse
Affiliation(s)
- Chandana Pandey
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Denmark
| | - Dominik K Großkinsky
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
| | - Jesper Cairo Westergaard
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Denmark
| | - Hans J L Jørgensen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Denmark
| | - Jesper Svensgaard
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Denmark
| | - Svend Christensen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Denmark
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Denmark.
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Denmark; Department of Adaptive Biotechnologies, Global Change Research Institute, CAS, Brno, Czechia
| |
Collapse
|
9
|
Clare SJ, Çelik Oğuz A, Effertz K, Sharma Poudel R, See D, Karakaya A, Brueggeman RS. Genome-wide association mapping of Pyrenophora teres f. maculata and Pyrenophora teres f. teres resistance loci utilizing natural Turkish wild and landrace barley populations. G3 GENES|GENOMES|GENETICS 2021; 11:6332006. [PMID: 34849783 PMCID: PMC8527468 DOI: 10.1093/g3journal/jkab269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/26/2021] [Indexed: 11/15/2022]
Abstract
Unimproved landraces and wild relatives of crops are sources of genetic diversity that
were lost post domestication in modern breeding programs. To tap into this rich resource,
genome-wide association studies in large plant genomes have enabled the rapid genetic
characterization of desired traits from natural landrace and wild populations. Wild barley
(Hordeum spontaneum), the progenitor of domesticated barley
(Hordeum vulgare), is dispersed across Asia and North Africa, and has
co-evolved with the ascomycetous fungal pathogens Pyrenophora teres f.
teres and P. teres f. maculata, the
causal agents of the diseases net form of net blotch and spot form of net blotch,
respectively. Thus, these wild and local adapted barley landraces from the region of
origin of both the host and pathogen represent a diverse gene pool to identify new sources
of resistance, due to millions of years of co-evolution. The barley—P.
teres pathosystem is governed by complex genetic interactions with dominant,
recessive, and incomplete resistances and susceptibilities, with many isolate-specific
interactions. Here, we provide the first genome-wide association study of wild and
landrace barley from the Fertile Crescent for resistance to both forms of P.
teres. A total of 14 loci, four against P. teres f.
maculata and 10 against P. teres f.
teres, were identified in both wild and landrace populations, showing
that both are genetic reservoirs for novel sources of resistance. We also highlight the
importance of using multiple algorithms to both identify and validate additional loci.
Collapse
Affiliation(s)
- Shaun J Clare
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
| | - Arzu Çelik Oğuz
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Dışkapı, Ankara 06110, Turkey
| | - Karl Effertz
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
| | | | - Deven See
- Wheat Health, Genetics and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA 99163, USA
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA
| | - Aziz Karakaya
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Dışkapı, Ankara 06110, Turkey
| | - Robert S Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
10
|
Alhashel AF, Sharma Poudel R, Fiedler J, Carlson CH, Rasmussen J, Baldwin T, Friesen TL, Brueggeman RS, Yang S. Genetic mapping of host resistance to the Pyrenophora teres f. maculata isolate 13IM8.3. G3-GENES GENOMES GENETICS 2021; 11:6377783. [PMID: 34586371 DOI: 10.1093/g3journal/jkab341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/17/2021] [Indexed: 11/12/2022]
Abstract
Spot form net blotch (SFNB), caused by the necrotrophic fungal pathogen Pyrenophora teres f. maculata (Ptm), is a foliar disease of barley that results in significant yield losses in major growing regions worldwide. Understanding the host-parasite interactions between pathogen virulence/avirulence genes and the corresponding host susceptibility/resistance genes is important for the deployment of genetic resistance against SFNB. Two recombinant inbred mapping populations were developed to characterize genetic resistance/susceptibility to the Ptm isolate 13IM8.3, which was collected from Idaho (ID). An Illumina Infinium array was used to produce a genome wide marker set. Quantitative trait loci (QTL) analysis identified ten significant resistance/susceptibility loci, with two of the QTL being common to both populations. One of the QTL on 5H appears to be novel, while the remaining loci have been reported previously. Single nucleotide polymorphisms (SNPs) closely linked to or delimiting the significant QTL have been converted to user-friendly markers. Loci and associated molecular markers identified in this study will be useful in genetic mapping and deployment of the genetic resistance to SFNB in barley.
Collapse
Affiliation(s)
- Abdullah Fahad Alhashel
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Roshan Sharma Poudel
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Jason Fiedler
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agriculture Research Center, USDA-ARS, Fargo, ND 58102, USA
| | - Craig H Carlson
- Cereals Crops Research Unit, Edward T. Schafer Agriculture Research Center, USDA-ARS, Fargo, ND 58102, USA
| | - Jack Rasmussen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Thomas Baldwin
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agriculture Research Center, USDA-ARS, Fargo, ND 58102, USA
| | - Robert S Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
| | - Shengming Yang
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agriculture Research Center, USDA-ARS, Fargo, ND 58102, USA
| |
Collapse
|
11
|
Ribeiro S, Label P, Garcia D, Montoro P, Pujade-Renaud V. Transcriptome profiling in susceptible and tolerant rubber tree clones in response to cassiicolin Cas1, a necrotrophic effector from Corynespora cassiicola. PLoS One 2021; 16:e0254541. [PMID: 34320014 PMCID: PMC8318233 DOI: 10.1371/journal.pone.0254541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022] Open
Abstract
Corynespora cassiicola, a fungal plant pathogen with a large host range, causes important damages in rubber tree (Hevea brasiliensis), in Asia and Africa. A small secreted protein named cassiicolin was previously identified as a necrotrophic effector required for the virulence of C. cassiicola in specific rubber tree clones. The objective of this study was to decipher the cassiicolin-mediated molecular mechanisms involved in this compatible interaction. We comparatively analyzed the RNA-Seq transcriptomic profiles of leaves treated or not with the purified cassiicolin Cas1, in two rubber clones: PB260 (susceptible) and RRIM600 (tolerant). The reads were mapped against a synthetic transcriptome composed of all available transcriptomic references from the two clones. Genes differentially expressed in response to cassiicolin Cas1 were identified, in each clone, at two different time-points. After de novo annotation of the synthetic transcriptome, we analyzed GO enrichment of the differentially expressed genes in order to elucidate the main functional pathways impacted by cassiicolin. Cassiicolin induced qualitatively similar transcriptional modifications in both the susceptible and the tolerant clones, with a strong negative impact on photosynthesis, and the activation of defense responses via redox signaling, production of pathogenesis-related protein, or activation of the secondary metabolism. In the tolerant clone, transcriptional reprogramming occurred earlier but remained moderate. By contrast, the susceptible clone displayed a late but huge transcriptional burst, characterized by massive induction of phosphorylation events and all the features of a hypersensitive response. These results confirm that cassiicolin Cas1 is a necrotrophic effector triggering a hypersensitive response in susceptible rubber clones, in agreement with the necrotrophic-effector-triggered susceptibility model.
Collapse
Affiliation(s)
- Sébastien Ribeiro
- Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, UMR PIAF, Clermont-Ferrand, France
| | - Philippe Label
- Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, UMR PIAF, Clermont-Ferrand, France
| | - Dominique Garcia
- UMR AGAP Institut, Université Montpellier, CIRAD, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
| | - Pascal Montoro
- UMR AGAP Institut, Université Montpellier, CIRAD, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
| | - Valérie Pujade-Renaud
- Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, UMR PIAF, Clermont-Ferrand, France
- UMR AGAP Institut, Université Montpellier, CIRAD, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Clermont-Ferrand, France
- * E-mail:
| |
Collapse
|
12
|
Moolhuijzen P, Lawrence JA, Ellwood SR. Potentiators of Disease During Barley Infection by Pyrenophora teres f. teres in a Susceptible Interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:779-792. [PMID: 33787315 DOI: 10.1094/mpmi-10-20-0297-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pyrenophora teres f. teres is a necrotrophic fungal pathogen and causal agent of net form net blotch (NFNB), a significant disease of barley. RNA-seq data encompassing asymptomatic and subsequent necrotrophic phases of the pathogen was obtained for P. teres f. teres isolate W1-1 in NFNB-sensitive cultivar Baudin. Host genes notably regulated during infection included concerted induction of over half the repertoire of disease resistance genes, together with genes involved in oxidation-reduction processes, characteristic of a hypersensitive response. Several systemic acquired resistance response genes were suppressed and there was a complete absence of defense-related thionin gene expression. In P. teres f. teres, genes involved in hydrolase activities and cell-wall catabolic processes were induced during infection, while nitrate assimilation and response to oxidative stress processes were suppressed. Timecourse data allowed a number of predicted P. teres f. teres effector genes with differing expression profiles to be identified that may underlie barley sensitivity to NFNB. Candidate genes involved in the host-pathogen interaction provide a basis for functional characterization and control strategies based on fungicide or mutation targets, which will facilitate further research aimed at controlling NFNB disease.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Paula Moolhuijzen
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Julie A Lawrence
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Simon R Ellwood
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
13
|
Singh Y, Nair AM, Verma PK. Surviving the odds: From perception to survival of fungal phytopathogens under host-generated oxidative burst. PLANT COMMUNICATIONS 2021; 2:100142. [PMID: 34027389 PMCID: PMC8132124 DOI: 10.1016/j.xplc.2021.100142] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/04/2020] [Accepted: 01/01/2021] [Indexed: 05/04/2023]
Abstract
Fungal phytopathogens pose a serious threat to global crop production. Only a handful of strategies are available to combat these fungal infections, and the increasing incidence of fungicide resistance is making the situation worse. Hence, the molecular understanding of plant-fungus interactions remains a primary focus of plant pathology. One of the hallmarks of host-pathogen interactions is the overproduction of reactive oxygen species (ROS) as a plant defense mechanism, collectively termed the oxidative burst. In general, high accumulation of ROS restricts the growth of pathogenic organisms by causing localized cell death around the site of infection. To survive the oxidative burst and achieve successful host colonization, fungal phytopathogens employ intricate mechanisms for ROS perception, ROS neutralization, and protection from ROS-mediated damage. Together, these countermeasures maintain the physiological redox homeostasis that is essential for cell viability. In addition to intracellular antioxidant systems, phytopathogenic fungi also deploy interesting effector-mediated mechanisms for extracellular ROS modulation. This aspect of plant-pathogen interactions is significantly under-studied and provides enormous scope for future research. These adaptive responses, broadly categorized into "escape" and "exploitation" mechanisms, are poorly understood. In this review, we discuss the oxidative stress response of filamentous fungi, their perception signaling, and recent insights that provide a comprehensive understanding of the distinct survival mechanisms of fungal pathogens in response to the host-generated oxidative burst.
Collapse
Affiliation(s)
- Yeshveer Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Athira Mohandas Nair
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
14
|
Tamang P, Richards JK, Solanki S, Ameen G, Sharma Poudel R, Deka P, Effertz K, Clare SJ, Hegstad J, Bezbaruah A, Li X, Horsley RD, Friesen TL, Brueggeman RS. The Barley HvWRKY6 Transcription Factor Is Required for Resistance Against Pyrenophora teres f. teres. Front Genet 2021; 11:601500. [PMID: 33519904 PMCID: PMC7844392 DOI: 10.3389/fgene.2020.601500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
Barley is an important cereal crop worldwide because of its use in the brewing and distilling industry. However, adequate supplies of quality malting barley are threatened by global climate change due to drought in some regions and excess precipitation in others, which facilitates epidemics caused by fungal pathogens. The disease net form net blotch caused by the necrotrophic fungal pathogen Pyrenophora teres f. teres (Ptt) has emerged as a global threat to barley production and diverse populations of Ptt have shown a capacity to overcome deployed genetic resistances. The barley line CI5791 exhibits remarkably effective resistance to diverse Ptt isolates from around the world that maps to two major QTL on chromosomes 3H and 6H. To identify genes involved in this effective resistance, CI5791 seed were γ-irradiated and two mutants, designated CI5791-γ3 and CI5791-γ8, with compromised Ptt resistance were identified from an M2 population. Phenotyping of CI5791-γ3 and -γ8 × Heartland F2 populations showed three resistant to one susceptible segregation ratios and CI5791-γ3 × -γ8 F1 individuals were susceptible, thus these independent mutants are in a single allelic gene. Thirty-four homozygous mutant (susceptible) CI5791-γ3 × Heartland F2 individuals, representing 68 recombinant gametes, were genotyped via PCR genotype by sequencing. The data were used for single marker regression mapping placing the mutation on chromosome 3H within an approximate 75 cM interval encompassing the 3H CI5791 resistance QTL. Sequencing of the mutants and wild-type (WT) CI5791 genomic DNA following exome capture identified independent mutations of the HvWRKY6 transcription factor located on chromosome 3H at ∼50.7 cM, within the genetically delimited region. Post transcriptional gene silencing of HvWRKY6 in barley line CI5791 resulted in Ptt susceptibility, confirming that it functions in NFNB resistance, validating it as the gene underlying the mutant phenotypes. Allele analysis and transcript regulation of HvWRKY6 from resistant and susceptible lines revealed sequence identity and upregulation upon pathogen challenge in all genotypes analyzed, suggesting a conserved transcription factor is involved in the defense against the necrotrophic pathogen. We hypothesize that HvWRKY6 functions as a conserved signaling component of defense mechanisms that restricts Ptt growth in barley.
Collapse
Affiliation(s)
- Prabin Tamang
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Jonathan K Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA, United States
| | - Shyam Solanki
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Gazala Ameen
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Roshan Sharma Poudel
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Priyanka Deka
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, United States
| | - Karl Effertz
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Shaun J Clare
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Justin Hegstad
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Achintya Bezbaruah
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, United States
| | - Xuehui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Richard D Horsley
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States.,Cereal Crops Research Unit, United States Department of Argiculture - Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Robert S Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States.,Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
15
|
Benbow HR, Brennan CJ, Zhou B, Christodoulou T, Berry S, Uauy C, Mullins E, Doohan FM. Insights into the resistance of a synthetically-derived wheat to Septoria tritici blotch disease: less is more. BMC PLANT BIOLOGY 2020; 20:407. [PMID: 32883202 PMCID: PMC7469286 DOI: 10.1186/s12870-020-02612-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 08/18/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Little is known about the initial, symptomless (latent) phase of the devastating wheat disease Septoria tritici blotch. However, speculations as to its impact on fungal success and disease severity in the field have suggested that a long latent phase is beneficial to the host and can reduce inoculum build up in the field over a growing season. The winter wheat cultivar Stigg is derived from a synthetic hexaploid wheat and contains introgressions from wild tetraploid wheat Triticum turgidum subsp. dicoccoides, which contribute to cv. Stigg's exceptional STB resistance, hallmarked by a long latent phase. We compared the early transcriptomic response to Zymoseptoria tritici of cv. Stigg to a susceptible wheat cultivar, to elucidate the mechanisms of and differences in pathogen recognition and disease response in these two hosts. RESULTS The STB-susceptible cultivar Longbow responds to Z. tritici infection with a stress response, including activation of hormone-responsive transcription factors, post translational modifications, and response to oxidative stress. The activation of key genes associated with these pathways in cv. Longbow was independently observed in a second susceptible wheat cultivar based on an independent gene expression study. By comparison, cv. Stigg is apathetic in response to STB, and appears to fail to activate a range of defence pathways that cv. Longbow employs. Stigg also displays some evidence of sub-genome bias in its response to Z. tritici infection, whereas the susceptible cv. Longbow shows even distribution of Z. tritici responsive genes across the three wheat sub-genomes. CONCLUSIONS We identify a suite of disease response genes that are involved in early pathogen response in susceptible wheat cultivars that may ultimately lead to susceptibility. In comparison, we hypothesise that rather than an active defence response to stave off disease progression, cv. Stigg's defence strategy is molecular lethargy, or a lower-amplitude of pathogen recognition that may stem from cv. Stigg's wild wheat-derived ancestry. Overall, we present insights into cv. Stigg's exceptional resistance to STB, and present key biological processes for further characterisation in this pathosystem.
Collapse
Affiliation(s)
- Harriet R Benbow
- UCD School of Biology and Environmental Science, University College Dublin, UCD Belfield, Dublin 4, Ireland
- UCD Earth Institute, University College Dublin, UCD Belfield, Dublin 4, Ireland
- UCD Centre for Plant Science, University College Dublin, UCD Belfield, Dublin 4, Ireland
| | - Ciarán J Brennan
- UCD School of Biology and Environmental Science, University College Dublin, UCD Belfield, Dublin 4, Ireland
- UCD Earth Institute, University College Dublin, UCD Belfield, Dublin 4, Ireland
- UCD Centre for Plant Science, University College Dublin, UCD Belfield, Dublin 4, Ireland
| | - Binbin Zhou
- UCD School of Biology and Environmental Science, University College Dublin, UCD Belfield, Dublin 4, Ireland
- UCD Earth Institute, University College Dublin, UCD Belfield, Dublin 4, Ireland
- UCD Centre for Plant Science, University College Dublin, UCD Belfield, Dublin 4, Ireland
| | - Thalia Christodoulou
- UCD School of Biology and Environmental Science, University College Dublin, UCD Belfield, Dublin 4, Ireland
- UCD Earth Institute, University College Dublin, UCD Belfield, Dublin 4, Ireland
- UCD Centre for Plant Science, University College Dublin, UCD Belfield, Dublin 4, Ireland
| | - Simon Berry
- Limagrain UK Ltd, Windmill Avenue, Woolpit, Suffolk, IP30 9UP, UK
| | | | - Ewen Mullins
- Teagasc Crops Research, Oak Park, Co. Carlow, Ireland
| | - Fiona M Doohan
- UCD School of Biology and Environmental Science, University College Dublin, UCD Belfield, Dublin 4, Ireland.
- UCD Earth Institute, University College Dublin, UCD Belfield, Dublin 4, Ireland.
- UCD Centre for Plant Science, University College Dublin, UCD Belfield, Dublin 4, Ireland.
| |
Collapse
|
16
|
Clare SJ, Wyatt NA, Brueggeman RS, Friesen TL. Research advances in the Pyrenophora teres-barley interaction. MOLECULAR PLANT PATHOLOGY 2020; 21:272-288. [PMID: 31837102 PMCID: PMC6988421 DOI: 10.1111/mpp.12896] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Pyrenophora teres f. teres and P. teres f. maculata are significant pathogens that cause net blotch of barley. An increased number of loci involved in P. teres resistance or susceptibility responses of barley as well as interacting P. teres virulence effector loci have recently been identified through biparental and association mapping studies of both the pathogen and host. Characterization of the resistance/susceptibility loci in the host and the interacting effector loci in the pathogen will provide a path for targeted gene validation for better-informed release of resistant barley cultivars. This review assembles concise consensus maps for all loci published for both the host and pathogen, providing a useful resource for the community to be used in pathogen characterization and barley breeding for resistance to both forms of P. teres.
Collapse
Affiliation(s)
- Shaun J. Clare
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
| | - Nathan A. Wyatt
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
| | - Robert S. Brueggeman
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
- Present address:
Department of Crop and Soil ScienceWashington State UniversityPullmanWA99164‐6420
| | - Timothy L. Friesen
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
- USDA‐ARS Cereal Crops Research UnitNorthern Crop Science LaboratoryEdward T. Schafer Agricultural Research Center1616 Albrecht Boulevard NFargoND58102‐2765USA
| |
Collapse
|
17
|
Wyatt NA, Richards JK, Brueggeman RS, Friesen TL. A Comparative Genomic Analysis of the Barley Pathogen Pyrenophora teres f. teres Identifies Subtelomeric Regions as Drivers of Virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:173-188. [PMID: 31502507 DOI: 10.1094/mpmi-05-19-0128-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Pyrenophora teres f. teres causes net form net blotch of barley and is an economically important pathogen throughout the world. However, P. teres f. teres is lacking in the genomic resources necessary to characterize the mechanisms of virulence. Recently a high-quality reference genome was generated for P. teres f. teres isolate 0-1. Here, we present the reference quality sequence and annotation of four new isolates and we use the five available P. teres f. teres genomes for an in-depth comparison, resulting in the generation of hypotheses pertaining to the potential mechanisms and evolution of virulence. Comparative analyses were performed between all five P. teres f. teres genomes, examining genomic organization, structural variations, and core and accessory genomic content, specifically focusing on the genomic characterization of known virulence loci and the localization of genes predicted to encode secreted and effector proteins. We showed that 14 of 15 currently published virulence quantitative trait loci (QTL) span accessory genomic regions, consistent with these accessory regions being important drivers of host adaptation. Additionally, these accessory genomic regions were frequently found in subtelomeric regions of chromosomes, with 10 of the 14 accessory region QTL localizing to subtelomeric regions. Comparative analysis of the subtelomeric regions of P. teres f. teres chromosomes revealed translocation events in which homology was detected between nonhomologous chromosomes at a significantly higher rate than the rest of the genome. These results indicate that the subtelomeric accessory genomic compartments not only harbor most of the known virulence loci but, also, that these regions have the capacity to rapidly evolve.
Collapse
Affiliation(s)
- Nathan A Wyatt
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, U.S.A
- Department of Plant Pathology, North Dakota State University
| | - Jonathan K Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, U.S.A
| | - Robert S Brueggeman
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, U.S.A
- Department of Plant Pathology, North Dakota State University
| | - Timothy L Friesen
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, U.S.A
- Department of Plant Pathology, North Dakota State University
- Cereal Crops Research Unit, Red River Valley Agricultural Research Center, USDA-ARS, Fargo, ND, U.S.A
| |
Collapse
|
18
|
Novakazi F, Afanasenko O, Anisimova A, Platz GJ, Snowdon R, Kovaleva O, Zubkovich A, Ordon F. Genetic analysis of a worldwide barley collection for resistance to net form of net blotch disease (Pyrenophora teres f. teres). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2633-2650. [PMID: 31209538 DOI: 10.1007/s00122-019-03378-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/09/2019] [Indexed: 05/28/2023]
Abstract
A total of 449 barley accessions were phenotyped for Pyrenophora teres f. teres resistance at three locations and in greenhouse trials. Genome-wide association studies identified 254 marker-trait associations corresponding to 15 QTLs. Net form of net blotch is one of the most important diseases of barley and is present in all barley growing regions. Under optimal conditions, it causes high yield losses of 10-40% and reduces grain quality. The most cost-effective and environmentally friendly way to prevent losses is growing resistant cultivars, and markers linked to effective resistance factors can accelerate the breeding process. Here, 449 barley accessions expressing different levels of resistance comprising landraces and commercial cultivars from the centres of diversity were selected. The set was phenotyped for seedling resistance to three isolates in controlled-environment tests and for adult plant resistance at three field locations (Belarus, Germany and Australia) and genotyped with the 50 k iSelect chip. Genome-wide association studies using 33,818 markers and a compressed mixed linear model to account for population structure and kinship revealed 254 significant marker-trait associations corresponding to 15 distinct QTL regions. Four of these regions were new QTL that were not described in previous studies, while a total of seven regions influenced resistance in both seedlings and adult plants.
Collapse
Affiliation(s)
- Fluturë Novakazi
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Erwin Baur-Straße 27, 06484, Quedlinburg, Germany
| | - Olga Afanasenko
- All-Russian Research Institute of Plant Protection, 196608 shosse Podbelski 3, Saint Petersburg, Russia
| | - Anna Anisimova
- All-Russian Research Institute of Plant Protection, 196608 shosse Podbelski 3, Saint Petersburg, Russia
| | - Gregory J Platz
- Queensland Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, QLD, 4370, Australia
| | - Rod Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Olga Kovaleva
- Federal Research Center the N. I. Vavilov All-Russian Institute of Plant Genetic Resources, 42-44, B. Morskaya Street, Saint Petersburg, Russia, 190000
| | - Alexandr Zubkovich
- Republican Unitary Enterprise, The Research and Practical Center of the National Academy of Sciences of Belarus for Arable Farming, Timiriazeva Street 1, 222160, Zhodino, Belarus
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Erwin Baur-Straße 27, 06484, Quedlinburg, Germany.
| |
Collapse
|
19
|
Tamang P, Richards JK, Alhashal A, Sharma Poudel R, Horsley RD, Friesen TL, Brueggeman RS. Mapping of barley susceptibility/resistance QTL against spot form net blotch caused by Pyrenophora teres f. maculata using RIL populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1953-1963. [PMID: 30895332 DOI: 10.1007/s00122-019-03328-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/11/2019] [Indexed: 05/12/2023]
Abstract
Spot form net blotch (SFNB) caused by the necrotrophic fungal pathogen Pyrenophora teres f. maculata (Ptm) is an important disease of barley worldwide including the major barley production regions of North America. To characterize SFNB resistance/susceptibility quantitative trait loci (QTL), three recombinant inbred line (RIL) populations were developed from crosses between the malting barley cultivars, Tradition (six row) and Pinnacle (two row), and the two world barley core collection lines, PI67381 and PI84314. Tradition and Pinnacle were susceptible to many North American Ptm isolates, while PI67381 and PI84314 carry resistances to diverse Ptm isolates from across the globe. The RIL populations, Tradition/PI67381, Pinnacle/PI67381, and Pinnacle/PI84314 were genotyped using polymerase chain reaction-mediated genotype-by-sequencing single nucleotide polymorphism marker panels and phenotyped at the seedling stage with six geographically distinct Ptm isolates: FGOB10Ptm-1 (North Dakota, USA), Pin-A14 (Montana, USA), Cel-A17 (Montana, USA), SG1 (Australia), NZKF2 (New Zealand) and DEN2.6 (Denmark). The goal was to determine if the susceptible elite lines contained common susceptibility genes/QTL or if the resistant lines had common resistant genes/QTL effective against diverse Ptm isolates. The QTL analyses identified a total of 12 resistance and/or susceptibility loci on chromosomes 2H, 3H, 4H, 6H, and 7H of which three had not been previously reported. Common major QTL were detected on chromosome 2H (R2 = 14-40%) and 7H (R2 = 24-80%) in all three RIL populations, suggesting underlying genes with broad resistance specificity. The major 7H QTL was shown to be a dominant susceptibility gene in both susceptible malting barley varieties.
Collapse
Affiliation(s)
- Prabin Tamang
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Jonathan K Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Abdullah Alhashal
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Roshan Sharma Poudel
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Richard D Horsley
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
- Cereal Crops Research Unit, Red River Valley Agricultural Research Center, USDA-ARS, Fargo, ND, 58102-2765, USA
| | - Robert S Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA.
| |
Collapse
|
20
|
Ribeiro S, Tran DM, Déon M, Clément-Demange A, Garcia D, Soumahoro M, Masson A, Pujade-Renaud V. Gene deletion of Corynespora cassiicola cassiicolin Cas1 suppresses virulence in the rubber tree. Fungal Genet Biol 2019; 129:101-114. [PMID: 31108193 DOI: 10.1016/j.fgb.2019.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/30/2019] [Accepted: 05/16/2019] [Indexed: 12/25/2022]
Abstract
Corynespora cassiicola is an ascomycete fungus causing important damages in a wide range of plant hosts, including rubber tree. The small secreted protein cassiicolin is suspected to play a role in the onset of the disease in rubber tree, based on toxicity and gene expression profiles. However, its exact contribution to virulence, compared to other putative effectors, remains unclear. We created a deletion mutant targeting the cassiicolin gene Cas1 from the highly aggressive isolate CCP. Wild-type CCP and mutant ccpΔcas1 did not differ in terms of mycelium growth, sporulation, and germination rate in vitro. Cas1 gene deletion induced a complete loss of virulence on the susceptible clones PB260 and IRCA631, as revealed by inoculation experiments on intact (non-detached) leaves. However, residual symptoms persisted when inoculations were conducted on detached leaves, notably with longer incubation times. Complementation with exogenous cassiicolin restored the mutant capacity to colonize the leaf tissues. We also compared the toxicity of CCP and ccpΔcas1 culture filtrates, through electrolyte leakage measurements on abraded detached leaves, over a range of clones as well as an F1 population derived from the cross between the clones PB260 (susceptible) and RRIM600 (tolerant). On average, filtrate toxicity was lower but not fully suppressed in ccpΔcas1 compared to CCP, with clone-dependent variations. The two QTL, previously found associated with sensitivity to CPP filtrate or to the purified cassiicolin, were no longer detected with the mutant filtrate, while new QTL were revealed. Our results demonstrate that: (1) cassiicolin is a necrotrophic effector conferring virulence to the CCP isolate in susceptible rubber clones and (2) other effectors produced by CCP contribute to residual filtrate toxicity and virulence in senescing/wounded tissues. These other effectors may be involved in saprotrophy rather than necrotrophy.
Collapse
Affiliation(s)
- Sébastien Ribeiro
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR PIAF, Clermont-Ferrand, France; CIRAD, UMR AGAP, F-63000 Clermont-Ferrand, France; AGAP, Université Montpellier, CIRAD, Institut National de la Recherche Agronomique, Montpellier SupAgro, Montpellier, France
| | - Dinh Minh Tran
- CIRAD, UMR AGAP, F-63000 Clermont-Ferrand, France; AGAP, Université Montpellier, CIRAD, Institut National de la Recherche Agronomique, Montpellier SupAgro, Montpellier, France; Rubber Research Institute of Vietnam, Ho Chi Minh City, Viet Nam
| | - Marine Déon
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR PIAF, Clermont-Ferrand, France
| | - André Clément-Demange
- CIRAD, UMR AGAP, F-63000 Clermont-Ferrand, France; AGAP, Université Montpellier, CIRAD, Institut National de la Recherche Agronomique, Montpellier SupAgro, Montpellier, France
| | - Dominique Garcia
- CIRAD, UMR AGAP, F-63000 Clermont-Ferrand, France; AGAP, Université Montpellier, CIRAD, Institut National de la Recherche Agronomique, Montpellier SupAgro, Montpellier, France
| | - Mouman Soumahoro
- Société Africaine de Plantations d'Hévéas, 01 BP 1322 Abidjan 01, Cote d'Ivoire
| | - Aurélien Masson
- Société des Caoutchoucs de Grand-Béréby, Grand Béréby, Cote d'Ivoire
| | - Valérie Pujade-Renaud
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR PIAF, Clermont-Ferrand, France; CIRAD, UMR AGAP, F-63000 Clermont-Ferrand, France; AGAP, Université Montpellier, CIRAD, Institut National de la Recherche Agronomique, Montpellier SupAgro, Montpellier, France.
| |
Collapse
|
21
|
Xiaodong X, Olukolu B, Yang Q, Balint-Kurti P. Identification of a locus in maize controlling response to a host-selective toxin derived from Cochliobolus heterostrophus, causal agent of southern leaf blight. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2601-2612. [PMID: 30191251 DOI: 10.1007/s00122-018-3175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
A host-selective, proteinaceous maize toxin was identified from the culture filtrate of the maize pathogen Cochliobolus heterostrophus. A dominant gene for toxin susceptibility was identified on maize chromosome 4. A toxic activity was identified from the culture filtrate (CF) of the fungus Cochliobolus heterostrophus, causal agent of the maize disease southern leaf blight (SLB) with differential toxicity on maize lines. Two independent mapping populations; a 113-line recombinant inbred line population and a 258-line association population, were used to map loci associated with sensitivity to the CF at the seedling stage. A major QTL on chromosome 4 was identified at the same locus using both populations. Mapping in the association population defined a 400 kb region that contained the sensitivity locus. By comparing CF-sensitivity of the parents of the RIL population with that of the F1 progeny, we determined that the sensitivity allele was dominant. No relationship was observed between CF-sensitivity in seedlings and SLB susceptibility in mature plants; however, a significant correlation (- 0.58) was observed between SLB susceptibility and CF-sensitivity in seedlings. The activity of the CF was light-dependent and was sensitive to pronase, indicating that the toxin was proteinaceous.
Collapse
Affiliation(s)
- Xie Xiaodong
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, 27695-7616, USA
| | - Bode Olukolu
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, 27695-7616, USA
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Qin Yang
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, 27695-7616, USA
- College of Agronomy and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peter Balint-Kurti
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, 27695-7616, USA.
- USDA-ARS Plant Science Research Unit, Raleigh, NC, 27695, USA.
| |
Collapse
|
22
|
Rodriguez-Moreno L, Ebert MK, Bolton MD, Thomma BPHJ. Tools of the crook- infection strategies of fungal plant pathogens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:664-674. [PMID: 29277938 DOI: 10.1111/tpj.13810] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 05/14/2023]
Abstract
Fungi represent an ecologically diverse group of microorganisms that includes plant pathogenic species able to cause considerable yield loses in crop production systems worldwide. In order to establish compatible interactions with their hosts, pathogenic fungi rely on the secretion of molecules of diverse nature during host colonization to modulate host physiology, manipulate other environmental factors or provide self-defence. These molecules, collectively known as effectors, are typically small secreted cysteine-rich proteins, but may also comprise secondary metabolites and sRNAs. Here, we discuss the most common strategies that fungal plant pathogens employ to subvert their host plants in order to successfully complete their life cycle and secure the release of abundant viable progeny.
Collapse
Affiliation(s)
- Luis Rodriguez-Moreno
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Malaika K Ebert
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Melvin D Bolton
- USDA - Agricultural Research Service, Red River Valley Agricultural Research Center, Fargo, ND, USA
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
23
|
Reference Assembly and Annotation of the Pyrenophora teres f. teres Isolate 0-1. G3-GENES GENOMES GENETICS 2018; 8:1-8. [PMID: 29167271 PMCID: PMC5765338 DOI: 10.1534/g3.117.300196] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pyrenophora teres f. teres, the causal agent of net form net blotch (NFNB) of barley, is a destructive pathogen in barley-growing regions throughout the world. Typical yield losses due to NFNB range from 10 to 40%; however, complete loss has been observed on highly susceptible barley lines where environmental conditions favor the pathogen. Currently, genomic resources for this economically important pathogen are limited to a fragmented draft genome assembly and annotation, with limited RNA support of the P. teres f. teres isolate 0-1. This research presents an updated 0-1 reference assembly facilitated by long-read sequencing and scaffolding with the assistance of genetic linkage maps. Additionally, genome annotation was mediated by RNAseq analysis using three infection time points and a pure culture sample, resulting in 11,541 high-confidence gene models. The 0-1 genome assembly and annotation presented here now contains the majority of the repetitive content of the genome. Analysis of the 0-1 genome revealed classic characteristics of a “two-speed” genome, being compartmentalized into GC-equilibrated and AT-rich compartments. The assembly of repetitive AT-rich regions will be important for future investigation of genes known as effectors, which often reside in close proximity to repetitive regions. These effectors are responsible for manipulation of the host defense during infection. This updated P. teres f. teres isolate 0-1 reference genome assembly and annotation provides a robust resource for the examination of the barley–P. teres f. teres host–pathogen coevolution.
Collapse
|
24
|
Vatter T, Maurer A, Kopahnke D, Perovic D, Ordon F, Pillen K. A nested association mapping population identifies multiple small effect QTL conferring resistance against net blotch (Pyrenophora teres f. teres) in wild barley. PLoS One 2017; 12:e0186803. [PMID: 29073176 PMCID: PMC5658061 DOI: 10.1371/journal.pone.0186803] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/06/2017] [Indexed: 12/02/2022] Open
Abstract
The net form of net blotch caused by the necrotrophic fungus Pyrenophora teres f. teres is a major disease of barley, causing high yield losses and reduced malting and feed quality. Exploiting the allelic richness of wild barley proved to be a valuable tool to broaden the genetic base of resistance of modern elite cultivars. In this study, a SNP-based nested association mapping (NAM) study was conducted to map QTL for P. teres resistance in the barley population HEB-25 comprising 1,420 lines derived from BC1S3 generation. By scoring the percentage of infected leaf area followed by calculation of the average ordinate (AO) and scoring of the reaction type (RT) in two-year field trials a large variability of net blotch resistance across and within families of HEB-25 was observed. Genotype response to net blotch infection showed a range of 48.2% for AO (0.9-49.1%) and 6.4 for RT (2.2-8.6). NAM based on 5,715 informative SNPs resulted in the identification of 24 QTL for resistance against net blotch. Out of these, six QTL are considered novel showing no correspondence to previously reported QTL for net blotch resistance. Overall, variation of net blotch resistance in HEB-25 turned out to be controlled by small effect QTL. Results indicate the presence of alleles in HEB-25 differing in their effect on net blotch resistance. Results provide valuable information regarding the genetic architecture of the complex barley-P. teres f. teres interaction as well as for the improvement of net blotch resistance of elite barley cultivars.
Collapse
Affiliation(s)
- Thomas Vatter
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Andreas Maurer
- Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Doris Kopahnke
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
25
|
Koladia VM, Richards JK, Wyatt NA, Faris JD, Brueggeman RS, Friesen TL. Genetic analysis of virulence in the Pyrenophora teres f. teres population BB25 × FGOH04Ptt-21. Fungal Genet Biol 2017; 107:12-19. [DOI: 10.1016/j.fgb.2017.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
|
26
|
Wonneberger R, Ficke A, Lillemo M. Identification of quantitative trait loci associated with resistance to net form net blotch in a collection of Nordic barley germplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2025-2043. [PMID: 28653151 DOI: 10.1007/s00122-017-2940-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/15/2017] [Indexed: 06/07/2023]
Abstract
Association mapping of resistance to Pyrenophora teres f. teres in a collection of Nordic barley germplasm at different developmental stages revealed 13 quantitative loci with mostly small effects. Net blotch, caused by the necrotrophic fungus Pyrenophora teres, is one of the major diseases in barley in Norway causing quantitative and qualitative yield losses. Resistance in Norwegian cultivars and germplasm is generally insufficient and resistance sources have not been extensively explored yet. In this study, we mapped quantitative trait loci (QTL) associated with resistance to net blotch in Nordic germplasm. We evaluated a collection of 209 mostly Nordic spring barley lines for reactions to net form net blotch (NFNB; Pyrenophora teres f. teres) in inoculations with three single conidia isolates at the seedling stage and in inoculated field trials at the adult stage in 4 years. Using 5669 SNP markers genotyped with the Illumina iSelect 9k Barley SNP Chip and a mixed linear model accounting for population structure and kinship, we found a total of 35 significant marker-trait associations for net blotch resistance, corresponding to 13 QTL, on all chromosomes. Out of these QTL, seven conferred resistance only in adult plants and four were only detectable in seedlings. Two QTL on chromosomes 3H and 6H were significant during both seedling inoculations and adult stage field trials. These are promising candidates for breeding programs using marker-assisted selection strategies. The results elucidate the genetic background of NFNB resistance in Nordic germplasm and suggest that NB resistance is conferred by a number of genes each with small-to-moderate effects, making it necessary to pyramid these genes to achieve sufficient levels of resistance.
Collapse
Affiliation(s)
- Ronja Wonneberger
- Department of Plant Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Andrea Ficke
- Division for Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, 1430, Ås, Norway
| | - Morten Lillemo
- Department of Plant Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway.
| |
Collapse
|
27
|
Carlsen SA, Neupane A, Wyatt NA, Richards JK, Faris JD, Xu SS, Brueggeman RS, Friesen TL. Characterizing the Pyrenophora teres f. maculata-Barley Interaction Using Pathogen Genetics. G3 (BETHESDA, MD.) 2017; 7:2615-2626. [PMID: 28659291 PMCID: PMC5555467 DOI: 10.1534/g3.117.043265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/05/2017] [Indexed: 12/22/2022]
Abstract
Pyrenophora teres f. maculata is the cause of the foliar disease spot form net blotch (SFNB) on barley. To evaluate pathogen genetics underlying the P. teres f. maculata-barley interaction, we developed a 105-progeny population by crossing two globally diverse isolates, one from North Dakota and the other from Western Australia. Progeny were phenotyped on a set of four barley genotypes showing a differential reaction to the parental isolates, then genotyped using a restriction site-associated-genotype-by-sequencing (RAD-GBS) approach. Genetic maps were developed for use in quantitative trait locus (QTL) analysis to identify virulence-associated QTL. Six QTL were identified on five different linkage groups and individually accounted for 20-37% of the disease variation, with the number of significant QTL ranging from two to four for the barley genotypes evaluated. The data presented demonstrate the complexity of virulence involved in the P. teres f. maculata-barley pathosystem and begins to lay the foundation for understanding this important interaction.
Collapse
Affiliation(s)
- Steven A Carlsen
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 58102
| | - Anjan Neupane
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 58102
| | - Nathan A Wyatt
- Genomics and Bioinformatics Program, Department of Plant Science, North Dakota State University, Fargo, North Dakota 58102
| | - Jonathan K Richards
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 58102
| | - Justin D Faris
- Genomics and Bioinformatics Program, Department of Plant Science, North Dakota State University, Fargo, North Dakota 58102
- United States Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Northern Crop Science Laboratory, Fargo, North Dakota 58102
| | - Steven S Xu
- United States Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Northern Crop Science Laboratory, Fargo, North Dakota 58102
| | - Robert S Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 58102
- Genomics and Bioinformatics Program, Department of Plant Science, North Dakota State University, Fargo, North Dakota 58102
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 58102
- Genomics and Bioinformatics Program, Department of Plant Science, North Dakota State University, Fargo, North Dakota 58102
- United States Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Northern Crop Science Laboratory, Fargo, North Dakota 58102
| |
Collapse
|
28
|
Abstract
The interactions between fungi and plants encompass a spectrum of ecologies ranging from saprotrophy (growth on dead plant material) through pathogenesis (growth of the fungus accompanied by disease on the plant) to symbiosis (growth of the fungus with growth enhancement of the plant). We consider pathogenesis in this article and the key roles played by a range of pathogen-encoded molecules that have collectively become known as effectors.
Collapse
|
29
|
Richards JK, Friesen TL, Brueggeman RS. Association mapping utilizing diverse barley lines reveals net form net blotch seedling resistance/susceptibility loci. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:915-927. [PMID: 28184981 DOI: 10.1007/s00122-017-2860-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
A diverse collection of barley lines was phenotyped with three North American Pyrenophora teres f. teres isolates and association analyses detected 78 significant marker-trait associations at 16 genomic loci. Pyrenophora teres f. teres is a necrotrophic fungal pathogen and the causal agent of the economically important foliar disease net form net blotch (NFNB) of barley. The deployment of effective and durable resistance against P. teres f. teres has been hindered by the complexity of quantitative resistance and susceptibility. Several bi-parental mapping populations have been used to identify QTL associated with NFNB disease on all seven barley chromosomes. Here, we report the first genome-wide association study (GWAS) to detect marker-trait associations for resistance or susceptibility to P. teres f. teres. Geographically diverse barley genotypes from a world barley core collection (957) were genotyped with the Illumina barley iSelect chip and phenotyped with three P. teres f. teres isolates collected in two geographical regions of the USA (15A, 6A and LDNH04Ptt19). The best of nine regression models tested were identified for each isolate and used for association analysis resulting in the identification of 78 significant marker-trait associations (MTA; -log10p value >3.0). The MTA identified corresponded to 16 unique genomic loci as determined by analysis of local linkage disequilibrium between markers that did not meet a correlation threshold of R 2 ≥ 0.1, indicating that the markers represented distinct loci. Five loci identified represent novel QTL and were designated QRptts-3HL, QRptts-4HS, QRptts-5HL.1, QRptts-5HL.2, and QRptts-7HL.1. In addition, 55 of the barley lines examined exhibited a high level of resistance to all three isolates and the SNP markers identified will provide useful genetic resources for barley breeding programs.
Collapse
Affiliation(s)
- Jonathan K Richards
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
- Cereal Crops Research Unit, Red River Valley Agricultural Research Center, USDA-ARS, Fargo, ND, 58102-2765, USA
| | - Robert S Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA.
| |
Collapse
|
30
|
Wonneberger R, Ficke A, Lillemo M. Mapping of quantitative trait loci associated with resistance to net form net blotch (Pyrenophora teres f. teres) in a doubled haploid Norwegian barley population. PLoS One 2017; 12:e0175773. [PMID: 28448537 PMCID: PMC5407769 DOI: 10.1371/journal.pone.0175773] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/31/2017] [Indexed: 12/01/2022] Open
Abstract
Barley net blotch caused by the necrotrophic fungus Pyrenophora teres is a major barley disease in Norway. It can cause grain shriveling and yield losses, and resistance in currently grown cultivars is insufficient. In this study, a set of 589 polymorphic SNP markers was used to map resistance loci in a population of 109 doubled haploid lines from a cross between the closely related Norwegian cultivars Arve (moderately susceptible) and Lavrans (moderately resistant). Resistance to three net form net blotch (P. teres f. teres) single spore isolates was evaluated at the seedling stage in the greenhouse and at the adult plant stage under field conditions during three years. Days to heading and plant height were scored to assess their influence on disease severity. At the seedling stage, three to four quantitative trait loci (QTL) associated with resistance were found per isolate used. A major, putatively novel QTL was identified on chromosome 5H, accounting for 23-48% of the genetic variation. Additional QTL explaining between 12 and 16.5% were found on chromosomes 4H, 5H, 6H and 7H, with the one on 6H being race-specific. The major QTL on 5H was also found in adult plants under field conditions in three years (explaining up to 55%) and the 7H QTL was found in field trials in one year. Additional adult plant resistance QTL on 3H, 6H and 7H were significant in single years. The resistance on chromosomes 3H, 5H, 6H and 7H originates from the more resistant parent Lavrans, while the resistance on 4H is conferred by Arve. The genetic markers associated with the QTL found in this study will benefit marker-assisted selection for resistance against net blotch.
Collapse
Affiliation(s)
- Ronja Wonneberger
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Andrea Ficke
- Division for Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Morten Lillemo
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
31
|
Lightfoot DJ, Mcgrann GRD, Able AJ. The role of a cytosolic superoxide dismutase in barley-pathogen interactions. MOLECULAR PLANT PATHOLOGY 2017; 18:323-335. [PMID: 26992055 PMCID: PMC6638290 DOI: 10.1111/mpp.12399] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Reactive oxygen species (ROS), including superoxide ( O2·-/ HO2·) and hydrogen peroxide (H2 O2 ), are differentially produced during resistance responses to biotrophic pathogens and during susceptible responses to necrotrophic and hemi-biotrophic pathogens. Superoxide dismutase (SOD) is responsible for the catalysis of the dismutation of O2·-/ HO2· to H2 O2 , regulating the redox status of plant cells. Increased SOD activity has been correlated previously with resistance in barley to the hemi-biotrophic pathogen Pyrenophora teres f. teres (Ptt, the causal agent of the net form of net blotch disease), but the role of individual isoforms of SOD has not been studied. A cytosolic CuZnSOD, HvCSD1, was isolated from barley and characterized as being expressed in tissue from different developmental stages. HvCSD1 was up-regulated during the interaction with Ptt and to a greater extent during the resistance response. Net blotch disease symptoms and fungal growth were not as pronounced in transgenic HvCSD1 knockdown lines in a susceptible background (cv. Golden Promise), when compared with wild-type plants, suggesting that cytosolic O2·-/ HO2· contributes to the signalling required to induce a defence response to Ptt. There was no effect of HvCSD1 knockdown on infection by the hemi-biotrophic rice blast pathogen Magnaporthe oryzae or the biotrophic powdery mildew pathogen Blumeria graminis f. sp. hordei, but HvCSD1 also played a role in the regulation of lesion development by methyl viologen. Together, these results suggest that HvCSD1 could be important in the maintenance of the cytosolic redox status and in the differential regulation of responses to pathogens with different lifestyles.
Collapse
Affiliation(s)
- Damien J. Lightfoot
- School of Agriculture, Food and WineThe University of AdelaideWaite Research Institute, PMB 1Glen OsmondSA5064Australia
- Present address:
Biological and Environmental Sciences & Engineering DivisionKing Abdullah University of Science and TechnologyThuwal, 23955–6900 Saudi Arabia
| | - Graham R. D. Mcgrann
- Department of Crop GeneticsJohn Innes CentreNorwichNR4 7UHUK
- Present address:
Crop Protection Team, Crop and Soil Systems Group, SRUCEdinburghEH9 3JGUK
| | - Amanda J. Able
- School of Agriculture, Food and WineThe University of AdelaideWaite Research Institute, PMB 1Glen OsmondSA5064Australia
| |
Collapse
|
32
|
Hisano H, Sakamoto K, Takagi H, Terauchi R, Sato K. Exome QTL-seq maps monogenic locus and QTLs in barley. BMC Genomics 2017; 18:125. [PMID: 28148242 PMCID: PMC5288901 DOI: 10.1186/s12864-017-3511-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/20/2017] [Indexed: 12/21/2022] Open
Abstract
Background QTL-seq, in combination with bulked segregant analysis and next-generation sequencing (NGS), is used to identify loci in small plant genomes, but is technically challenging to perform in species with large genomes, such as barley. A combination of exome sequencing and QTL-seq (exome QTL-seq) was used to map the mono-factorial Mendelian locus black lemma and pericarp (Blp) and QTLs for resistance to net blotch disease, a common disease of barley caused by the fungus Pyrenophora teres, which segregated in a population of 100 doubled haploid barley lines. Methods The provisional exome sequences were prepared by ordering the loci of expressed genes based on the genome information and concatenating genes with intervals of 200-bp spacer "N" for each chromosome. The QTL-seq pipeline was used to analyze short reads from the exome-captured library. Results In this study, short NGS reads of bulked total DNA samples from segregants with extreme trait values were subjected to exome capture, and the resulting exome sequences were aligned to the reference genome. SNP allele frequencies were compared to identify the locations of genes/QTLs responsible for the trait value differences between lines. For both objective traits examined, exome QTL-seq identified the monogenic Mendelian locus and associated QTLs. These findings were validated using conventional mapping approaches. Conclusions Exome QTL-seq broadens the utility of NGS-based gene/QTL mapping in organisms with large genomes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3511-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Kazuki Sakamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Hiroki Takagi
- Iwate Biotechnology Research Center, Kitakami, Iwate, 024-0003, Japan
| | - Ryohei Terauchi
- Iwate Biotechnology Research Center, Kitakami, Iwate, 024-0003, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan.
| |
Collapse
|
33
|
Koladia VM, Faris JD, Richards JK, Brueggeman RS, Chao S, Friesen TL. Genetic analysis of net form net blotch resistance in barley lines CIho 5791 and Tifang against a global collection of P. teres f. teres isolates. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:163-173. [PMID: 27734097 DOI: 10.1007/s00122-016-2801-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
A CIho 5791 × Tifang recombinant inbred mapping population was developed and used to identify major dominant resistance genes on barley chromosomes 6H and 3H in CI5791 and on 3H in Tifang. The barley line CIho 5791 confers high levels of resistance to Pyrenophora teres f. teres, causal agent of net form net blotch (NFNB), with few documented isolates overcoming this resistance. Tifang barley also harbors resistance to P. teres f. teres which was previously shown to localize to barley chromosome 3H. A CIho 5791 × Tifang F6 recombinant inbred line (RIL) population was developed using single seed descent. The Illumina iSelect SNP platform was used to identify 2562 single nucleotide polymorphism (SNP) markers across the barley genome, resulting in seven linkage maps, one for each barley chromosome. The CIho 5791 × Tifang RIL population was evaluated for NFNB resistance using nine P. teres f. teres isolates collected globally. Tifang was resistant to four of the isolates tested whereas CIho 5791 was highly resistant to all nine isolates. QTL analysis indicated that the CIho 5791 resistance mapped to chromosome 6H whereas the Tifang resistance mapped to chromosome 3H. Additionally, CIho 5791 also harbored resistance to two Japanese isolates that mapped to a 3H region similar to that of Tifang. SNP markers and RILs harboring both 3H and 6H resistance will be useful in resistance breeding against NFNB.
Collapse
Affiliation(s)
- V M Koladia
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| | - J D Faris
- Cereal Crops Research Unit, Northern Crop Science Laboratory, USDA-ARS, Fargo, ND, USA
| | - J K Richards
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| | - R S Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| | - S Chao
- Cereal Crops Research Unit, Northern Crop Science Laboratory, USDA-ARS, Fargo, ND, USA
| | - T L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA.
- Cereal Crops Research Unit, Northern Crop Science Laboratory, USDA-ARS, Fargo, ND, USA.
| |
Collapse
|
34
|
Tran DM, Clément-Demange A, Déon M, Garcia D, Le Guen V, Clément-Vidal A, Soumahoro M, Masson A, Label P, Le MT, Pujade-Renaud V. Genetic Determinism of Sensitivity to Corynespora cassiicola Exudates in Rubber Tree (Hevea brasiliensis). PLoS One 2016; 11:e0162807. [PMID: 27736862 PMCID: PMC5063417 DOI: 10.1371/journal.pone.0162807] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/29/2016] [Indexed: 11/19/2022] Open
Abstract
An indirect phenotyping method was developed in order to estimate the susceptibility of rubber tree clonal varieties to Corynespora Leaf Fall (CLF) disease caused by the ascomycete Corynespora cassiicola. This method consists in quantifying the impact of fungal exudates on detached leaves by measuring the induced electrolyte leakage (EL%). The tested exudates were either crude culture filtrates from diverse C. cassiicola isolates or the purified cassiicolin (Cas1), a small secreted effector protein produced by the aggressive isolate CCP. The test was found to be quantitative, with the EL% response proportional to toxin concentration. For eight clones tested with two aggressive isolates, the EL% response to the filtrates positively correlated to the response induced by conidial inoculation. The toxicity test applied to 18 clones using 13 toxinic treatments evidenced an important variability among clones and treatments, with a significant additional clone x treatment interaction effect. A genetic linkage map was built using 306 microsatellite markers, from the F1 population of the PB260 x RRIM600 family. Phenotyping of the population for sensitivity to the purified Cas1 effector and to culture filtrates from seven C. cassiicola isolates revealed a polygenic determinism, with six QTL detected on five chromosomes and percentages of explained phenotypic variance varying from 11 to 17%. Two common QTL were identified for the CCP filtrate and the purified cassiicolin, suggesting that Cas1 may be the main effector of CCP filtrate toxicity. The CCP filtrate clearly contrasted with all other filtrates. The toxicity test based on Electrolyte Leakage Measurement offers the opportunity to assess the sensitivity of rubber genotypes to C. cassiicola exudates or purified effectors for genetic investigations and early selection, without risk of spreading the fungus in plantations. However, the power of this test for predicting field susceptibility of rubber clones to CLF will have to be further investigated.
Collapse
Affiliation(s)
- Dinh Minh Tran
- Rubber Research Institute of Vietnam, Ho Chi Minh City, Vietnam
- CIRAD, UMR-AGAP, F-34398 Montpellier, France
| | | | - Marine Déon
- UCA, INRA, UMR PIAF, 63000 Clermont-Ferrand, France
| | | | | | | | - Mouman Soumahoro
- Société Africaine de Plantations d'Hévéas, 01 BP 1322 Abidjan 01, Côte d’Ivoire
| | - Aurélien Masson
- Société des Caoutchoucs de Grand-Béréby, Grand-Béréby, Côte d’Ivoire
| | | | - Mau Tuy Le
- Rubber Research Institute of Vietnam, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
35
|
Ismail IA, Able AJ. Secretome analysis of virulent Pyrenophora teres f. teres isolates. Proteomics 2016; 16:2625-2636. [PMID: 27402336 DOI: 10.1002/pmic.201500498] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 11/11/2022]
Abstract
Pyrenophora teres f. teres (Ptt) causes net form net blotch disease of barley, partially by producing necrosis-inducing proteins. The protein profiles of the culture filtrates of 28 virulent isolates were compared by a combination of 2DE and 1D-PAGE with 105 spots and 51 bands chosen for analysis by liquid chromatography electrospray ionization tandem mass spectrometry. A total of 259 individual proteins were identified with 63 of these proteins being common to the selected virulent isolates. Ptt secretes a broad spectrum of proteins including cell wall degrading enzymes; virulence factors and effectors; proteins associated with fungal pathogenesis and development; and proteins related to oxidation-reduction processes. Potential virulence factors and effectors identified included proteins with glucosidase activity, ricin B and concanavalin A-like lectins, glucanases, spherulin, cutinase, pectin lyase, leucine-rich repeat protein, and ceratoplatanin. Small proteins with unknown function but cysteine-rich, common to effectors, were also identified. Differences in the secretion profile of the Ptt isolates have also provided important insight into the different mechanisms contributing to virulence and the development of net form net blotch symptoms.
Collapse
Affiliation(s)
- Ismail A Ismail
- School of Agriculture, Food & Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, Australia
| | - Amanda J Able
- School of Agriculture, Food & Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, Australia.
| |
Collapse
|
36
|
Liu Z, Gao Y, Kim YM, Faris JD, Shelver WL, de Wit PJGM, Xu SS, Friesen TL. SnTox1, a Parastagonospora nodorum necrotrophic effector, is a dual-function protein that facilitates infection while protecting from wheat-produced chitinases. THE NEW PHYTOLOGIST 2016; 211:1052-64. [PMID: 27041151 DOI: 10.1111/nph.13959] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/03/2016] [Indexed: 05/02/2023]
Abstract
SnTox1 induces programmed cell death and the up-regulation of pathogenesis-related genes including chitinases. Additionally, SnTox1 has structural homology to several plant chitin-binding proteins. Therefore, we evaluated SnTox1 for chitin binding and localization. We transformed an avirulent strain of Parastagonospora nodorum as well as three nonpathogens of wheat (Triticum aestivum), including a necrotrophic pathogen of barley, a hemibiotrophic pathogen of sugar beet and a saprotroph, to evaluate the role of SnTox1 in infection and in protection from wheat chitinases. SnTox1 bound chitin and an SnTox1-green fluorescent fusion protein localized to the mycelial cell wall. Purified SnTox1 induced necrosis in the absence of the pathogen when sprayed on the leaf surface and appeared to remain on the leaf surface while inducing both epidermal and mesophyll cell death. SnTox1 protected the different fungi from chitinase degradation. SnTox1 was sufficient to change the host range of a necrotrophic pathogen but not a hemibiotroph or saprotroph. Collectively, this work shows that SnTox1 probably interacts with a receptor on the outside of the cell to induce cell death to acquire nutrients, but SnTox1 accomplishes a second role in that it protects against one aspect of the defense response, namely the effects of wheat chitinases.
Collapse
Affiliation(s)
- Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Yuanyuan Gao
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Yong Min Kim
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Justin D Faris
- Northern Crop Science Laboratory, United States Department of Agriculture - Agricultural Research Service, Fargo, ND, 58102, USA
| | - Weilin L Shelver
- Biosciences Research Laboratory, United States Department of Agriculture - Agricultural Research Service, Fargo, ND, 58102, USA
| | - Pierre J G M de Wit
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Steven S Xu
- Northern Crop Science Laboratory, United States Department of Agriculture - Agricultural Research Service, Fargo, ND, 58102, USA
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
- Northern Crop Science Laboratory, United States Department of Agriculture - Agricultural Research Service, Fargo, ND, 58102, USA
| |
Collapse
|
37
|
Fine Mapping of the Barley Chromosome 6H Net Form Net Blotch Susceptibility Locus. G3-GENES GENOMES GENETICS 2016; 6:1809-18. [PMID: 27172206 PMCID: PMC4938636 DOI: 10.1534/g3.116.028902] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Net form net blotch, caused by the necrotrophic fungal pathogen Pyrenophora teres f. teres, is a destructive foliar disease of barley with the potential to cause significant yield loss in major production regions throughout the world. The complexity of the host-parasite genetic interactions in this pathosystem hinders the deployment of effective resistance in barley cultivars, warranting a deeper understanding of the interactions. Here, we report on the high-resolution mapping of the dominant susceptibility locus near the centromere of chromosome 6H in the barley cultivars Rika and Kombar, which are putatively targeted by necrotrophic effectors from P. teres f. teres isolates 6A and 15A, respectively. Utilization of progeny isolates derived from a cross of P. teres f. teres isolates 6A × 15A harboring single major virulence loci (VK1, VK2, and VR2) allowed for the Mendelization of single inverse gene-for-gene interactions in a high-resolution population consisting of 2976 Rika × Kombar recombinant gametes. Brachypodium distachyon synteny was exploited to develop and saturate the susceptibility region with markers, delimiting it to ∼0.24 cM and a partial physical map was constructed. This genetic and physical characterization further resolved the dominant susceptibility locus, designated Spt1 (susceptibility to P. teres f. teres). The high-resolution mapping and cosegregation of the Spt1.R and Spt1.K gene/s indicates tightly linked genes in repulsion or alleles possibly targeted by different necrotrophic effectors. Newly developed barley genomic resources greatly enhance the efficiency of positional cloning efforts in barley, as demonstrated by the Spt1 fine mapping and physical contig identification reported here.
Collapse
|
38
|
Rau D, Rodriguez M, Leonarda Murgia M, Balmas V, Bitocchi E, Bellucci E, Nanni L, Attene G, Papa R. Co-evolution in a landrace meta-population: two closely related pathogens interacting with the same host can lead to different adaptive outcomes. Sci Rep 2015; 5:12834. [PMID: 26248796 PMCID: PMC4528193 DOI: 10.1038/srep12834] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 06/30/2015] [Indexed: 02/04/2023] Open
Abstract
We examined the local adaptation patterns in a system comprising several interconnected heterogeneous plant populations from which populations of two phylogenetically closely related pathogens were also sampled. The host is Hordeum vulgare (cultivated barley); the pathogens are Pyrenophora teres f. teres (net form) and Pyrenophora teres f. maculata (spot form), the causal agents of barley net blotch. We integrated two approaches, the comparison between the population structures of the host and the pathogens, and a cross-inoculation test. We demonstrated that two closely related pathogens with very similar niche specialisation and life-styles can give rise to different co-evolutionary outcomes on the same host. Indeed, we detected local adaptation for the net form of the pathogen but not for the spot form. We also provided evidence that an a-priori well-known resistance quantitative-trait-locus on barley chromosome 6H is involved in the co-evolutionary ‘arms race’ between the plant and the net-form pathogen. Moreover, data suggested latitudinal clines of host resistance and that different ecological conditions can result in differential selective pressures at different sites. Our data are of interest for on-farm conservation of plant genetic resources, as also in establishing efficient breeding programs and strategies for deployment of resistance genes of P. teres.
Collapse
Affiliation(s)
- Domenico Rau
- Sezione di Agronomia, Coltivazioni Erbacee e Genetica, Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italy
| | - Monica Rodriguez
- Sezione di Agronomia, Coltivazioni Erbacee e Genetica, Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italy
| | - Maria Leonarda Murgia
- Sezione di Agronomia, Coltivazioni Erbacee e Genetica, Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italy
| | - Virgilio Balmas
- Sezione di Patologia Vegetale ed Entomologia, Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italy
| | - Elena Bitocchi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Elisa Bellucci
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Nanni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Giovanna Attene
- Sezione di Agronomia, Coltivazioni Erbacee e Genetica, Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italy
| | - Roberto Papa
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
39
|
Tamang P, Neupane A, Mamidi S, Friesen T, Brueggeman R. Association mapping of seedling resistance to spot form net blotch in a worldwide collection of barley. PHYTOPATHOLOGY 2015; 105:500-8. [PMID: 25870925 DOI: 10.1094/phyto-04-14-0106-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Spot form net blotch (SFNB), caused by the necrotrophic fungal pathogen Pyrenophora teres f. maculata, is an important foliar disease of barley in major production regions around the world. Deployment of adequate host resistance is challenging because the virulence of P. teres f. maculata is highly variable and characterized minor-effect resistances are typically ineffective against the diverse pathogen populations. A world barley core collection consisting of 2,062 barley accessions of diverse origin and genotype were phenotyped at the seedling stage with four P. teres f. maculata isolates collected from the United States (FGO), New Zealand (NZKF2), Australia (SG1), and Denmark (DEN 2.6). Of the 2,062 barley accessions phenotyped, 1,480 were genotyped with the Illumina barley iSelect chip and passed the quality controls with 5,954 polymorphic markers used for further association mapping analysis. Genome-wide association mapping was utilized to identify and map resistance loci from the seedling disease response data and the single nucleotide polymorphism (SNP) marker data. The best among six different regression models was identified for each isolate and association analysis was performed separately for each. A total of 138 significant (-log10P value>3.0) marker-trait associations (MTA) were detected. Using a 5 cM cutoff, a total of 10, 8, 13, and 10 quantitative trait loci (QTL) associated with SFNB resistance were identified for the FGO, SG1, NZKF2, and DEN 2.6 isolates, respectively. Loci containing from 1 to 34 MTA were identified on all seven barley chromosomes with one locus at 66 to 69 cM on chromosome 2H common to all four isolates. Six distinct loci were identified by the association mapping (AM) analysis that corresponded to previously characterized SFNB resistance QTL identified by biparental population analysis (QRpt4, QRpt6, Rpt4, Rpt6, Rpt7, and a QTL on 4H that was not given a provisional gene or QTL nomenclature). The 21 putative novel loci identified may represent a broad spectrum of resistance and or susceptibility loci. This is the first comprehensive AM study to characterize SFNB resistance loci underlying broad populations of the barley host and P. teres f. maculata pathogen.
Collapse
Affiliation(s)
- Prabin Tamang
- First, second, fourth, and fifth authors: Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050; third author: Department of Plant Science, North Dakota State University, Fargo, ND 58108-6050; and fourth author: U.S. Department of Agriculture-Agriculture Research Service, Red River Valley Agricultural Research Center, Cereal Crops Research Unit, Fargo, ND 58102-2765
| | | | | | | | | |
Collapse
|