1
|
Qiu M, Tian M, Sun Y, Li H, Huang W, Ouyang H, Lin S, Zhang C, Wang M, Wang Y. Decoding the biochemical dialogue: metabolomic insights into soybean defense strategies against diverse pathogens. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2234-2250. [PMID: 38965141 DOI: 10.1007/s11427-023-2596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/15/2024] [Indexed: 07/06/2024]
Abstract
Soybean, a crucial global leguminous crop, confronts persistent threats from diverse pathogens, exerting a profound impact on global yields. While genetic dimensions of soybean-pathogen interactions have garnered attention, the intricate biochemical responses remain poorly elucidated. In this study, we applied targeted and untargeted liquid chromatography coupled to mass spectrometry (LC-MS) metabolite profiling to dissect the complex interplay between soybeans and five distinct pathogens. Our analysis uncovered 627 idMS/MS spectra, leading to the identification of four main modules, encompassing flavonoids, isoflavonoids, triterpenoids, and amino acids and peptides, alongside other compounds such as phenolics. Profound shifts were observed in both primary and secondary metabolism in response to pathogenic infections. Particularly notable were the bidirectional changes in total flavonoids across diverse pathogenic inoculations, while triterpenoids exhibited a general declining trend. Noteworthy among the highly inducible total flavonoids were known representative anti-pathogen compounds (glyceollin I), backbone forms of isoflavonoids (daidzein, genistein, glycitein, formononetin), and newly purified compounds in this study (prunin). Subsequently, we delved into the biological roles of these five compounds, validating their diverse functions against pathogens: prunin significantly inhibited the vegetative growth and virulence of Phytophthora sojae; genistein exhibited a pronounced inhibitory effect on the vegetative growth and virulence of Phomopsis longicolla; daidzein and formononetin displayed significant repressive effects on the virulence of P. longicolla. This study underscores the potent utility of metabolomic tools, providing in-depth insights into plant-pathogen interactions from a biochemical perspective. The findings not only contribute to plant pathology but also offer strategic pathways for bolstering plant resistance against diseases on a broader scale.
Collapse
Affiliation(s)
- Min Qiu
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengjun Tian
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaru Sun
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huaibo Li
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenwen Huang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haibing Ouyang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoyan Lin
- China State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chen Zhang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Wang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yuanchao Wang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Ru B, Hao X, Li W, Peng Q, Miao J, Liu X. A Novel FYVE Domain-Containing Protein Kinase, PsZFPK1, Plays a Critical Role in Vegetative Growth, Sporangium Formation, Oospore Production, and Virulence in Phytophthora sojae. J Fungi (Basel) 2023; 9:709. [PMID: 37504698 PMCID: PMC10381902 DOI: 10.3390/jof9070709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Proteins containing both FYVE and serine/threonine kinase catalytic (STKc) domains are exclusive to protists. However, the biological function of these proteins in oomycetes has rarely been reported. In the Phytophthora sojae genome database, we identified five proteins containing FYVE and STKc domains, which we named PsZFPK1, PsZFPK2, PsZFPK3, PsZFPK4, and PsZFPK5. In this study, we characterized the biological function of PsZFPK1 using a CRISPR/Cas9-mediated gene replacement system. Compared with the wild-type strain, P6497, the PsZFPK1-knockout mutants exhibited significantly reduced growth on a nutrient-rich V8 medium, while a more pronounced defect was observed on a nutrient-poor Plich medium. The PsZFPK1-knockout mutants also showed a significant increase in sporangium production. Furthermore, PsZFPK1 was found to be essential for oospore production and complete virulence but dispensable for the stress response in P. sojae. The N-terminal region, FYVE and STKc domains, and T602 phosphorylation site were found to be vital for the function of PsZFPK1. Conversely, these domains were not required for the localization of PsZFPK1 protein in the cytoplasm. Our results demonstrate that PsZFPK1 plays a critical role in vegetative growth, sporangium formation, oospore production, and virulence in P. sojae.
Collapse
Affiliation(s)
- Binglu Ru
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, China
| | - Xinchang Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, China
| | - Wenhao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, China
| | - Qin Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, China
| | - Jianqiang Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China
| |
Collapse
|
3
|
Qiu M, Tian M, Yong S, Sun Y, Cao J, Li Y, Zhang X, Zhai C, Ye W, Wang M, Wang Y. Phase-specific transcriptional patterns of the oomycete pathogen Phytophthora sojae unravel genes essential for asexual development and pathogenic processes. PLoS Pathog 2023; 19:e1011256. [PMID: 36952577 PMCID: PMC10072465 DOI: 10.1371/journal.ppat.1011256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/04/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023] Open
Abstract
Oomycetes are filamentous microorganisms easily mistaken as fungi but vastly differ in physiology, biochemistry, and genetics. This commonly-held misconception lead to a reduced effectiveness by using conventional fungicides to control oomycetes, thus it demands the identification of novel functional genes as target for precisely design oomycetes-specific microbicide. The present study initially analyzed the available transcriptome data of the model oomycete pathogen, Phytophthora sojae, and constructed an expression matrix of 10,953 genes across the stages of asexual development and host infection. Hierarchical clustering, specificity, and diversity analyses revealed a more pronounced transcriptional plasticity during the stages of asexual development than that in host infection, which drew our attention by particularly focusing on transcripts in asexual development stage to eventually clustered them into 6 phase-specific expression modules. Three of which respectively possessing a serine/threonine phosphatase (PP2C) expressed during the mycelial and sporangium stages, a histidine kinase (HK) expressed during the zoospore and cyst stages, and a bZIP transcription factor (bZIP32) exclusive to the cyst germination stage were selected for down-stream functional validation. In this way, we demonstrated that PP2C, HK, and bZIP32 play significant roles in P. sojae asexual development and virulence. Thus, these findings provide a foundation for further gene functional annotation in oomycetes and crop disease management.
Collapse
Affiliation(s)
- Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mengjun Tian
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Saijiang Yong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yaru Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jingting Cao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yaning Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xin Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chunhua Zhai
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ming Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Zhang B, Zhang Z, Yong S, Yu S, Feng H, Yin M, Ye W, Wang Y, Qiu M. An Oomycete-Specific Leucine-Rich Repeat-Containing Protein Is Involved in Zoospore Flagellum Development in Phytophthora sojae. PHYTOPATHOLOGY 2022; 112:2351-2359. [PMID: 35694885 DOI: 10.1094/phyto-12-21-0523-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A leucine-rich repeat (LRR) is a widespread structural motif of 20 to 30 amino acids with characteristic repetitive sequences rich in leucine. LRR-containing proteins are critical for ligand recognition and binding, participating in plant development and defense. Like plants, oomycetes also harbor genes encoding LRR-containing proteins, but their functions remain largely unknown. We identified a zoospore-upregulated gene from Phytophthora sojae with LRRs and an extra structural maintenance of chromosomes-like domain. We generated knockout and complemented knockout strains of this LRR protein and found that its deletion resulted in a pronounced reduction in zoospore mobility and chemotaxis, cyst germination, and virulence. Interestingly, micro-examination of zoospores under a scanning electron microscope revealed irregularly shaped zoospores without flagella in these deletion mutants. In addition, the reintroduction of this LRR protein into the knockout mutant reversed all the deficiencies. Our data demonstrate a critical role for the Phytophthora LRR protein in modulating zoospore development, which impairs migration to the host soybean and affects the spread of Phytophthora pathogens.
Collapse
Affiliation(s)
- Baiyu Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Saijiang Yong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shuyang Yu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hui Feng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Maozhu Yin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
5
|
Situ J, Xi P, Lin L, Huang W, Song Y, Jiang Z, Kong G. Signal and regulatory mechanisms involved in spore development of Phytophthora and Peronophythora. Front Microbiol 2022; 13:984672. [PMID: 36160220 PMCID: PMC9500583 DOI: 10.3389/fmicb.2022.984672] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Oomycetes cause hundreds of destructive plant diseases, threatening agricultural production and food security. These fungus-like eukaryotes show multiple sporulation pattern including the production of sporangium, zoospore, chlamydospore and oospore, which are critical for their survival, dispersal and infection on hosts. Recently, genomic and genetic technologies have greatly promoted the study of molecular mechanism of sporulation in the genus Phytophthora and Peronophythora. In this paper, we characterize the types of asexual and sexual spores and review latest progress of these two genera. We summarize the genes encoding G protein, mitogen-activated protein kinase (MAPK) cascade, transcription factors, RNA-binding protein, autophagy-related proteins and so on, which function in the processes of sporangium production and cleavage, zoospore behaviors and oospore formation. Meanwhile, various molecular, chemical and electrical stimuli in zoospore behaviors are also discussed. Finally, with the molecular mechanism of sporulation in Phytophthora and Peronophythora is gradually being revealed, we propose some thoughts for the further research and provide the alternative strategy for plant protection against phytopathogenic oomycetes.
Collapse
Affiliation(s)
- Junjian Situ
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Pinggen Xi
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Long Lin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Weixiong Huang
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yu Song
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zide Jiang
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Guanghui Kong
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- *Correspondence: Guanghui Kong,
| |
Collapse
|
6
|
Zhang Z, Zhao Y, An T, Yu H, Bi X, Liu H, Xu Y, Yang Z, Chen Y, Wen J. Maize and Common Bean Seed Exudates Mediate Part of Nonhost Resistance to Phytophthora sojae Prior to Infection. PHYTOPATHOLOGY 2022; 112:335-344. [PMID: 34311549 DOI: 10.1094/phyto-05-21-0213-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phytophthora sojae does not infect nonhost maize (Zea mays) but infects nonhost common bean (Phaseolus vulgaris) under inoculation. Soybean seed exudates participate in mediating host resistance to P. sojae before infection. This study aims to elucidate the role of seed exudates in mediating the nonhost resistance of maize and common bean to P. sojae before infection. The behaviors of P. sojae zoospores in response to the seed exudates were determined using an assay chamber and a concave slide. The proteomes of P. sojae zoospores in response to the seed exudates were analyzed with the tandem mass tag method. The key proteins were quantitatively verified by parallel reaction monitoring. Maize seed exudates exerted a repellent effect on zoospores of P. sojae. This result explains why zoospores sense repelling signaling molecules in maize seed exudates that weaken and strongly inhibit chemotaxis signals in the phosphatidylinositol signaling pathway and arachidonic acid metabolism pathway. Common bean seed exudates did not exhibit any attraction to the zoospores because the guanine nucleotide-binding protein signaling pathway, which is responsible for transmitting chemotactic signals, had no significant change. The proteins protecting the cell membrane structure were significantly downregulated, and the early apoptosis signal glutathione was enhanced in zoospores responding to common bean seed exudates, which resulted in dissolution of the cysts. Maize and common bean seed exudates mediate part of the nonhost resistance to P. sojae via different mechanisms before infection. The immunity of maize to P. sojae is caused by the repellent effect of maize seed exudates on zoospores. Common bean seed exudates participate in mediating nonhost resistance by dissolving the cysts.
Collapse
Affiliation(s)
- Zhuoqun Zhang
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yifan Zhao
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Tai An
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Han Yu
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xiangqi Bi
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Haixu Liu
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Ying Xu
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zhiyue Yang
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yufei Chen
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jingzhi Wen
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| |
Collapse
|
7
|
Yang X, Jiang X, Yan W, Huang Q, Sun H, Zhang X, Zhang Z, Ye W, Wu Y, Govers F, Liang Y. The Mevalonate Pathway Is Important for Growth, Spore Production, and the Virulence of Phytophthora sojae. Front Microbiol 2021; 12:772994. [PMID: 36338274 PMCID: PMC9635365 DOI: 10.3389/fmicb.2021.772994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/01/2021] [Indexed: 09/29/2023] Open
Abstract
The mevalonate (MVA) pathway in eukaryotic organisms produces isoprenoids, sterols, ubiquinone, and dolichols. These molecules are vital for diverse cellular functions, ranging from signaling to membrane integrity, and from post-translational modification to energy homeostasis. However, information on the MVA pathway in Phytophthora species is limited. In this study, we identified the MVA pathway genes and reconstructed the complete pathway in Phytophthora sojae in silico. We characterized the function of the MVA pathway of P. sojae by treatment with enzyme inhibitor lovastatin, deletion of the geranylgeranyl diphosphate synthase gene (PsBTS1), and transcriptome profiling analysis. The MVA pathway is ubiquitously conserved in Phytophthora species. Under lovastatin treatment, mycelial growth, spore production, and virulence of P. sojae were inhibited but the zoospore encystment rate increased. Heterozygous mutants of PsBTS1 showed slow growth, abnormal colony characteristics, and mycelial morphology. Mutants showed decreased numbers of sporangia and oospores as well as reduced virulence. RNA sequencing analysis identified the essential genes in sporangia formation were influenced by the enzyme inhibitor lovastatin. Our findings elucidate the role of the MVA pathway in P. sojae and provide new insights into the molecular mechanisms underlying the development, reproduction, and virulence of P. sojae and possibly other oomycetes. Our results also provide potential chemical targets for management of plant Phytophthora diseases.
Collapse
Affiliation(s)
- Xinyu Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang, China
| | - Xue Jiang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Weiqi Yan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Qifeng Huang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Huiying Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xin Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhichao Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Wenwu Ye
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang, China
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, Netherlands
| | - Yue Liang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
8
|
Si J, Pei Y, Shen D, Ji P, Xu R, Xue X, Peng H, Liang X, Dou D. Phytophthora sojae leucine-rich repeat receptor-like kinases: diverse and essential roles in development and pathogenicity. iScience 2021; 24:102725. [PMID: 34258557 PMCID: PMC8254037 DOI: 10.1016/j.isci.2021.102725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/01/2021] [Accepted: 06/11/2021] [Indexed: 11/30/2022] Open
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) are critical signal receptors in plant development and defense. Like plants, oomycete pathogen genomes also harbor LRR-RLKs, but their functions remain largely unknown. Here, we systematically characterize all the 24 LRR-RLK genes (PsRLKs) from Phytophthora sojae, which is a model of oomycete pathogens. Although none of them was required for vegetative growth, the specific PsRLKs are important for stress responses, zoospore production, zoospores chemotaxis, and pathogenicity. Interestingly, the Gα subunit PsGPA1 interacts with the five chemotaxis-related PsRLKs via their intracellular kinase domains, and expression of PsGPA1 gene is downregulated in the three mutants (ΔPsRLK17/22/24). Moreover, we generated the PsRLK-PsRLK interaction network of P. sojae and found that PsRLK21, together with PsRLK10 or PsRLK17, regulate virulence by direct association. Taken together, our results reveal the diverse roles of LRR-RLKs in modulating P. sojae development, interaction with soybean, and responses to diverse environmental factors. Systematically functional analysis of LRR-RLK family with 24 members in P. sojae Five chemotaxis-related PsRLKs directly interact with Gα protein PsGPA1 PsRLKs form an interaction network in P. sojae The complex PsRLK21-PsRLK10/17 jointly regulates pathogenesis
Collapse
Affiliation(s)
- Jierui Si
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong Pei
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Peiyun Ji
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruofei Xu
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Xue Xue
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Peng
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, USA
| | - Xiangxiu Liang
- Key Laboratory of Pest Monitoring and Green Management, MOA and College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Daolong Dou
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Pest Monitoring and Green Management, MOA and College of Plant Protection, China Agricultural University, Beijing 100193, China
- Corresponding author
| |
Collapse
|
9
|
Bassani I, Larousse M, Tran QD, Attard A, Galiana E. Phytophthora zoospores: From perception of environmental signals to inoculum formation on the host-root surface. Comput Struct Biotechnol J 2020; 18:3766-3773. [PMID: 33304469 PMCID: PMC7718214 DOI: 10.1016/j.csbj.2020.10.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
To explore moist soils and to target host plants, phytopathogenic Phytophthora species utilize the sensory and propulsion capabilities of the biflagellate unicellular zoospores they produce. Zoospore motion and interactions with the microenvironment are of primary importance for Phytophthora physiology. These are also of critical significance for plant pathology in early infection sequential events and their regulation: the directed zoospore migration toward the host, the local aggregation and adhesion at the host penetration site. In the soil, these early events preceding the root colonization are orchestrated by guidance factors, released from the soil particles in water films, or emitted within microbiota and by host plants. This signaling network is perceived by zoospores and results in coordinated behavior and preferential localization in the rhizosphere. Recent computational and structural studies suggest that rhizospheric ion and plant metabolite sensing is a key determinant in driving zoospore motion, orientation and aggregation. To reach their target, zoospores respond to various molecular, chemical and electrical stimuli. However, it is not yet clear how these signals are generated in local soil niches and which gene functions govern the sensing and subsequent responses of zoospores. Here we review studies on the soil, microbial and host-plant factors that drive zoospore motion, as well as the adaptations governing zoospore behavior. We propose several research directions that could be explored to characterize the role of zoospore microbial ecology in disease.
Collapse
Affiliation(s)
- Ilaria Bassani
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis 06903, France
| | - Marie Larousse
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis 06903, France
| | - Quang D Tran
- Université Côte d'Azur, CNRS, UMR 7010, Institut de Physique de Nice, Nice 06108, France
| | - Agnès Attard
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis 06903, France
| | - Eric Galiana
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis 06903, France
| |
Collapse
|
10
|
Phytopathogenic oomycetes: a review focusing on Phytophthora cinnamomi and biotechnological approaches. Mol Biol Rep 2020; 47:9179-9188. [PMID: 33068230 DOI: 10.1007/s11033-020-05911-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022]
Abstract
The Phytophthora genus is composed, mainly, of plant pathogens. This genus belongs to the Oomycete class, also known as "pseudo-fungi", within the Chromista Kingdom. Phytophthora spp. is highlighted due to the significant plant diseases that they cause, which represents some of the most economically and cultural losses, such as European chestnut ink disease, which is caused by P. cinnamomi. Currently, there have been four genome assemblies placed at the National Center for Biotechnology Information (NCBI), although the progress to understand and elucidate the pathogenic process of P. cinnamomi by its genome is progressing slowly. In this review paper, we aim to report and discuss the recent findings related to P. cinnamomi and its genomic information. Our research is based on paper databases that reported probable functions to P. cinnamomi proteins using sequence alignments, bioinformatics, and biotechnology approaches. Some of these proteins studied have functions that are proposed to be involved in the asexual sporulation and zoosporogenesis leading to the host colonization and consequently associated with pathogenicity. Some remarkable genes and proteins discussed here are related to oospore development, inhibition of sporangium formation and cleavage, inhibition of flagellar assembly, blockage of cyst germination and hyphal extension, and biofilm proteins. Lastly, we report some biotechnological approaches using biological control, studies with genome sequencing of P. cinnamomi resistant plants, and gene silencing through RNA interference (iRNA).
Collapse
|
11
|
Organize, Don't Agonize: Strategic Success of Phytophthora Species. Microorganisms 2020; 8:microorganisms8060917. [PMID: 32560346 PMCID: PMC7355776 DOI: 10.3390/microorganisms8060917] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
Plants are constantly challenged by various environmental stressors ranging from abiotic-sunlight, elevated temperatures, drought, and nutrient deficits, to biotic factors-microbial pathogens and insect pests. These not only affect the quality of harvest but also the yield, leading to substantial annual crop losses, worldwide. Although plants have a multi-layered immune system, phytopathogens such as species of the oomycete genus Phytophthora, can employ elaborate mechanisms to breach this defense. For the last two decades, researchers have focused on the co-evolution between Phytophthora and interacting hosts to decouple the mechanisms governing their molecular associations. This has provided a comprehensive understanding of the pathobiology of plants affected by oomycetes. Ultimately, this is important for the development of strategies to sustainably improve agricultural production. Therefore, this paper discusses the present-day state of knowledge of the strategic mode of operation employed by species of Phytophthora for successful infection. Specifically, we consider motility, attachment, and host cell wall degradation used by these pathogenic species to obtain nutrients from their host. Also discussed is an array of effector types from apoplastic (hydrolytic proteins, protease inhibitors, elicitins) to cytoplastic (RxLRs, named after Arginine-any amino acid-Leucine-Arginine consensus sequence and CRNs, for CRinkling and Necrosis), which upon liberation can subvert the immune response and promote diseases in plants.
Collapse
|
12
|
Li X, Liu Y, Tan X, Li D, Yang X, Zhang X, Zhang D. The high-affinity phosphodiesterase PcPdeH is involved in the polarized growth and pathogenicity of Phytophthora capsici. Fungal Biol 2020; 124:164-173. [PMID: 32220377 DOI: 10.1016/j.funbio.2020.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 01/04/2023]
Abstract
The cAMP signaling pathway has been shown to be important in controlling morphological changes and pathogenicity in plant pathogens. In the present study, we identified PcPdeH, a gene encoding a high-affinity phosphodiesterase (PDE), which is a key regulator of the cAMP signaling pathway. To elucidate the function of PcPdeH, PcPdeH-knockout mutants were obtained using a type II CRISPR/Cas9 system in Phytophthora capsici. The knockout transformants of PcPdeH showed vegetative growth defects and abnormal cyst germination. Infection assays indicated that compared with the wild type, PcPdeH-knockout mutants showed significantly reduced virulence on pepper and tobacco leaves and exhibited increased (1.5-2-fold) cAMP levels relative to the wild-type and CK strains. Based on these phenotypic features, we propose that PcPdeH is crucial for vegetative growth, cyst germination and pathogenicity in P. capsici.
Collapse
Affiliation(s)
- X Li
- Longping Branch, Graduate College, Hunan University, Changsha, 410125, China; Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| | - Yong Liu
- Longping Branch, Graduate College, Hunan University, Changsha, 410125, China; Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| | - Xinqiu Tan
- Longping Branch, Graduate College, Hunan University, Changsha, 410125, China; Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| | - Delong Li
- College of Plant Health and Medicine, The Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Xinyu Yang
- Shenyang Agricultural University, Plant Protection College, Shenyang, 110866, China.
| | - Xin Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| | - Deyong Zhang
- Longping Branch, Graduate College, Hunan University, Changsha, 410125, China; Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| |
Collapse
|
13
|
Qiu M, Li Y, Zhang X, Xuan M, Zhang B, Ye W, Zheng X, Govers F, Wang Y. G protein α subunit suppresses sporangium formation through a serine/threonine protein kinase in Phytophthora sojae. PLoS Pathog 2020; 16:e1008138. [PMID: 31961913 PMCID: PMC7010300 DOI: 10.1371/journal.ppat.1008138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 02/10/2020] [Accepted: 10/09/2019] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic heterotrimeric guanine nucleotide-binding proteins consist of α, β, and γ subunits, which act as molecular switches to regulate a number of fundamental cellular processes. In the oomycete pathogen Phytophthora sojae, the sole G protein α subunit (Gα; encoded by PsGPA1) has been found to be involved in zoospore mobility and virulence, but how it functions remains unclear. In this study, we show that the Gα subunit PsGPA1 directly interacts with PsYPK1, a serine/threonine protein kinase that consists of an N-terminal region with unknown function and a C-terminal region with a conserved catalytic kinase domain. We generated knockout and knockout-complemented strains of PsYPK1 and found that deletion of PsYPK1 resulted in a pronounced reduction in the production of sporangia and oospores, in mycelial growth on nutrient poor medium, and in virulence. PsYPK1 exhibits a cytoplasmic-nuclear localization pattern that is essential for sporangium formation and virulence of P. sojae. Interestingly, PsGPA1 overexpression was found to prevent nuclear localization of PsYPK1 by exclusively binding to the N-terminal region of PsYPK1, therefore accounting for its negative role in sporangium formation. Our data demonstrate that PsGPA1 negatively regulates sporangium formation by repressing the nuclear localization of its downstream kinase PsYPK1.
Collapse
Affiliation(s)
- Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Yaning Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Xin Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Mingrun Xuan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Baiyu Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Lei M, Liu J, Fang Y, Shao Y, Li L, Yu JH, Chen F. Effects of Different G-Protein α-Subunits on Growth, Development and Secondary Metabolism of Monascus ruber M7. Front Microbiol 2019; 10:1555. [PMID: 31354659 PMCID: PMC6632705 DOI: 10.3389/fmicb.2019.01555] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/21/2019] [Indexed: 11/13/2022] Open
Abstract
Strains of Monascus filamentous fungal species have been used to produce fermented foods in Asian countries, such as China, Japan, and The Korean Peninsula, for nearly 2,000 years. At present, their fermented products are widely used as food additives and nutraceutical supplements worldwide owing to their production of beneficial secondary metabolites. Heterotrimeric G-protein signaling pathways participate in regulating multiple biological processes in fungi. Previously, we identified three Monascus ruber M7 G-protein α subunits (Mga1–3) and demonstrated that Mga1 can regulate growth, reproduction and some secondary metabolites’ production. Here, we systematically analyzed and compared the roles of mga1–3 by combining single- and double-gene(s) knockouts and their transcriptomic data. First, mga2 and mga3 knock-out mutants and pairwise combinations of mga1–3 deletion strains were generated. Then the changes in growth, development and the main secondary metabolites, Monascus pigments and citrinin, in these mutants were systematically compared with M. ruber M7. Moreover, RNA-Seq analyses of these mutants were performed. All three Gα subunits worked together to regulate biological processes in M. ruber M7, with Mga1 playing a major role, while Mga2 and Mga3 playing supplemental roles. According to the existing literatures which we can find, gene knock-out mutants of the pairwise combination of mga1–3 and their transcriptome analysis are first reported in this study. The current results have clearly demonstrated the functional division of Mga1–3 in M. ruber M7, and could provide a deeper understanding of the effects of different Gα subunits on growth, development and secondary metabolism in other filamentous fungi.
Collapse
Affiliation(s)
- Ming Lei
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiao Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yang Fang
- National Engineering Research Center for Natural Medicines, Chengdu, China
| | - Yanchun Shao
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Li
- College of Life Science, Yangtze University, Jingzhou, China
| | - Jae-Hyuk Yu
- Departments of Bacteriology and Genetics, University of Wisconsin - Madison, Madison, WI, United States.,Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Judelson HS, Ah-Fong AMV. Exchanges at the Plant-Oomycete Interface That Influence Disease. PLANT PHYSIOLOGY 2019; 179:1198-1211. [PMID: 30538168 PMCID: PMC6446794 DOI: 10.1104/pp.18.00979] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/19/2018] [Indexed: 05/20/2023]
Abstract
Molecular exchanges between plants and biotrophic, hemibiotrophic, and necrotrophic oomycetes affect disease progression.
Collapse
Affiliation(s)
- Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521
| | - Audrey M V Ah-Fong
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521
| |
Collapse
|
16
|
Generating Gene Silenced Mutants in Phytophthora sojae. Methods Mol Biol 2018. [PMID: 30182241 DOI: 10.1007/978-1-4939-8724-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Phytophthora species are notorious pathogens of plants and cause enormous damage to agriculture. In order to understand Phytophthora pathogenesis, gene silencing and knockout methods are important for the investigation of gene functions. Although CRISPR/Cas9-based gene knockout procedures have been developed in Phytophthora sojae and Phytophthora capsici, it may not always be the best choice especially when knockout mutation leads to lethality. Therefore, gene silencing is a very useful tool for functional analysis of target genes in Phytophthora. This chapter introduces a gene silencing protocol for the soybean pathogen P. sojae. An expression cassette is incorporated into the P. sojae genome through PEG-mediated protoplast transformation, which leads to constitutive production of antisense RNA transcripts. These transcripts are able to target mRNAs through sequence complementarity and effectively reduce the expression of the target genes.
Collapse
|
17
|
Hardham AR, Blackman LM. Phytophthora cinnamomi. MOLECULAR PLANT PATHOLOGY 2018; 19:260-285. [PMID: 28519717 PMCID: PMC6637996 DOI: 10.1111/mpp.12568] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/20/2017] [Accepted: 05/11/2017] [Indexed: 05/12/2023]
Abstract
Phytophthora cinnamomi is one of the most devastating plant pathogens in the world. It infects close to 5000 species of plants, including many of importance in agriculture, forestry and horticulture. The inadvertent introduction of P. cinnamomi into natural ecosystems, including a number of recognized Global Biodiversity Hotspots, has had disastrous consequences for the environment and the biodiversity of flora and fauna. The genus Phytophthora belongs to the Class Oomycetes, a group of fungus-like organisms that initiate plant disease through the production of motile zoospores. Disease control is difficult in agricultural and forestry situations and even more challenging in natural ecosystems as a result of the scale of the problem and the limited range of effective chemical inhibitors. The development of sustainable control measures for the future management of P. cinnamomi requires a comprehensive understanding of the cellular and molecular basis of pathogen development and pathogenicity. The application of next-generation sequencing technologies to generate genomic and transcriptomic data promises to underpin a new era in P. cinnamomi research and discovery. The aim of this review is to integrate bioinformatic analyses of P. cinnamomi sequence data with current knowledge of the cellular and molecular basis of P. cinnamomi growth, development and plant infection. The goal is to provide a framework for future research by highlighting potential pathogenicity genes, shedding light on their possible functions and identifying suitable targets for future control measures. TAXONOMY Phytophthora cinnamomi Rands; Kingdom Chromista; Phylum Oomycota or Pseudofungi; Class Oomycetes; Order Peronosporales; Family Peronosporaceae; genus Phytophthora. HOST RANGE Infects about 5000 species of plants, including 4000 Australian native species. Host plants important for agriculture and forestry include avocado, chestnut, macadamia, oak, peach and pineapple. DISEASE SYMPTOMS A root pathogen which causes rotting of fine and fibrous roots, but which can also cause stem cankers. Root damage may inhibit water movement from roots to shoots, leading to dieback of young shoots. USEFUL WEBSITES: http://fungidb.org/fungidb/; http://genome.jgi.doe.gov/Phyci1/Phyci1.home.html; http://www.ncbi.nlm.nih.gov/assembly/GCA_001314365.1; http://www.ncbi.nlm.nih.gov/assembly/GCA_001314505.1.
Collapse
Affiliation(s)
- Adrienne R. Hardham
- Plant Science Division, Research School of Biology, College of Medicine, Biology and EnvironmentThe Australian National UniversityCanberraACT 2601Australia
| | - Leila M. Blackman
- Plant Science Division, Research School of Biology, College of Medicine, Biology and EnvironmentThe Australian National UniversityCanberraACT 2601Australia
| |
Collapse
|