1
|
Wang Y, Liu C, Liu S, Wang Z, Hao K, Wu Y, Yu C, Yuan X. Replicase components and the untranslated region of RNA2 synergistically regulate pathogenicity differentiation among different isolates of cucumber mosaic virus. Int J Biol Macromol 2025; 294:139076. [PMID: 39753176 DOI: 10.1016/j.ijbiomac.2024.139076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Changes in critical sites of virus-encoded protein or cis-acting element generally determine pathogenicity differentiation among different isolates of the same plant virus. Cucumber mosaic virus (CMV) isolates, which exhibit the most extensively known host range, demonstrate notable pathogenicity differentiation. This study focuses on the severe isolate CMVFny and mild isolate CMVTA-pe, both affecting several species within the Solanaceae family, to identify the key factors regulating pathogenicity differentiation. Through a pseudo-recombination assay, the principal RNA segments regulating the pathogenicity of two CMV isolates were localized to RNA1 and RNA2, with a particular emphasis on RNA2. By generating chimeric mutants on RNA1 or RNA2 of the two isolates, the pathogenicity differentiation was suggested to be mainly associated with protein 1a of RNA1 as well as the synergistic interactions involving protein 2a as well as the 5'-untranslated region (UTR) and the 3'-UTR of RNA2. Moreover, the influence of protein 1a of RNA1 and protein 2a, 5'-UTR, and 3'-UTR of RNA2 on pathogenicity differentiation exhibited a coevolutionary pattern. This coevolutionary pattern of proteins 1a and 2a, along with the UTRs of RNA2, was also corroborated in three additional CMV isolates: CMVZMBJ, CMVWF-Ch, and CMVJN-Cu. In addition, multiple phylogenetic tree analyses revealed a synchronous evolutionary pattern among proteins 1a and 2a and the 5'-UTR and 3'-UTR of RNA2. This study provided new insights into the pathogenicity differentiation of RNA viruses.
Collapse
Affiliation(s)
- Yalan Wang
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China
| | - Chunju Liu
- Shandong Weifang Tobacco Co., Ltd., Weifang, Shandong 261061, PR China
| | - Shanshan Liu
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China; Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266100, PR China
| | - Zhao Wang
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China
| | - Kaiqiang Hao
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China
| | - Yueming Wu
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China
| | - Chengming Yu
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China.
| | - Xuefeng Yuan
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China.
| |
Collapse
|
2
|
Wang M, Chen J, Xu Y, Wang Y, Mohamed HI, Wei D, Gao C. RHPS4 Targeted the G-Quadruplex of the 1a Gene of Cucumber Mosaic Virus to Inhibit Viral Proliferation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25015-25022. [PMID: 39497360 DOI: 10.1021/acs.jafc.4c07174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Small molecules targeting G-quadruplexes (G4s) in viruses could inhibit viral proliferation. The 1a protein of cucumber mosaic virus (CMV) act as RNA-dependent RNA polymerase (RdRp) that plays a crucial role in regulating the replication of CMV. In this study, four putative G4 sequences (CMV PQS1-PQS4) in the genetic coding region of CMV 1a were identified, and three of them (PQS2, PQS3, and PQS4) were confirmed to fold into G4 structures. The G4-ligand, RHPS4, could bind to CMV PQS2 and PQS4 with a strong binding affinity and preferred to interact with the 3' terminal G-quartet surfaces of CMV PQS2, and 5' terminal of CMV PQS4. RHPS4 was also found to stabilize the CMV PQS2 and PQS4 G4s. Further studies revealed that RHPS4 exhibited an excellent anti-CMV activity. This study suggested that CMV PQS2 and PQS4 could be considered potential targets for screening viral inhibitors.
Collapse
Affiliation(s)
- Mengxi Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jixin Chen
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Yang Xu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Yuchan Wang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Hany I Mohamed
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Dengguo Wei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chao Gao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| |
Collapse
|
3
|
Chen N, Zou C, Pan LL, Du H, Yang JJ, Liu SS, Wang XW. Cotton leaf curl Multan virus subverts the processing of hydroxyproline-rich systemin to suppress tobacco defenses against insect vectors. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5819-5838. [PMID: 38829390 DOI: 10.1093/jxb/erae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
Insect vector-virus-plant interactions have important ecological and evolutionary implications. The constant struggle of plants against viruses and insect vectors has driven the evolution of multiple defense strategies in the host as well as counter-defense strategies in the viruses and insect vectors. Cotton leaf curl Multan virus (CLCuMuV) is a major causal agent of cotton leaf curl disease in Asia and is exclusively transmitted by the whitefly Bemisia tabaci. Here, we report that plants infected with CLCuMuV and its betasatellite CLCuMuB enhance the performance of the B. tabaci vector, and βC1 encoded by CLCuMuB plays an important role in begomovirus-whitefly-tobacco tripartite interactions. We showed that CLCuMuB βC1 suppresses the jasmonic acid signaling pathway by interacting with the subtilisin-like protease 1.7 (NtSBT1.7) protein, thereby enhancing whitefly performance on tobacco plants. Further studies revealed that in wild-type plants, NtSBT1.7 could process tobacco preprohydroxyproline-rich systemin B (NtpreproHypSysB). After CLCuMuB infection, CLCuMuB βC1 could interfere with the processing of NtpreproHypSysB by NtSBT1.7, thereby impairing plant defenses against whitefly. These results contribute to our understanding of tripartite interactions among virus, plant, and whitefly, thus offering ecological insights into the spread of vector insect populations and the prevalence of viral diseases.
Collapse
Affiliation(s)
- Na Chen
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Chi Zou
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
- Zhenhai Agricultural Technology Extension Station, 569 Minhe Road, Ningbo 310000, China
| | - Li-Long Pan
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Hui Du
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Jing-Jing Yang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Shu-Sheng Liu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Xiao-Wei Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
4
|
Crawshaw S, Watt LG, Murphy AM, Carr JP. Strain-specific differences in the interactions of the cucumber mosaic virus 2b protein with the viral 1a and host Argonaute 1 proteins. J Virol 2024; 98:e0099324. [PMID: 39162432 PMCID: PMC11406993 DOI: 10.1128/jvi.00993-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
The cucumber mosaic virus (CMV) 2b protein is a potent counter-defense factor and symptom determinant that inhibits antiviral silencing by titrating short double-stranded RNAs. Expression of the CMV subgroup IA strain Fny-CMV 2b protein in transgenic Arabidopsis thaliana plants disrupts microRNA-mediated cleavage of host mRNAs by binding Argonaute 1 (AGO1), leading to symptom-like phenotypes. This also triggers AGO2-mediated antiviral resistance and resistance to CMV's aphid vectors. However, in authentic viral infections, the Fny-CMV 1a protein modulates 2b-AGO1 interactions, inhibiting induction of AGO2-mediated virus resistance and aphid resistance. Contrastingly, 2b proteins encoded by the subgroup II strain LS-CMV and the recently discovered subgroup IA strain Ho-CMV induce no symptoms. Confocal laser scanning microscopy, bimolecular fluorescence complementation, and co-immunoprecipitation showed that Fny-CMV and Ho-CMV 2b proteins interact with Fny-CMV and LS-CMV 1a proteins, while the CMV-LS 2b protein cannot. However, Fny-CMV, Ho-CMV, and LS-CMV 2b proteins, all interacted with AGO1, but while AGO1-Fny2b complexes occurred in the nucleus and cytoplasm, corresponding AGO1-2b complexes for LS-CMV and Ho-CMV accumulated almost exclusively in nuclei. AGO2 transcript accumulation was used to assess the inhibition of AGO1-mediated mRNA degradation. Fny-CMV 2b induced a fivefold increase in AGO2 accumulation, but LS-CMV and Ho-CMV 2b proteins induced only twofold increases. Thus, these 2b proteins bind AGO1 but are less effective at inhibiting AGO1 activity. We conclude that the intracellular localization of 2b-AGO1 complexes influences the degree to which a 2b protein inhibits microRNA-mediated host mRNA degradation and that cytoplasmic AGO1 has the strongest influence on miRNA-mediated cellular mRNA turnover. IMPORTANCE The cucumber mosaic virus (CMV) 2b protein was among the first discovered viral suppressors of RNA silencing. It has additional pro-viral functions through effects on plant defensive signaling pathways mediated by salicylic acid and jasmonic acid, the abscisic acid pathway and virus-induced drought resistance, and on host plant interactions with insect vectors. Many of these effects occur due to interaction with the important host RNA silencing component Argonaute 1 (AGO1). It was thought that only 2b proteins of "severe" CMV strains interacted with AGO1 and inhibited its microRNA-mediated "slicing" of cellular mRNAs and that the lack of interaction with AGO1 explained the moderate symptoms typically seen in plants infected with mild CMV strains. Our work overthrows this paradigm by showing that mild strain CMV 2b proteins can interact with AGO1, but their in vivo localization prevents them from interacting with AGO1 molecules present in the infected cell cytoplasm.
Collapse
Affiliation(s)
- Sam Crawshaw
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Lewis G. Watt
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alex M. Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Chi Y, Zhang H, Chen S, Cheng Y, Zhang X, Jia D, Chen Q, Chen H, Wei T. Leafhopper salivary carboxylesterase suppresses JA-Ile synthesis to facilitate initial arbovirus transmission in rice phloem. PLANT COMMUNICATIONS 2024; 5:100939. [PMID: 38725245 PMCID: PMC11412928 DOI: 10.1016/j.xplc.2024.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 06/09/2024]
Abstract
Plant jasmonoyl-L-isoleucine (JA-Ile) is a major defense signal against insect feeding, but whether or how insect salivary effectors suppress JA-Ile synthesis and thus facilitate viral transmission in the plant phloem remains elusive. Insect carboxylesterases (CarEs) are the third major family of detoxification enzymes. Here, we identify a new leafhopper CarE, CarE10, that is specifically expressed in salivary glands and is secreted into the rice phloem as a saliva component. Leafhopper CarE10 directly binds to rice jasmonate resistant 1 (JAR1) and promotes its degradation by the proteasome system. Moreover, the direct association of CarE10 with JAR1 clearly impairs JAR1 enzyme activity for conversion of JA to JA-Ile in an in vitro JA-Ile synthesis system. A devastating rice reovirus activates and promotes the co-secretion of virions and CarE10 via virus-induced vesicles into the saliva-storing salivary cavities of the leafhopper vector and ultimately into the rice phloem to establish initial infection. Furthermore, a virus-mediated increase in CarE10 secretion or overexpression of CarE10 in transgenic rice plants causes reduced levels of JAR1 and thus suppresses JA-Ile synthesis, promoting host attractiveness to insect vectors and facilitating initial viral transmission. Our findings provide insight into how the insect salivary protein CarE10 suppresses host JA-Ile synthesis to promote initial virus transmission in the rice phloem.
Collapse
Affiliation(s)
- Yunhua Chi
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hongxiang Zhang
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Siyu Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yu Cheng
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaofeng Zhang
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Dongsheng Jia
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qian Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hongyan Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Taiyun Wei
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
6
|
Cheng Y, Zheng T, Yang D, Peng Q, Dong J, Xi D. Cucumber mosaic virus impairs the physiological homeostasis of Panax notoginseng and induces saponin-mediated resistance. Virology 2024; 591:109983. [PMID: 38237218 DOI: 10.1016/j.virol.2024.109983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/29/2024]
Abstract
As an important medicinal plant, Panax notoginseng often suffers from various abiotic and biotic stresses during its growth, such as drought, heavy metals, fungi, bacteria and viruses. In this study, the symptom and physiological parameters of cucumber mosaic virus (CMV)-infected P. notoginseng were analyzed and the RNA-seq was performed. The results showed that CMV infection affected the photosynthesis of P. notoginseng, caused serious oxidative damage to P. notoginseng and increased the activity of several antioxidant enzymes. Results of transcriptome analysis and corresponding verification showed that CMV infection changed the expression of genes related to plant defense and promoted the synthesis of P. notoginseng saponins to a certain extent, which may be defensive ways of P. notoginseng against CMV infection. Furthermore, pretreatment plants with saponins reduced the accumulation of CMV. Thus, our results provide new insights into the role of saponins in P. notoginseng response to virus infection.
Collapse
Affiliation(s)
- Yongchao Cheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Tianrui Zheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Daoyong Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Qiding Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Jiahong Dong
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Dehui Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China.
| |
Collapse
|
7
|
Jeger M, Hamelin F, Cunniffe N. Emerging Themes and Approaches in Plant Virus Epidemiology. PHYTOPATHOLOGY 2023; 113:1630-1646. [PMID: 36647183 DOI: 10.1094/phyto-10-22-0378-v] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plant diseases caused by viruses share many common features with those caused by other pathogen taxa in terms of the host-pathogen interaction, but there are also distinctive features in epidemiology, most apparent where transmission is by vectors. Consequently, the host-virus-vector-environment interaction presents a continuing challenge in attempts to understand and predict the course of plant virus epidemics. Theoretical concepts, based on the underlying biology, can be expressed in mathematical models and tested through quantitative assessments of epidemics in the field; this remains a goal in understanding why plant virus epidemics occur and how they can be controlled. To this end, this review identifies recent emerging themes and approaches to fill in knowledge gaps in plant virus epidemiology. We review quantitative work on the impact of climatic fluctuations and change on plants, viruses, and vectors under different scenarios where impacts on the individual components of the plant-virus-vector interaction may vary disproportionately; there is a continuing, sometimes discordant, debate on host resistance and tolerance as plant defense mechanisms, including aspects of farmer behavior and attitudes toward disease management that may affect deployment in crops; disentangling host-virus-vector-environment interactions, as these contribute to temporal and spatial disease progress in field populations; computational techniques for estimating epidemiological parameters from field observations; and the use of optimal control analysis to assess disease control options. We end by proposing new challenges and questions in plant virus epidemiology.
Collapse
Affiliation(s)
- Mike Jeger
- Department of Life Sciences, Imperial College London, Silwood Park, U.K
| | - Fred Hamelin
- IGEPP INRAE, University of Rennes, Rennes, France
| | - Nik Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, U.K
| |
Collapse
|
8
|
Arinaitwe W, Tungadi TD, Pate AE, Joyce J, Baek E, Murphy AM, Carr JP. Induction of aphid resistance in tobacco by the cucumber mosaic virus CMV∆2b mutant is jasmonate-dependent. MOLECULAR PLANT PATHOLOGY 2023; 24:391-395. [PMID: 36775660 PMCID: PMC10013749 DOI: 10.1111/mpp.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/22/2022] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Cucumber mosaic virus (CMV) is vectored by aphids, including Myzus persicae. Tobacco (Nicotiana tabacum 'Xanthi') plants infected with a mutant of the Fny strain of CMV (Fny-CMVΔ2b, which cannot express the CMV 2b protein) exhibit strong resistance against M. persicae, which is manifested by decreased survival and reproduction of aphids confined on the plants. Previously, we found that the Fny-CMV 1a replication protein elicits aphid resistance in plants infected with Fny-CMVΔ2b, whereas in plants infected with wild-type Fny-CMV this is counteracted by the CMV 2b protein, a counterdefence protein that, among other things, inhibits jasmonic acid (JA)-dependent immune signalling. We noted that in nontransformed cv. Petit Havana SR1 tobacco plants aphid resistance was not induced by Fny-CMVΔ2b, suggesting that not all tobacco varieties possess the factor(s) with which the 1a protein interacts. To determine if 1a protein-induced aphid resistance is JA-dependent in Xanthi tobacco, transgenic plants were made that expressed an RNA silencing construct to diminish expression of the JA co-receptor CORONATINE-INSENSITIVE 1. Fny-CMVΔ2b did not induce resistance to M. persicae in these transgenic plants. Thus, aphid resistance induction by the 1a protein requires JA-dependent defensive signalling, which is countered by the CMV 2b protein.
Collapse
Affiliation(s)
- Warren Arinaitwe
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Present address:
Alliance of Bioversity International and International Center for Tropical AgricultureDong Dok, Ban Nongviengkham, VientianeLao People's Democratic Republic
| | - Trisna D. Tungadi
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Present address:
School of Life Sciences, Keele UniversityNewcastleUK
| | | | - Joshua Joyce
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Present address:
John Innes CentreNorwichUK
| | - Eseul Baek
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Present address:
Department of Horticultural SciencesSeoul Women's UniversitySeoulKorea
| | - Alex M. Murphy
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - John P. Carr
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
9
|
Arinaitwe W, Guyon A, Tungadi TD, Cunniffe NJ, Rhee SJ, Khalaf A, Mhlanga NM, Pate AE, Murphy AM, Carr JP. The Effects of Cucumber Mosaic Virus and Its 2a and 2b Proteins on Interactions of Tomato Plants with the Aphid Vectors Myzus persicae and Macrosiphum euphorbiae. Viruses 2022; 14:v14081703. [PMID: 36016326 PMCID: PMC9416248 DOI: 10.3390/v14081703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/02/2023] Open
Abstract
Cucumber mosaic virus (CMV), a major tomato pathogen, is aphid-vectored in the non-persistent manner. We investigated if CMV-induced volatile organic compounds (VOCs) or other virus-induced cues alter aphid-tomato interactions. Y-tube olfactometry showed that VOCs emitted by plants infected with CMV (strain Fny) attracted generalist (Myzus persicae) and Solanaceae specialist (Macrosiphum euphorbiae) aphids. Myzus persicae preferred settling on infected plants (3 days post-inoculation: dpi) at 1h post-release, but at 9 and 21 dpi, aphids preferentially settled on mock-inoculated plants. Macrosiphum euphorbiae showed no strong preference for mock-inoculated versus infected plants at 3 dpi but settled preferentially on mock-inoculated plants at 9 and 21 dpi. In darkness aphids showed no settling or migration bias towards either mock-inoculated or infected plants. However, tomato VOC blends differed in light and darkness, suggesting aphids respond to a complex mix of olfactory, visual, and other cues influenced by infection. The LS-CMV strain induced no changes in aphid-plant interactions. Experiments using inter-strain recombinant and pseudorecombinant viruses showed that the Fny-CMV 2a and 2b proteins modified tomato interactions with Macrosiphum euphorbiae and Myzus persicae, respectively. The defence signal salicylic acid prevents excessive CMV-induced damage to tomato plants but is not involved in CMV-induced changes in aphid-plant interactions.
Collapse
Affiliation(s)
- Warren Arinaitwe
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
- Alliance of Bioversity International and International Center for Tropical Agriculture (CIAT), Dong Dok, Ban Nongviengkham, Vientiane CB10 1RQ, Laos
| | - Alex Guyon
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
- Sainsbury Laboratory, Cambridge University, Bateman St, Cambridge CB2 1LR, UK
| | - Trisna D. Tungadi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
- School of Life Sciences, Keele University, Newcastle ST5 5BG, UK
| | - Nik J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
| | - Sun-Ju Rhee
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
| | - Amjad Khalaf
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Saffron Walden CB10 1RQ, UK
| | - Netsai M. Mhlanga
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
- National Institute for Agricultural Botany-East Malling (NIAB-EMR), West Malling ME19 6BJ, UK
| | - Adrienne E. Pate
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
| | - Alex M. Murphy
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
- Correspondence:
| |
Collapse
|
10
|
Karimi K, Sadeghi A, Maroufpoor M, Azizi A. Induction of resistance to Myzus persicae-nicotianae in Cucumber mosaic virus infected tobacco plants using silencing of CMV-2b gene. Sci Rep 2022; 12:4096. [PMID: 35260757 PMCID: PMC8904847 DOI: 10.1038/s41598-022-08202-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/04/2022] [Indexed: 11/25/2022] Open
Abstract
Aphids such as tobacco aphid Myzus persicae-nicotianae, are among the most important plant viral vectors and plant viruses encode genes to interact with their vectors. Cucumber mosaic virus (CMV) encodes 2b protein as a suppressor of plant immune and it plays a vital role in CMV accumulation and susceptibility to aphid vectors. In this study, the resistance of tobacco plants (Nicotiana tabacum) to M. p. nicotianae was evaluated by silencing of 2b in CMV-infected plants. However, the pFGC-C.h silencing gene construct was transiently expressed using Agrobacterium tumefacience, LBA 4404 in tobacco leaves, and four days later, the plants were mechanically inoculated by CMV (Kurdistan isolate), and then, 15 days post-inoculation 1 nonviruliferous aphid was placed on each leaf for evaluation of resistance to M. p. nicotianae. To evaluate the tobacco plants resistance and susceptibility to M. p. nicotianae, the number of aphids existent per tobacco leaf, life table and, demographic parameters were recorded and used as a comparison indicator. The obtained results were analyzed using the age-stage, two-sex life table. The highest number of aphids was recorded on the control CMV-infected plants, while the lowest number on CMV infected leaves expressing CMV-2b silencing construct (pFGC-C.h). The obtained data revealed the lowest rate for all of intrinsic rate of natural increase (rm) (0.246/day), the rate of reproduction (r0) (17.04 females/generation), and finite rate of increase (λ) (1.279/day), on the pFGC-C.h treatment. The maximum generation time (T) (11.834 days) was observed on (V) treatment. However, the collected data revealed induction of resistance to tobacco aphids by silencing of CMV-2b in CMV infected plants.
Collapse
Affiliation(s)
- Kazhal Karimi
- Department of Plant Protection, University of Kurdistan, Sanandaj, Iran
| | - Amin Sadeghi
- Department of Plant Protection, University of Kurdistan, Sanandaj, Iran.
| | | | - Abdolbaset Azizi
- Department of Plant Protection, University of Kurdistan, Sanandaj, Iran.
| |
Collapse
|
11
|
Jayasinghe WH, Akhter MS, Nakahara K, Maruthi MN. Effect of aphid biology and morphology on plant virus transmission. PEST MANAGEMENT SCIENCE 2022; 78:416-427. [PMID: 34478603 DOI: 10.1002/ps.6629] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Aphids severely affect crop production by transmitting many plant viruses. Viruses are obligate intracellular pathogens that mostly depend on vectors for their transmission and survival. A majority of economically important plant viruses are transmitted by aphids. They transmit viruses either persistently (circulative or non-circulative) or non-persistently. Plant virus transmission by insects is a process that has evolved over time and is strongly influenced by insect morphological features and biology. Over the past century, a large body of research has provided detailed knowledge of the molecular processes underlying virus-vector interactions. In this review, we discuss how aphid biology and morphology can affect plant virus transmission. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wikum H Jayasinghe
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Md Shamim Akhter
- Laboratory of Pathogen-Plant Interactions, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- Plant Pathology Division, Bangladesh Agricultural Research Institute (BARI), Joydebpur, Bangladesh
| | - Kenji Nakahara
- Laboratory of Pathogen-Plant Interactions, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
12
|
Cunniffe NJ, Taylor NP, Hamelin FM, Jeger MJ. Epidemiological and ecological consequences of virus manipulation of host and vector in plant virus transmission. PLoS Comput Biol 2021; 17:e1009759. [PMID: 34968387 PMCID: PMC8754348 DOI: 10.1371/journal.pcbi.1009759] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/12/2022] [Accepted: 12/15/2021] [Indexed: 12/25/2022] Open
Abstract
Many plant viruses are transmitted by insect vectors. Transmission can be described as persistent or non-persistent depending on rates of acquisition, retention, and inoculation of virus. Much experimental evidence has accumulated indicating vectors can prefer to settle and/or feed on infected versus noninfected host plants. For persistent transmission, vector preference can also be conditional, depending on the vector’s own infection status. Since viruses can alter host plant quality as a resource for feeding, infection potentially also affects vector population dynamics. Here we use mathematical modelling to develop a theoretical framework addressing the effects of vector preferences for landing, settling and feeding–as well as potential effects of infection on vector population density–on plant virus epidemics. We explore the consequences of preferences that depend on the host (infected or healthy) and vector (viruliferous or nonviruliferous) phenotypes, and how this is affected by the form of transmission, persistent or non-persistent. We show how different components of vector preference have characteristic effects on both the basic reproduction number and the final incidence of disease. We also show how vector preference can induce bistability, in which the virus is able to persist even when it cannot invade from very low densities. Feedbacks between plant infection status, vector population dynamics and virus transmission potentially lead to very complex dynamics, including sustained oscillations. Our work is supported by an interactive interface https://plantdiseasevectorpreference.herokuapp.com/. Our model reiterates the importance of coupling virus infection to vector behaviour, life history and population dynamics to fully understand plant virus epidemics. Plant virus diseases–which cause devastating epidemics in plant populations worldwide–are most often transmitted by insect vectors. Recent experimental evidence indicates how vectors do not choose between plants at random, but instead can be affected by whether plants are infected (or not). Virus infection can cause plants to “smell” different, because they produce different combinations of volatile chemicals, or “taste” different, due to chemical changes in infected tissues. Vector reproduction rates can also be affected when colonising infected versus uninfected plants. Potential effects on epidemic spread through a population of plants are not yet entirely understood. There are also interactions with the mode of virus transmission. Some viruses can be transmitted after only a brief probe by a vector, whereas others are only picked up after an extended feed on an infected plant. Furthermore there are differences in how long vectors remain able to transmit the virus. This ranges from a matter of minutes, right up to the entire lifetime of the insect, depending on the plant-virus-vector combination under consideration. Here we use mathematical modelling to synthesise all this complexity into a coherent theoretical framework. We illustrate our model via an online interface https://plantdiseasevectorpreference.herokuapp.com/.
Collapse
Affiliation(s)
- Nik J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Nick P. Taylor
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Michael J. Jeger
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| |
Collapse
|
13
|
Zhang J, Song R, Wu S, Cai D, Wu Z, Liu Z, Hu D, Song B. Discovery of Pyrido[1,2- a]pyrimidinone Mesoionic Compounds Incorporating a Dithioacetal Moiety as Novel Potential Insecticidal Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15136-15144. [PMID: 34878774 DOI: 10.1021/acs.jafc.1c05823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A series of novel mesoionic pyrido[1,2-a]pyrimidinone compounds incorporating a dithioacetal skeleton were designed and synthesized for use as insecticidal agents. The biological activity of the title compounds indicated good to excellent insecticidal activities against bean aphids (Aphis craccivora) and white-backed planthoppers (Sogatella furcifera). Compound 34 showed excellent insecticidal activity against bean aphids (A. craccivora) with an LC50 value of 2.80 μg/mL, exceeding the insecticidal activity of trifluoropyrimidine (LC50 = 4.20 μg/mL). Proteomics and molecular docking results indicated that compound 34 could act on nicotinic acetylcholine receptors. This study provides support for the application of mesoionic pyrido[1,2-a]pyrimidinone compounds containing dithioacetal as novel insecticidal agents.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Runjiang Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shang Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Di Cai
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zengxue Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhengjun Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
14
|
Kumari R, Kumar S, Leibman D, Abebie B, Shnaider Y, Ding S, Gal‐On A. Cucumber RDR1s and cucumber mosaic virus suppressor protein 2b association directs host defence in cucumber plants. MOLECULAR PLANT PATHOLOGY 2021; 22:1317-1331. [PMID: 34355485 PMCID: PMC8518566 DOI: 10.1111/mpp.13112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 05/27/2023]
Abstract
RNA-dependent RNA polymerases (RDRs) regulate important aspects of plant development and resistance to pathogens. The role of RDRs in virus resistance has been demonstrated using siRNA signal amplification and through the methylation of viral genomes. Cucumber (Cucumis sativus) has four RDR1 genes that are differentially induced during virus infection: CsRDR1a, CsRDR1b, and duplicated CsRDR1c1/c2. The mode of action of CsRDR1s during viral infection is unknown. Transient expression of the cucumber mosaic virus (CMV)-2b protein (the viral suppressor of RNA silencing) in cucumber protoplasts induced the expression of CsRDR1c, but not of CsRDR1a/1b. Results from the yeast two-hybrid system showed that CsRDR1 proteins interacted with CMV-2b and this was confirmed by bimolecular fluorescence complementation assays. In protoplasts, CsRDR1s localized in the cytoplasm as punctate spots. Colocalization experiments revealed that CsRDR1s and CMV-2b were uniformly dispersed throughout the cytoplasm, suggesting that CsRDR1s are redistributed as a result of interactions. Transient overexpression of individual CsRDR1a/1b genes in protoplasts reduced CMV accumulation, indicating their antiviral role. However, overexpression of CsRDR1c in protoplasts resulted in relatively higher accumulation of CMV and CMVΔ2b. In single cells, CsRDR1c enhances viral replication, leading to CMV accumulation and blocking secondary siRNA amplification of CsRDR1c by CMV-2b protein. This suggests that CMV-2b acts as both a transcription factor that induces CsRDR1c (controlling virus accumulation) and a suppressor of CsRDR1c activity.
Collapse
Affiliation(s)
- Reenu Kumari
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeZionIsrael
- College of Horticulture and ForestryDr YS Parmar University of Horticulture and ForestryMandiIndia
| | - Surender Kumar
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeZionIsrael
- Plant Virology Lab, Biotechnology DivisionCSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
| | - Diana Leibman
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeZionIsrael
| | - Bekele Abebie
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeZionIsrael
| | - Yulia Shnaider
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeZionIsrael
| | - Shou‐Wei Ding
- Department of Plant Pathology and Microbiology & Institute for Integrative Genome BiologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Amit Gal‐On
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeZionIsrael
| |
Collapse
|
15
|
Tungadi T, Watt LG, Groen SC, Murphy AM, Du Z, Pate AE, Westwood JH, Fennell TG, Powell G, Carr JP. Infection of Arabidopsis by cucumber mosaic virus triggers jasmonate-dependent resistance to aphids that relies partly on the pattern-triggered immunity factor BAK1. MOLECULAR PLANT PATHOLOGY 2021; 22:1082-1091. [PMID: 34156752 PMCID: PMC8358999 DOI: 10.1111/mpp.13098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 05/06/2023]
Abstract
Many aphid-vectored viruses are transmitted nonpersistently via transient attachment of virus particles to aphid mouthparts and are most effectively acquired or transmitted during brief stylet punctures of epidermal cells. In Arabidopsis thaliana, the aphid-transmitted virus cucumber mosaic virus (CMV) induces feeding deterrence against the polyphagous aphid Myzus persicae. This form of resistance inhibits prolonged phloem feeding but promotes virus acquisition by aphids because it encourages probing of plant epidermal cells. When aphids are confined on CMV-infected plants, feeding deterrence reduces their growth and reproduction. We found that CMV-induced inhibition of growth as well as CMV-induced inhibition of reproduction of M. persicae are dependent upon jasmonate-mediated signalling. BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1) is a co-receptor enabling detection of microbe-associated molecular patterns and induction of pattern-triggered immunity (PTI). In plants carrying the mutant bak1-5 allele, CMV induced inhibition of M. persicae reproduction but not inhibition of aphid growth. We conclude that in wildtype plants CMV induces two mechanisms that diminish performance of M. persicae: a jasmonate-dependent and PTI-dependent mechanism that inhibits aphid growth, and a jasmonate-dependent, PTI-independent mechanism that inhibits reproduction. The growth of two crucifer specialist aphids, Lipaphis erysimi and Brevicoryne brassicae, was not affected when confined on CMV-infected A. thaliana. However, B. brassicae reproduction was inhibited on CMV-infected plants. This suggests that in A. thaliana CMV-induced resistance to aphids, which is thought to incentivize virus vectoring, has greater effects on polyphagous than on crucifer specialist aphids.
Collapse
Affiliation(s)
- Trisna Tungadi
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- NIAB EMREast MallingUK
| | - Lewis G. Watt
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Simon C. Groen
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Present address:
Department of BiologyNew York UniversityNew YorkNew YorkUSA
| | - Alex M. Murphy
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Zhiyou Du
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Institute of BioengineeringZhejiang Sci‐Tech UniversityHangzhouChina
| | | | - Jack H. Westwood
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Present address:
Walder FoundationSkokieIllinoisUSA
| | - Thea G. Fennell
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | | | - John P. Carr
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
16
|
Budziszewska M, Frąckowiak P, Obrępalska-Stęplowska A. Analysis of the Role of Bradysia impatiens (Diptera: Sciaridae) as a Vector Transmitting Peanut Stunt Virus on the Model Plant Nicotiana benthamiana. Cells 2021; 10:1546. [PMID: 34207477 PMCID: PMC8233879 DOI: 10.3390/cells10061546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
Bradysia species, commonly known as fungus gnats, are ubiquitous in greenhouses, nurseries of horticultural plants, and commercial mushroom houses, causing significant economic losses. Moreover, the insects from the Bradysia genus have a well-documented role in plant pathogenic fungi transmission. Here, a study on the potential of Bradysia impatiens to acquire and transmit the peanut stunt virus (PSV) from plant to plant was undertaken. Four-day-old larvae of B. impatiens were exposed to PSV-P strain by feeding on virus-infected leaves of Nicotiana benthamiana and then transferred to healthy plants in laboratory conditions. Using the reverse transcription-polymerase chain reaction (RT-PCR), real-time PCR (RT-qPCR), and digital droplet PCR (RT-ddPCR), the PSV RNAs in the larva, pupa, and imago of B. impatiens were detected and quantified. The presence of PSV genomic RNA strands as well as viral coat protein in N. benthamiana, on which the viruliferous larvae were feeding, was also confirmed at the molecular level, even though the characteristic symptoms of PSV infection were not observed. The results have shown that larvae of B. impatiens could acquire the virus and transmit it to healthy plants. Moreover, it has been proven that PSV might persist in the insect body transstadially. Although the molecular mechanisms of virion acquisition and retention during insect development need further studies, this is the first report on B. impatiens playing a potential role in plant virus transmission.
Collapse
Affiliation(s)
| | | | - Aleksandra Obrępalska-Stęplowska
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection—National Research Institute, Władysława Węgorka 20, 60-318 Poznań, Poland; (M.B.); (P.F.)
| |
Collapse
|
17
|
Yoon JY, Palukaitis P. Cucumber Mosaic Virus 1a Protein Interacts with the Tobacco SHE1 Transcription Factor and Partitions between the Nucleus and the Tonoplast Membrane. THE PLANT PATHOLOGY JOURNAL 2021; 37:182-193. [PMID: 33866760 PMCID: PMC8053847 DOI: 10.5423/ppj.ft.03.2021.0045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
The transcription factor SHE1 was identified as an interacting partner with the cucumber mosaic virus (CMV) 1a protein in the yeast two-hybrid system, by a pull-down assay, and via bimolecular fluorescent complementation. Using fluorescent-tagged proteins and confocal microscopy, the CMV 1a protein itself was found distributed predominantly between the nucleus and the tonoplast membrane, although it was also found in speckles in the cytoplasm. The SHE1 protein was localized in the nucleus, but in the presence of the CMV 1a protein was partitioned between the nucleus and the tonoplast membrane. SHE1 expression was induced by infection of tobacco with four tested viruses: CMV, tobacco mosaic virus, potato virus X and potato virus Y. Transgenic tobacco expressing the CMV 1a protein showed constitutive expression of SHE1, indicating that the CMV 1a protein may be responsible for its induction. However, previously, such plants also were shown to have less resistance to local and systemic movement of tobacco mosaic virus (TMV) expressing the green fluorescent protein, suggesting that the CMV 1a protein may act to prevent the function of the SHE1 protein. SHE1 is a member of the AP2/ERF class of transcription factors and is conserved in sequence in several Nicotiana species, although two clades of SHE1 could be discerned, including both different Nicotiana species and cultivars of tobacco, varying by the presence of particular insertions or deletions.
Collapse
Affiliation(s)
- Ju-Yeon Yoon
- Virology Unit, Division of Horticultural and Herbal Crop Environment, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Peter Palukaitis
- Department of Horticulture Sciences, Seoul Women's University, Seoul 01797,
Korea
| |
Collapse
|
18
|
Watt LG, Crawshaw S, Rhee SJ, Murphy AM, Canto T, Carr JP. The cucumber mosaic virus 1a protein regulates interactions between the 2b protein and ARGONAUTE 1 while maintaining the silencing suppressor activity of the 2b protein. PLoS Pathog 2020; 16:e1009125. [PMID: 33270799 PMCID: PMC7738167 DOI: 10.1371/journal.ppat.1009125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 12/15/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022] Open
Abstract
The cucumber mosaic virus (CMV) 2b viral suppressor of RNA silencing (VSR) is a potent counter-defense and pathogenicity factor that inhibits antiviral silencing by titration of short double-stranded RNAs. It also disrupts microRNA-mediated regulation of host gene expression by binding ARGONAUTE 1 (AGO1). But in Arabidopsis thaliana complete inhibition of AGO1 is counterproductive to CMV since this triggers another layer of antiviral silencing mediated by AGO2, de-represses strong resistance against aphids (the insect vectors of CMV), and exacerbates symptoms. Using confocal laser scanning microscopy, bimolecular fluorescence complementation, and co-immunoprecipitation assays we found that the CMV 1a protein, a component of the viral replicase complex, regulates the 2b-AGO1 interaction. By binding 2b protein molecules and sequestering them in P-bodies, the 1a protein limits the proportion of 2b protein molecules available to bind AGO1, which ameliorates 2b-induced disease symptoms, and moderates induction of resistance to CMV and to its aphid vector. However, the 1a protein-2b protein interaction does not inhibit the ability of the 2b protein to inhibit silencing of reporter gene expression in agroinfiltration assays. The interaction between the CMV 1a and 2b proteins represents a novel regulatory system in which specific functions of a VSR are selectively modulated by another viral protein. The finding also provides a mechanism that explains how CMV, and possibly other viruses, modulates symptom induction and manipulates host-vector interactions.
Collapse
Affiliation(s)
- Lewis G. Watt
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Sam Crawshaw
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Sun-Ju Rhee
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alex M. Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Tomás Canto
- Department of Microbial and Plant Biotechnology, Center for Biological Research, Madrid, Spain
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Rhee S, Watt LG, Bravo AC, Murphy AM, Carr JP. Effects of the cucumber mosaic virus 2a protein on aphid-plant interactions in Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2020; 21:1248-1254. [PMID: 32725725 PMCID: PMC7411660 DOI: 10.1111/mpp.12975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 05/23/2023]
Abstract
The cucumber mosaic virus (CMV) 2a RNA-dependent RNA polymerase protein has an additional function in Arabidopsis thaliana, which is to stimulate feeding deterrence (antixenosis) against aphids. Antixenosis is thought to increase the probability that aphids, after acquiring CMV particles from brief probes of an infected plant's epidermal cells, will be discouraged from settling and instead will spread inoculum to neighbouring plants. The amino acid sequences of 2a proteins encoded by a CMV strain that induces antixenosis in A. thaliana (Fny-CMV) and one that does not (LS-CMV) were compared to identify residues that might determine the triggering of antixenosis. These data were used to design reassortant viruses comprising Fny-CMV RNAs 1 and 3, and recombinant CMV RNA 2 molecules encoding chimeric 2a proteins containing sequences derived from LS-CMV and Fny-CMV. Antixenosis induction was detected by measuring the mean relative growth rate and fecundity of aphids (Myzus persicae) confined on infected and on mock-inoculated plants. An amino acid sequence determining antixenosis induction by CMV was found to reside between 2a protein residues 200 and 300. Subsequent mutant analysis delineated this to residue 237. We conjecture that the Fny-CMV 2a protein valine-237 plays some role in 2a protein-induced antixenosis.
Collapse
Affiliation(s)
- Sun‐Ju Rhee
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Lewis G. Watt
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Ana Cazar Bravo
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Alex M. Murphy
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - John P. Carr
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
20
|
Zou C, Shu YN, Yang JJ, Pan LL, Zhao J, Chen N, Liu SS, Wang XW. Begomovirus-Associated Betasatellite Virulence Factor βC1 Attenuates Tobacco Defense to Whiteflies via Interacting With Plant SKP1. FRONTIERS IN PLANT SCIENCE 2020; 11:574557. [PMID: 32973859 PMCID: PMC7481519 DOI: 10.3389/fpls.2020.574557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/12/2020] [Indexed: 05/23/2023]
Abstract
Plant-mediated interactions between plant viruses and their vectors are important determinants of the population dynamics of both types of organisms in the field. The whitefly Bemisia tabaci can establish mutualism with begomoviruses via their shared host plants. This mutualism is achieved by the interaction between virulence factors and their host proteins. While the virulence factor βC1 encoded by tomato yellow leaf curl China betasatellite (TYLCCNB), a subviral agent associated to the begomovirus tomato yellow leaf curl China virus (TYLCCNV), may interact with plant protein MYC2, thereby establishing the indirect mutualism between TYLCCNV and whitefly, whether other mechanisms are involved remains unknown. Here, we found the in vitro and in vivo interactions between βC1 and tobacco protein S-phase kinase associated protein 1 (NtSKP1). Silencing the expression of NtSKP1 enhanced the survival rate and fecundity of whiteflies on tobacco plants. NtSKP1 could activate the transcription of genes in jasmonic acid (JA) pathways by impairing the stabilization of JAZ1 protein. Moreover, βC1-NtSKP1 interaction could interfere JAZ1 degradation and attenuate the plant JA defense responses. These results revealed a novel mechanism underlying the better performance of whiteflies on TYLCCNV/TYLCCNB-infected plants.
Collapse
|
21
|
Sanfaçon H. Modulation of disease severity by plant positive-strand RNA viruses: The complex interplay of multifunctional viral proteins, subviral RNAs and virus-associated RNAs with plant signaling pathways and defense responses. Adv Virus Res 2020; 107:87-131. [PMID: 32711736 DOI: 10.1016/bs.aivir.2020.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant viruses induce a range of symptoms of varying intensity, ranging from severe systemic necrosis to mild or asymptomatic infection. Several evolutionary constraints drive virus virulence, including the dependence of viruses on host factors to complete their infection cycle, the requirement to counteract or evade plant antiviral defense responses and the mode of virus transmission. Viruses have developed an array of strategies to modulate disease severity. Accumulating evidence has highlighted not only the multifunctional role that viral proteins play in disrupting or highjacking plant factors, hormone signaling pathways and intracellular organelles, but also the interaction networks between viral proteins, subviral RNAs and/or other viral-associated RNAs that regulate disease severity. This review focusses on positive-strand RNA viruses, which constitute the majority of characterized plant viruses. Using well-characterized viruses with different genome types as examples, recent advances are discussed as well as knowledge gaps and opportunities for further research.
Collapse
Affiliation(s)
- Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada.
| |
Collapse
|
22
|
Tenllado F, Canto T. Effects of a changing environment on the defenses of plants to viruses. Curr Opin Virol 2020; 42:40-46. [PMID: 32531746 DOI: 10.1016/j.coviro.2020.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
Since their appearance, plants have lived and evolved within changing environments that were determined by a host of abiotic and biotic factors. It is in this evolutionary context that both, the mechanisms of defense by plants against viruses and the viral reprogramming of plant routes were established, which combined define the outcomes of compatible infections. Current alterations in the chemistry of the atmosphere are causing changes in the global context in which plants and viruses interact that are unprecedented not in their nature but in their pace. We discuss here the potential reach of environment changes taking place now, and how the main abiotic parameters that are driving them can affect defense responses of plants to viruses in compatible infections.
Collapse
Affiliation(s)
- Francisco Tenllado
- Department of Environmental Biology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Tomas Canto
- Department of Environmental Biology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain.
| |
Collapse
|
23
|
Ziegler-Graff V. Molecular Insights into Host and Vector Manipulation by Plant Viruses. Viruses 2020; 12:v12030263. [PMID: 32121032 PMCID: PMC7150927 DOI: 10.3390/v12030263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Plant viruses rely on both host plant and vectors for a successful infection. Essentially to simplify studies, transmission has been considered for decades as an interaction between two partners, virus and vector. This interaction has gained a third partner, the host plant, to establish a tripartite pathosystem in which the players can react with each other directly or indirectly through changes induced in/by the third partner. For instance, viruses can alter the plant metabolism or plant immune defence pathways to modify vector’s attraction, settling or feeding, in a way that can be conducive for virus propagation. Such changes in the plant physiology can also become favourable to the vector, establishing a mutualistic relationship. This review focuses on the recent molecular data on the interplay between viral and plant factors that provide some important clues to understand how viruses manipulate both the host plants and vectors in order to improve transmission conditions and thus ensuring their survival.
Collapse
Affiliation(s)
- Véronique Ziegler-Graff
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
24
|
Wu X, Ye J. Manipulation of Jasmonate Signaling by Plant Viruses and Their Insect Vectors. Viruses 2020; 12:v12020148. [PMID: 32012772 PMCID: PMC7077190 DOI: 10.3390/v12020148] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 12/12/2022] Open
Abstract
Plant viruses pose serious threats to stable crop yield. The majority of them are transmitted by insects, which cause secondary damage to the plant host from the herbivore-vector's infestation. What is worse, a successful plant virus evolves multiple strategies to manipulate host defenses to promote the population of the insect vector and thereby furthers the disease pandemic. Jasmonate (JA) and its derivatives (JAs) are lipid-based phytohormones with similar structures to animal prostaglandins, conferring plant defenses against various biotic and abiotic challenges, especially pathogens and herbivores. For survival, plant viruses and herbivores have evolved strategies to convergently target JA signaling. Here, we review the roles of JA signaling in the tripartite interactions among plant, virus, and insect vectors, with a focus on the molecular and biochemical mechanisms that drive vector-borne plant viral diseases. This knowledge is essential for the further design and development of effective strategies to protect viral damages, thereby increasing crop yield and food security.
Collapse
Affiliation(s)
- Xiujuan Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
25
|
Wamonje FO, Tungadi TD, Murphy AM, Pate AE, Woodcock C, Caulfield JC, Mutuku JM, Cunniffe NJ, Bruce TJA, Gilligan CA, Pickett JA, Carr JP. Three Aphid-Transmitted Viruses Encourage Vector Migration From Infected Common Bean ( Phaseolus vulgaris) Plants Through a Combination of Volatile and Surface Cues. FRONTIERS IN PLANT SCIENCE 2020; 11:613772. [PMID: 33381144 PMCID: PMC7767818 DOI: 10.3389/fpls.2020.613772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/19/2020] [Indexed: 05/14/2023]
Abstract
Bean common mosaic virus (BCMV), bean common mosaic necrosis virus (BCMNV), and cucumber mosaic virus (CMV) are important pathogens of common bean (Phaseolus vulgaris), a crop vital for food security in sub-Saharan Africa. These viruses are vectored by aphids non-persistently, with virions bound loosely to stylet receptors. These viruses also manipulate aphid-mediated transmission by altering host properties. Virus-induced effects on host-aphid interactions were investigated using choice test (migration) assays, olfactometry, and analysis of insect-perceivable volatile organic compounds (VOCs) using gas chromatography (GC)-coupled mass spectrometry, and GC-coupled electroantennography. When allowed to choose freely between infected and uninfected plants, aphids of the legume specialist species Aphis fabae, and of the generalist species Myzus persicae, were repelled by plants infected with BCMV, BCMNV, or CMV. However, in olfactometer experiments with A. fabae, only the VOCs emitted by BCMNV-infected plants repelled aphids. Although BCMV, BCMNV, and CMV each induced distinctive changes in emission of aphid-perceivable volatiles, all three suppressed emission of an attractant sesquiterpene, α-copaene, suggesting these three different viruses promote migration of virus-bearing aphids in a similar fashion.
Collapse
Affiliation(s)
- Francis O. Wamonje
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Trisna D. Tungadi
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alex M. Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Adrienne E. Pate
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | | | - J. Musembi Mutuku
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| | - Nik J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: John P. Carr, ;
| |
Collapse
|
26
|
Carr JP, Tungadi T, Donnelly R, Bravo-Cazar A, Rhee SJ, Watt LG, Mutuku JM, Wamonje FO, Murphy AM, Arinaitwe W, Pate AE, Cunniffe NJ, Gilligan CA. Modelling and manipulation of aphid-mediated spread of non-persistently transmitted viruses. Virus Res 2019; 277:197845. [PMID: 31874210 PMCID: PMC6996281 DOI: 10.1016/j.virusres.2019.197845] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022]
Abstract
Aphids vector many plant viruses in a non-persistent manner i.e., virus particles bind loosely to the insect mouthparts (stylet). This means that acquisition of virus particles from infected plants, and inoculation of uninfected plants by viruliferous aphids, are rapid processes that require only brief probes of the plant's epidermal cells. Virus infection alters plant biochemistry, which causes changes in emission of volatile organic compounds and altered accumulation of nutrients and defence compounds in host tissues. These virus-induced biochemical changes can influence the migration, settling and feeding behaviours of aphids. Working mainly with cucumber mosaic virus and several potyviruses, a number of research groups have noted that in some plants, virus infection engenders resistance to aphid settling (sometimes accompanied by emission of deceptively attractive volatiles, that can lead to exploratory penetration by aphids without settling). However, in certain other hosts, virus infection renders plants more susceptible to aphid colonisation. It has been suggested that induction of resistance to aphid settling encourages transmission of non-persistently transmitted viruses, while induction of susceptibility to settling retards transmission. However, recent mathematical modelling indicates that both virus-induced effects contribute to epidemic development at different scales. We have also investigated at the molecular level the processes leading to induction, by cucumber mosaic virus, of feeding deterrence versus susceptibility to aphid infestation. Both processes involve complex interactions between specific viral proteins and host factors, resulting in manipulation or suppression of the plant's immune networks.
Collapse
Affiliation(s)
- John P Carr
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
| | - Trisna Tungadi
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Ruairí Donnelly
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Ana Bravo-Cazar
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Sun-Ju Rhee
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Lewis G Watt
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - J Musembi Mutuku
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK; Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100, Nairobi, Kenya
| | - Francis O Wamonje
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK; International Centre of Insect Physiology and Ecology, 30772-00100 Nairobi, Kenya
| | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Warren Arinaitwe
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Adrienne E Pate
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Nik J Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | |
Collapse
|