1
|
Guan Y, Gajewska J, Sobieszczuk-Nowicka E, Floryszak-Wieczorek J, Hartman S, Arasimowicz-Jelonek M. The effect of nitrosative stress on histone H3 and H4 acetylation in Phytophthora infestans life cycle. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109129. [PMID: 39288571 DOI: 10.1016/j.plaphy.2024.109129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
The oomycete Phytophthora infestans is one of the most destructive phytopathogens globally. It has a proven ability to adapt to changing environments rapidly; however, molecular mechanisms responsible for host invasion and adaptation to new environmental conditions still need to be explored. The study aims to understand the epigenetic mechanisms exploited by P. infestans in response to nitrosative stress conditions created by the (micro)environment and the host plant. To characterize reactive nitrogen species (RNS)-dependent acetylation profiles in avirulent/virulent (avr/vr) P. infestans, a transient gene expression, ChIP and immunoblot analyses, and nitric oxide (NO) emission by chemiluminescence were used in combination with the pharmacological approach. Nitrosative stress increased total H3/H4 acetylation and some histone acetylation marks, mainly in sporulating hyphae of diverse (avr/vr) isolates and during potato colonization. These results correlated with transcriptional up-regulation of acetyltransferases PifHAC3 and PifHAM1, catalyzing H3K56 and H4K16 acetylation, respectively. NO or peroxynitrite-mediated changes were also associated with H3K56 and H4K16 mark deposition on the critical pathogenicity-related gene promoters (CesA1, CesA2, CesA3, sPLD-like1, Hmp1, and Avr3a) elevating their expression. Our study highlights RNS-dependent transcriptional reprogramming via histone acetylation of essential gene expression in the sporulating and biotrophic phases of plant colonization by P. infestans as a tool promoting its evolutionary plasticity.
Collapse
Affiliation(s)
- Yufeng Guan
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Joanna Gajewska
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | | | - Sjon Hartman
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, D-79104, Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104, Freiburg, Germany
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
2
|
Wang Z, Zhong S, Zhang S, Zhang B, Zheng Y, Sun Y, Zhang Q, Liu X. A novel and ubiquitous miRNA-involved regulatory module ensures precise phosphorylation of RNA polymerase II and proper transcription. PLoS Pathog 2024; 20:e1012138. [PMID: 38640110 PMCID: PMC11062530 DOI: 10.1371/journal.ppat.1012138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/01/2024] [Accepted: 03/20/2024] [Indexed: 04/21/2024] Open
Abstract
Proper transcription orchestrated by RNA polymerase II (RNPII) is crucial for cellular development, which is rely on the phosphorylation state of RNPII's carboxyl-terminal domain (CTD). Sporangia, developed from mycelia, are essential for the destructive oomycetes Phytophthora, remarkable transcriptional changes are observed during the morphological transition. However, how these changes are rapidly triggered and their relationship with the versatile RNPII-CTD phosphorylation remain enigmatic. Herein, we found that Phytophthora capsici undergone an elevation of Ser5-phosphorylation in its uncanonical heptapeptide repeats of RNPII-CTD during sporangia development, which subsequently changed the chromosomal occupation of RNPII and primarily activated transcription of certain genes. A cyclin-dependent kinase, PcCDK7, was highly induced and phosphorylated RNPII-CTD during this morphological transition. Mechanistically, a novel DCL1-dependent microRNA, pcamiR1, was found to be a feedback modulator for the precise phosphorylation of RNPII-CTD by complexing with PcAGO1 and regulating the accumulation of PcCDK7. Moreover, this study revealed that the pcamiR1-CDK7-RNPII regulatory module is evolutionarily conserved and the impairment of the balance between pcamiR1 and PcCDK7 could efficiently reduce growth and virulence of P. capsici. Collectively, this study uncovers a novel and evolutionary conserved mechanism of transcription regulation which could facilitate correct development and identifies pcamiR1 as a promising target for disease control.
Collapse
Affiliation(s)
- Zhiwen Wang
- China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Shan Zhong
- China Agricultural University, Beijing, China
| | | | - Borui Zhang
- China Agricultural University, Beijing, China
| | - Yang Zheng
- China Agricultural University, Beijing, China
| | - Ye Sun
- China Agricultural University, Beijing, China
| | | | - Xili Liu
- China Agricultural University, Beijing, China
- State Key Laboratory or Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Wang T, Lv JL, Xu J, Wang XW, Zhu XQ, Guo LY. The catalase-peroxidase PiCP1 plays a critical role in abiotic stress resistance, pathogenicity and asexual structure development in Phytophthora infestans. Environ Microbiol 2023; 25:532-547. [PMID: 36495132 DOI: 10.1111/1462-2920.16305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Catalase-peroxidase is a heme oxidoreductase widely distributed in bacteria and lower eukaryotes. In this study, we identified a catalase-peroxidase PiCP1 (PITG_05579) in Phytophthora infestans. PiCP1 had catalase/peroxidase and secretion activities and was highly expressed in sporangia and upregulated in response to oxidative and heat stresses. Compared with wild type, PiCP1-silenced transformants (STs) had decreased catalase activity, reduced oxidant stress resistance and damped cell wall integrity. In contrast, PiCP1-overexpression transformants (OTs) demonstrated increased tolerance to abiotic stresses and induced the upregulation of PR genes in the host salicylic acid pathway. The high concentration of PiCP1 can also induced callose deposition in plant tissue. Importantly, both STs and OTs have severely reduced sporangia formation and zoospore releasing rate, but the sporangia germination rate and type varied depending on environmental conditions. Comparative sequence analyses show that catalase-peroxidases are broadly distributed and highly conserved among soil-borne plant parasitic oomycetes, but not in freshwater-inhabiting or strictly plants-inhabiting oomycetes. In addition, we found that silencing PiCP1 downregulated the expression of PiCAT2. These results revealed the important roles of PiCP1 in abiotic stress resistance, pathogenicity and in regulating asexual structure development in response to environmental change. Our findings provide new insights into catalase-peroxidase functions in eukaryotic pathogens.
Collapse
Affiliation(s)
- Tuhong Wang
- College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing, PR China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Key Laboratory of Genetic Breeding and Microbial Processing for Bast Fiber Product of Hunan Province and Key Laboratory of Biological and Processing for Bast Fiber Crops, MOAR, Changsha, PR China
| | - Jia-Lu Lv
- College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing, PR China
| | - Jianping Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Key Laboratory of Genetic Breeding and Microbial Processing for Bast Fiber Product of Hunan Province and Key Laboratory of Biological and Processing for Bast Fiber Crops, MOAR, Changsha, PR China
- Department of Biology, McMaster University, Hamilton, Canada
| | - Xiao-Wen Wang
- College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing, PR China
| | - Xiao-Qiong Zhu
- College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing, PR China
| | - Li-Yun Guo
- College of Plant Protection and Key Lab of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing, PR China
| |
Collapse
|
4
|
Situ J, Xi P, Lin L, Huang W, Song Y, Jiang Z, Kong G. Signal and regulatory mechanisms involved in spore development of Phytophthora and Peronophythora. Front Microbiol 2022; 13:984672. [PMID: 36160220 PMCID: PMC9500583 DOI: 10.3389/fmicb.2022.984672] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Oomycetes cause hundreds of destructive plant diseases, threatening agricultural production and food security. These fungus-like eukaryotes show multiple sporulation pattern including the production of sporangium, zoospore, chlamydospore and oospore, which are critical for their survival, dispersal and infection on hosts. Recently, genomic and genetic technologies have greatly promoted the study of molecular mechanism of sporulation in the genus Phytophthora and Peronophythora. In this paper, we characterize the types of asexual and sexual spores and review latest progress of these two genera. We summarize the genes encoding G protein, mitogen-activated protein kinase (MAPK) cascade, transcription factors, RNA-binding protein, autophagy-related proteins and so on, which function in the processes of sporangium production and cleavage, zoospore behaviors and oospore formation. Meanwhile, various molecular, chemical and electrical stimuli in zoospore behaviors are also discussed. Finally, with the molecular mechanism of sporulation in Phytophthora and Peronophythora is gradually being revealed, we propose some thoughts for the further research and provide the alternative strategy for plant protection against phytopathogenic oomycetes.
Collapse
Affiliation(s)
- Junjian Situ
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Pinggen Xi
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Long Lin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Weixiong Huang
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yu Song
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zide Jiang
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Guanghui Kong
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- *Correspondence: Guanghui Kong,
| |
Collapse
|
5
|
Singh P, Xie J, Qi Y, Qin Q, Jin C, Wang B, Fang W. A Thermotolerant Marine Bacillus amyloliquefaciens S185 Producing Iturin A5 for Antifungal Activity against Fusarium oxysporum f. sp. cubense. Mar Drugs 2021; 19:md19090516. [PMID: 34564178 PMCID: PMC8472358 DOI: 10.3390/md19090516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Fusarium wilt of banana (also known as Panama disease), is a severe fungal disease caused by soil-borne Fusarium oxysporum f. sp. cubense (Foc). In recent years, biocontrol strategies using antifungal microorganisms from various niches and their related bioactive compounds have been used to prevent and control Panama disease. Here, a thermotolerant marine strain S185 was identified as Bacillus amyloliquefaciens, displaying strong antifungal activity against Foc. The strain S185 possesses multiple plant growth-promoting (PGP) and biocontrol utility properties, such as producing indole acetic acid (IAA) and ammonia, assimilating various carbon sources, tolerating pH of 4 to 9, temperature of 20 to 50 °C, and salt stress of 1 to 5%. Inoculation of S185 colonized the banana plants effectively and was mainly located in leaf and root tissues. To further investigate the antifungal components, compounds were extracted, fractionated, and purified. One compound, inhibiting Foc with minimum inhibitory concentrations (MICs) of 25 μg/disk, was identified as iturin A5 by high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) and nuclear magnetic resonance (NMR). The isolated iturin, A5, resulted in severe morphological changes during spore germination and hyphae growth of Foc. These results specify that B. amyloliquefaciens S185 plays a key role in preventing the Foc pathogen by producing the antifungal compound iturin A5, and possesses potential as a cost-effective and sustainable biocontrol strain for Panama disease in the future. This is the first report of isolation of the antifungal compound iturin A5 from thermotolerant marine B. amyloliquefaciens S185.
Collapse
Affiliation(s)
- Pratiksha Singh
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
| | - Jin Xie
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
| | - Yanhua Qi
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
| | - Qijian Qin
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
| | - Cheng Jin
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Wang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China
- Correspondence: (B.W.); (W.F.)
| | - Wenxia Fang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China
- Correspondence: (B.W.); (W.F.)
| |
Collapse
|
6
|
Rojas-Rojas FU, Vega-Arreguín JC. Epigenetic insight into regulatory role of chromatin covalent modifications in lifecycle and virulence of Phytophthora. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:445-457. [PMID: 33876568 DOI: 10.1111/1758-2229.12954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
The Oomycota phylum includes fungi-like filamentous microorganisms classified as plant pathogens. The most destructive genus within oomycetes is Phytophthora, which causes diseases in plants of economic importance in agriculture, forestry and ornamental. Phytophthora species are widespread worldwide and some of them enable adaptation to different hosts and environmental changes. The development of sexual and asexual reproductive structures and the secretion of proteins to control plant immunity are critical for the adaptative lifestyle. However, molecular mechanisms underlying the adaptation of Phytophthora to different hosts and environmental changes are poorly understood. In the last decade, the role of epigenetics has gained attention, and important evidence has demonstrated the potential role of chromatin covalent modifications, such as DNA methylation and histone acetylation/methylation, in the regulation of gene expression during Phytophthora development and plant infection. Here, we review for the first time the evidence of the potential role of chromatin covalent modifications in the lifecycle of the phytopathogenic genus Phytophthora, including virulence, and host and environment adaptation processes.
Collapse
Affiliation(s)
- Fernando Uriel Rojas-Rojas
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES - León, UNAM), Blvd. UNAM 2011, León, Guanajuato, 37684, Mexico
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES - León, UNAM), Blvd. UNAM 2011, León, Guanajuato, 37684, Mexico
| | - Julio C Vega-Arreguín
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES - León, UNAM), Blvd. UNAM 2011, León, Guanajuato, 37684, Mexico
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES - León, UNAM), Blvd. UNAM 2011, León, Guanajuato, 37684, Mexico
| |
Collapse
|
7
|
Huang Z, Lu J, Liu R, Wang P, Hu Y, Fang A, Yang Y, Qing L, Bi C, Yu Y. SsCat2 encodes a catalase that is critical for the antioxidant response, QoI fungicide sensitivity, and pathogenicity of Sclerotinia sclerotiorum. Fungal Genet Biol 2021; 149:103530. [PMID: 33561548 DOI: 10.1016/j.fgb.2021.103530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Sclerotinia sclerotiorum is a destructive necrotrophic fungal pathogen with worldwide distribution. The metabolism of reactive oxygen species (ROS) is critical for the development and infection process of this economically important pathogen. Hydrogen peroxide (H2O2) is converted into water and dioxygen by catalases, which are major ROS scavengers in cells. Several genes have been predicted to encode the catalases of S. sclerotiorum, but the critical ones that function in the ROS stress response are still unknown. In this research, a catalase gene called SsCat2 was found to contribute to the predominant catalase activity at the stages of hyphae growth and sclerotial development. SsCat2 transcripts were induced under oxidative stress, and the target deletion of SsCat2 led to significant sensitivity to H2O2, suggesting that SsCat2 is critical in dealing with the oxidative stress. SsCat2-deletion strains were sensitive to hyperosmotic stresses and cell membrane-perturbing agents, suggesting impairment in cell integrity due to the inactivation of SsCat2. The expression of the alternative oxidase-encoding gene was upregulated in the SsCat2-deletion strains, which showed decreased sensitivity to QoI fungicides. SsCat2-deletion strains showed impaired virulence in different hosts, and more H2O2 accumulation was detected during the infect processes. In summary, these results indicate that SsCat2 encodes a catalase that is related to the oxidative stress response, QoI fungicide sensitivity, and pathogenicity of S. sclerotiorum.
Collapse
Affiliation(s)
- Zhiqiang Huang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jingjing Lu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Ruiwen Liu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Pei Wang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yawen Hu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Ling Qing
- College of Plant Protection, Southwest University, Chongqing, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China.
| |
Collapse
|
8
|
Sun N, Li M, Liu G, Jing M, He F, Cao Z, Zong W, Tang J, Gao C, Liu R. Toxic mechanism of pyrene to catalase and protective effects of vitamin C: Studies at the molecular and cell levels. Int J Biol Macromol 2021; 171:225-233. [PMID: 33418042 DOI: 10.1016/j.ijbiomac.2020.12.169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 11/17/2022]
Abstract
Polycyclic aromatic hydrocarbons, distributing extensively in the soil, would potentially threaten the soil organisms (Eisenia fetida) by triggering oxidative stress. As a ubiquitous antioxidant enzyme, catalase can protect organisms from oxidative damage. To reveal the potential impact of polycyclic aromatic hydrocarbon pyrene (Pyr) on catalase (CAT) and the possible protective effect of Ascorbic acid (vitamin C), multi-spectral and molecular docking techniques were used to investigate the influence of structure and function of catalase by pyrene. Fluorescence and circular dichroism analysis showed that pyrene would induce the microenvironmental changes of CAT amino acid residues and increase the α-helix in the secondary structure. Molecular simulation results indicated that the main binding force of pyrene around the active center of CAT is hydrogen bonding force. Furthermore, pyrene inhibited catalase activity to 69.9% compared with the blank group, but the degree of inhibition was significantly weakened after vitamin C added into the research group. Cell level experiments showed that pyrene can increase the level of ROS in the body cavity cell of earthworms, and put the cells under the threat of potential oxidative damage. Antioxidants-vitamin C has a protective effect on catalase and maintains the stability of intracellular ROS levels to a certain extent.
Collapse
Affiliation(s)
- Ning Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Meifei Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Guiliang Liu
- Shandong Institute for Food and Drug Control, Jinan 250101, PR China
| | - Mingyang Jing
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Zhaozhen Cao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Canzhu Gao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
9
|
Wang Y, Zhang C, Liang J, Wu L, Gao W, Jiang J. Iturin A Extracted From Bacillus subtilis WL-2 Affects Phytophthora infestans via Cell Structure Disruption, Oxidative Stress, and Energy Supply Dysfunction. Front Microbiol 2020; 11:536083. [PMID: 33013776 PMCID: PMC7509112 DOI: 10.3389/fmicb.2020.536083] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/19/2020] [Indexed: 01/07/2023] Open
Abstract
Potato late blight, caused by Phytophthora infestans (Mont.) de Bary, represents a great food security threat worldwide and is difficult to control. Recently, Bacillus spp. have been considered biocontrol agents to control many plant diseases. Here, Bacillus subtilis WL-2 was selected as a potent strain against P. infestans mycelium growth, and its functional metabolite was identified as Iturin A via electrospray ionization mass spectrometry (ESI-MS). Analyses using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that Iturin A caused cell membrane disruption and an irregular internal cell structure. In addition, Iturin A triggered oxidative stress reactions similarly to reactive oxygen species (ROS) in P. infestans cells and caused mitochondrial damage, including mitochondrial membrane potential (MMP), mitochondrial respiratory chain complex activity (MRCCA), and ATP production decline. These results highlight that the cell structure disruption, oxidative stress, and energy supply dysfunction induced by Iturin A play an important role in inhibiting P. infestans. Additionally, B. subtilis WL-2 and Iturin A have great potential for inhibiting P. infestans mycelium growth and controlling potato late blight in the future.
Collapse
Affiliation(s)
- Youyou Wang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Congying Zhang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Jiao Liang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Lufang Wu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Wenbin Gao
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Jizhi Jiang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
10
|
Organize, Don't Agonize: Strategic Success of Phytophthora Species. Microorganisms 2020; 8:microorganisms8060917. [PMID: 32560346 PMCID: PMC7355776 DOI: 10.3390/microorganisms8060917] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
Plants are constantly challenged by various environmental stressors ranging from abiotic-sunlight, elevated temperatures, drought, and nutrient deficits, to biotic factors-microbial pathogens and insect pests. These not only affect the quality of harvest but also the yield, leading to substantial annual crop losses, worldwide. Although plants have a multi-layered immune system, phytopathogens such as species of the oomycete genus Phytophthora, can employ elaborate mechanisms to breach this defense. For the last two decades, researchers have focused on the co-evolution between Phytophthora and interacting hosts to decouple the mechanisms governing their molecular associations. This has provided a comprehensive understanding of the pathobiology of plants affected by oomycetes. Ultimately, this is important for the development of strategies to sustainably improve agricultural production. Therefore, this paper discusses the present-day state of knowledge of the strategic mode of operation employed by species of Phytophthora for successful infection. Specifically, we consider motility, attachment, and host cell wall degradation used by these pathogenic species to obtain nutrients from their host. Also discussed is an array of effector types from apoplastic (hydrolytic proteins, protease inhibitors, elicitins) to cytoplastic (RxLRs, named after Arginine-any amino acid-Leucine-Arginine consensus sequence and CRNs, for CRinkling and Necrosis), which upon liberation can subvert the immune response and promote diseases in plants.
Collapse
|