1
|
Guo J, Qiu M, Li L, Gao Z, Zhou G, Liu X. Comparative transcriptomic analysis and volatile compound characterization of Aspergillus tubingensis and Penicillium oxalicum during their infestation of Japonica rice. Food Microbiol 2025; 125:104626. [PMID: 39448170 DOI: 10.1016/j.fm.2024.104626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 10/26/2024]
Abstract
Volatile organic compounds (VOCs), a byproduct of mold metabolism, have garnered increasing interest because the VOCs can be used to detect food early contamination. So far, the use of VOCs as indicators of rice mildew, specifically caused by Aspergillus tubingensis and Penicillium oxalicum, and the mechanisms of their generation are not well investigated. This study examines the VOCs produced by these molds during paddy storage, utilizing headspace solid-phase micro-extraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). We further elucidate the mechanisms underlying the formation of these VOCs through a comparative transcriptomic analysis. The VOCs characteristic to A. tubingensis and P. oxalicum, identified with a VIP value > 1 in the partial least squares discriminant analysis (PLS-DA) model, are primarily alkenes. Our transcriptome analysis uncovers key metabolic pathways in both molds, including energy metabolism and pathways related to volatile substance formation, and identifies differentially expressed genes associated with alkane and alcohol formation.
Collapse
Affiliation(s)
- Jian Guo
- College of Food and Health, National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang A&F University, Hangzhou, 311300, PR China.
| | - Mingming Qiu
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, PR China
| | - Ling Li
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, PR China
| | - Zhenbo Gao
- College of Food and Health, National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang A&F University, Hangzhou, 311300, PR China
| | - Guoxin Zhou
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, PR China
| | - Xingquan Liu
- College of Food and Health, National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang A&F University, Hangzhou, 311300, PR China.
| |
Collapse
|
2
|
Zhang S, Zhang B, Wang Z, Zhong S, Zheng Y, Zhang Q, Liu X. Type I arginine methyltransferases play crucial roles in development and pathogenesis of Phytophthora capsici. Int J Biol Macromol 2024; 278:134671. [PMID: 39151856 DOI: 10.1016/j.ijbiomac.2024.134671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Phytophthora capsici, a pathogenic oomycete, poses a serious threat to global vegetable production. This study investigated the role of protein arginine methylation, a notable post-translational modification, in the epigenetic regulation of P. capsici. We identified and characterized five protein arginine methyltransferases (PRMTs) in P. capsici, with a focus on four putative type I PRMTs exhibiting similar functional domain. Deletion of PcPRMT3, a homolog of PRMT3, significantly affected mycelial growth, asexual spore development, pathogenicity, and stress responses in P. capsici. Transcriptome analyses indicated that absence of PcPRMT3 disrupted multiple biological pathways. The PcPRMT3 deletion mutant displayed heightened susceptibility to oxidative stress, correlated with the downregulation of genes involved in peroxidase and peroxisome activities. Additionally, PcPRMT3 acted as a negative regulator, modulating the transcription levels of specific elicitins, which in turn affects the defense response of host plant against P. capsici. Furthermore, PcPRMT3 was found to affect global arginine methylation levels in P. capsici, implying potential alterations in the functions of its substrate proteins.
Collapse
Affiliation(s)
- Sicong Zhang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Borui Zhang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhiwen Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Shan Zhong
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yang Zheng
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qinghua Zhang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xili Liu
- College of Plant Protection, China Agricultural University, Beijing 100193, China; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
3
|
Hadizadeh I, Peivastegan B, Nielsen KL, Auvinen P, Sipari N, Pirhonen M. Transcriptome analysis unravels the biocontrol mechanism of Serratia plymuthica A30 against potato soft rot caused by Dickeya solani. PLoS One 2024; 19:e0308744. [PMID: 39240997 PMCID: PMC11379202 DOI: 10.1371/journal.pone.0308744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/29/2024] [Indexed: 09/08/2024] Open
Abstract
Endophytic bacterium Serratia plymuthica A30 was identified as a superior biocontrol agent due to its effective colonization of potato tuber, tolerance to cold conditions, and strong inhibitory action against various soft rot pathogens, including Dickeya solani. We characterized transcriptome changes in potato tubers inoculated with S. plymuthica A30, D. solani, or both at the early and the late phases of interaction. At the early phase and in the absence of the pathogen, A30 influenced the microbial recognition system to initiate plant priming. In the presence of the pathogen alongside biocontrol strain, defense signaling was highly stimulated, characterized by the induction of genes involved in the detoxification system, reinforcement of cell wall structure, and production of antimicrobial metabolites, highlighting A30's role in enhancing the host resistance against pathogen attack. This A30-induced resistance relied on the early activation of jasmonic acid signaling and its production in tubers, while defense signaling mediated by salicylic acid was suppressed. In the late phase, A30 actively interferes with plant immunity by inhibiting stress- and defense-related genes expression. Simultaneously, the genes involved in cell wall remodeling and indole-3-acetic acid signaling were activated, thereby enhancing cell wall remodeling to establish symbiotic relationship with the host. The endophytic colonization of A30 coincided with the induction of genes involved in the biosynthesis and signaling of ethylene and abscisic acid, while downregulating those related to gibberellic acid and cytokinin. This combination suggested fitness benefits for potato tubers by preserving dormancy, and delaying sprouting, which affects durability of tubers during storage. This study contributes valuable insights into the tripartite interaction among S. plymuthica A30, D. solani, and potato tubers, facilitating the development of biocontrol system for soft rot pathogens under storage conditions.
Collapse
Affiliation(s)
- Iman Hadizadeh
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Bahram Peivastegan
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | | | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Nina Sipari
- Faculty of Biological and Environmental Sciences, Viikki Metabolomics Unit, University of Helsinki, Helsinki, Finland
| | - Minna Pirhonen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Cabutaje EM, Ueno K, Dela Cruz TEE, Ishihara A. Suppression of anthracnose disease by orsellinaldehyde isolated from the mushroom Coprinus comatus. J Appl Microbiol 2024; 135:lxae128. [PMID: 38802124 DOI: 10.1093/jambio/lxae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/17/2024] [Accepted: 05/26/2024] [Indexed: 05/29/2024]
Abstract
AIMS Anthracnose caused by Colletotrichum species is one of the most devastating diseases of fruits and crops. We isolated and identified an antifungal compound from the mushroom Coprinus comatus and investigated its inhibitory potential against anthracnose disease-causing fungi with the goal of discovering natural products that can suppress anthracnose-caused plant disease. METHODS AND RESULTS The culture filtrate of C. comatus was subjected to a bioassay-guided isolation of antifungal compounds. The active compound was identified as orsellinaldehyde (2,4-dihydroxy-6-methylbenzaldehyde) based on mass spectroscopy and nuclear magnetic resonance analyses. Orsellinaldehyde displayed broad-spectrum inhibitory activity against different plant pathogenic fungi. Among the tested Colletotrichum species, it exhibited the lowest IC50 values on conidial germination and germ tube elongation of Colletotrichum orbiculare. The compound also showed remarkable inhibitory activity against Colletotrichum gloeosporiodes. The staining of Colletotrichum conidia with fluorescein diacetate and propidium iodide demonstrated that the compound is fungicidal. The postharvest in-vivo detached fruit assay indicated that orsellinaldehyde suppressed anthracnose lesion symptoms on mango and cucumber fruits caused by C. gloeosporioides and C. orbiculare, respectively. CONCLUSIONS Orsellinaldehyde was identified as a potent antifungal compound from the culture filtrate of C. comatus. The inhibitory and fungicidal activities of orsellinaldehyde against different Colletotrichum species indicate its potential as a fungicide for protecting various fruits against anthracnose disease-causing fungi.
Collapse
Affiliation(s)
- Enrico M Cabutaje
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan
| | - Kotomi Ueno
- Faculty of Agriculture, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8553, Japan
| | - Thomas Edison E Dela Cruz
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Blvd. 1015, Manila, Philippines
| | - Atsushi Ishihara
- Faculty of Agriculture, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8553, Japan
- International Platform for Dryland Research and Education, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan
| |
Collapse
|
5
|
Zhu C, Sun J, Tian F, Tian X, Liu Q, Pan Y, Zhang Y, Luo Z. The Bbotf1 Zn(Ⅱ) 2Cys 6 transcription factor contributes to antioxidant response, fatty acid assimilation, peroxisome proliferation and infection cycles in insect pathogenic fungus Beauveria bassiana. J Invertebr Pathol 2024; 204:108083. [PMID: 38458350 DOI: 10.1016/j.jip.2024.108083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/30/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
The abilities to withstand oxidation and assimilate fatty acids are critical for successful infection by many pathogenic fungi. Here, we characterized a Zn(II)2Cys6 transcription factor Bbotf1 in the insect pathogenic fungus Beauveria bassiana, which links oxidative response and fatty acid assimilation via regulating peroxisome proliferation. The null mutant ΔBbotf1 showed impaired resistance to oxidants, accompanied by decreased activities of antioxidant enzymes including CATs, PODs and SODs, and down-regulated expression of many antioxidation-associated genes under oxidative stress condition. Meanwhile, Bbotf1 acts as an activator to regulate fatty acid assimilation, lipid and iron homeostasis as well as peroxisome proliferation and localization, and the expressions of some critical genes related to glyoxylate cycle and peroxins were down-regulated in ΔBbotf1 in presence of oleic acid. In addition, ΔBbotf1 was more sensitive to osmotic stressors, CFW, SDS and LDS. Insect bioassays revealed that insignificant changes in virulence were seen between the null mutant and parent strain when conidia produced on CZP plates were used for topical application. However, propagules recovered from cadavers killed by ΔBbotf1 exhibited impaired virulence as compared with counterparts of the parent strain. These data offer a novel insight into fine-tuned aspects of Bbotf1 concerning multi-stress responses, lipid catabolism and infection cycles.
Collapse
Affiliation(s)
- Chenhua Zhu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jingxin Sun
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Fangfang Tian
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Xinting Tian
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Qi Liu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yunxia Pan
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
| | - Yongjun Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zhibing Luo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Flores-Almaraz VS, Truong C, Hernández-Oaxaca D, Reyes-Galindo V, Mastretta-Yanes A, Jaramillo-Correa JP, Salas-Lizana R. Foliar mycobiome remains unaltered under urban air-pollution but differentially express stress-related genes. MICROBIAL ECOLOGY 2024; 87:72. [PMID: 38755460 PMCID: PMC11098924 DOI: 10.1007/s00248-024-02387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Air pollution caused by tropospheric ozone contributes to the decline of forest ecosystems; for instance, sacred fir, Abies religiosa (Kunth) Schltdl. & Cham. forests in the peri-urban region of Mexico City. Individual trees within these forests exhibit variation in their response to ozone exposure, including the severity of visible symptoms in needles. Using RNA-Seq metatranscriptomic data and ITS2 metabarcoding, we investigated whether symptom variation correlates with the taxonomic and functional composition of fungal mycobiomes from needles collected in this highly polluted area in the surroundings of Mexico City. Our findings indicate that ozone-related symptoms do not significantly correlate with changes in the taxonomic composition of fungal mycobiomes. However, genes coding for 30 putative proteins were differentially expressed in the mycobiome of asymptomatic needles, including eight genes previously associated with resistance to oxidative stress. These results suggest that fungal communities likely play a role in mitigating the oxidative burst caused by tropospheric ozone in sacred fir. Our study illustrates the feasibility of using RNA-Seq data, accessible from global sequence repositories, for the characterization of fungal communities associated with plant tissues, including their gene expression.
Collapse
Affiliation(s)
- Valeria Stephany Flores-Almaraz
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510, Distrito Federal, México
- Instituto de Biología, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510, Coyoacán, Ciudad de México, Mexico
| | - Camille Truong
- Royal Botanic Gardens Victoria, Birdwood Ave, Melbourne, VIC 3004, Australia.
| | - Diana Hernández-Oaxaca
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad S/N, 62210, Cuernavaca, Morelos, México
| | - Verónica Reyes-Galindo
- Depto. de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510, Coyoacán, Ciudad de México, Mexico
| | - Alicia Mastretta-Yanes
- Consejo Nacional de Humanidades Ciencias y Tecnología (CONAHCYT), Avenida Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, Ciudad de México, 03940, México.
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510, Coyoacán, Ciudad de México, Mexico.
| | - Juan Pablo Jaramillo-Correa
- Depto. de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510, Coyoacán, Ciudad de México, Mexico
| | - Rodolfo Salas-Lizana
- Laboratorios de Micología. Depto. de Biología Comparada, Facultad de Ciencias., Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, México.
| |
Collapse
|
7
|
Azizullah, Noman M, Gao Y, Wang H, Xiong X, Wang J, Li D, Song F. The SUMOylation pathway regulates the pathogenicity of Fusarium oxysporum f. sp. niveum in watermelon through stabilizing the pH regulator FonPalC via SUMOylation. Microbiol Res 2024; 281:127632. [PMID: 38310728 DOI: 10.1016/j.micres.2024.127632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/12/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
SUMOylation is a key post-translational modification, where small ubiquitin-related modifier (SUMO) proteins regulate crucial biological processes, including pathogenesis, in phytopathogenic fungi. Here, we investigated the function and mechanism of the SUMOylation pathway in the pathogenicity of Fusarium oxysporum f. sp. niveum (Fon), the fungal pathogen that causes watermelon Fusarium wilt. Disruption of key SUMOylation pathway genes, FonSMT3, FonAOS1, FonUBC9, and FonMMS21, significantly reduced pathogenicity, impaired penetration ability, and attenuated invasive growth capacity of Fon. Transcription and proteomic analyses identified a diverse set of SUMOylation-regulated differentially expressed genes and putative FonSMT3-targeted proteins, which are predicted to be involved in infection, DNA damage repair, programmed cell death, reproduction, growth, and development. Among 155 putative FonSMT3-targeted proteins, FonPalC, a Pal/Rim-pH signaling regulator, was confirmed to be SUMOylated. The FonPalC protein accumulation was significantly decreased in SUMOylation-deficient mutant ∆Fonsmt3. Deletion of FonPalC resulted in impaired mycelial growth, decreased pathogenicity, enhanced osmosensitivity, and increased intracellular vacuolation in Fon. Importantly, mutations in conserved SUMOylation sites of FonPalC failed to restore the defects in ∆Fonpalc mutant, indicating the critical function of the SUMOylation in FonPalC stability and Fon pathogenicity. Identifying key SUMOylation-regulated pathogenicity-related proteins provides novel insights into the molecular mechanisms underlying Fon pathogenesis regulated by SUMOylation.
Collapse
Affiliation(s)
- Azizullah
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Muhammad Noman
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yizhou Gao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hui Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaohui Xiong
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiajing Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dayong Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fengming Song
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
8
|
Li Q, Feng Y, Li J, Hai Y, Si L, Tan C, Peng J, Hu Z, Li Z, Li C, Hao D, Tang W. Multi-omics approaches to understand pathogenicity during potato early blight disease caused by Alternaria solani. Front Microbiol 2024; 15:1357579. [PMID: 38529180 PMCID: PMC10961351 DOI: 10.3389/fmicb.2024.1357579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/14/2024] [Indexed: 03/27/2024] Open
Abstract
Potato early blight (PEB), a foliar disease of potato during the growing period, caused by Alternaria sp., is common in major potato-producing areas worldwide. Effective agents to control this disease or completely resistant potato varieties are absent. Large-scale use of fungicides is limited due to possibility of increase in pathogen resistance and the requirements of ecological agriculture. In this study, we focused on the composition and infection characteristics of early blight pathogens in Yunnan Province and screened candidate pathogenesis-related pathways and genes. We isolated 85 strains of Alternaria sp. fungi from typical early blight spots in three potato-growing regions in Yunnan Province from 2018 to 2022, and identified 35 strains of Alternaria solani and 50 strains of Alternaria alternata by morphological characterization and ITS sequence comparison, which were identified as the main and conditional pathogens causing early blight in potato, respectively. Scanning electron microscope analysis confirmed only A. solani producing appressorium at 4 h after inoculation successfully infected the leaf cells. Via genome assembly and annotation, combine transcriptome and proteomic analysis, the following pathogenicity-related unit, transcription factors and metabolic pathway were identified: (1) cell wall-degrading enzymes, such as pectinase, keratinase, and cellulase; (2) genes and pathways related to conidia germination and pathogenicity, such as ubiquitination and peroxisomes; and (3) transcription factors, such as Zn-clus, C2H2, bZIP, and bHLH. These elements were responsible for PEB epidemic in Yunnan.
Collapse
Affiliation(s)
- Qing Li
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Yan Feng
- School of Economics and Management, Yunnan Normal University, Kunming, China
| | - Jianmei Li
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Yang Hai
- Yunnan YinMore Modern Agriculture Co., Ltd., Kunming, China
| | - Liping Si
- Yunnan YinMore Modern Agriculture Co., Ltd., Kunming, China
| | - Chen Tan
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Jing Peng
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Zuo Hu
- Zhaotong Academy of Agricultural Sciences, Zhaotong, China
| | - Zhou Li
- Zhaotong Academy of Agricultural Sciences, Zhaotong, China
| | - Canhui Li
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Dahai Hao
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Wei Tang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
| |
Collapse
|
9
|
Chen R, Lu K, Yang L, Jiang J, Li L. Peroxin MoPex22 Regulates the Import of Peroxisomal Matrix Proteins and Appressorium-Mediated Plant Infection in Magnaporthe oryzae. J Fungi (Basel) 2024; 10:143. [PMID: 38392815 PMCID: PMC10890347 DOI: 10.3390/jof10020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Magnaporthe oryzae, the pathogen responsible for rice blast disease, utilizes specialized infection structures known as appressoria to breach the leaf cuticle and establish intracellular, infectious hyphae. Our study demonstrates that the peroxin MoPex22 is crucial for appressorium function, specifically for the development of primary penetration hyphae. The ∆Mopex22 mutant exhibited slow growth, reduced aerial hyphae, and almost complete loss of virulence. Specifically, despite the mutant's capability to form appressoria, it showed abnormalities during appressorium development, including reduced turgor, increased permeability of the appressorium wall, failure to form septin rings, and significantly decreased ability to penetrate host cells. Additionally, there was a delay in the degradation of lipid droplets during conidial germination and appressorium development. Consistent with these findings, the ΔMopex22 mutant showed an inefficient utilization of long-chain fatty acids and defects in cell wall integrity. Moreover, our findings indicate that MoPex22 acts as an anchor for MoPex4, facilitating the localization of MoPex4 to peroxisomes. Together with MoPex4, it affects the function of MoPex5, thus regulating the import of peroxisomal matrix proteins. Overall, these results highlight the essential role of MoPex22 in regulating the transport of peroxisomal matrix proteins, which affect fatty acid metabolism, glycerol accumulation, cell wall integrity, growth, appressorium development, and the pathogenicity of M. oryzae. This study provides valuable insights into the significance of peroxin functions in fungal biology and appressorium-mediated plant infection.
Collapse
Affiliation(s)
- Rangrang Chen
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Kailun Lu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Lina Yang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Lianwei Li
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
10
|
Liang B, Song W, Xing R, Liu S, Yu H, Li P. The source, activity influencing factors and biological activities for future development of chitin deacetylase. Carbohydr Polym 2023; 321:121335. [PMID: 37739548 DOI: 10.1016/j.carbpol.2023.121335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023]
Abstract
Chitin deacetylase (CDA), a prominent member of the carbohydrate esterase enzyme family 4 (CE4), is found ubiquitously in bacteria, fungi, insects, and crustaceans. This metalloenzyme plays a pivotal role in recognizing and selectively removing acetyl groups from chitin, thus offering an environmentally friendly and biologically-driven preparation method for chitosan with immense industrial potential. Due to its diverse origins, CDAs sourced from different organisms exhibit unique functions, optimal pH ranges, and temperature preferences. Furthermore, certain organic reagents can induce structural changes in CDAs, influencing their catalytic activity. Leveraging CDA's capabilities extends beyond chitosan biocatalysis, as it demonstrates promising application value in agricultural pest control. In this paper, the source, reaction mechanism, influencing factors, the fermentation methods and applications of CDA are reviewed, which provides theoretical help for the research and application of CDA.
Collapse
Affiliation(s)
- Bicheng Liang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Wen Song
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China.
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| |
Collapse
|
11
|
Zhu C, Tang Y, Ren D, Ren W, Xue Y, Suthaparan A, Li J, Wang Y, Xu L, Zhu P. Propionate poses antivirulence activity against Botrytis cinerea via regulating its metabolism, infection cushion development and overall pathogenic factors. Food Chem 2023; 410:135443. [PMID: 36680882 DOI: 10.1016/j.foodchem.2023.135443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/10/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Botrytis cinerea is a devastating pathogen causing gray mold in fruits and vegetables if not properly managed. Although the mechanisms remain unclear, we previously revealed that the safe food additive calcium propionate (CP) could suppress gray mold development on grapes. The present study reports that sub-lethal dose of CP (0.2 % w/v) could allow growth with substantial reprograming the genome-wide transcripts of B. cinerea. Upon CP treatment, the genes related to fungal methylcitrate cycle (responsible for catabolizing propionate) were upregulated. Meanwhile, CP treatment broadly downregulated the transcript levels of the virulence factors. Further comparative analysis of multiple transcriptomes confirmed that the CP treatment largely suppressed the expression of genes related to development and function of infection cushion. Collectively, these findings indicate that CP can not only reduce fungal growth, but also abrogate fungal virulence factors. Thus, CP has significant potential for the control of gray mold in fruit crops.
Collapse
Affiliation(s)
- Chuanxi Zhu
- School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Yan Tang
- School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Dandan Ren
- School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Weiheng Ren
- School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Yongjun Xue
- School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Aruppillai Suthaparan
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Jufen Li
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, 201106 Shanghai, China
| | - Yiwen Wang
- School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Ling Xu
- School of Life Sciences, East China Normal University, 200241 Shanghai, China.
| | - Pinkuan Zhu
- School of Life Sciences, East China Normal University, 200241 Shanghai, China.
| |
Collapse
|
12
|
The ASH1-PEX16 regulatory pathway controls peroxisome biogenesis for appressorium-mediated insect infection by a fungal pathogen. Proc Natl Acad Sci U S A 2023; 120:e2217145120. [PMID: 36649415 PMCID: PMC9942893 DOI: 10.1073/pnas.2217145120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Entomopathogenic fungi infect insects by penetrating through the cuticle into the host body. To breach the host cuticle, some fungal pathogens produce specialized infection cells called appressoria, which develop enormous turgor pressure to allow cuticle penetration. However, regulatory mechanisms underlying appressorium turgor generation are poorly understood. Here, we show that the histone lysine methyltransferase ASH1 in the insecticidal fungus Metarhizium robertsii, which is strongly induced during infection of the mosquito cuticle, regulates appressorium turgor generation and cuticle penetration by activating the peroxin gene Mrpex16 via H3K36 dimethylation. MrPEX16 is required for the biogenesis of peroxisomes that participate in lipid catabolism and further promotes the hydrolysis of triacylglycerols stored in lipid droplets to produce glycerol for turgor generation, facilitating appressorium-mediated insect infection. Together, the ASH1-PEX16 pathway plays a pivotal role in regulating peroxisome biogenesis to promote lipolysis for appressorium turgor generation, providing insights into the molecular mechanisms underlying fungal pathogenesis.
Collapse
|
13
|
Appressoria-Small but Incredibly Powerful Structures in Plant-Pathogen Interactions. Int J Mol Sci 2023; 24:ijms24032141. [PMID: 36768468 PMCID: PMC9917257 DOI: 10.3390/ijms24032141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Plant-pathogenic fungi are responsible for many of the most severe crop diseases in the world and remain very challenging to control. Improving current protection strategies or designating new measures based on an overall understanding of molecular host-pathogen interaction mechanisms could be helpful for disease management. The attachment and penetration of the plant surface are the most important events among diverse plant-fungi interactions. Fungi evolved as small but incredibly powerful infection structure appressoria to facilitate attachment and penetration. Appressoria are indispensable for many diseases, such as rusts, powdery mildews, and blast diseases, as well as devastating oomycete diseases. Investigation into the formation of plant-pathogen appressoria contributes to improving the understanding of the molecular mechanisms of plant-pathogen interactions. Fungal host attachment is a vital step of fungal pathogenesis. Here, we review recent advances in the molecular mechanisms regulating the formation of appressoria. Additionally, some biocontrol agents were revealed to act on appressorium. The regulation of fungal adhesion during the infective process by acting on appressoria formation is expected to prevent the occurrence of crop disease caused by some pathogenic fungi.
Collapse
|
14
|
Choo CYL, Wu PC, Yago JI, Chung KR. The Pex3-mediated peroxisome biogenesis plays a critical role in metabolic biosynthesis, stress response, and pathogenicity in Alternaria alternata. Microbiol Res 2023; 266:127236. [DOI: 10.1016/j.micres.2022.127236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
15
|
Histidine 19 Residue Is Essential for Cell Internalization of Antifungal Peptide SmAPα1-21 Derived from the α-Core of the Silybum marianum Defensin DefSm2-D in Fusarium graminearum. Antibiotics (Basel) 2022; 11:antibiotics11111501. [PMID: 36358156 PMCID: PMC9686561 DOI: 10.3390/antibiotics11111501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/30/2022] Open
Abstract
The synthetic peptide SmAPα1-21 (KLCEKPSKTWFGNCGNPRHCG) derived from DefSm2-D defensin α-core is active at micromolar concentrations against the phytopathogenic fungus Fusarium graminearum and has a multistep mechanism of action that includes alteration of the fungal cell wall and membrane permeabilization. Here, we continued the study of this peptide’s mode of action and explored the correlation between the biological activity and its primary structure. Transmission electron microscopy was used to study the ultrastructural effects of SmAPα1-21 in conidial cells. New peptides were designed by modifying the parent peptide SmAPα1-21 (SmAPH19R and SmAPH19A, where His19 was replaced by Arg or Ala, respectively) and synthesized by the Fmoc solid phase method. Antifungal activity was determined against F. graminearum. Membrane permeability and subcellular localization in conidia were studied by confocal laser scanning microscopy (CLSM). Reactive oxygen species (ROS) production was assessed by fluorescence spectroscopy and CLSM. SmAPα1-21 induced peroxisome biogenesis and oxidative stress through ROS production in F. graminearum and was internalized into the conidial cells’ cytoplasm. SmAPH19R and SmAPH19A were active against F. graminearum with minimal inhibitory concentrations (MICs) of 38 and 100 µM for SmAPH19R and SmAPH19A, respectively. The replacement of His19 by Ala produced a decrease in the net charge with a significant increase in the MIC, thus evidencing the importance of the positive charge in position 19 of the antifungal peptide. Like SmAPα1-21, SmAP2H19A and SmAP2H19R produced the permeabilization of the conidia membrane and induced oxidative stress through ROS production. However, SmAPH19R and SmAPH19A were localized in the conidia cell wall. The replacement of His19 by Ala turned all the processes slower. The extracellular localization of peptides SmAPH19R and SmAPH19A highlights the role of the His19 residue in the internalization.
Collapse
|
16
|
Lu Z, Guo J, Li Q, Han Y, Zhang Z, Hao Z, Wang Y, Sun G, Wang J, Li L. Monitoring peroxisome dynamics using enhanced green fluorescent protein labeling in Alternaria alternata. Front Microbiol 2022; 13:1017352. [PMID: 36386634 PMCID: PMC9640759 DOI: 10.3389/fmicb.2022.1017352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/28/2022] [Indexed: 12/04/2022] Open
Abstract
Brown leaf spot on tobacco is a serious fungal disease caused by Alternaria alternata. Peroxisomes are organelles playing an important role in the development and infection of plant pathogenic fungi. But, until now, there is no report on the peroxisome dynamics during the conidia germination of A. alternata. To evaluate the roles of peroxisome in the development of the fungus, in the present work, an enhanced green fluorescent protein (eGFP) cassette tagged with peroxisome targeting signal 2 (PTS2) was integrated into A. alternata to label the organelles, and an eGFP cassette carrying a nuclear located signal (NLS) was performed parallelly. The transformants containing the fusions emitted fluorescence in punctate patterns. The fluorescence of eGFP-PTS2 was distributed exactly in the peroxisomes while those of eGFP-NLS were located in the nucleus. Typical AaGB transformants were selected to be investigated for the peroxisome dynamics. The results showed that during spore germination, the number of peroxisomes in the spores decreased gradually, but increased in the germ tubes. In addition, when the transformants were cultured on lipid media, the numbers of peroxisomes increased significantly, and in a larger portion, present in striped shapes. These findings give some clues for understanding the peroxisomal functions in the development of A. alternata.
Collapse
Affiliation(s)
- Ziqi Lu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jian Guo
- College of Food and Health (College of Modern Food Industry), Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Qiang Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yatao Han
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhongna Hao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guochang Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiaoyu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Jiaoyu Wang,
| | - Ling Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Ling Li,
| |
Collapse
|
17
|
Wu P, Choo CYL, Lu H, Wei X, Chen Y, Yago JI, Chung K. Pexophagy is critical for fungal development, stress response, and virulence in Alternaria alternata. MOLECULAR PLANT PATHOLOGY 2022; 23:1538-1554. [PMID: 35810316 PMCID: PMC9452759 DOI: 10.1111/mpp.13247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 06/09/2023]
Abstract
Alternaria alternata can resist high levels of reactive oxygen species (ROS). The protective roles of autophagy or autophagy-mediated degradation of peroxisomes (termed pexophagy) against oxidative stress remain unclear. The present study, using transmission electron microscopy and fluorescence microscopy coupled with a GFP-AaAtg8 proteolysis assay and an mCherry tagging assay with peroxisomal targeting tripeptides, demonstrated that hydrogen peroxide (H2 O2 ) and nitrogen depletion induced autophagy and pexophagy. Experimental evidence showed that H2 O2 triggered autophagy and the translocation of peroxisomes into the vacuoles. Mutational inactivation of the AaAtg8 gene in A. alternata led to autophagy impairment, resulting in the accumulation of peroxisomes, increased ROS sensitivity, and decreased virulence. Compared to the wild type, ΔAaAtg8 failed to detoxify ROS effectively, leading to ROS accumulation. Deleting AaAtg8 down-regulated the expression of genes encoding an NADPH oxidase and a Yap1 transcription factor, both involved in ROS resistance. Deleting AaAtg8 affected the development of conidia and appressorium-like structures. Deleting AaAtg8 also compromised the integrity of the cell wall. Reintroduction of a functional copy of AaAtg8 in the mutant completely restored all defective phenotypes. Although ΔAaAtg8 produced wild-type toxin levels in axenic culture, the mutant induced a lower level of H2 O2 and smaller necrotic lesions on citrus leaves. In addition to H2 O2 , nitrogen starvation triggered peroxisome turnover. We concluded that ΔAaAtg8 failed to degrade peroxisomes effectively, leading to the accumulation of peroxisomes and the reduction of the stress response. Autophagy-mediated peroxisome turnover could increase cell adaptability and survival under oxidative stress and starvation conditions.
Collapse
Affiliation(s)
- Pei‐Ching Wu
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| | - Celine Yen Ling Choo
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| | - Hsin‐Yu Lu
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| | - Xian‐Yong Wei
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| | - Yu‐Kun Chen
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| | - Jonar I. Yago
- Plant Science Department, College of AgricultureNueva Vizcaya State UniversityBayombongPhilippines
| | - Kuang‐Ren Chung
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
18
|
Bittner E, Stehlik T, Freitag J. Sharing the wealth: The versatility of proteins targeted to peroxisomes and other organelles. Front Cell Dev Biol 2022; 10:934331. [PMID: 36225313 PMCID: PMC9549241 DOI: 10.3389/fcell.2022.934331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are eukaryotic organelles with critical functions in cellular energy and lipid metabolism. Depending on the organism, cell type, and developmental stage, they are involved in numerous other metabolic and regulatory pathways. Many peroxisomal functions require factors also relevant to other cellular compartments. Here, we review proteins shared by peroxisomes and at least one different site within the cell. We discuss the mechanisms to achieve dual targeting, their regulation, and functional consequences. Characterization of dual targeting is fundamental to understand how peroxisomes are integrated into the metabolic and regulatory circuits of eukaryotic cells.
Collapse
Affiliation(s)
| | | | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
19
|
Li L, Yu MX, Guo J, Hao ZN, Zhang Z, Lu ZQ, Wang JY, Zhu XM, Wang YL, Chen J, Sun GC, Lin FC. The peroxins BcPex8, BcPex10, and BcPex12 are required for the development and pathogenicity of Botrytis cinerea. Front Microbiol 2022; 13:962500. [PMID: 36147853 PMCID: PMC9488000 DOI: 10.3389/fmicb.2022.962500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes have been proved playing roles in infection of several plant pathogens. Although the contribution of a portion of peroxins in pathogenicity was demonstrated, most of them are undocumented in fungi, especially, Botrytis cinerea. The homologs of Pex8, Pex10, and Pex12 in B. cinerea were functionally characterized in this work using gene disruption strategies. Compared with the wild-type strain (WT), the Δbcpex8, Δbcpex10, and Δbcpex12 mutants exhibited significant reduction in melanin production, fatty acid utilization, and decreased tolerance to high osmotic pressure and reactive oxygen species (ROS). The mycelial growth and conidiation of were significantly inhibited in Δbcpex8, Δbcpex10, and Δbcpex12 strains. The mycelial growth rates of Δbcpex8, Δbcpex10, and Δbcpex12 were reduced by 32, 35, and 34%, respectively, compared with WT and ectopic transformant (ET), and the conidiation was reduced by approximately 89, 27, and 88%, respectively. The conidial germination, germ tube elongation, and the formation of initiate infection structures (IFSs) were also reduced by the deletion of the genes. The pathogenicity was tested on the leaves of tobacco and strawberry, and fruits of tomato. On the leaves of tobacco and strawberry, the Δbcpex8, Δbcpex10, and Δbcpex12 mutants could not induce necrotic lesions, and the lesions on tomato fruits infected with the mutants were significantly reduced than those of the wide type. The results indicated that BcPEX8, BcPEX10, and BcPEX12 are indispensable for the development and pathogenicity of B. cinerea.
Collapse
Affiliation(s)
- Ling Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Meng-xue Yu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jian Guo
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Zhong-na Hao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zi-qi Lu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Jiao-yu Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Jiao-yu Wang,
| | - Xue-ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yan-li Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jie Chen
- College of Forestry and Biotechnology, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Guo-Chang Sun
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Guo-Chang Sun,
| | - Fu-cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|