1
|
Mustafa UK, Kreppel KS, Sauli E. Dengue virus transmission during non-outbreak period in Dar Es Salaam, Tanzania: a cross-sectional survey. BMC Infect Dis 2024; 24:1219. [PMID: 39472806 PMCID: PMC11520832 DOI: 10.1186/s12879-024-10109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Tanzania has experienced multiple dengue outbreaks between 2010 and 2019, caused by various dengue virus (DENV) strains. In 2019, there were 6917 confirmed dengue cases and 13 deaths in Tanzania. Routine diagnosis of dengue fever is unfortunately excluded, particularly during non-outbreak periods, resulting in delayed outbreak detection and control. The aim of this study was to improve early detection and control measures for DENV by investigating its circulation in human and Aedes aegypti (A.aegypti) mosquitoes during the non-outbreak periods in Dar es Salaam, Tanzania, which is an area frequently affected by dengue outbreaks. METHODS Four hundred and fifteen (415) blood samples were collected from patients attending randomly selected health facilities in five wards; Azimio, Keko, Mtoni, Mbagala and Chamazi within Temeke district. The samples were tested for DENV NS1 antigen and anti-dengue IgM and IgG antibodies by rapid test. Then, 150 out of 415 blood samples were tested for the DENV by conventional Reverse Transcriptase Polymerase Chain Reaction (RT-PCR). Two thousand two hundred and fifty (2,250) adult female A.aegypti mosquitoes were collected using a Prokopack aspirator and BG sentinel trap or obtained after rearing immature stages and tested, in pools of 15 for DENV by RT-PCR. Statistical Software, SPSS version 23, was used for data analysis. RESULTS Of the tested blood samples, 17% (71/415) were positive by NS1 antigen, 0.5% (2/415) by IgM, 0.5% (2/415) by IgG antibodies, and 0.5% (2/415) by IgM and IgG. None of the samples tested positive by DENV RT-PCR. Moreover, 3.3% (5/150) of tested mosquito pools had DENV by RT-PCR. Individuals aged between 21 and 40 years of age had increased risk of testing positive for DENV NS1 antigen, followed by those aged 5-20 years old, particularly those residing from Azimio ward, Keko ward, Mtoni ward and Mbagala ward, p-value ≤ 0.05. CONCLUSION Findings from this study revealed evidence of DENV circulation during non-outbreak periods in Dar es Salaam, Tanzania. These findings underscore the importance of including testing for dengue infection in routine differential diagnoses of febrile cases, and also frequent dengue surveillance in mosquitos. This proactive approach will help early DENV outbreak detection and control in the country.
Collapse
Affiliation(s)
- Ummul-Khair Mustafa
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania.
| | - Katharina Sophia Kreppel
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
- Department of Public Health, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Elingarami Sauli
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
2
|
Kampango A, Saleh F, Furu P, Konradsen F, Alifrangis M, Schiøler KL, Weldon CW. A protocol for evaluating the entomological impact of larval source reduction on mosquito vectors at hotel compounds in Zanzibar. PLoS One 2023; 18:e0294773. [PMID: 38011153 PMCID: PMC10681246 DOI: 10.1371/journal.pone.0294773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023] Open
Abstract
There is an increasing awareness of the association between tourism activity and risks of emerging mosquito-borne diseases (MBDs) worldwide. In previous studies we showed that hotels in Zanzibar may play an important role in maintaining residual foci of mosquito vectors populations of public health concern. These findings indicated larval sources removal (LSR) interventions may have a significant negative impact on vector communities. However, a thorough analysis of the response vector species to potential LSM strategies must be evaluated prior to implementation of a large-scale area-wide control campaign. Here we propose a protocol for evaluation of the impact of LSR against mosquito vectors at hotel settings in Zanzibar. This protocol is set to determine the efficacy of LSR in a randomized control partial cross-over experimental design with four hotel compounds representing the unit of randomization for allocation of interventions. However, the protocol can be applied to evaluate the impact of LRS in more than four sites. Proposed interventions are active removal of disposed containers, and installation of water dispenser to replace single use discarded plastic water bottles, which were identified as the most important source of mosquitoes studied hotels. The ideal time for allocating intervention to the intervention arms the dry season, when the mosquito abundance is predictably lower. The possible impact of interventions on mosquito occurrence and abundance risks is then evaluated throughout subsequent rainy and dry seasons. If an appreciable reduction in mosquito abundance and occurrence risks is observed during the trial period, intervention could be extended to the control arm to determine whether any potential reduction of mosquito density is reproducible. A rigorous evaluation of the proposed LRS interventions will inspire large scale trials and provide support for evidence-based mosquito management at hotel facilities in Zanzibar and similar settings.
Collapse
Affiliation(s)
- Ayubo Kampango
- Sector de Estudos de Vectores, Instituto Nacional de Saúde (INS), Vila de Marracuene, Província de Maputo, Mozambique
- Department of Zoology and Entomology, University of Pretoria (UP), Pretoria, South Africa
| | - Fatma Saleh
- Department of Allied Health Sciences, School of Health and Medical Sciences, The State University of Zanzibar, Zanzibar, Tanzania
| | - Peter Furu
- Global Health Section, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Konradsen
- Global Health Section, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Michael Alifrangis
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Karin L. Schiøler
- Global Health Section, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Christopher W. Weldon
- Department of Zoology and Entomology, University of Pretoria (UP), Pretoria, South Africa
| |
Collapse
|
3
|
Kampango A, Hocke EF, Hansson H, Furu P, Haji KA, David JP, Konradsen F, Saleh F, Weldon CW, Schiøler KL, Alifrangis M. High DDT resistance without apparent association to kdr and Glutathione-S-transferase (GST) gene mutations in Aedes aegypti population at hotel compounds in Zanzibar. PLoS Negl Trop Dis 2022; 16:e0010355. [PMID: 35576233 PMCID: PMC9109918 DOI: 10.1371/journal.pntd.0010355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022] Open
Abstract
Global efforts to control Aedes mosquito-transmitted pathogens still rely heavily on insecticides. However, available information on vector resistance is mainly restricted to mosquito populations located in residential and public areas, whereas commercial settings, such as hotels are overlooked. This may obscure the real magnitude of the insecticide resistance problem and lead to ineffective vector control and resistance management. We investigated the profile of insecticide susceptibility of Aedes aegypti mosquitoes occurring at selected hotel compounds on Zanzibar Island. At least 100 adults Ae. aegypti females from larvae collected at four hotel compounds were exposed to papers impregnated with discriminant concentrations of DDT (4%), permethrin (0.75%), 0.05 deltamethrin (0.05%), propoxur (0.1%) and bendiocarb (0.1%) to determine their susceptibility profile. Allele-specific qPCR and sequencing analysis were applied to determine the possible association between observed resistance and presence of single nucleotide polymorphisms (SNPs) in the voltage-gated sodium channel gene (VGSC) linked to DDT/pyrethroid cross-resistance. Additionally, we explored the possible involvement of Glutathione-S-Transferase gene (GSTe2) mutations for the observed resistance profile. In vivo resistance bioassay indicated that Ae. aegypti at studied sites were highly resistant to DDT, mortality rate ranged from 26.3% to 55.3% and, moderately resistant to deltamethrin with a mortality rate between 79% to and 100%. However, genotyping of kdr mutations affecting the voltage-gated sodium channel only showed a low frequency of the V1016G mutation (n = 5; 0.97%). Moreover, for GSTe2, seven non-synonymous SNPs were detected (L111S, C115F, P117S, E132A, I150V, E178A and A198E) across two distinct haplotypes, but none of these were significantly associated with the observed resistance to DDT. Our findings suggest that cross-resistance to DDT/deltamethrin at hotel compounds in Zanzibar is not primarily mediated by mutations in VGSC. Moreover, the role of identified GSTe2 mutations in the resistance against DDT remains inconclusive. We encourage further studies to investigate the role of other potential insecticide resistance markers. Available information on mosquito resistance to insecticides is mainly restricted to residential and public areas, whereas commercial settings, such as hotels are overlooked. This may hide the real size of an insecticide resistance problem and lead to ineffective mosquito control. We investigated insecticide susceptibility of Aedes aegypti mosquitoes occurring at selected hotel compounds on Zanzibar Island. We also looked at whether resistance occurred in mosquitoes with gene mutations for two proteins (voltage-gated sodium channels and glutathione-S-transferase) that are known to cause resistance to insecticides in other parts of the world. The Ae. aegypti mosquitoes collected from hotels were highly resistant to DDT, and moderately and possibly resistant to deltamethrin and propoxur, respectively. However, resistance to these insecticides was not linked to mutations in either of the studied genes. The presence of insecticide resistance in Ae. aegypti in hotel compounds on Zanzibar is concerning and shows that these areas can act as sources of resistant mosquitoes. More needs to be done to establish the underlying causes for insecticide resistance in hotel Ae. aegypti populations, and this information can then be used to design measures that prevent resistance from becoming more widespread on Zanzibar.
Collapse
Affiliation(s)
- Ayubo Kampango
- Sector de Estudos de Vectores, Instituto Nacional de Saúde (INS), Vila de Marracuene, Província de Maputo, Mozambique
- Department of Zoology and Entomology, University of Pretoria (UP), Hatfield, South Africa
- * E-mail:
| | - Emma F. Hocke
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Helle Hansson
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Peter Furu
- Global Health Section, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Khamis A. Haji
- Zanzibar Malaria Elimination Programme (ZAMEP), Unguja Island, Zanzibar, Tanzania
| | - Jean-Philippe David
- Laboratoire d’Ecologie Alpine (LECA), UMR 5553, Centre National de la Recherche Scientifique (CNRS)—Université Grenoble-Alpes, Grenoble, France
| | - Flemming Konradsen
- Global Health Section, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Fatma Saleh
- Department of Allied Health Sciences, School of Health and Medical Sciences, The State University of Zanzibar, Unguja Island, Zanzibar, Tanzania
| | - Christopher W. Weldon
- Department of Zoology and Entomology, University of Pretoria (UP), Hatfield, South Africa
| | - Karin L. Schiøler
- Global Health Section, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Michael Alifrangis
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| |
Collapse
|
4
|
Kampango A, Furu P, Sarath DL, Haji KA, Konradsen F, Schiøler KL, Alifrangis M, Saleh F, Weldon CW. Risk factors for occurrence and abundance of Aedes aegypti and Aedes bromeliae at hotel compounds in Zanzibar. Parasit Vectors 2021; 14:544. [PMID: 34686195 PMCID: PMC8539800 DOI: 10.1186/s13071-021-05005-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/10/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A field survey was performed to investigate local environmental factors promoting occurrence and abundance of Aedes aegypti and Ae. bromeliae mosquitoes at hotel compounds in the south-east coastal region of Zanzibar Island. METHODS The potential risk factors were determined using generalized linear mixed models. Aedes (Stegomyia) spp. indices such as container index (CI) and pupae per container (PPC) index were also estimated. RESULTS Aedes aegypti and Ae. bromeliae were the most abundant vector species, accounting for 70.8% of all Aedes mosquitoes collected. The highest CI was observed for plastic containers irrespective of the season, whereas the highest PPC was observed for coconut shells and aluminium containers in the rainy and dry seasons, respectively. The risk of Aedes mosquito occurrence and abundance were significantly associated with presence of plastic containers, coconut shells, used tyres and steel containers. These were discarded in shaded places, in the open and gardens, or found in plant nurseries. CONCLUSION This study shows that Aedes species of global health significance occur at hotel compounds on this part of Zanzibar Island. The occurrence and abundance are sustained by the presence of abundant and poorly managed solid wastes and containers used for gardening tasks. This highlights an urgent need for the adoption of area-wide environmentally sustainable Aedes mosquito management interventions that also integrate solid waste management and ornamental plant production practices for reducing the risk of arboviral disease epidemics.
Collapse
Affiliation(s)
- Ayubo Kampango
- Sector de Estudos de Vetores, Instituto Nacional de Saúde (INS), Vila de Marracuene, EN1, Parcela N°3943, Província de Maputo, Mozambique
- Department of Zoology and Entomology, University of Pretoria (UP), Hatfield, South Africa
| | - Peter Furu
- Global Health Section, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Divakara L. Sarath
- South Asian Clinical Toxicology Research Collaboration (SACTRC), Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Khamis A. Haji
- Zanzibar Malaria Elimination Programme (ZAMEP), Unguja Island, Zanzibar, Tanzania
| | - Flemming Konradsen
- Global Health Section, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Karin L. Schiøler
- Global Health Section, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Michael Alifrangis
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Fatma Saleh
- Department of Allied Health Sciences, School of Health and Medical Sciences, The State University of Zanzibar, Unguja Island, Zanzibar, Tanzania
| | - Christopher W. Weldon
- Department of Zoology and Entomology, University of Pretoria (UP), Hatfield, South Africa
| |
Collapse
|