1
|
Meletiadis J, Siopi M, Spruijtenburg B, Georgiou PC, Kostoula M, Vourli S, Frantzeskaki F, Paramythiotou E, Meis JF, Tsangaris I, Pournaras S. Candida auris fungaemia outbreak in a tertiary care academic hospital and emergence of a pan-echinocandin resistant isolate, Greece, 2021 to 2023. Euro Surveill 2024; 29:2400128. [PMID: 39512169 PMCID: PMC11544718 DOI: 10.2807/1560-7917.es.2024.29.45.2400128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/29/2024] [Indexed: 11/15/2024] Open
Abstract
After the start of the COVID-19 pandemic, a rapid rise in reported numbers and wide geographic spread of Candida auris-related invasive infections has been observed globally. However, the contemporary epidemiology of C. auris fungaemias in Greece remains unknown. An outbreak of C. auris bloodstream infections has been ongoing for almost 3 years in a Greek tertiary care academic hospital, with 89 C. auris-driven episodes appearing in five waves every 6-7 months following peaks in colonisation rates by 3-4 months. All isolates clustered in clade I and were genetically related, 84% were fluconazole-resistant and all were non-resistant to amphotericin B and echinocandins, except one pan-echinocandin-resistant isolate (FKS1S639F mutant) recovered from a patient on empiric therapy with anidulafungin. Notably, C. auris was in 2023 the most prevalent (34%) cause of candidaemia in our hospital. The accelerated and long-term transmission dynamics of C. auris fungaemia underscore the need for rigorous infection control measures, while antifungal stewardship is warranted to contain the selection of echinocandin-resistant isolates.
Collapse
Affiliation(s)
- Joseph Meletiadis
- Clinical Microbiology Laboratory, "Attikon" University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Siopi
- Clinical Microbiology Laboratory, "Attikon" University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Bram Spruijtenburg
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands
| | - Panagiota-Christina Georgiou
- Clinical Microbiology Laboratory, "Attikon" University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Kostoula
- Infection Control Committee, "Attikon" University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sophia Vourli
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi, Greece
- Clinical Microbiology Laboratory, "Attikon" University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Frantzeska Frantzeskaki
- Second Critical Care Department, "Attikon" University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Jacques F Meis
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
| | - Iraklis Tsangaris
- Second Critical Care Department, "Attikon" University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyros Pournaras
- Clinical Microbiology Laboratory, "Attikon" University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Asadzadeh M, Ahmad S, Alfouzan W, Al-Obaid I, Spruijtenburg B, Meijer EFJ, Meis JF, Mokaddas E. Evaluation of Etest and MICRONAUT-AM Assay for Antifungal Susceptibility Testing of Candida auris: Underestimation of Fluconazole Resistance by MICRONAUT-AM and Overestimation of Amphotericin B Resistance by Etest. Antibiotics (Basel) 2024; 13:840. [PMID: 39335013 PMCID: PMC11428412 DOI: 10.3390/antibiotics13090840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Multidrug-resistant Candida auris has recently caused major outbreaks in healthcare facilities. Rapid and accurate antifungal susceptibility testing (AST) of C. auris is crucial for proper management of invasive infections. The Commercial Sensititre Yeast One and Vitek 2 methods underestimate or overestimate the resistance of C. auris to fluconazole and amphotericin B (AMB). This study evaluated the AST results of C. auris against fluconazole and AMB by gradient-MIC-strip (Etest) and broth microdilution-based MICRONAUT-AM-EUCAST (MCN-AM) assays. Clinical C. auris isolates (n = 121) identified by phenotypic and molecular methods were tested. Essential agreement (EA, ±1 two-fold dilution) between the two methods and categorical agreement (CA) based on the Centers for Disease Control and Prevention's (CDC's) tentative resistance breakpoints were determined. Fluconazole resistance-associated mutations were detected by PCR-sequencing of ERG11. All isolates identified as C. auris belonged to South Asian clade I and contained the ERG11 Y132F or K143R mutation. The Etest-MCN-AM EA was poor (33%) for fluconazole and moderate (76%) for AMB. The CA for fluconazole was higher (94.2%, 7 discrepancies) than for AMB (91.7%, 10 discrepancies). Discrepancies were reduced when an MCN-AM upper-limit value of 4 µg/mL for fluconazole-susceptible C. auris and an Etest upper-limit value of 8 µg/mL for the wild type for AMB were used. Our data show that resistance to fluconazole was underestimated by MCN-AM, while resistance to AMB was overestimated by Etest when using the CDC's tentative resistance breakpoints of ≥32 µg/mL for fluconazole and ≥2 µg/mL for AMB. Method-specific resistance breakpoints should be devised for accurate AST of clinical C. auris isolates for proper patient management.
Collapse
Affiliation(s)
- Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
| | - Wadha Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
- Microbiology Department, Farwaniya Hospital, Farwaniya 81004, Kuwait
| | - Inaam Al-Obaid
- Microbiology Department, Al-Sabah Hospital, Shuwaikh 70031, Kuwait
| | - Bram Spruijtenburg
- Canisius Wilhelmina Hospital (CWZ)/Dicoon, 6532 Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, 6500 Nijmegen, The Netherlands
| | - Eelco F J Meijer
- Canisius Wilhelmina Hospital (CWZ)/Dicoon, 6532 Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, 6500 Nijmegen, The Netherlands
| | - Jacques F Meis
- Radboudumc-CWZ Center of Expertise for Mycology, 6500 Nijmegen, The Netherlands
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Excellence Center for Medical Mycology, University of Cologne, 50923 Cologne, Germany
| | - Eiman Mokaddas
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
- Microbiology Department, Ibn-Sina Hospital, Shuwaikh 70031, Kuwait
| |
Collapse
|
3
|
Ionescu S, Luchian I, Damian C, Goriuc A, Porumb-Andrese E, Popa CG, Cobzaru RG, Ripa C, Ursu RG. Candida auris Updates: Outbreak Evaluation through Molecular Assays and Antifungal Stewardship-A Narrative Review. Curr Issues Mol Biol 2024; 46:6069-6084. [PMID: 38921033 PMCID: PMC11202268 DOI: 10.3390/cimb46060362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Candida auris was reported by the WHO as second to Cryptococcus neoformans, in the list of nineteen fungal priority pathogens, along with two species with a new nomenclature, Nakaseomyces glabrata (Candida glabrata) and Pichia kudriavzevii (Candida krusei). This novel classification was based on antifungal resistance, the number of deaths, evidence-based treatment, access to diagnostics, annual incidence, and complications and sequelae. We assessed which molecular assays have been used to diagnose Candida auris outbreaks in the last five years. Using "Candida auris; outbreak; molecular detection" as keywords, our search in PubMed revealed 32 results, from which we selected 23 original papers published in 2019-2024. The analyzed studies revealed that the detection methods were very different: from the VITEK® 2 System to MALDI TOF (Matrix-Assisted Laser Desorption Ionization-Time of Flight), NGS (Next-Generation Sequencing), WGS (Whole Genome Sequencing), and commercially available real-time PCR (Polymerase Chain Reaction) assays. Moreover, we identified studies that detected antifungal resistance genes (e.g., FKS for echinocandins and ERG11 for azoles). The analyzed outbreaks were from all continents, which confirms the capability of this yeast to spread between humans and to contaminate the environment. It is important that real-time PCR assays were developed for accurate and affordable detection by all laboratories, including the detection of antifungal resistance genes. This will allow the fast and efficient implementation of stewardship programs in hospitals.
Collapse
Affiliation(s)
- Silvia Ionescu
- Department of Preventive Medicine and Interdisciplinarity (IX), Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (R.G.U.)
| | - Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Costin Damian
- Department of Preventive Medicine and Interdisciplinarity (IX), Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (R.G.U.)
| | - Ancuta Goriuc
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Porumb-Andrese
- Department of Medical Specialties (III)—Discipline of Dermatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cosmin Gabriel Popa
- Department of Anatomy, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Roxana Gabriela Cobzaru
- Department of Preventive Medicine and Interdisciplinarity (IX), Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (R.G.U.)
| | - Carmen Ripa
- Department of Preventive Medicine and Interdisciplinarity (IX), Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (R.G.U.)
| | - Ramona Gabriela Ursu
- Department of Preventive Medicine and Interdisciplinarity (IX), Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (R.G.U.)
- Microbiology Department, Gynecology and Obstetrics Hospital-Cuza Voda, 700038 Iasi, Romania
| |
Collapse
|
4
|
El-Gazzar N, Elez RMMA, Attia ASA, Abdel-Warith AWA, Darwish MM, Younis EM, Eltahlawi RA, Mohamed KI, Davies SJ, Elsohaby I. Antifungal and antibiofilm effects of probiotic Lactobacillus salivarius, zinc nanoparticles, and zinc nanocomposites against Candida albicans from Nile tilapia ( Oreochromis niloticus), water and humans. Front Cell Infect Microbiol 2024; 14:1358270. [PMID: 38895734 PMCID: PMC11183309 DOI: 10.3389/fcimb.2024.1358270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/29/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Candida albicans (C. albicans) can form biofilms; a critical virulence factor that provides effective protection from commercial antifungals and contributes to public health issues. The development of new antifungal therapies, particularly those targeting biofilms, is imperative. Thus, this study was conducted to investigate the antifungal and antibiofilm effects of Lactobacillus salivarius (L. salivarius), zinc nanoparticles (ZnNPs) and nanocomposites (ZnNCs) on C. albicans isolates from Nile tilapia, fish wash water and human fish sellers in Sharkia Governorate, Egypt. Methods A cross-sectional study collected 300 samples from tilapia, fish wash water, and fish sellers (100 each). Probiotic L. salivarius was immobilized with ZnNPs to synthesize ZnNCs. The study assessed the antifungal and antibiofilm activities of ZnNPs, L. salivarius, and ZnNCs compared to amphotericin (AMB). Results Candida spp. were detected in 38 samples, which included C. albicans (42.1%), C. glabrata (26.3%), C. krusei (21.1%), and C. parapsilosis (10.5%). A total of 62.5% of the isolates were resistant to at least one antifungal agent, with the highest resistance to nystatin (62.5%). However, 75% of the isolates were highly susceptible to AMB. All C. albicans isolates exhibited biofilm-forming capabilities, with 4 (25%) isolates showing strong biofilm formation. At least one virulence-associated gene (RAS1, HWP1, ALS3, or SAP4) was identified among the C. albicans isolates. Probiotics L. salivarius, ZnNPs, and ZnNCs displayed antibiofilm and antifungal effects against C. albicans, with ZnNCs showing significantly higher inhibitory activity. ZnNCs, with a minimum inhibitory concentration (MIC) of 10 µg/mL, completely reduced C. albicans biofilm gene expression. Additionally, scanning electron microscopy images of C. albicans biofilms treated with ZnNCs revealed asymmetric, wrinkled surfaces, cell deformations, and reduced cell numbers. Conclusion This study identified virulent, resistant C. albicans isolates with strong biofilm-forming abilities in tilapia, water, and humans, that pose significant risks to public health and food safety.
Collapse
Affiliation(s)
- Nashwa El-Gazzar
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Rasha M. M. Abou Elez
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amira S. A. Attia
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Manal M. Darwish
- Medical Microbiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, Egypt
| | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rehab A. Eltahlawi
- Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Simon J. Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Ibrahim Elsohaby
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Centre for Applied One Health Research and Policy Advice (OHRP), City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Mantzana P, Protonotariou E, Meletis G, Tychala A, Skoura L. The Micronaut-AM antifungal susceptibility testing method does not overestimate amphotericin B resistance in Candida auris. Microbiol Spectr 2024; 12:e0049024. [PMID: 38578100 PMCID: PMC11064516 DOI: 10.1128/spectrum.00490-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024] Open
Affiliation(s)
- Paraskevi Mantzana
- Department of Microbiology, AHEPA University Hospital, Thessaloniki, Greece
| | | | - Georgios Meletis
- Department of Microbiology, AHEPA University Hospital, Thessaloniki, Greece
| | - Areti Tychala
- Department of Microbiology, AHEPA University Hospital, Thessaloniki, Greece
| | - Lemonia Skoura
- Department of Microbiology, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
6
|
Siopi M, Pachoulis I, Leventaki S, Spruijtenburg B, Meis JF, Pournaras S, Vrioni G, Tsakris A, Meletiadis J. Evaluation of the Vitek 2 system for antifungal susceptibility testing of Candida auris using a representative international panel of clinical isolates: overestimation of amphotericin B resistance and underestimation of fluconazole resistance. J Clin Microbiol 2024; 62:e0152823. [PMID: 38501836 PMCID: PMC11005389 DOI: 10.1128/jcm.01528-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
Although the Vitek 2 system is broadly used for antifungal susceptibility testing of Candida spp., its performance against Candida auris has been assessed using limited number of isolates recovered from restricted geographic areas. We therefore compared Vitek 2 system with the reference Clinical and Laboratory Standards Institute (CLSI) broth microdilution method using an international collection of 100 C. auris isolates belonging to different clades. The agreement ±1 twofold dilution between the two methods and the categorical agreement (CA) based on the Centers for Disease Control and Prevention's (CDC's) tentative resistance breakpoints and Vitek 2-specific wild-type upper limit values (WT-ULVs) were determined. The CLSI-Vitek 2 agreement was poor for 5-flucytosine (0%), fluconazole (16%), and amphotericin B (29%), and moderate for voriconazole (61%), micafungin (67%), and caspofungin (81%). Significant interpretation errors were recorded using the CDC breakpoints for amphotericin B (31% CA, 69% major errors; MaEs) and fluconazole (69% CA, 31% very major errors; VmEs), but not for echinocandins (99% CA, 1% MaEs for both micafungin and caspofungin) for which the Vitek 2 allowed correct categorization of echinocandin-resistant FKS1 mutant isolates. Discrepancies were reduced when the Vitek 2 WT-ULV of 16 mg/L for amphotericin B (98% CA, 2% MaEs) and of 4 mg/L for fluconazole (96% CA, 1% MaEs, 3% VmEs) were used. In conclusion, the Vitek 2 system performed well for echinocandin susceptibility testing of C .auris. Resistance to fluconazole was underestimated whereas resistance to amphotericin B was overestimated using the CDC breakpoints of ≥32 and ≥2 mg/L, respectively. Vitek 2 minimun inhibitory concentrations (MICs) >4 mg/L indicated resistance to fluconazole and Vitek 2 MICs ≤16 mg/L indicated non-resistance to amphotericin B.
Collapse
Affiliation(s)
- Maria Siopi
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Molecular Microbiology and Immunology Laboratory, Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Ioannis Pachoulis
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Molecular Microbiology and Immunology Laboratory, Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Sevasti Leventaki
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Molecular Microbiology and Immunology Laboratory, Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Bram Spruijtenburg
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, the Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
| | - Jacques F. Meis
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
| | - Spyros Pournaras
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Vrioni
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Ahmad S, Asadzadeh M, Al-Sweih N, Khan Z. Spectrum and management of rare Candida/yeast infections in Kuwait in the Middle East. Ther Adv Infect Dis 2024; 11:20499361241263733. [PMID: 39070702 PMCID: PMC11273600 DOI: 10.1177/20499361241263733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/06/2024] [Indexed: 07/30/2024] Open
Abstract
Invasive fungal infections (IFIs) are associated with high mortality rates and mostly affect patients with compromised immunity. The incidence of IFIs is increasing worldwide with the expanding population of susceptible patients. Candida and other yeast infections represent a major component of IFIs. Rare Candida/yeast infections have also increased in recent years and pose considerable diagnostic and management challenges as they are not easily recognized by routine phenotypic characteristic-based diagnostic methods and/or by the automated yeast identification systems. Rare Candida/yeasts also exhibit reduced susceptibility to antifungal drugs making proper management of invasive infections challenging. Here, we review the diagnosis and management of 60 cases of rare Candida/yeast IFIs described so far in Kuwait, an Arabian Gulf country in the Middle East. Interestingly, majority (34 of 60, 56.7%) of these rare Candida/yeast invasive infections occurred among neonates or premature, very-low-birth-weight neonates, usually following prior bacteremia episodes. The clinical details, treatment given, and outcome were available for 28 of 34 neonates. The crude mortality rate among these neonates was 32.2% as 19 of 28 (67.8%) survived the infection and were discharged in healthy condition, likely due to accurate diagnosis and frequent use of combination therapy. Physicians treating patients with extended stay under intensive care, on mechanical ventilation, receiving broad spectrum antibiotics and with gastrointestinal surgery/complications should proactively investigate IFIs. Timely diagnosis and early antifungal treatment are essential to decrease mortality. Understanding the epidemiology and spectrum of rare Candida/yeast invasive infections in different geographical regions, their susceptibility profiles and management will help to devise novel diagnostic and treatment approaches and formulate guidelines for improved patient outcome.
Collapse
Affiliation(s)
- Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Noura Al-Sweih
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Ziauddin Khan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
8
|
Amer HA, AlFaraj S, Alboqami K, Alshakarh F, Alsalam M, Kumar D, Altayieb J, Alsunid A, Khanum N, Dar NG, Badawi M, Abdallah H, Memish ZA. Characteristics and Mitigation Measures of Candida auris Infection: Descriptive Analysis from a Quaternary Care Hospital in Saudi Arabia, 2021-2022. J Epidemiol Glob Health 2023; 13:825-830. [PMID: 37870721 PMCID: PMC10686928 DOI: 10.1007/s44197-023-00154-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
OBJECTIVE To analyze the characteristics of C. auris cases, and to describe the interventions applied for improving the diagnosis and controlling the transmission. METHOD Medical records of C. auris cases reported between January 2021 until June 2022 at King Saud Medical City (KSMC), Riyadh, Kingdom of Saudi Arabia have been reviewed. We analyzed the demographic and clinical characteristics of the cases to illustrate the possible contributing factors with C. auris infection. A multidisciplinary committee has been formulated to investigate the potential source of the outbreak among clusters of cases in the intensive care units (ICU). A bundle of mitigation measures has been applied which was successful to contain the outbreak. RESULTS During the study period, a total of 129 cases of C. auris were identified, their mean age is 47 ± 22.3 SD, and 72.1% are males. 57% of cases were colonized, all of them were identified through active screening. A number of comorbidities were present including 27.9% were having hypertension, 27.1% with diabetes, 22.5% with COVID-19 and 20.2% with respiratory diseases. The average length of stay before reported positive was 36.23 days. 78.3% of those patients were in the critical care unit, 73.6% with vascular catheter, 88% with urinary catheters and 66.7% with mechanical ventilation. The vast majority of patients were using multiple antibiotics (86%). As per the univariate logistic model, risk factors significantly associated with mortality were (Age, Trauma RTA, ICU, Vascular Access, Foley Catheters, Mechanical Ventilation, Tracheostomy and Endotracheal Tubes) with p values (0.0038, 0.0159, 0.0108, 0.0122, 0.0071, <.0001, 0.0148 and 0.0107), respectively. Multivariate logistic regression showed that having a Foley Catheter was the only statistically significant factor associated with mortality. CONCLUSION This retrospective analysis highlights the main characteristics associated with C. auris-infected patients. In addition, it highlights the effectiveness of the bundle of mitigation strategies applied to limit the spread of C. auris in healthcare facilities.
Collapse
Affiliation(s)
- Hala A Amer
- Prevention and Control of Infection Administration, King Saud Medical City, Riyadh, Saudi Arabia.
- Community Medicine Research Department, National Research Center, Cairo, Egypt.
| | - Sarah AlFaraj
- Prevention and Control of Infection Administration, King Saud Medical City, Riyadh, Saudi Arabia
| | - Kholoud Alboqami
- Prevention and Control of Infection Administration, King Saud Medical City, Riyadh, Saudi Arabia
| | - Faleh Alshakarh
- Prevention and Control of Infection Administration, King Saud Medical City, Riyadh, Saudi Arabia
| | - Mona Alsalam
- Prevention and Control of Infection Administration, King Saud Medical City, Riyadh, Saudi Arabia
| | - Deva Kumar
- Prevention and Control of Infection Administration, King Saud Medical City, Riyadh, Saudi Arabia
| | - Juhaina Altayieb
- Prevention and Control of Infection Administration, King Saud Medical City, Riyadh, Saudi Arabia
| | - Antisar Alsunid
- Prevention and Control of Infection Administration, King Saud Medical City, Riyadh, Saudi Arabia
| | - Nazia Khanum
- Prevention and Control of Infection Administration, King Saud Medical City, Riyadh, Saudi Arabia
| | - Nadeem Gul Dar
- Prevention and Control of Infection Administration, King Saud Medical City, Riyadh, Saudi Arabia
| | - Muhammad Badawi
- Prevention and Control of Infection Administration, King Saud Medical City, Riyadh, Saudi Arabia
| | - Hassan Abdallah
- Prevention and Control of Infection Administration, King Saud Medical City, Riyadh, Saudi Arabia
| | - Ziad A Memish
- Research and Innovation Center, King Saud Medical City, Riyadh, Saudi Arabia
- College of Medicine, AlFaisal University, Riyadh, Saudi Arabia
- Hubert Department of Global Health, Rollins School of Public Health, Emory, University, Atlanta, USA
- Division of Infectious Diseases, Kyung Hee University, Seoul, Korea
| |
Collapse
|
9
|
Erturk Sengel B, Ekren BY, Sayin E, Cerikcioglu N, Sezerman U, Odabasi Z. Identification of Molecular and Genetic Resistance Mechanisms in a Candida auris Isolate in a Tertiary Care Center in Türkiye. Mycopathologia 2023; 188:929-936. [PMID: 37639054 DOI: 10.1007/s11046-023-00787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Candida auris is a multidrug-resistant pathogen that causes nosocomial outbreaks and high mortality. We conducted this study to investigate the molecular mechanisms of antifungal resistance in our clinical isolate of C. auris with a high level of resistance to three main classes of antifungals. MATERIAL AND METHODS A clinical C. auris isolate was identified by MALDI-TOF MS and antifungal susceptibilities were determined by the Sensititre YeastOne YO10 panel. After sequencing the whole genome of the microorganism with Oxford Nanopore NGS Technologies, a phylogenetic tree was drawn as a cladogram to detect where the C. auris clade to this study's assembly belongs. RESULTS The C. auris isolate in this study (MaCa01) was determined to be a part of the clade I (South Asian). The resistance-related genes indicated that MaCa01 would most likely be highly resistant to fluconazole (CDR1, TAC1b, and ERG11), none or little resistant to amphotericin B (AmpB) and echinocandins, and sensitive to flucytosine. The mutations found in the above-mentioned genes in the Türkiye C. auris isolate reveals an antifungal resistance pattern. This molecular resistance pattern was found consistent with the interpretation of MIC values of the antifungals according to CDC tentative breakpoints. CONCLUSION We detected the well-known antifungal resistance mutations, responsible for azole resistance in C. auris. Despite no ERG2, ERG6, and FKS mutation identified, the isolate was found to be resistant to AmpB and caspofungin based on the CDC tentative breakpoints which could be related to unidentified mutations.
Collapse
Affiliation(s)
- Buket Erturk Sengel
- Department of Infectious Disease and Clinical Microbiology, Marmara University School of Medicine, Istanbul, Türkiye.
| | - Berkay Yekta Ekren
- Department of Bioistatistics and Medical Informatics, Graduate School of Health Sciences, Acibadem University, Istanbul, Türkiye
| | - Elvan Sayin
- Department of Medical Microbiology, Marmara University School of Medicine, Istanbul, Türkiye
| | - Nilgun Cerikcioglu
- Department of Medical Microbiology, Marmara University School of Medicine, Istanbul, Türkiye
| | - Ugur Sezerman
- Department of Bioistatistics and Medical Informatics, Graduate School of Health Sciences, Acibadem University, Istanbul, Türkiye
| | - Zekaver Odabasi
- Department of Infectious Disease and Clinical Microbiology, Marmara University School of Medicine, Istanbul, Türkiye
| |
Collapse
|
10
|
Spruijtenburg B, Ahmad S, Asadzadeh M, Alfouzan W, Al-Obaid I, Mokaddas E, Meijer EFJ, Meis JF, de Groot T. Whole genome sequencing analysis demonstrates therapy-induced echinocandin resistance in Candida auris isolates. Mycoses 2023; 66:1079-1086. [PMID: 37712885 DOI: 10.1111/myc.13655] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/16/2023]
Abstract
Candida auris is an emerging, multidrug-resistant yeast, causing outbreaks in healthcare facilities. Echinocandins are the antifungal drugs of choice to treat candidiasis, as they cause few side effects and resistance is rarely found. Previously, immunocompromised patients from Kuwait with C. auris colonisation or infection were treated with echinocandins, and within days to months, resistance was reported in urine isolates. To determine whether the development of echinocandin resistance was due to independent introductions of resistant strains or resulted from intra-patient resistance development, whole genome sequencing (WGS) single-nucleotide polymorphism (SNP) analysis was performed on susceptible (n = 26) and echinocandin-resistant (n = 6) isolates from seven patients. WGS SNP analysis identified three distinct clusters differing 17-127 SNPs from two patients, and the remaining isolates from five patients, respectively. Sequential isolates within patients had a maximum of 11 SNP differences over a time period of 1-10 months. The majority of isolates with reduced susceptibility displayed unique FKS1 substitutions including a novel FKS1M690V substitution, and nearly all were genetically related, ranging from only three to six SNP differences compared to susceptible isolates from the same patient. Resistant isolates from three patients shared the common FKS1S639F substitution; however, WGS analysis did not suggest a common source. These findings strongly indicate that echinocandin resistance is induced during antifungal treatment. Future studies should determine whether such echinocandin-resistant strains are capable of long-term colonisation, cause subsequent breakthrough candidiasis, have a propensity to cross-infect other patients, or remain viable for longer time periods in the hospital environment.
Collapse
Affiliation(s)
- Bram Spruijtenburg
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Center of Expertise for Mycology Radboud University Medical Center/Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Wadha Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
- Microbiology Unit, Department of Laboratory Medicine, Farwania Hospital, Kuwait City, Kuwait
| | - Inaam Al-Obaid
- Department of Microbiology, Al-Sabah Hospital, Shuwaikh, Kuwait
| | - Eiman Mokaddas
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
- Department of Microbiology, Ibn-Sina Hospital, Shuwaikh, Kuwait
| | - Eelco F J Meijer
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Center of Expertise for Mycology Radboud University Medical Center/Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Jacques F Meis
- Center of Expertise for Mycology Radboud University Medical Center/Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Theun de Groot
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Center of Expertise for Mycology Radboud University Medical Center/Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Mulet Bayona JV, Tormo Palop N, Salvador García C, Guna Serrano MDR, Gimeno Cardona C. Candida auris from colonisation to candidemia: A four-year study. Mycoses 2023; 66:882-890. [PMID: 37401661 DOI: 10.1111/myc.13626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Candida auris has become a worrisome multi-drug resistant healthcare-associated pathogen due to its capacity to colonise patients and surfaces and to cause outbreaks of invasive infections in critically ill patients. OBJECTIVES This study evaluated the outbreak in our setting in a 4-year period, reporting the risk factors for developing candidemia in previously colonised patients, the therapeutic measures for candidemia and the outcome of candidemia and colonisation cases among all C. auris isolates and their susceptibility to antifungals. METHODS Data were retrospectively collected from patients admitted to Consorcio Hospital General Universitario de Valencia (Spain) from September 2017 to September 2021. A retrospective case-control study was designed to identify risk factors for developing C. auris candidemia in previously colonised patients. RESULTS C. auris affected 550 patients, of which 210 (38.2%) had some clinical sample positive. Isolates were uniformly resistant to fluconazole, 20 isolates were resistant to echinocandins (2.8%) and four isolates were resistant to ampfotericin B (0.6%). There were 86 candidemia cases. APACHE II, digestive disease and catheter isolate were proven to be independent risk factors for developing candidemia in previously colonised patients. Thirty-day mortality rate for C. auris candidemia cases was 32.6%, while for colonisation cases was 33.7%. CONCLUSIONS Candidemia was one of the most frequent and severe infections caused by C. auris. The risk factors identified in this study should help to detect patients who are at more risk of developing candidemia, as long as an adequate surveillance of C. auris colonisation is performed.
Collapse
Affiliation(s)
- Juan Vicente Mulet Bayona
- Department of Microbiology and Parasitology, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Nuria Tormo Palop
- Department of Microbiology and Parasitology, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Carme Salvador García
- Department of Microbiology and Parasitology, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | | | - Concepción Gimeno Cardona
- Department of Microbiology and Parasitology, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| |
Collapse
|
12
|
Asadzadeh M, Ahmad S, Al-Sweih N, Khan Z. Molecular fingerprinting by multi-locus sequence typing identifies microevolution and nosocomial transmission of Candida glabrata in Kuwait. Front Public Health 2023; 11:1242622. [PMID: 37744513 PMCID: PMC10515652 DOI: 10.3389/fpubh.2023.1242622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Backgrounds Candida glabrata is a frequently isolated non-albicans Candida species and invasive C. glabrata infections in older patients are associated with high mortality rates. Opportunistic Candida infections in critically ill patients may be either endogenous or nosocomial in origin and this distinction is critical for effective intervention strategies. This study performed multi-locus sequence typing (MLST) to study genotypic relatedness among clinical C. glabrata isolates in Kuwait. Methods Candida glabrata isolates (n = 91) cultured from 91 patients were analyzed by MLST. Repeat isolates (n = 16) from 9 patients were also used. Antifungal susceptibility testing for fluconazole, voriconazole, caspofungin and amphotericin B (AMB) was determined by Etest. Genetic relatedness was determined by constructing phylogenetic tree and minimum spanning tree by using BioNumerics software. Results Resistance to fluconazole, voriconazole and AMB was detected in 7, 2 and 10 C. glabrata isolates, respectively. MLST identified 28 sequence types (STs), including 12 new STs. ST46 (n = 33), ST3 (n = 8), ST7 (n = 6) and ST55 (n = 6) were prevalent in ≥4 hospitals. Repeat isolates obtained from same or different site yielded identical ST. No association of ST46 with source of isolation or resistance to antifungals was apparent. Microevolution and cross-transmission of infection was indicated in two hospitals that yielded majority (57 of 91, 67%) of C. glabrata. Conclusion Our data suggest that C. glabrata undergoes microevolution in hospital environment and can be nosocomially transmitted to other susceptible patients. Thus, proper infection control practices during routine procedures on C. glabrata-infected patients may prevent transmission of this pathogen to other hospitalized patients.
Collapse
Affiliation(s)
| | - Suhail Ahmad
- Department of Microbiology, College of Medicine, Kuwait University, Jabriya, Kuwait
| | | | | |
Collapse
|
13
|
Silva LN, Ramos LS, Oliveira SSC, Magalhães LB, Cypriano J, Abreu F, Macedo AJ, Branquinha MH, Santos ALS. Development of Echinocandin Resistance in Candida haemulonii: An Emergent, Widespread, and Opportunistic Fungal Pathogen. J Fungi (Basel) 2023; 9:859. [PMID: 37623630 PMCID: PMC10455776 DOI: 10.3390/jof9080859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Echinocandins, used for the prevention and treatment of invasive fungal infections, have led to a rise in breakthrough infections caused by resistant Candida species. Among these species, those belonging to the Candida haemulonii complex are rare multidrug-resistant (MDR) yeasts that are frequently misidentified but have emerged as significant healthcare-associated pathogens causing invasive infections. The objectives of this study were to investigate the evolutionary pathways of echinocandin resistance in C. haemulonii by identifying mutations in the FKS1 gene and evaluating the impact of resistance on fitness. After subjecting a MDR clinical isolate of C. haemulonii (named Ch4) to direct selection using increasing caspofungin concentrations, we successfully obtained an isolate (designated Ch4'r) that exhibited a high level of resistance, with MIC values exceeding 16 mg/L for all tested echinocandin drugs (caspofungin, micafungin, and anidulafungin). Sequence analysis revealed a specific mutation in the resistant Ch4'r strain, leading to an arginine-histidine amino acid substitution (R1354H), occurring at the G4061A position of the HS2 region of the FKS1 gene. Compared to the wild-type strain, Ch4'r exhibited significantly reduced growth proliferation, biofilm formation capability, and phagocytosis ratio, indicating a decrease in fitness. Transmission electron microscopy analysis revealed alterations in cell wall components, with a notable increase in cell wall thickness. The resistant strain also exhibited higher amounts (2.5-fold) of chitin, a cell wall-located molecule, compared to the wild-type strain. Furthermore, the resistant strain demonstrated attenuated virulence in the Galleria mellonella larval model. The evolved strain Ch4'r maintained its resistance profile in vivo since the treatment with either caspofungin or micafungin did not improve larval survival or reduce the fungal load. Taken together, our findings suggest that the acquisition of pan-echinocandin resistance occurred rapidly after drug exposure and was associated with a significant fitness cost in C. haemulonii. This is particularly concerning as echinocandins are often the first-line treatment option for MDR Candida species.
Collapse
Affiliation(s)
- Laura N. Silva
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.N.S.); (L.S.R.); (S.S.C.O.); (L.B.M.); (M.H.B.)
| | - Lívia S. Ramos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.N.S.); (L.S.R.); (S.S.C.O.); (L.B.M.); (M.H.B.)
| | - Simone S. C. Oliveira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.N.S.); (L.S.R.); (S.S.C.O.); (L.B.M.); (M.H.B.)
| | - Lucas B. Magalhães
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.N.S.); (L.S.R.); (S.S.C.O.); (L.B.M.); (M.H.B.)
| | - Jefferson Cypriano
- Laboratório de Biologia Celular e Magnetotaxia & Unidade de Microscopia Multiusuário, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (J.C.); (F.A.)
| | - Fernanda Abreu
- Laboratório de Biologia Celular e Magnetotaxia & Unidade de Microscopia Multiusuário, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (J.C.); (F.A.)
| | - Alexandre J. Macedo
- Laboratório de Biofilmes e Diversidade Microbiana, Centro de Biotecnologia e Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil;
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.N.S.); (L.S.R.); (S.S.C.O.); (L.B.M.); (M.H.B.)
- Programa de Pós-Graduação em Bioquímica (PPGBq), Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-853, Brazil
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.N.S.); (L.S.R.); (S.S.C.O.); (L.B.M.); (M.H.B.)
- Programa de Pós-Graduação em Bioquímica (PPGBq), Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-853, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
14
|
Asadzadeh M, Alfouzan W, Parker JE, Meis JF, Kelly SL, Joseph L, Ahmad S. Molecular Characterization and Sterol Profiles Identify Nonsynonymous Mutations in ERG2 as a Major Mechanism Conferring Reduced Susceptibility to Amphotericin B in Candida kefyr. Microbiol Spectr 2023; 11:e0147423. [PMID: 37358415 PMCID: PMC10434000 DOI: 10.1128/spectrum.01474-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/01/2023] [Indexed: 06/27/2023] Open
Abstract
The molecular basis of reduced susceptibility to amphotericin B (rs-AMB) among any yeasts is poorly defined. Genetic alterations in genes involved in ergosterol biosynthesis and total cell sterols were investigated among clinical Candida kefyr isolates. C. kefyr isolates (n = 81) obtained from 74 patients in Kuwait and identified by phenotypic and molecular methods were analyzed. An Etest was initially used to identify isolates with rs-AMB. Specific mutations in ERG2 and ERG6 involved in ergosterol biosynthesis were detected by PCR sequencing. Twelve selected isolates were also tested by the SensiTitre Yeast One (SYO), and total cell sterols were evaluated by gas chromatography-mass spectrometry and ERG3 and ERG11 sequencing. Eight isolates from 8 patients showed rs-AMB by Etest, including 2 isolates with additional resistance to fluconazole or to all three antifungals. SYO correctly identified 8 of 8 rs-AMB isolates. A nonsynonymous mutation in ERG2 was detected in 6 of 8 rs-AMB isolates but also in 3 of 73 isolates with a wild-type AMB pattern. One rs-AMB isolate contained a deletion (frameshift) mutation in ERG2. One or more nonsynonymous mutations was detected in ERG6 in 11 of 81 isolates with the rs-AMB or wild-type AMB pattern. Among 12 selected isolates, 2 and 2 isolates contained a nonsynonymous mutation(s) in ERG3 and ERG11, respectively. Ergosterol was undetectable in 7 of 8 rs-AMB isolates, and the total cell sterol profiles were consistent with loss of ERG2 function in 6 rs-AMB isolates and loss of ERG3 activity in another rs-AMB isolate. Our data showed that ERG2 is a major target conferring rs-AMB in clinical C. kefyr isolates. IMPORTANCE Some yeast species exhibit intrinsic resistance or rapidly acquire resistance to azole antifungals. Despite >50 years of clinical use, resistance to amphotericin B (AMB) among yeast species has been extremely rarely reported until recently. Reduced susceptibility to AMB (rs-AMB) among yeast species is, therefore, a matter of serious concern due to the availability of only four classes of antifungal drugs. Recent studies in Candida glabrata, Candida lusitaniae, and Candida auris have identified ERG genes involved in ergosterol biosynthesis as the major targets conferring rs-AMB. The results of this study also show that nonsynonymous mutations in ERG2 impair its function, abolish ergosterol from C. kefyr, and confer rs-AMB. Thus, rapid detection of rs-AMB among clinical isolates will help in proper management of invasive C. kefyr infections.
Collapse
Affiliation(s)
- Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Wadha Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Josie E. Parker
- Molecular Biosciences Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Jacques F. Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, the Netherlands
- Center of Expertise in Mycology, Radboudumc, Canisius-Wilhelmina Hospital, Nijmegen, the Netherlands
- Department of Internal Medicine, Excellence Center for Medical Mycology, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Steven L. Kelly
- Institute of Life Science, Faculty of Health, Medicine and Life Sciences, Swansea University, Swansea, Wales, United Kingdom
| | - Leena Joseph
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| |
Collapse
|
15
|
Ben Abid F, Salah H, Sundararaju S, Dalil L, Abdelwahab AH, Salameh S, Ibrahim EB, Almaslmani MA, Tang P, Perez-Lopez A, Tsui CKM. Molecular characterization of Candida auris outbreak isolates in Qatar from patients with COVID-19 reveals the emergence of isolates resistant to three classes of antifungal drugs. Clin Microbiol Infect 2023; 29:1083.e1-1083.e7. [PMID: 37116861 PMCID: PMC10132836 DOI: 10.1016/j.cmi.2023.04.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/08/2023] [Accepted: 04/22/2023] [Indexed: 04/30/2023]
Abstract
OBJECTIVES During the COVID-19 pandemic in Qatar, many patients who were severely ill were colonized and infected by Candida auris, an invasive multidrug-resistant yeast pathogen that spreads through nosocomial transmission within healthcare facilities. Here, we investigated the molecular epidemiology of these C. auris isolates and the mechanisms associated with antifungal drug resistance. METHODS Whole genomes of 76 clinical C. auris isolates, including 65 from patients with COVID-19 collected from March 2020 to June 2021, from nine major hospitals were sequenced on Illumina NextSeq. Single nucleotide polymorphisms were used to determine their epidemiological patterns and mechanisms for antifungal resistance. The data were compared with those published prior to the COVID-19 pandemic from 2018 to 2020 in Qatar. RESULTS Genomic analysis revealed low genetic variability among the isolates from patients with and without COVID-19, confirming a clonal outbreak and ongoing dissemination of C. auris among various healthcare facilities. Based on antifungal susceptibility profiles, more than 70% (22/28) of isolates were resistant to both fluconazole and amphotericin B. Variant analysis revealed the presence of multi-antifungal resistant isolates with prominent amino acid substitutions: Y132F in ERG11 and V704L in CDR1 linked to reduced azole susceptibility and the emergence of echinocandin resistance samples bearing mutations in FKS1 in comparison with pre-COVID-19 pandemic samples. One sample (CAS109) was resistant to three classes of antifungal drugs with a unique premature stop codon in ERG3 and novel mutations in CDR2, which may be associated with elevated amphotericin B and azole resistance. DISCUSSION Candida auris isolates from patients with COVID-19 and from most patient samples without COVID-19 in Qatar were highly clonal. The data demonstrated the emergence of multidrug-resistant strains that carry novel mutations linked to enhanced resistance to azoles, echinocandins, and amphotericin B. Understanding the epidemiology and drug resistance will inform the infection control strategy and drug therapy.
Collapse
Affiliation(s)
- Fatma Ben Abid
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar; Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Husam Salah
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | | | - Lamya Dalil
- Division of Microbiology, Department of Pathology, Sidra Medicine, Doha, Qatar
| | - Ayman H Abdelwahab
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Sarah Salameh
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar; Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Emad B Ibrahim
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Muna A Almaslmani
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Patrick Tang
- Weill Cornell Medicine-Qatar, Doha, Qatar; Division of Microbiology, Department of Pathology, Sidra Medicine, Doha, Qatar
| | - Andres Perez-Lopez
- Weill Cornell Medicine-Qatar, Doha, Qatar; Division of Microbiology, Department of Pathology, Sidra Medicine, Doha, Qatar.
| | - Clement K M Tsui
- Weill Cornell Medicine-Qatar, Doha, Qatar; Division of Microbiology, Department of Pathology, Sidra Medicine, Doha, Qatar; Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Infectious Diseases Research Laboratory, National Center for Infectious Diseases, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| |
Collapse
|
16
|
Asadzadeh M, Alobaid K, Ahmad S, Mazloum S. First Report of Azole-Resistant Aspergillus fumigatus with TR 46/Y121F/T289A Mutations in Kuwait and an Update on Their Occurrence in the Middle East. J Fungi (Basel) 2023; 9:784. [PMID: 37623555 PMCID: PMC10455753 DOI: 10.3390/jof9080784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
Pulmonary aspergillosis is a common fungal infection with several clinical manifestations including invasive, allergic and chronic chest diseases. Invasive pulmonary aspergillosis (IPA) is a leading cause of death in immunocompromised patients, particularly those receiving chemotherapy and among bone marrow transplant recipients. Aspergillus fumigatus is the most prevalent causative agent and voriconazole is the first-line therapy for IPA. In this study, we report the first isolation of voriconazole-resistant A. fumigatus carrying TR46/Y121F/T289A mutations from an immunocompromised pregnant lady in Kuwait. The patient was successfully treated for a probable respiratory infection with caspofungin and voriconazole. The literature review from PubMed has identified itraconazole-resistant clinical and environmental A. fumigatus isolates with TR34/L98H mutations in the cyp51A from several Middle Eastern countries including Kuwait. However, clinical A. fumigatus isolates with cyp51A TR46/Y121F/T289A mutations have not been reported previously from any country in the region while environmental isolates have been reported only from Iran. The source of voriconazole-resistant A. fumigatus CYP51A TR46/Y121F/T289A mutant in our patient remained unknown. Surveillance for azole resistance among clinical and environmental isolates of A. fumigatus is warranted in Kuwait.
Collapse
Affiliation(s)
- Mohammad Asadzadeh
- Department of Microbiology, College of Medicine, Kuwait University, Safat 13110, Kuwait;
| | - Khaled Alobaid
- Mycology Reference Laboratory, Mubarak Al-Kabeer Hospital, Ministry of Health, Jabriya 46300, Kuwait;
| | - Suhail Ahmad
- Department of Microbiology, College of Medicine, Kuwait University, Safat 13110, Kuwait;
| | - Sara Mazloum
- Microbiology Laboratory, Jaber Al-Ahmad Hospital, Ministry of Health, South Surra 91711, Kuwait;
| |
Collapse
|
17
|
Lee Y, Robbins N, Cowen LE. Molecular mechanisms governing antifungal drug resistance. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:5. [PMID: 38686214 PMCID: PMC11057204 DOI: 10.1038/s44259-023-00007-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/17/2023] [Indexed: 05/02/2024]
Abstract
Fungal pathogens are a severe public health problem. The leading causative agents of systemic fungal infections include species from the Candida, Cryptococcus, and Aspergillus genera. As opportunistic pathogens, these fungi are generally harmless in healthy hosts; however, they can cause significant morbidity and mortality in immunocompromised patients. Despite the profound impact of pathogenic fungi on global human health, the current antifungal armamentarium is limited to only three major classes of drugs, all of which face complications, including host toxicity, unfavourable pharmacokinetics, or limited spectrum of activity. Further exacerbating this issue is the growing prevalence of antifungal-resistant infections and the emergence of multidrug-resistant pathogens. In this review, we discuss the diverse strategies employed by leading fungal pathogens to evolve antifungal resistance, including drug target alterations, enhanced drug efflux, and induction of cellular stress response pathways. Such mechanisms of resistance occur through diverse genetic alterations, including point mutations, aneuploidy formation, and epigenetic changes given the significant plasticity observed in many fungal genomes. Additionally, we highlight recent literature surrounding the mechanisms governing resistance in emerging multidrug-resistant pathogens including Candida auris and Candida glabrata. Advancing our knowledge of the molecular mechanisms by which fungi adapt to the challenge of antifungal exposure is imperative for designing therapeutic strategies to tackle the emerging threat of antifungal resistance.
Collapse
Affiliation(s)
- Yunjin Lee
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| |
Collapse
|
18
|
Kordalewska M, Cancino-Prado G, Nobrega de Almeida Júnior J, Brasil Brandão I, Tigulini de Souza Peral R, Colombo AL, Perlin DS. Novel Non-Hot Spot Modification in Fks1 of Candida auris Confers Echinocandin Resistance. Antimicrob Agents Chemother 2023; 67:e0042323. [PMID: 37222585 PMCID: PMC10269051 DOI: 10.1128/aac.00423-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
We determined the echinocandin susceptibility and FKS1 genotypes of 13 clinical isolates of Candida auris that were recovered from 4 patients at a tertiary care center in Salvador, Brazil. Three isolates were categorized as echinocandin-resistant, and they harbored a novel FKS1 mutation that led to an amino acid change W691L located downstream from hot spot 1. When introduced to echinocandin-susceptible C. auris strains by CRISPR/Cas9, Fks1 W691L induced elevated MIC values to all echinocandins (anidulafungin, 16 to 32×; caspofungin, >64×; micafungin, >64×).
Collapse
Affiliation(s)
- Milena Kordalewska
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Geselle Cancino-Prado
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - João Nobrega de Almeida Júnior
- Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | | | - Arnaldo L. Colombo
- Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| |
Collapse
|
19
|
Siopi M, Peroukidou I, Beredaki MI, Spruijtenburg B, de Groot T, Meis JF, Vrioni G, Tsakris A, Pournaras S, Meletiadis J. Overestimation of Amphotericin B Resistance in Candida auris with Sensititre YeastOne Antifungal Susceptibility Testing: a Need for Adjustment for Correct Interpretation. Microbiol Spectr 2023; 11:e0443122. [PMID: 37036351 PMCID: PMC10269614 DOI: 10.1128/spectrum.04431-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Significant variation in minimal inhibitory concentrations (MIC) has been reported for amphotericin B (AMB) and C. auris, depending on the antifungal susceptibility testing (AFST) method. Although the Sensititre YeastOne (SYO) is widely used in routine laboratory testing, data regarding its performance for the AFST of C. auris are scarce. We tested AMB against 65 C. auris clinical isolates with the SYO and the reference methodology by the Clinical and Laboratory Standards Institute (CLSI). The essential agreement (EA, ±1 dilution) between the two methods and the categorical agreement (CA) based on the Centers for Disease Control and Prevention (CDC)'s tentative breakpoint of MIC ≥ 2 mg/L were determined. The SYO wild type upper limit value (WT-UL) was determined using the ECOFFinder. The modal (range) CLSI growth inhibitory MIC was lower than the SYO colorimetric MIC [1(0.25-1) versus 2(1-8) mg/L, respectively]). The CLSI-colorimetric SYO EA was 29% and the CA was 11% (89% major errors; MaE). MaE were reduced when the SYO WT-UL of 8 mg/L was used (0% MaE). Alternatively, the use of SYO growth inhibition endpoints of MIC-1 (75% growth inhibition) or MIC-2 (50% growth inhibition) resulted in 88% CA with 12% MaE and 97% CA with 3% MaE, respectively. In conclusion, SYO overestimated AMB resistance in C. auris isolates when colorimetric MICs, as per SYO instructions and the CDC breakpoint of 2 mg/L, were used. This can be improved either by using the method-specific WT-UL MIC of 8 mg/L for colorimetric MICs or by determining growth inhibition MIC endpoints, regardless of the color. IMPORTANCE Candida auris is an emerging and frequently multidrug-resistant fungal pathogen that accounts for life-threatening invasive infections and nosocomial outbreaks worldwide. Reliable AF is important for the choice of the optimal treatment. Commercial methods are frequently used without prior vigorous assessment. Resistance to AMB was over-reported with the commercial colorimetric method Sensititre YeastOne (SYO). SYO produced MICs that were 1 to 2 twofold dilutions higher than those of the reference CLSI method, resulting in 89% MaE. MaE were reduced using a SYO-specific colorimetric wild type upper limit MIC value of 8 mg/L (0%) or a 50% growth inhibition endpoint (3%).
Collapse
Affiliation(s)
- Maria Siopi
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ilektra Peroukidou
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Ioanna Beredaki
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Bram Spruijtenburg
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Centre of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Theun de Groot
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Centre of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Jacques F. Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Centre of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Georgia Vrioni
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyros Pournaras
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
20
|
Hirayama T, Miyazaki T, Sumiyoshi M, Ito Y, Ashizawa N, Takeda K, Iwanaga N, Takazono T, Yamamoto K, Izumikawa K, Yanagihara K, Makimura K, Tsukamoto K, Kohno S, Mukae H. Echinocandin Resistance in Candida auris Occurs in the Murine Gastrointestinal Tract Due to FKS1 Mutations. Antimicrob Agents Chemother 2023; 67:e0124322. [PMID: 36920237 PMCID: PMC10112215 DOI: 10.1128/aac.01243-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Candida auris is resistant to multiple antifungal agents. This study investigated its antifungal susceptibility and explored FKS1 mutations across the isolates from mice enterically colonized with wild-type C. auris and treated with echinocandin. Resistant C. auris with FKS1 mutations, including S639F, S639Y, D642Y, R1354H, or R1354Y, were isolated and found to be micafungin- and caspofungin-resistant in vivo; however, the MICs of isolates with mutation in R1354 remained below the micafungin breakpoint in vitro.
Collapse
Affiliation(s)
- Tatsuro Hirayama
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Taiga Miyazaki
- Division of Respirology, Rheumatology, Infectious Diseases, and Neurology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Makoto Sumiyoshi
- Division of Respirology, Rheumatology, Infectious Diseases, and Neurology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuya Ito
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Nobuyuki Ashizawa
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Kazuaki Takeda
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Naoki Iwanaga
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Takahiro Takazono
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuko Yamamoto
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Koichi Izumikawa
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki, Japan
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Koichi Makimura
- Teikyo University Institute of Medical Mycology, Teikyo University, Tokyo, Japan
| | - Kazuhiro Tsukamoto
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shigeru Kohno
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
21
|
Sharma C, Kadosh D. Perspective on the origin, resistance, and spread of the emerging human fungal pathogen Candida auris. PLoS Pathog 2023; 19:e1011190. [PMID: 36952448 PMCID: PMC10035752 DOI: 10.1371/journal.ppat.1011190] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023] Open
Affiliation(s)
- Cheshta Sharma
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - David Kadosh
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
22
|
Ahmad S, Asadzadeh M. Strategies to Prevent Transmission of Candida auris in Healthcare Settings. CURRENT FUNGAL INFECTION REPORTS 2023; 17:36-48. [PMID: 36718372 PMCID: PMC9878498 DOI: 10.1007/s12281-023-00451-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2022] [Indexed: 01/27/2023]
Abstract
Purpose of Review Candida auris, a recently recognized yeast pathogen, has become a major public health threat due to the problems associated with its accurate identification, intrinsic and acquired resistance to antifungal drugs, and its potential to easily contaminate the environment causing clonal outbreaks in healthcare facilities. These outbreaks are associated with high mortality rates particularly among older patients with multiple comorbidities under intensive care settings. The purpose of this review is to highlight strategies that are being adapted to prevent transmission of C. auris in healthcare settings. Recent Findings Colonized patients shed C. auris into their environment which contaminates surrounding equipment. It resists elimination even by robust decontamination procedures and is easily transmitted to new patients during close contact resulting in outbreaks. Efforts are being made to rapidly identify C. auris-infected/C. auris-colonized patients, to determine its susceptibility to antifungals, and to perform effective cleaning and decontamination of the environment and isolation of colonized patients to prevent further transmission. Summary Rapid and accurate identification of hospitalized patients infected/colonized with C. auris, rapid detection of its susceptibility patterns, and appropriate use of infection control measures can help to contain the spread of this highly pathogenic yeast in healthcare settings and prevent/control outbreaks.
Collapse
Affiliation(s)
- Suhail Ahmad
- Faculty of Medicine, Department of Microbiology, Kuwait University, PO Box: 24923, 13110 Safat, Kuwait
| | - Mohammad Asadzadeh
- Faculty of Medicine, Department of Microbiology, Kuwait University, PO Box: 24923, 13110 Safat, Kuwait
| |
Collapse
|
23
|
Fan X, Tsui CKM, Chen X, Wang P, Liu ZJ, Yang CX. High prevalence of fluconazole resistant Candida tropicalis among candiduria samples in China: An ignored matter of concern. Front Microbiol 2023; 14:1125241. [PMID: 36937265 PMCID: PMC10017723 DOI: 10.3389/fmicb.2023.1125241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction The rapid rise of azole resistance in Candida tropicalis causing invasive infections has become a public health concern; however, the prevalence of resistant isolates in urine samples was not well studied, because the clinical significance of candiduria was not unambiguous due to possible host colonization. Methods We performed a 12-year laboratory-based surveillance study of C. tropicalis causing either invasive infection or candiduria and studied their susceptibility profiles to common antifungal drugs. The complete coding domain sequence of the ERG11 gene was amplified in all fluconazole resistant isolates, and aligned with the wild-type sequence to detect nucleotide mutations. Results A total of 519 unique C. tropicalis strains isolates, 69.9% of which were isolated from urine samples and remaining 30.1% were invasive strains. Overall, 16.5% isolates were confirmed to be resistant to fluconazole, of which 91.9% were cross-resistant voriconazole. Of note, at the beginning of surveillance (2010-2011), the fluconazole resistance rates were low in both candiduria and invasive groups (6.8% and 5.9%, respectively). However, the resistant rate in the candiduria group significantly increased to 29.5% since 2012-2013 (p = 0.001) and stayed high since then, whilst the resistance rate in the invasive group only showed a gradually increasing trends till 2021 (p > 0.05). Sequence analysis of ERG11 from fluconazole-resistant strains revealed the prevalence of A395T/W mutations were relatively low (16.7%) in the beginning but reached 87.5-100% after 2014. Moreover, the A395W heterozygous mutation isolates became predominant (>60% of resistant strains) after 2016, and indeed isolates carrying corresponding amino acid substitution (Y132F) was highly resistant to fluconazole with MIC50 exceeded 256 μg/ml. Conclusion Our study revealed high azole resistant rate in candiduria with its increasing trends observed much earlier than stains causing invasive infections. Given antimicrobial resistance as a critical "One Health" issue, the emergence of antifungal resistance in Candida species that are common commensal colonizers in the human body should be concerned.
Collapse
Affiliation(s)
- Xin Fan
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Clement K. M. Tsui
- National Centre for Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Xi Chen
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Peng Wang
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhen-jia Liu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Zhen-jia Liu,
| | - Chun-xia Yang
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Chun-xia Yang,
| |
Collapse
|
24
|
Rybak JM, Cuomo CA, Rogers PD. The molecular and genetic basis of antifungal resistance in the emerging fungal pathogen Candida auris. Curr Opin Microbiol 2022; 70:102208. [PMID: 36242897 PMCID: PMC10364995 DOI: 10.1016/j.mib.2022.102208] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2023]
Abstract
Fungal infections are responsible for significant morbidity and mortality. Resistance to the limited number of agents in the antifungal armamentarium among pathogenic fungi represents a growing public health threat. Particularly concerning is the emerging fungal pathogen Candida auris that frequently exhibits resistance to the triazole class of antifungals and amphotericin B, and for which isolates resistant to all of the major antifungal classes have been reported. In this brief review, we provide an overview of what is currently known about the molecular and genetic basis for antifungal resistance in this fungal pathogen.
Collapse
Affiliation(s)
- Jeffrey M Rybak
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - P David Rogers
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
25
|
Synergistic Interaction of Caspofungin Combined with Posaconazole against FKS Wild-Type and Mutant Candida auris Planktonic Cells and Biofilms. Antibiotics (Basel) 2022; 11:antibiotics11111601. [PMID: 36421245 PMCID: PMC9686983 DOI: 10.3390/antibiotics11111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Candida auris is a potential multidrug-resistant pathogen able to cause biofilm-associated outbreaks, where frequently indwelling devices are the source of infections. The number of effective therapies is limited; thus, new, even-combination-based strategies are needed. Therefore, the in vitro efficacy of caspofungin with posaconazole against FKS wild-type and mutant Candida auris isolates was determined. The interactions were assessed utilizing the fractional inhibitory concentration indices (FICIs), the Bliss model, and a LIVE/DEAD assay. Planktonic minimum inhibitory concentrations (pMICs) for the caspofungin-posaconazole combination showed a 4- to 256-fold and a 2- to 512-fold decrease compared to caspofungin and posaconazole alone, respectively. Sessile minimum inhibitory concentrations (sMICs) for caspofungin and posaconazole in combination showed an 8- to 128-fold and a 4- to 512-fold decrease, respectively. The combination showed synergy, especially against biofilms (FICIs were 0.033-0.375 and 0.091-0.5, and Bliss cumulative synergy volumes were 6.96 and 32.39 for echinocandin-susceptible and -resistant isolates, respectively). The caspofungin-exposed (4 mg/L) C. auris biofilms exhibited increased cell death in the presence of posaconazole (0.03 mg/L) compared to untreated, caspofungin-exposed and posaconazole-treated biofilms. Despite the favorable effect of caspofungin with posaconazole, in vivo studies are needed to confirm the therapeutic potential of this combination in C. auris-associated infections.
Collapse
|
26
|
Thatchanamoorthy N, Rukumani Devi V, Chandramathi S, Tay ST. Candida auris: A Mini Review on Epidemiology in Healthcare Facilities in Asia. J Fungi (Basel) 2022; 8:1126. [PMID: 36354893 PMCID: PMC9696804 DOI: 10.3390/jof8111126] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 07/28/2023] Open
Abstract
Candida auris, a newly emerging healthcare-associated yeast pathogen from the Metschnikowiaceae family, was first described in the ear canal of an elderly Japanese patient in 2009. The yeast is one of the causative agents of candidemia, which has been linked with nosocomial outbreaks and high mortality rates in healthcare facilities worldwide. Since its first isolation, the occurrence of C. auris in six continents has becomes a grave concern for the healthcare professionals and scientific community. Recent reports showed the identification of five geographically distinct clades and high rates of antifungal resistance associated with C. auris. Till date, there are no effective treatment options, and standardized measures for prevention and control of C. auris infection in healthcare facilities. This leads to frequent therapeutic failures and complicates the eradication of C. auris infection in healthcare facilities. Thus, this review focuses on the recent understanding of the epidemiology, risk factors, diagnosis, transmission and prevention and control strategies of C. auris infection in healthcare facilities in Asia.
Collapse
Affiliation(s)
- Nishanthinie Thatchanamoorthy
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur 50603, Wilayah Persekutuan, Malaysia
| | - Velayuthan Rukumani Devi
- Department of Medical Microbiology, University Malaya Medical Centre, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur 59100, Wilayah Persekutuan, Malaysia
| | - Samudi Chandramathi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur 50603, Wilayah Persekutuan, Malaysia
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur 50603, Wilayah Persekutuan, Malaysia
| |
Collapse
|
27
|
Asadzadeh M, Al-Sweih N, Ahmad S, Khan S, Alfouzan W, Joseph L. Fatal Lodderomyces elongisporus Fungemia in a Premature, Extremely Low-Birth-Weight Neonate. J Fungi (Basel) 2022; 8:jof8090906. [PMID: 36135631 PMCID: PMC9505230 DOI: 10.3390/jof8090906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/27/2022] Open
Abstract
Many rare yeasts are emerging as pathogens, causing invasive infections in susceptible hosts that are associated with poor clinical outcome. Here, we describe the first and fatal case of Lodderomyces elongisporus fungemia in a premature, extremely low-birth-weight neonate after spontaneous vaginal delivery. The bloodstream isolate was identified as C. parapsilosis by the VITEK 2 yeast identification system and as L. elongisporus by PCR-sequencing of the internal transcribed spacer (ITS) region of ribosomal DNA. Antifungal susceptibility testing data for the isolate, performed by the broth microdilution-based MICRONAUT-AM assay, showed susceptibility to all nine antifungal drugs tested. Despite the initiation of treatment with liposomal amphotericin B, the patient died on the same day that the blood culture yielded yeast growth. This is the first report of L. elongisporus bloodstream infection in a neonate as the previous nine cases reported in the literature occurred in adult patients. The crude mortality rate for invasive L. elongisporus infection is 50%, as only 5 of 10 patients survived.
Collapse
Affiliation(s)
- Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya 46300, Kuwait
| | - Noura Al-Sweih
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya 46300, Kuwait
- Microbiology Department, Maternity Hospital, Shuwaikh 70031, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya 46300, Kuwait
- Correspondence:
| | - Seema Khan
- Microbiology Department, Maternity Hospital, Shuwaikh 70031, Kuwait
| | - Wadha Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya 46300, Kuwait
| | - Leena Joseph
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya 46300, Kuwait
| |
Collapse
|
28
|
Al-Obaid I, Asadzadeh M, Ahmad S, Alobaid K, Alfouzan W, Bafna R, Emara M, Joseph L. Fatal Breakthrough Candidemia in an Immunocompromised Patient in Kuwait Due to Candida auris Exhibiting Reduced Susceptibility to Echinocandins and Carrying a Novel Mutation in Hotspot-1 of FKS1. J Fungi (Basel) 2022; 8:jof8030267. [PMID: 35330269 PMCID: PMC8953900 DOI: 10.3390/jof8030267] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/23/2022] Open
Abstract
Candida auris is an emerging yeast pathogen that has recently caused major outbreaks in healthcare facilities worldwide. Clinical C. auris isolates are usually resistant to fluconazole and readily develop resistance to echinocandins and amphotericin B (AMB) during treatment. We describe here an interesting case of C. auris infection in an immunocompromised patient who had previously received AMB and caspofungin treatment. Subsequently, C. auris was isolated from tracheal (tracheostomy) secretions and twice from urine and all three isolates were susceptible to AMB and micafungin. The patient received a combination therapy with AMB and caspofungin. Although the C. auris was cleared from the urine, the patient subsequently developed breakthrough candidemia and the bloodstream isolate exhibited a reduced susceptibility to micafungin and also showed the presence of a novel (S639T) mutation in hotspot-1 of FKS1. Interestingly, C. auris from the tracheal (tracheostomy) secretions recovered one and four days later exhibited a reduced susceptibility to micafungin and S639Y and S639T mutations in hotspot-1 of FKS1, respectively. Although the treatment was changed to voriconazole, the patient expired. Our case highlights a novel FKS1 mutation and the problems clinicians are facing to treat invasive C. auris infections due to inherent or developing resistance to multiple antifungal drugs and limited antifungal armamentarium.
Collapse
Affiliation(s)
- Inaam Al-Obaid
- Department of Microbiology, Al-Sabah Hospital, Shuwaikh 70031, Kuwait; (I.A.-O.); (R.B.); (M.E.)
| | - Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait; (M.A.); (W.A.); (L.J.)
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait; (M.A.); (W.A.); (L.J.)
- Correspondence: ; Tel.: +00965-2463-6503
| | - Khaled Alobaid
- Department of Microbiology, Mubarak Al-Kabeer Hospital, Jabriya 46300, Kuwait;
| | - Wadha Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait; (M.A.); (W.A.); (L.J.)
| | - Ritu Bafna
- Department of Microbiology, Al-Sabah Hospital, Shuwaikh 70031, Kuwait; (I.A.-O.); (R.B.); (M.E.)
| | - Maha Emara
- Department of Microbiology, Al-Sabah Hospital, Shuwaikh 70031, Kuwait; (I.A.-O.); (R.B.); (M.E.)
| | - Leena Joseph
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait; (M.A.); (W.A.); (L.J.)
| |
Collapse
|