1
|
Zhong YX, Liao JC, Liu X, Tian H, Deng LR, Long L. Low intensity focused ultrasound: a new prospect for the treatment of Parkinson's disease. Ann Med 2023; 55:2251145. [PMID: 37634059 PMCID: PMC10461511 DOI: 10.1080/07853890.2023.2251145] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/17/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023] Open
Abstract
Background: As a chronic and progressive neurodegenerative disease, Parkinson's disease (PD) still lacks effective and safe targeted drug therapy. Low-intensity focused ultrasound (LIFU), a new method to stimulate the brain and open the blood-brain barrier (BBB), has been widely concerned by PD researchers due to its non-invasive characteristics.Methods: PubMed was searched for the past 10 years using the terms 'focused ultrasound', 'transcranial ultrasound', 'pulse ultrasound', and 'Parkinson's disease'. Relevant citations were selected from the authors' references. After excluding articles describing high-intensity focused ultrasound or non-Parkinson's disease applications, we found more than 100 full-text analyses for pooled analysis.Results: Current preclinical studies have shown that LIFU could improve PD motor symptoms by regulating microglia activation, increasing neurotrophic factors, reducing oxidative stress, and promoting nerve repair and regeneration, while LIFU combined with microbubbles (MBs) can promote drugs to cross the BBB, which may become a new direction of PD treatment. Therefore, finding an efficient drug carrier system is the top priority of applying LIFU with MBs to deliver drugs.Conclusions: This article aims to review neuro-modulatory effect of LIFU and the possible biophysical mechanism in the treatment of PD, summarize the latest progress in delivering vehicles with MBs, and discuss its advantages and limitations.
Collapse
Affiliation(s)
- Yun-Xiao Zhong
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jin-Chi Liao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xv Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hao Tian
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li-Ren Deng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ling Long
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Hada B, Karmacharya MB, Park SR, Choi BH. Low-intensity ultrasound (LIUS) differentially modulates mitochondrial reactive oxygen species (mtROS) generation by three different chemicals in PC12 cells. Free Radic Res 2021; 55:1037-1047. [PMID: 34814783 DOI: 10.1080/10715762.2021.2010730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We have previously shown that low-intensity ultrasound (LIUS) can modulate mitochondrial complex I activity and the generation of mitochondrial reactive oxygen species (mtROS) in PC12 cells. This study investigated the mechanism of LIUS by comparing its effect on mitochondrial dysfunction by three different pathways. LIUS was shown to reverse the effects of rotenone, a Q-site blocker, on the complex I inhibition, mtROS generation, and drop of mitochondrial membrane potential (Δψm). In contrast, common antioxidants, N-acetyl cysteine (NAC), and uric acid (UA) blocked rotenone-induced mtROS generation and Δψm drop without recovering the complex I activity, which suggested that Δψm drop is correlated with mtROS generation rather than complex I inhibition itself. Ionomycin, an ionophore for Ca2+, and L-buthionine-S,R-sulfoximine (BSO), an inhibitor of glutathione (GSH) biosynthesis, induced mtROS generation and Δψm drop without inhibiting complex I activity via different mechanisms. LIUS showed no effect on ionomycin-induced Δψm drop but showed partial inhibition on the other effects of ionomycin and BSO. These results suggest that LIUS might have redundant mechanisms but acted mainly on the complex I activity thereby modulating mtROS and Δψm levels. LIUS appeared to act on the Q-module of complex I because it showed no inhibitory effect on Zn2+, an inhibitor of the proton transporting P-module of complex I. Interestingly, pretreatment of LIUS for up to an hour in advance blocked the rotenone effect as efficiently as the co-treatment. Further studies are needed to reveal the exact mechanism of LIUS to inhibit complex I activity.
Collapse
Affiliation(s)
- Binika Hada
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Korea
| | | | - So Ra Park
- Department of Physiology and Biophysics, Inha University College of Medicine, Incheon, Korea
| | - Byung Hyune Choi
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Korea
| |
Collapse
|
3
|
Prada F, Cogliati C, Wu MA, Durando G, Montano N, Gaspare Vetrano I, Calliada F, Bastianello S, Pichiecchio A, Padilla F. Can Low-Intensity Pulsed Ultrasound Treat Discrete Pulmonary Lesions in Patients With COVID-19? JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:1445-1450. [PMID: 33073873 DOI: 10.1002/jum.15522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/05/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Francesco Prada
- Ultrasound Neuroimaging and Therapy Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Focused Ultrasound Foundation, Charlottesville, Virginia, USA
| | - Chiara Cogliati
- Division of Internal Medicine, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Milan, Italy
| | - Maddalena Alessandra Wu
- Division of Internal Medicine, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Milan, Italy
| | - Giovanni Durando
- Ultrasound Laboratory, Istituto Nazionale di Ricerca Metrologica, Torino, Italy
| | - Nicola Montano
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Ignazio Gaspare Vetrano
- Ultrasound Neuroimaging and Therapy Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Stefano Bastianello
- Department of Brain and Behavioral Neuroscience, University of Pavia, Pavia, Italy
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Pichiecchio
- Department of Brain and Behavioral Neuroscience, University of Pavia, Pavia, Italy
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Frederic Padilla
- Department of Radiology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Focused Ultrasound Foundation, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
Li S, Hu D, Li P, Xiao W, Li H, Liu G, Song Y, Ning S, Peng Q, Zhao D, Situ M, Li W, Wu P, Zheng J, Liu Y, Hu L, Wang P, Hu Z, Ma W, Shen J, Yang S. Parameters Indicating Development of Influenza-Associated Acute Necrotizing Encephalopathy: Experiences from a Single Center. Med Sci Monit 2021; 27:e930688. [PMID: 33934098 PMCID: PMC8101270 DOI: 10.12659/msm.930688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Influenza-associated acute necrotizing encephalopathy (IANE) can be lethal and disabling and have a sudden onset and deteriorate rapidly but lacks early diagnostic indicators. We aimed to examine the early clinical diagnostic indicators in children with IANE. Material/Methods Acute influenza patients were grouped according to their clinical manifestations: flu alone (FA), flu with febrile seizure (FS), influenza-associated encephalopathy (IAE), and IANE. The clinical features, biomarkers, neuroelectrophysiological results, and neuroimaging examination results were compared. Results A total of 31 patients were included (FA (n=4), FS (n=8), IAE (n=14), and IANE (n=5)). The IANE group, whose mean age was 3.7 years, was more likely to show rapid-onset seizure, acute disturbance of consciousness (ADOC), Babinski’s sign, and death/sequela. More patients in the IANE group required tracheal intubation mechanical ventilation and received intravenous immunoglobulins (IVIG) and glucocorticoids. The alanine aminotransferase (ALT), aspartate transaminase (AST), and lactate dehydrogenase (LDH) levels in the IANE group were significantly higher than in the FS and IAE groups. The aquaporin-4 (AQP-4) antibody and malondialdehyde (MDA) levels in the serum and cerebrospinal fluid (CSF) were notably higher in IANE patients in the acute stage compared with FS and IAE patients. All patients in the IANE group had positive neuroimaging findings. Conclusions Early clinical warning factors for IANE include rapid-onset seizures in patients under 4 years of age, ADOC, and pathological signs. Increased AQP-4 antibodies and MDA levels in CSF might contribute to early diagnosis. Early magnetic resonance venography (MRV) and susceptibility-weighted imaging (SWI) sequences, or thrombelastography to identify deep vein thrombosis, might indicate clinical deterioration.
Collapse
Affiliation(s)
- Suyun Li
- Department of Pediatric Emergency Medicine, Guangzhou Women's and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Dandan Hu
- Department of Pediatric Neurology, Guangzhou Women's and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Peiqing Li
- Department of Pediatric Emergency Medicine, Guangzhou Women's and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Weiqiang Xiao
- Department of Radiology, Guangzhou Women's and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Huixian Li
- Data Statistics Center, Guangzhou Women's and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Guangming Liu
- Department of Pediatric Emergency Medicine, Guangzhou Women's and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Yongling Song
- Department of Pediatric Emergency Medicine, Guangzhou Women's and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Shuyao Ning
- Department of Pediatric Neurology, Guangzhou Women's and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Qiuyan Peng
- Department of Pediatric Emergency Medicine, Guangzhou Women's and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Danyang Zhao
- Department of Disease Control and Prevention, Guangzhou Women's and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Minxiong Situ
- Department of Disease Control and Prevention, Guangzhou Women's and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Wanqi Li
- Department of Pediatric Emergency Medicine, Guangzhou Women's and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Peiqun Wu
- Department of Pediatric Emergency Medicine, Guangzhou Women's and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Jipeng Zheng
- Department of Pediatric Emergency Medicine, Guangzhou Women's and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Yueting Liu
- Department of Pediatric Emergency Medicine, Guangzhou Women's and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Lin Hu
- Department of Pediatric Emergency Medicine, Guangzhou Women's and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Pengfei Wang
- Department of Pediatric Emergency Medicine, Guangzhou Women's and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Zhengbin Hu
- Department of Pediatric Emergency Medicine, Guangzhou Women's and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Wencheng Ma
- Department of Pediatric Emergency Medicine, Guangzhou Women's and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Jun Shen
- Department of Pediatric Emergency Medicine, Guangzhou Women's and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Sida Yang
- Department of Pediatric Neurology, Guangzhou Women's and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
5
|
Mocciaro E, Grant A, Esenaliev RO, Petrov IY, Petrov Y, Sell SL, Hausser NL, Guptarak J, Bishop E, Parsley MA, Bolding IJ, Johnson KM, Lidstone M, Prough DS, Micci MA. Non-Invasive Transcranial Nano-Pulsed Laser Therapy Ameliorates Cognitive Function and Prevents Aberrant Migration of Neural Progenitor Cells in the Hippocampus of Rats Subjected to Traumatic Brain Injury. J Neurotrauma 2020; 37:1108-1123. [DOI: 10.1089/neu.2019.6534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Emanuele Mocciaro
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Auston Grant
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Rinat O. Esenaliev
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, Texas
| | - Irene Y. Petrov
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, Texas
| | - Yuriy Petrov
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, Texas
| | - Stacy L. Sell
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Nicole L Hausser
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Jutatip Guptarak
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Elizabeth Bishop
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Margaret A. Parsley
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Ian J. Bolding
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Kathia M. Johnson
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Maxwell Lidstone
- College of Natural Sciences, University of Texas at Austin, Austin, Texas
| | - Donald S. Prough
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Maria-Adelaide Micci
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
6
|
Kim KH, Im HW, Karmacharya MB, Kim S, Min BH, Park SR, Choi BH. Low-intensity ultrasound attenuates paw edema formation and decreases vascular permeability induced by carrageenan injection in rats. JOURNAL OF INFLAMMATION-LONDON 2020; 17:7. [PMID: 32082083 PMCID: PMC7020343 DOI: 10.1186/s12950-020-0235-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/22/2020] [Indexed: 11/10/2022]
Abstract
Background Therapeutic potential of low-intensity ultrasound (LIUS) has become evident in various musculoskeletal diseases. We have previously shown that LIUS has an inhibitory effect on local edema in various diseases including the arthritis and brain injury. In this study, we examined whether LIUS can attenuate paw edema formation vis-à-vis vascular permeability and inflammation in rats induced by carrageenan. LIUS with a frequency of 1 MHz and the intensities of 50, 100, or 200 mW/cm2 were exposed on rat paws for 10 min immediately after carrageenan injection. Results Carrageenan injection induced paw edema which was peaked at 6 h and gradually decreased nearly to the initial baseline value after 72 h. LIUS showed a significant reduction of paw edema formation at 2 and 6 h at all intensities tested. The highest reduction was observed at the intensity of 50 mW/cm2. Histological analyses confirmed that LIUS clearly decreased the carrageenan-induced swelling of interstitial space under the paw skin and infiltration of polymorphonuclear leukocytes. Moreover, Evans Blue extravasation analyses exhibited a significant decreases of vascular permeability by LIUS. Finally, immunohistochemical staining showed that expression of pro-inflammatory proteins, namely, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) induced by carrageenan injection was reduced back to the normal level after LIUS stimulation. Conclusions These results provide a new supporting evidence for LIUS as a therapeutic alternative for the treatment of edema in inflammatory diseases such as cellulitis.
Collapse
Affiliation(s)
- Kil Hwan Kim
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Hyeon-Woo Im
- 2Department of Physiology and Biophysics, Inha University College of Medicine, 100 Inha-ro, Nam-gu, Incheon, 22212 Republic of Korea
| | - Mrigendra Bir Karmacharya
- 3Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Sejong Kim
- 4Department of Biomedical Sciences, Inha University College of Medicine, 100 Inha-ro, Nam-gu, Incheon, 22212 Republic of Korea
| | - Byoung-Hyun Min
- 5Department of Orthopaedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - So Ra Park
- 2Department of Physiology and Biophysics, Inha University College of Medicine, 100 Inha-ro, Nam-gu, Incheon, 22212 Republic of Korea
| | - Byung Hyune Choi
- 4Department of Biomedical Sciences, Inha University College of Medicine, 100 Inha-ro, Nam-gu, Incheon, 22212 Republic of Korea
| |
Collapse
|
7
|
Low-Intensity Ultrasound Decreases Ischemia-Induced Edema by Inhibiting N-Methyl- d-Aspartic Acid Receptors. Can J Neurol Sci 2018; 45:675-681. [DOI: 10.1017/cjn.2018.331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractBackground: We have previously shown that low-intensity ultrasound (LIUS), a noninvasive mechanical stimulus, inhibits brain edema formation induced by oxygen and glucose deprivation (OGD) or treatment with glutamate, a mediator of OGD-induced edema, in acute rat hippocampal slice model in vitro. Methods: In this study, we treated the rat hippocampal slices with N-methyl-d-aspartic acid (NMDA) or (S)-3,5-dihydroxyphenylglycine (DHPG) to determine whether these different glutamate receptor agonists induce edema. The hippocampal slices were then either sonicated with LIUS or treated with N-methyl-d-aspartic acid receptor (NMDAR) antagonists, namely, MK-801 and ketamine, and observed their effects on edema formation. Results: We observed that treatment with NMDA, an agonist of ionotropic glutamate receptors, induced brain edema at similar degrees compared with that induced by OGD. However, treatment with DHPG, an agonist of metabotropic glutamate receptors, did not significantly induce brain edema. Treatment with the NMDAR antagonists MK-801 or ketamine efficiently prevented brain edema formation by both OGD and NMDA in a concentration-dependent manner. N-Methyl-d-aspartic acid-induced brain edema was alleviated by LIUS in an intensity-dependent manner when ultrasound was administered at 30, 50, or 100 mW/cm2 for 20 minutes before the induction of the edema. Furthermore, LIUS reduced OGD- and NMDA-induced phosphorylation of NMDARs at Y1325. Conclusion: These results suggest that LIUS can inhibit OGD- or NMDA-induced NMDAR activation by preventing NMDAR phosphorylation, thereby reducing a subsequent brain edema formation. The mechanisms by which LIUS inhibits NMDAR phosphorylation need further investigation.
Collapse
|
8
|
Karmacharya MB, Hada B, Park SR, Choi BH. Low-Intensity Ultrasound Reduces High Glucose-Induced Nitric Oxide Generation in Retinal Pigment Epithelial Cells. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:647-656. [PMID: 29307443 DOI: 10.1016/j.ultrasmedbio.2017.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 11/21/2017] [Accepted: 12/03/2017] [Indexed: 06/07/2023]
Abstract
Diabetic retinopathy (DR) is a severe micro-vascular complication of diabetes. High glucose (HG)-evoked nitric oxide (NO) production mediated by increased oxidative stress is a key factor in DR pathogenesis. In this study, we examined whether low-intensity ultrasound (LIUS) stimulation can reduce HG-induced NO generation. We determined that LIUS stimulation decreased the HG-induced NO generation possibly via inhibition of reactive oxygen species (ROS) and subsequently diminished the associated pro-inflammatory pathway involving the induced expression of inducible nitric oxide synthase, cyclooxygenase-2 and vascular endothelial growth factor. In addition, we determined that LIUS stimulation reduced the quantity of NO produced by N-acetylcysteine, which was not mediated by ROS. These results indicate that LIUS can inhibit both ROS-dependent and -independent NO generation processes in ARPE-19 cells. We envision LIUS as a potential therapeutic alternative to treat DR. Further studies are required to understand the underlying mechanism of the LIUS-induced reduction of NO generation for DR therapy.
Collapse
Affiliation(s)
| | - Binika Hada
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, South Korea
| | - So Ra Park
- Department of Physiology and Biophysics, Inha University College of Medicine, Incheon, South Korea
| | - Byung Hyune Choi
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, South Korea.
| |
Collapse
|
9
|
Chen SF, Su WS, Wu CH, Lan TH, Yang FY. Transcranial Ultrasound Stimulation Improves Long-Term Functional Outcomes and Protects Against Brain Damage in Traumatic Brain Injury. Mol Neurobiol 2018; 55:7079-7089. [PMID: 29383687 DOI: 10.1007/s12035-018-0897-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 01/09/2018] [Indexed: 01/05/2023]
Abstract
The purpose of this study was to assess the long-term treatment efficacy of low-intensity pulsed ultrasound (LIPUS) on functional outcomes, brain edema, and the possible involvement of reactions in mice following traumatic brain injury (TBI). Mice subjected to controlled cortical impact injury received LIPUS treatment daily for a period of 4 weeks. The effects of LIPUS on edema were detected by MR imaging in the mouse brain at 148 days following TBI. Long-term functional outcomes of LIPUS stimulation were evaluated by behavioral analyses. One-way or two-way analysis of variance and Student's t test were used for statistical analyses, with a significant level of .05. Up to post-injury day 148, treatment with LIPUS significantly improved functional outcomes (all p < 0.05). LIPUS also significantly attenuated brain edema and neuronal death at day 148 after TBI (all p < 0.05). Furthermore, LIPUS reduced MMP9 activity, neutrophil infiltration, and microglial activation at day 1 or day 4 following TBI (all p < 0.05). Meanwhile, LIPUS increased the Bcl-2/Bax ratio and enhanced the phosphorylation of Bad and FOXO-1 at day 1 or day 4 following TBI (all p < 0.05). Almost 5 months of follow-up showed that the treatment efficacy of post-injury LIPUS stimulation on reduced brain edema and improved functional outcomes persisted over time after TBI. The neuroprotective effects of LIPUS are associated with a reduction of early inflammatory events and inhibition of apoptotic progression.
Collapse
Affiliation(s)
- Szu-Fu Chen
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan.,Departments of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Shen Su
- Department of Biomedical Imaging and Radiological Sciences, School of Biomedical Science and Engineering, National Yang-Ming University, No. 155, Sec. 2, Li-Nong St., Taipei, 11221, Taiwan
| | - Chun-Hu Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Tsuo-Hung Lan
- Departments of Psychiatry, National Yang-Ming University, Taipei, Taiwan.,Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Feng-Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, School of Biomedical Science and Engineering, National Yang-Ming University, No. 155, Sec. 2, Li-Nong St., Taipei, 11221, Taiwan. .,Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
10
|
Low-intensity pulsed ultrasound improves behavioral and histological outcomes after experimental traumatic brain injury. Sci Rep 2017; 7:15524. [PMID: 29138458 PMCID: PMC5686128 DOI: 10.1038/s41598-017-15916-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/03/2017] [Indexed: 12/22/2022] Open
Abstract
The purpose of this study was to investigate the neuroprotective effects of low-intensity pulsed ultrasound (LIPUS) on behavioral and histological outcomes in a mouse model of traumatic brain injury (TBI). Mice subjected to controlled cortical impact injury were treated with LIPUS in the injured region daily for a period of 4 weeks. The effects of LIPUS on edema were observed by MR imaging in the mouse brain at 1 and 4 days following TBI. Brain water content, blood-brain barrier permeability, histology analysis, and behavioral studies were performed to assess the effects of LIPUS. Two-way analysis of variance and Student t test were used for statistical analyses, with a significant level of 0.05. Treatment with LIPUS significantly attenuated brain edema, blood-brain barrier permeability, and neuronal degeneration beginning at day 1. Compared with the TBI group, LIPUS also significantly improved functional recovery and reduced contusion volumes up to post-injury day 28. Post-injury LIPUS treatment reduced brain edema and improved behavioral and histological outcomes following TBI. The neuroprotective effects of LIPUS may be a promising new technique for treating TBI.
Collapse
|
11
|
Yulug B, Hanoglu L, Kilic E. The neuroprotective effect of focused ultrasound: New perspectives on an old tool. Brain Res Bull 2017; 131:199-206. [PMID: 28458041 DOI: 10.1016/j.brainresbull.2017.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/24/2017] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Transcranial focused ultrasound (tFUS) is a novel technique that can noninvasively modulate the cortical function. Moreover, there are rapidly replicating evidence suggesting the role of tFUS for targeted neuroprotective drug delivery by increasing the permeability of the central nervous system barrier that results with increased neuroprotective activity. In contrast to the indirect neuroprotective effect, there is rare evidence suggesting the direct parenchymal neuroprotective effect of transcranial focused ultrasound (tFUS). In the light of these findings, we aimed to review the direct and indirect neuroprotective effect of FUS in various animal models of Stroke, Parkinson's Disease, Alzheimer's Disease and Major Depressive Disorder. METHODS A literary search was conducted, utilizing search terms "animal", "focused ultrasound", "neuroprotection", "Alzheimer's Disease", "Parkinson's Disease ", "Stroke", "Neurodegenerative disease" and "Major Depressive Disorder". Items were excluded if they failed to: (1) include patients, (2) editorials, and letters. RESULTS This mini-review article presents an up-to-date review of the neuroprotective effects of tFUS in animal studies and suggests the dual neurotherapeutic role of tFUS in various neurodegenerative diseases. CONCLUSION Future well-conducted human studies are emergently needed to assess the neuroprotective effects of FUS.
Collapse
Affiliation(s)
- Burak Yulug
- Department of Neurology, University of Istanbul-Medipol, Istanbul, Turkey; Regenerative and Restorative Medical Research Center, Experimental Neurology Laboratuary, University of Istanbul-Medipol, Istanbul, Turkey; Department of Physiology, University of Istanbul-Medipol, Istanbul, Turkey.
| | - Lutfu Hanoglu
- Department of Neurology, University of Istanbul-Medipol, Istanbul, Turkey; Regenerative and Restorative Medical Research Center, Experimental Neurology Laboratuary, University of Istanbul-Medipol, Istanbul, Turkey; Department of Physiology, University of Istanbul-Medipol, Istanbul, Turkey
| | - Ertugrul Kilic
- Regenerative and Restorative Medical Research Center, Experimental Neurology Laboratuary, University of Istanbul-Medipol, Istanbul, Turkey; Department of Physiology, University of Istanbul-Medipol, Istanbul, Turkey
| |
Collapse
|
12
|
Low-Intensity Ultrasound Decreases α-Synuclein Aggregation via Attenuation of Mitochondrial Reactive Oxygen Species in MPP(+)-Treated PC12 Cells. Mol Neurobiol 2016; 54:6235-6244. [PMID: 27714630 DOI: 10.1007/s12035-016-0104-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/06/2016] [Indexed: 12/23/2022]
Abstract
Many studies have shown that mitochondrial dysfunction and the subsequent oxidative stress caused by excessive reactive oxygen species (ROS) generation play a central role in the pathogenesis of Parkinson's disease (PD). We have previously shown that low-intensity ultrasound (LIUS) could reduce ROS generation by L-buthionine-(S,R)-sulfoximine (BSO) in retinal pigment epithelial cells. In this study, we studied the effects of LIUS stimulation on the ROS-dependent α-synuclein aggregation in 1-methyl-4-phenylpyridinium ion (MPP+)-treated PC12 cells. We found that LIUS stimulation suppressed the MPP+-induced ROS generation and inhibition of mitochondrial complex I activity in PC12 cells in an intensity-dependent manner at 30, 50, and 100 mW/cm2. Furthermore, LIUS stimulation at 100 mW/cm2 suppressed inhibition of mitochondrial complex activity by MPP+ and actually resulted in a decrease of α-synuclein phosphorylation and aggregation induced by MMP+ treatment in PC12 cells. LIUS stimulation also inhibited expression of casein kinase 2 (CK2) that appears to mediate ROS-dependent α-synuclein aggregation. Finally, LIUS stimulation alleviated the death of PC12 cells by MPP+ treatment in an intensity-dependent manner. We, hence, suggest that LIUS stimulation inhibits ROS generation by MPP+ treatment, thereby suppressing α-synuclein aggregation in PC12 cells.
Collapse
|