1
|
Givens DI. Animal board invited review: Dietary transition from animal to plant-derived foods: Are there risks to health? Animal 2024; 18:101263. [PMID: 39121724 DOI: 10.1016/j.animal.2024.101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024] Open
Abstract
Animal-derived foods (ADFs) are a very varied group of foods, but many are nutrient rich and contain higher quality protein than provided by plant-derived foods such that a simple replacement of ADF protein is likely to lead to a reduction in overall protein quality. In addition, many ADFs are richer in some nutrients than plant-based foods (e.g. Fe, Ca) and these often have a higher bioavailability. ADFs also provide nutrients that plants cannot supply (e.g. vitamin B12) and some provide beneficial health functionality (e.g. hypotensive) which is not explained by traditional nutrition. However, there remains a good health reason to increase the proportion of plant-derived food in many diets to increase the intake of dietary fibre which is often consumed at very sub-optimal levels. It seems logical that the increased plant-derived foods should replace the ADFs that have the least benefit, the greatest risk to health and the highest environmental impact. Processed meat fits these characteristics and should be an initial target for replacement with plant-based based protein-rich foods that additionally provide the necessary nutrients and have high-quality dietary fibre. Processed meat covers a wide range of products including several traditional foods (e.g. sausages) which will make decisions on food replacement challenging. There is therefore an urgent need for research to better define the relative health risks associated with the range of processed meat-based foods. The aim of this review is to examine the evidence on the benefits and risks of this dietary transition including the absolute necessity to consider initial nutrient status before the replacement of ADFs is considered.
Collapse
Affiliation(s)
- D I Givens
- Institute for Food, Nutrition and Health, University of Reading, Earley Gate, Reading RG6 6EU, United Kingdom.
| |
Collapse
|
2
|
Lawson I, Wood C, Syam N, Rippin H, Dagless S, Wickramasinghe K, Amoutzopoulos B, Steer T, Key TJ, Papier K. Assessing Performance of Contemporary Plant-Based Diets against the UK Dietary Guidelines: Findings from the Feeding the Future (FEED) Study. Nutrients 2024; 16:1336. [PMID: 38732583 PMCID: PMC11085280 DOI: 10.3390/nu16091336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/12/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Uncertainty remains about the composition of contemporary plant-based diets and whether they provide recommended nutrient intakes. We established Feeding the Future (FEED), an up-to-date online cohort of UK adults following different plant-based diets and diets containing meat and fish. We recruited 6342 participants aged 18-99 [omnivores (1562), flexitarians (1349), pescatarians (568), vegetarians (1292), and vegans (1571)] between February 2022 and December 2023, and measured diet using a food frequency questionnaire and free text. We compared personal characteristics and dietary intakes between diet groups and assessed compliance with dietary guidelines. Most participants met UK dietary recommendations for fruit and vegetables, sodium, and protein, although protein intakes were lowest among vegetarians and vegans. Omnivores did not meet the fibre recommendation and only vegans met the saturated fat recommendation. All diet groups exceeded the free sugars recommendation. Higher proportions of vegetarians and vegans were below the estimated average requirements (EARs) for zinc, iodine, selenium, and, in vegans, vitamins A and B12, whereas calcium intakes were similar across the diet groups. People following plant-based diets showed good compliance with most dietary targets, and their risk for inadequate intakes of certain nutrients might be mitigated by improved dietary choices and/or food fortification.
Collapse
Affiliation(s)
- Izabella Lawson
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK; (I.L.); (T.J.K.)
| | - Caroline Wood
- Public Affairs & Communications Directorate, University of Oxford, Oxford OX1 2JD, UK;
| | - Nandana Syam
- Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK;
| | - Holly Rippin
- Special Initiative on NCDs and Innovation, World Health Organization Regional Office for Europe, DK-2100 Copenhagen, Denmark; (H.R.); (S.D.); (K.W.)
| | - Selina Dagless
- Special Initiative on NCDs and Innovation, World Health Organization Regional Office for Europe, DK-2100 Copenhagen, Denmark; (H.R.); (S.D.); (K.W.)
| | - Kremlin Wickramasinghe
- Special Initiative on NCDs and Innovation, World Health Organization Regional Office for Europe, DK-2100 Copenhagen, Denmark; (H.R.); (S.D.); (K.W.)
| | - Birdem Amoutzopoulos
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SL, UK; (B.A.); (T.S.)
| | - Toni Steer
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SL, UK; (B.A.); (T.S.)
| | - Timothy J. Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK; (I.L.); (T.J.K.)
| | - Keren Papier
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK; (I.L.); (T.J.K.)
| |
Collapse
|
3
|
Radoš K, Pastor K, Kojić J, Drakula S, Dujmić F, Novotni D, Čukelj Mustač N. Influence of Infill Level and Post-Processing on Physical Parameters and Betaine Content of Enriched 3D-Printed Sweet Snacks. Foods 2023; 12:4417. [PMID: 38137221 PMCID: PMC10742536 DOI: 10.3390/foods12244417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Betaine is a non-essential amino acid with proven functional properties and untapped potential for cereal food enrichment. While 3D printing represents a viable approach for manufacturing enriched cereal-based foods with novel shapes and textures, it is crucial to consider the impact of printing parameters and post-processing on the betaine content and properties of these products. The aim of this study was to investigate the influence of the infill level (20, 30 and 40%) of 3D-printed cuboid shapes and the post-processing techniques (drying oven, vacuum dryer, air fryer) of betaine-enriched oat-based snacks on the print quality, texture, and sensory properties, as well as the content of preserved betaine. The interaction of post-processing technique and infill level influenced the length deviation and texture properties, as well as the betaine content of snacks. Height stability was only influenced by post-processing technique. In general, oven-dried snacks showed the best dimensional stability, having the lowest width/length deformation (about 8%) at the infill level of 20%. Betaine was best preserved (19-31% loss) in snacks post-processed in a vacuum dryer (1281-1497 mg/g), followed by an air fryer and a drying oven, where betaine loss was in the range 28-55%. Air-fried snacks with 40% infill level had the highest values of instrumentally measured crunchiness (38.9 Nmm) as well as sensory test values for liking of texture (7.5), intensity of odor (6) and overall flavor (6). Overall, air frying proved to be a convenient and quick post-processing technique for 3D-printed snacks, but infill patterns for preserving betaine should be further explored. Vacuum drying could be used to preserve bioactive compounds, but efforts should be made to minimize its negative impact on the physical deformations of the 3D-printed products.
Collapse
Affiliation(s)
- Kristina Radoš
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (K.R.); (S.D.); (F.D.); (N.Č.M.)
| | - Kristian Pastor
- Faculty of Technology Novi Sad, University of Novi Sad, Bul. Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Jovana Kojić
- Institute of Food Technology in Novi Sad (FINS), University of Novi Sad, Bul. cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Saša Drakula
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (K.R.); (S.D.); (F.D.); (N.Č.M.)
| | - Filip Dujmić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (K.R.); (S.D.); (F.D.); (N.Č.M.)
| | - Dubravka Novotni
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (K.R.); (S.D.); (F.D.); (N.Č.M.)
| | - Nikolina Čukelj Mustač
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (K.R.); (S.D.); (F.D.); (N.Č.M.)
| |
Collapse
|
4
|
Sharifan P, Darroudi S, Rafiee M, Roustai Geraylow K, Hemmati R, Rashidmayvan M, Safarian M, Eslami S, Vatanparast H, Zare-Feizabadi R, Mohammadi-Bjgiran M, Ghazizadeh H, Khorasanchi Z, Bagherniya M, Ferns G, Rezaie M, Ghayour-Mobarhan M. The effects of low-fat dairy products fortified with 1500 IU vitamin D 3 on serum liver function biomarkers in adults with abdominal obesity: a randomized controlled trial. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2023; 42:102. [PMID: 37749703 PMCID: PMC10521569 DOI: 10.1186/s41043-023-00401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 06/16/2023] [Indexed: 09/27/2023]
Abstract
INTRODUCTION Vitamin D deficiency has been reported to affect liver function biomarkers. This study was aimed to investigate the effect of consuming vitamin D fortified low-fat dairy products on liver function tests in adults with abdominal obesity. METHODS This total blinded randomized controlled trial was undertaken on otherwise healthy abdominally obese adults living in Mashhad, Iran. Milk and yogurt were fortified with 1500 IU vitamin D3 nano-capsules. Participants were randomized to receive fortified milk (n = 73), plain milk (n = 73), fortified yogurt (n = 69), and plain yogurt (n = 74) for 10 weeks. Blood samples were taken at baseline and at the end of the study to assess serum levels of vitamin D, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase (ALP), and Gamma glutamyl transferase. RESULTS A total of 289 participants completed the study (54% female). The groups were homogenous in terms of age, sex, weight, energy intake, and physical activity level (p-value > 0.05). After the trial, vitamin D serum levels were significantly increased in both groups receiving fortified products (both p < 0.001). There was a significant time*group effect only in serum ALP (p < 0.001). CONCLUSION Consumption of dairy products fortified by 1500 IU vitamin D3 might have detrimental effects on serum levels of some liver enzymes in individuals with abdominal obesity. Further studies needed to determine these effects and underlying mechanisms. TRIAL REGISTRATION IRCT20101130005280N27 .
Collapse
Affiliation(s)
- Payam Sharifan
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran
| | - Susan Darroudi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Rafiee
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran
| | - Kiarash Roustai Geraylow
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran
| | - Romina Hemmati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran
| | - Mohammad Rashidmayvan
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran
| | - Mohamad Safarian
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Eslami
- Department of Medical Informatics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Vatanparast
- College of Pharmacy and Nutrition, School of Public Health, University of Saskatchewan, Saskatoon, Canada
| | - Reza Zare-Feizabadi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mohammadi-Bjgiran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Ghazizadeh
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khorasanchi
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran
| | - Mohammad Bagherniya
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gordon Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Room 346, Mayfield House, Falmer, Brighton, BN1 9PH, SSX, UK
| | - Mitra Rezaie
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Ghayour-Mobarhan
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Fatemi SF, Irankhah K, Kruger J, Bruins MJ, Sobhani SR. Implementing micronutrient fortification programs as a potential practical contribution to achieving sustainable diets. NUTR BULL 2023; 48:411-424. [PMID: 37503811 DOI: 10.1111/nbu.12630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
Due to sustainability concerns related to current diets and environmental challenges, it is crucial to have sound policies to protect human and planetary health. It is proposed that sustainable diets will improve public health and food security and decrease the food system's effect on the environment. Micronutrient deficiencies are a well-known major public health concern. One-third to half of the world's population suffers from nutrient deficiencies, which have a negative impact on society in terms of unrealised potential and lost economic productivity. Large-scale fortification with different micronutrients has been found to be a useful strategy to improve public health. As a cost-effective strategy to improve micronutrient deficiency, this review explores the role of micronutrient fortification programmes in ensuring the nutritional quality (and affordability) of diets that are adjusted to help ensure environmental sustainability in the face of climate change, for example by replacing some animal-sourced foods with nutrient-dense, plant-sourced foods fortified with the micronutrients commonly supplied by animal-sourced foods. Additionally, micronutrient fortification considers food preferences based on the dimensions of a culturally sustainable diet. Thus, we conclude that investing in micronutrient fortification could play a significant role in preventing and controlling micronutrient deficiencies, improving diets and being environmentally, culturally and economically sustainable.
Collapse
Affiliation(s)
- Seyedeh Fatemeh Fatemi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiyavash Irankhah
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Johanita Kruger
- Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | | | - Seyyed Reza Sobhani
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Feng C, Song X, Chalamaiah M, Ren X, Wang M, Xu B. Vitamin D Fortification and Its Effect on Athletes' Physical Improvement: A Mini Review. Foods 2023; 12:foods12020256. [PMID: 36673348 PMCID: PMC9857868 DOI: 10.3390/foods12020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/08/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
Poor vitamin D status is a widespread problem regardless of age and sex, emphasizing the necessity of new food sources to improve vitamin D levels. Currently, approximately 60% of dietary vitamin D consumption occurs via fortified foods. Vitamin D insufficiency (50-90%) is widespread according to age and region, despite different levels of sunlight exposure. The food industry must identify more effective strategies to increase normal dietary vitamin D intake and improve overall health. Strategies for vitamin D fortification include bioaddition, wherein a vitamin D-rich food source is added to staple foods during processes. These bioadditive strategies expand the range of vitamin D-containing foods and appeal to different preferences, cultures, and economic statuses. In several countries, vitamin D deficiency places athletes at a high risk of disease susceptibility. Due to low sun exposure, athletes in countries with higher and lower levels of sunlight have similar risks of vitamin D deficiency. In this review, we summarize recent technical advances to promote vitamin D utilization by humans during sports activities and in relation to the normal practices of athletes.
Collapse
Affiliation(s)
- Cong Feng
- Department of Physical Education, Jiangsu University, Zhenjiang 212013, China
| | - Xinjie Song
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
- Correspondence:
| | - Meram Chalamaiah
- Department of Agricultural, Food and Nutritional Science (AFNS), 4-10 Ag/For Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mingxing Wang
- Department of Business Administration, School of Business, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
7
|
Buttriss JL, Lanham‐New SA. Vitamin D: One hundred years on. NUTR BULL 2022; 47:282-287. [DOI: 10.1111/nbu.12575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 12/28/2022]
Affiliation(s)
| | - Susan A. Lanham‐New
- Department of Nutritional Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences University of Surrey Guildford UK
| |
Collapse
|
8
|
Souza SVS, Borges N, Vieira EF. Vitamin d-fortified bread: Systematic review of fortification approaches and clinical studies. Food Chem 2022; 372:131325. [PMID: 34649031 DOI: 10.1016/j.foodchem.2021.131325] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/13/2021] [Accepted: 10/02/2021] [Indexed: 12/18/2022]
Abstract
Vitamin d-fortified bread has been proposed as a strategy to increase the average daily intake and serum status of this nutrient. This review aimed to bring together the different types of scientific articles on vitamin d-fortified bread. The databases used for the research were PUBMED, WEB of SCIENCE and SCOPUS; all original indexed studies written in English, published between January 2000 and March 2021, were considered. Three important points were identified: i) theoretical models of fortification; ii) stability, bioaccessibility, and bioavailability studies of vitamin d-fortified breads; and iii) clinical effects of vitamin d-fortified breads. This review showed that vitamin d-fortified bread is a promising vehicle for fortification strategy effects, leading to increased serum concentrations of 25(OH)D and decreased parathyroid hormone. However, further studies are needed to elucidate the effects and effectiveness of this fortification strategy in the prevention/treatment of vitamin D deficiency.
Collapse
Affiliation(s)
- Suene V S Souza
- Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Rua do Campo Alegre, 4150-180 Porto, Portugal
| | - Nuno Borges
- Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Rua do Campo Alegre, 4150-180 Porto, Portugal; CINTESIS, Center for Health Technology and Services Research (CINTESIS). Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
| | - Elsa F Vieira
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| |
Collapse
|
9
|
López‐Hortas L, Flórez‐Fernández N, Torres MD, Domínguez H. Update on potential of edible mushrooms: high‐value compounds, extraction strategies and bioactive properties. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15544] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lucía López‐Hortas
- CINBIO Chemical Engineering Department University of Vigo (Campus Ourense) Polytechnic Building, As Lagoas Ourense 32004 Spain
| | - Noelia Flórez‐Fernández
- CINBIO Chemical Engineering Department University of Vigo (Campus Ourense) Polytechnic Building, As Lagoas Ourense 32004 Spain
| | - María D. Torres
- CINBIO Chemical Engineering Department University of Vigo (Campus Ourense) Polytechnic Building, As Lagoas Ourense 32004 Spain
| | - Herminia Domínguez
- CINBIO Chemical Engineering Department University of Vigo (Campus Ourense) Polytechnic Building, As Lagoas Ourense 32004 Spain
| |
Collapse
|
10
|
Neill HR, Gill CIR, McDonald EJ, McRoberts WC, Pourshahidi LK. The future is bright: Biofortification of common foods can improve vitamin D status. Crit Rev Food Sci Nutr 2021; 63:505-521. [PMID: 34291674 DOI: 10.1080/10408398.2021.1950609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Vitamin D deficiency is a global concern, linked to suboptimal musculoskeletal health and immune function, with status inadequacies owing to variations in UV dependent cutaneous synthesis and limited natural dietary sources. Endogenous biofortification, alongside traditional fortification and supplement usage is urgently needed to address this deficit. Evidence reviewed in the current article clearly demonstrates that feed modification and UV radiation, either independently or used in combination, effectively increases vitamin D content of primary produce or ingredients, albeit in the limited range of food vehicles tested to date (beef/pork/chicken/eggs/fish/bread/mushrooms). Fewer human trials have confirmed that consumption of these biofortified foods can increase circulating 25-hydroxyvitamin D [25(OH)D] concentrations (n = 10), which is of particular importance to avoid vitamin D status declining to nadir during wintertime. Meat is an unexplored yet plausible food vehicle for vitamin D biofortification, owing, at least in part, to its ubiquitous consumption pattern. Consumption of PUFA-enriched meat in human trials demonstrates efficacy (n = 4), lighting the way for exploration of vitamin D-biofortified meats to enhance consumer vitamin D status. Response to vitamin D-biofortified foods varies by food matrix, with vitamin D3-enriched animal-based foods observing the greatest effect in maintaining or elevating 25(OH)D concentrations. Generally, the efficacy of biofortification appears to vary dependent upon vitamer selected for animal feed supplementation (vitamin D2 or D3, or 25(OH)D), baseline participant status and the bioaccessibility from the food matrix. Further research in the form of robust human clinical trials are required to explore the contribution of biofortified foods to vitamin D status.
Collapse
Affiliation(s)
- Holly R Neill
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, UK
| | | | | | - L Kirsty Pourshahidi
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, UK
| |
Collapse
|
11
|
Garg M, Sharma A, Vats S, Tiwari V, Kumari A, Mishra V, Krishania M. Vitamins in Cereals: A Critical Review of Content, Health Effects, Processing Losses, Bioaccessibility, Fortification, and Biofortification Strategies for Their Improvement. Front Nutr 2021; 8:586815. [PMID: 34222296 PMCID: PMC8241910 DOI: 10.3389/fnut.2021.586815] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Around the world, cereals are stapled foods and good sources of vitamins A, B, and E. As cereals are inexpensive and consumed in large quantities, attempts are being made to enrich cereals using fortification and biofortification in order to address vitamin deficiency disorders in a vulnerable population. The processing and cooking of cereals significantly affect vitamin content. Depending on grain structure, milling can substantially reduce vitamin content, while cooking methods can significantly impact vitamin retention and bioaccessibility. Pressure cooking has been reported to result in large vitamin losses, whereas minimal vitamin loss was observed following boiling. The fortification of cereal flour with vitamins B1, B2, B3, and B9, which are commonly deficient, has been recommended; and in addition, region-specific fortification using either synthetic or biological vitamins has been suggested. Biofortification is a relatively new concept and has been explored as a method to generate vitamin-rich crops. Once developed, biofortified crops can be utilized for several years. A recent cereal biofortification success story is the enrichment of maize with provitamin A carotenoids.
Collapse
Affiliation(s)
- Monika Garg
- Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Anjali Sharma
- Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Shreya Vats
- Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Vandita Tiwari
- Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Anita Kumari
- Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Vibhu Mishra
- Food Engineering and Nutrition, Center of Innovative and Applied Bioprocessing, Mohali, India
| | - Meena Krishania
- Food Engineering and Nutrition, Center of Innovative and Applied Bioprocessing, Mohali, India
| |
Collapse
|
12
|
Nzekoue FK, Alesi A, Vittori S, Sagratini G, Caprioli G. Development of functional whey cheese enriched in vitamin D 3: nutritional composition, fortification, analysis, and stability study during cheese processing and storage. Int J Food Sci Nutr 2020; 72:746-756. [PMID: 33292001 DOI: 10.1080/09637486.2020.1857711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
"Ricotta" cheese is a traditional and popular Italian fresh whey cheese commonly produced from cow's milk. Food fortification is an efficient strategy to reduce the high global prevalence of vitamin D deficiency. This study aims to study the chemical-nutritional analysis of ricotta cheese and to assess its suitability as a dairy matrix for vitamin D fortification. The chemical-nutritional analyses revealed that ricotta cheese is a good source of proteins (7.8 g/100 g) with high levels of branched-chain amino acids (1.8 g/100 g). Moreover, ricotta contains high levels of calcium (0.4 g/100 g) and phosphorus (0.2 g/100 g). 50 mg of vitamin D3 were added to 95 kg of cheese reaching a mean fortification level of 41.4 ± 4.0 µg/100 g of ricotta cheese. The fortification study showed that vitamin D homogenously distributes in ricotta cheese after the homogenisation process. Moreover, vitamin D3 has high heat stability (93.8 ± 1.8%) and remains stable throughout the shelf-life of the fortified food. This study demonstrates that ricotta cheese represents an ideal alternative dairy matrix for vitamin D3 fortification.
Collapse
Affiliation(s)
| | | | - Sauro Vittori
- School of Pharmacy, University of Camerino, Camerino, Italy
| | | | | |
Collapse
|
13
|
Saande CJ, Webb JL, Curry PE, Rowling MJ, Schalinske KL. Dietary Whole Egg Reduces Body Weight Gain in a Dose-Dependent Manner in Zucker Diabetic Fatty Rats. J Nutr 2019; 149:1766-1775. [PMID: 31254347 DOI: 10.1093/jn/nxz143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/22/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND We previously reported that a whole-egg-based diet attenuated weight gain in rats with type 2 diabetes (T2D) and more effectively maintained vitamin D status than an equivalent amount of supplemental cholecalciferol. OBJECTIVES The objective of this study was to determine the lowest dose of whole egg effective at maintaining vitamin D homeostasis and attenuating the obese phenotype in T2D rats. METHODS Zucker diabetic fatty (ZDF) rats (n = 40; age 6 wk; prediabetic) and their lean controls (n = 40; age 6 wk) were randomly assigned to a diet containing 20% casein (CAS) or 20%, 10%, 5%, or 2.5% protein from whole egg (20% EGG, 10% EGG, 5% EGG, and 2.5% EGG, respectively). All diets contained 20% total protein (wt:wt). All rats received their respective diets for 8 wk, at a stage of growth and development that translates to adolescence in humans, until 14 wk of age, a point at which ZDF rats exhibit overt T2D. Weight gain was measured 5 d/wk, and circulating 25-hydroxyvitamin D [25(OH)D] was measured by ELISA. Mean values were compared by 2-factor ANOVA. RESULTS The 20% EGG diet maintained serum 25(OH)D at 30 nmol/L in ZDF rats, whereas the 10%, 5%, and 2.5% EGG diets did not prevent insufficiency, resulting in mean serum 25(OH)D concentrations of 24 nmol/L in ZDF rats. Body weight gain was reduced by 29% (P < 0.001) and 31% (P < 0.001) in ZDF rats consuming 20% and 10% EGG diets, respectively, and by 16% (P = 0.004) and 12% (P = 0.030) in ZDF rats consuming 5% and 2.5% EGG diets, respectively, compared with CAS. CONCLUSIONS Whole-egg-based diets exerted a dose-dependent response with respect to attenuating weight gain. These data could support dietary recommendations aimed at body weight management in individuals predisposed to obesity and T2D.
Collapse
Affiliation(s)
- Cassondra J Saande
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, USA
| | - Joseph L Webb
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, USA
| | - Paige E Curry
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Matthew J Rowling
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, USA
| | - Kevin L Schalinske
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, USA
| |
Collapse
|
14
|
Infante M, Ricordi C, Sanchez J, Clare-Salzler MJ, Padilla N, Fuenmayor V, Chavez C, Alvarez A, Baidal D, Alejandro R, Caprio M, Fabbri A. Influence of Vitamin D on Islet Autoimmunity and Beta-Cell Function in Type 1 Diabetes. Nutrients 2019; 11:E2185. [PMID: 31514368 PMCID: PMC6769474 DOI: 10.3390/nu11092185] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease leading to immune-mediated destruction of pancreatic beta cells, resulting in the need for insulin therapy. The incidence of T1D is increasing worldwide, thus prompting researchers to investigate novel immunomodulatory strategies to halt autoimmunity and modify disease progression. T1D is considered as a multifactorial disease, in which genetic predisposition and environmental factors interact to promote the triggering of autoimmune responses against beta cells. Over the last decades, it has become clear that vitamin D exerts anti-inflammatory and immunomodulatory effects, apart from its well-established role in the regulation of calcium homeostasis and bone metabolism. Importantly, the global incidence of vitamin D deficiency is also dramatically increasing and epidemiologic evidence suggests an involvement of vitamin D deficiency in T1D pathogenesis. Polymorphisms in genes critical for vitamin D metabolism have also been shown to modulate the risk of T1D. Moreover, several studies have investigated the role of vitamin D (in different doses and formulations) as a potential adjuvant immunomodulatory therapy in patients with new-onset and established T1D. This review aims to present the current knowledge on the immunomodulatory effects of vitamin D and summarize the clinical interventional studies investigating its use for prevention or treatment of T1D.
Collapse
Affiliation(s)
- Marco Infante
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Camillo Ricordi
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Janine Sanchez
- Pediatric Endocrinology, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, Miami, FL 33136, USA.
| | - Michael J Clare-Salzler
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, USA.
| | - Nathalia Padilla
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Virginia Fuenmayor
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Carmen Chavez
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Ana Alvarez
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - David Baidal
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Rodolfo Alejandro
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00133 Rome, Italy.
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy.
| | - Andrea Fabbri
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|