1
|
Zhou X, Luo Y, Guo Y, Jia M, Zhang C, Shi Z, Du Y. Predictive value of circulating fibroblast growth factor-23 and Klotho on protein-energy wasting in patients undergoing hemodialysis. Front Nutr 2025; 11:1497869. [PMID: 39839279 PMCID: PMC11747596 DOI: 10.3389/fnut.2024.1497869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Background As a state of metabolic and nutritional derangements, protein-energy wasting (PEW) is highly prevalent and associated with increased morbidity and mortality in hemodialysis patients. Fibroblast growth factor-23 (FGF-23) and Klotho have been proven to contribute to chronic kidney disease-mineral and bone disorder (CKD-MBD) in patients undergoing hemodialysis. Previous evidence suggested that FGF-23 and Klotho may also contribute to the malnutritional status among these patients; however, the inter-relationship between the FGF-23-Klotho axis and PEW remains unclear. Therefore, we conducted this cross-sectional study to evaluate the association between plasma FGF-23 and Klotho levels and PEW in hemodialysis patients and to explore whether these markers could predict the presence of PEW. Methods Plasma concentrations of FGF-23 and Klotho were measured, and their associations with PEW were assessed. PEW was evaluated based on body weight, muscle mass, biochemical data, and protein and energy intake, according to the 2008 criteria from the International Society of Renal Nutrition and Metabolism (ISRNM). Results In this study, 147 hemodialysis patients (mean age 61.05 ± 13.32 years) were enrolled, of whom 66 (44.90%) had PEW. PEW was significant positively correlated with FGF-23 (r = 0.403, p < 0.001), age (r = 0.225, p = 0.006), C-reactive protein (r = 0.236, p = 0.004), intact parathyroid hormone (r = 0.237, p = 0.004), and single-pool Kt/V (r = 0.170, p = 0.040), while it was negatively correlated with Klotho (r = -0.361, p < 0.001), hemoglobin (r = -0.215, p = 0.009), and serum creatinine (r = -0.278, p = 0.001). Logistic regression analyses showed that plasma FGF-23 and Klotho were independently associated with PEW, even after adjusting for covariables. The area under the ROC curve (AUC) of FGF-23 and Klotho in predicting PEW was 0.734 and 0.710 (p < 0.001), respectively. When the combination of FGF-23 and Klotho was used to predict PEW, its sensitivity was 81.8%, specificity was 60.5%, and the AUC was 0.746. Conclusion Plasma levels of FGF-23 and Klotho are associated with PEW in hemodialysis patients. Higher plasma FGF-23 levels and lower Klotho levels may serve as valuable predictors of PEW in these patients.
Collapse
Affiliation(s)
- Xiaoling Zhou
- Department of Nephrology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yang Luo
- Department of Nephrology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yidan Guo
- Department of Nephrology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Meng Jia
- Department of Nephrology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chunxia Zhang
- Department of Nephrology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zhihua Shi
- Department of Nephrology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Ye Du
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University and Beijing Tuberculosis and Tumor Research Institute, Beijing, China
| |
Collapse
|
2
|
Chan GCK, Kalantar-Zadeh K, Ng JKC, Tian N, Burns A, Chow KM, Szeto CC, Li PKT. Frailty in patients on dialysis. Kidney Int 2024; 106:35-49. [PMID: 38705274 DOI: 10.1016/j.kint.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 05/07/2024]
Abstract
Frailty is a condition that is frequently observed among patients undergoing dialysis. Frailty is characterized by a decline in both physiological state and cognitive state, leading to a combination of symptoms, such as weight loss, exhaustion, low physical activity level, weakness, and slow walking speed. Frail patients not only experience a poor quality of life, but also are at higher risk of hospitalization, infection, cardiovascular events, dialysis-associated complications, and death. Frailty occurs as a result of a combination and interaction of various medical issues in patients who are on dialysis. Unfortunately, frailty has no cure. To address frailty, a multifaceted approach is necessary, involving coordinated efforts from nephrologists, geriatricians, nurses, allied health practitioners, and family members. Strategies such as optimizing nutrition and chronic kidney disease-related complications, reducing polypharmacy by deprescription, personalizing dialysis prescription, and considering home-based or assisted dialysis may help slow the decline of physical function over time in subjects with frailty. This review discusses the underlying causes of frailty in patients on dialysis and examines the methods and difficulties involved in managing frailty among this group.
Collapse
Affiliation(s)
- Gordon Chun-Kau Chan
- Carol & Richard Yu Peritoneal Dialysis Research Centre, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine & Therapeutics, Prince of Wales Hospital, Hong Kong, China
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology and Hypertension, Harbor-University of California, Los Angeles Medical Center, Torrance, California, USA
| | - Jack Kit-Chung Ng
- Carol & Richard Yu Peritoneal Dialysis Research Centre, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine & Therapeutics, Prince of Wales Hospital, Hong Kong, China
| | - Na Tian
- Department of Nephrology, General Hospital of Ning Xia Medical University, Yin Chuan, China
| | - Aine Burns
- Division of Nephrology, University College London, Royal Free Hospital, London, UK
| | - Kai-Ming Chow
- Carol & Richard Yu Peritoneal Dialysis Research Centre, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine & Therapeutics, Prince of Wales Hospital, Hong Kong, China
| | - Cheuk-Chun Szeto
- Carol & Richard Yu Peritoneal Dialysis Research Centre, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine & Therapeutics, Prince of Wales Hospital, Hong Kong, China; Li Ka Shing Institute of Health Sciences (LiHS), Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Philip Kam-Tao Li
- Carol & Richard Yu Peritoneal Dialysis Research Centre, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine & Therapeutics, Prince of Wales Hospital, Hong Kong, China.
| |
Collapse
|
3
|
Heitman K, Alexander MS, Faul C. Skeletal Muscle Injury in Chronic Kidney Disease-From Histologic Changes to Molecular Mechanisms and to Novel Therapies. Int J Mol Sci 2024; 25:5117. [PMID: 38791164 PMCID: PMC11121428 DOI: 10.3390/ijms25105117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with significant reductions in lean body mass and in the mass of various tissues, including skeletal muscle, which causes fatigue and contributes to high mortality rates. In CKD, the cellular protein turnover is imbalanced, with protein degradation outweighing protein synthesis, leading to a loss of protein and cell mass, which impairs tissue function. As CKD itself, skeletal muscle wasting, or sarcopenia, can have various origins and causes, and both CKD and sarcopenia share common risk factors, such as diabetes, obesity, and age. While these pathologies together with reduced physical performance and malnutrition contribute to muscle loss, they cannot explain all features of CKD-associated sarcopenia. Metabolic acidosis, systemic inflammation, insulin resistance and the accumulation of uremic toxins have been identified as additional factors that occur in CKD and that can contribute to sarcopenia. Here, we discuss the elevation of systemic phosphate levels, also called hyperphosphatemia, and the imbalance in the endocrine regulators of phosphate metabolism as another CKD-associated pathology that can directly and indirectly harm skeletal muscle tissue. To identify causes, affected cell types, and the mechanisms of sarcopenia and thereby novel targets for therapeutic interventions, it is important to first characterize the precise pathologic changes on molecular, cellular, and histologic levels, and to do so in CKD patients as well as in animal models of CKD, which we describe here in detail. We also discuss the currently known pathomechanisms and therapeutic approaches of CKD-associated sarcopenia, as well as the effects of hyperphosphatemia and the novel drug targets it could provide to protect skeletal muscle in CKD.
Collapse
Affiliation(s)
- Kylie Heitman
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Matthew S. Alexander
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
4
|
Elsurer Afsar R, Afsar B, Ikizler TA. Fibroblast Growth Factor 23 and Muscle Wasting: A Metabolic Point of View. Kidney Int Rep 2023; 8:1301-1314. [PMID: 37441473 PMCID: PMC10334408 DOI: 10.1016/j.ekir.2023.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 07/15/2023] Open
Abstract
Protein energy wasting (PEW), mostly characterized by decreased body stores of protein and energy sources, particularly in the skeletal muscle compartment, is highly prevalent in patients with moderate to advanced chronic kidney disease (CKD). Fibroblast growth factor 23 (FGF23) is an endocrine hormone secreted from bone and has systemic actions on skeletal muscle. In CKD, FGF23 is elevated and its coreceptor α-klotho is suppressed. Multiple lines of evidence suggest that FGF23 is interconnected with various mechanisms of skeletal muscle wasting in CKD, including systemic and local inflammation, exaggerated oxidative stress, insulin resistance (IR), and abnormalities in adipocytokine metabolism. Investigation of metabolic actions of FGF23 on muscle tissue could provide new insights into metabolic and nutritional abnormalities observed in patients with CKD.
Collapse
Affiliation(s)
- Rengin Elsurer Afsar
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Nephrology, Suleyman Demirel University Faculty of Medicine, Isparta, Turkey
| | - Baris Afsar
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Nephrology, Suleyman Demirel University Faculty of Medicine, Isparta, Turkey
| | - Talat Alp Ikizler
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt O’Brien Center for Kidney Disease, Nashville, Tennessee, USA
- Tennessee Valley Healthcare System, Nashville VA Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Wong L, McMahon LP. Crosstalk between bone and muscle in chronic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1146868. [PMID: 37033253 PMCID: PMC10076741 DOI: 10.3389/fendo.2023.1146868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
With increasing life expectancy, the related disorders of bone loss, metabolic dysregulation and sarcopenia have become major health threats to the elderly. Each of these conditions is prevalent in patients with chronic kidney disease (CKD), particularly in more advanced stages. Our current understanding of the bone-muscle interaction is beyond mechanical coupling, where bone and muscle have been identified as interrelated secretory organs, and regulation of both bone and muscle metabolism occurs through osteokines and myokines via autocrine, paracrine and endocrine systems. This review appraises the current knowledge regarding biochemical crosstalk between bone and muscle, and considers recent progress related to the role of osteokines and myokines in CKD, including modulatory effects of physical exercise and potential therapeutic targets to improve musculoskeletal health in CKD patients.
Collapse
Affiliation(s)
- Limy Wong
- Department of Renal Medicine, Monash University Eastern Health Clinical School, Box Hill, VIC, Australia
- Department of Renal Medicine, Eastern Health, Box Hill, VIC, Australia
- *Correspondence: Limy Wong,
| | - Lawrence P. McMahon
- Department of Renal Medicine, Monash University Eastern Health Clinical School, Box Hill, VIC, Australia
- Department of Renal Medicine, Eastern Health, Box Hill, VIC, Australia
| |
Collapse
|
6
|
Impact of X-Linked Hypophosphatemia on Muscle Symptoms. Genes (Basel) 2022; 13:genes13122415. [PMID: 36553684 PMCID: PMC9778127 DOI: 10.3390/genes13122415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
X-linked hypophosphatemia (XLH) is the most common hereditary form of rickets and deficiency of renal tubular phosphate transport in humans. XLH is caused by the inactivation of mutations within the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene and follows an X-dominant transmission. It has an estimated frequency of 1 case per 20,000, and over 300 distinct pathogenic variations have been reported that result in an excess of fibroblast growth factor 23 (FGF23) in the serum. Increased levels of FGF23 lead to renal phosphate loss, decreased serum 1,25-dihydroxyvitamin D, and increased metabolism of 1,25-dihydoxyvitamin D, resulting in hypophosphatemia. Major clinical manifestations include rickets, bone deformities, and growth retardation that develop during childhood, and osteomalacia-related fractures or pseudo-fractures, degenerative osteoarthritis, enthesopathy, dental anomalies, and hearing loss during adulthood, which can affect quality of life. In addition, fatigue is also a common symptom in patients with XLH, who experience decreased motion, muscle weakness, and pain, contributing to altered quality of life. The clinical and biomedical characteristics of XLH are extensively defined in bone tissue since skeletal deformations and mineralization defects are the most evident effects of high FGF23 and low serum phosphate levels. However, despite the muscular symptoms that XLH causes, very few reports are available on the effects of FGF23 and phosphate in muscle tissue. Given the close relationship between bones and skeletal muscles, studying the effects of FGF23 and phosphate on muscle could provide additional opportunities to understand the interactions between these two important compartments of the body. By describing the current literature on XLH and skeletal muscle dysfunctions, the purpose of this review is to highlight future areas of research that could contribute to a better understanding of XLH muscular disability and its management.
Collapse
|
7
|
Foroni MZ, Cendoroglo MS, Costa AG, Marin-Mio RV, do Prado Moreira PF, Maeda SS, Bilezikian JP, Lazaretti-Castro M. FGF23 levels as a marker of physical performance and falls in community-dwelling very old individuals. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:333-344. [PMID: 35612845 PMCID: PMC9832858 DOI: 10.20945/2359-3997000000488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022]
Abstract
Objective The fibroblast growth factor 23 (FGF23) has been related to biological aging, but data in elderly individuals are scant. We determined the profile of serum FGF23 levels in a population of very-old individuals and studied their correlations with parameters of bone metabolism and health markers, as functional performance. Methods This cross-sectional study was performed on 182 community dwellers aged ≥ 80 years. Serum levels of FGF23, PTH, calcium, albumin, phosphorus, creatinine, bone markers, and bone mineral density data were analyzed. Physical performance was evaluated with the stationary march (Step), Flamingo, and functional reach tests, along with questionnaires to assess falls and fractures in the previous year, energy expenditure (MET), and the Charlson index (CI). Physical activity was evaluated with the International Physical Activity Questionnaire (IPAQ). Results Most participants (75%) had FGF23 levels between 30-120 RU/mL (range: 6.0-3,170.0 RU/mL). FGF23 levels correlated with estimated glomerular filtration rate (eGFR; r = -0.335; p = 0.001) and PTH (r = 0.318; p < 0.0001). Individuals with FGF23 in the highest tertile had more falls in the previous year (p = 0.032), worse performance in the Flamingo (p = 0.009) and Step (p < 0.001) tests, worse CI (p = 0.009) and a trend toward sedentary lifestyle (p = 0.056). On multiple regression, FGF23 tertiles remained significant, independently of eGFR, for falls in the previous year, performance in the Flamingo and stationary march tests, lean mass index, and IPAQ classification. Conclusion In a population of very elderly individuals, FGF23 levels were inversely associated with neuromuscular and functional performances. Higher concentrations were related to more falls, lower muscle strength and aerobic capacity, and poorer balance, regardless of renal function, suggesting a potentially deleterious role of high FGF23 concentrations in musculoskeletal health.
Collapse
Affiliation(s)
- Mariana Zuccolotto Foroni
- Divisão de Endocrinologia, Escola Paulista de Medicina - Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil,
| | - Maysa Seabra Cendoroglo
- Divisão de Geriatria, Escola Paulista de Medicina - Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil
| | - Aline Granja Costa
- Divisão de Endocrinologia, Escola Paulista de Medicina - Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil
| | - Rosangela Villa Marin-Mio
- Divisão de Endocrinologia, Escola Paulista de Medicina - Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil
| | | | - Sergio Setsuo Maeda
- Divisão de Endocrinologia, Escola Paulista de Medicina - Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil
| | - John P Bilezikian
- Department of Medicine, Division of Endocrinology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Marise Lazaretti-Castro
- Divisão de Endocrinologia, Escola Paulista de Medicina - Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil
| |
Collapse
|
8
|
Yamada S, Tsuruya K, Kitazono T, Nakano T. Emerging cross-talks between chronic kidney disease-mineral and bone disorder (CKD-MBD) and malnutrition-inflammation complex syndrome (MICS) in patients receiving dialysis. Clin Exp Nephrol 2022; 26:613-629. [PMID: 35353283 PMCID: PMC9203392 DOI: 10.1007/s10157-022-02216-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/22/2022] [Indexed: 12/14/2022]
Abstract
Chronic kidney disease–mineral and bone disorder (CKD–MBD) is a systemic disorder that affects multiple organs and systems and increases the risk of morbidity and mortality in patients with CKD, especially those receiving dialysis therapy. CKD–MBD is highly prevalent in CKD patients, and its treatment is gaining attention from healthcare providers who manage these patients. Additional important pathologies often observed in CKD patients are chronic inflammation and malnutrition/protein-energy wasting (PEW). These two pathologies coexist to form a vicious cycle that accelerates the progression of various other pathologies in CKD patients. This concept is integrated into the term “malnutrition–inflammation–atherosclerosis syndrome” or “malnutrition–inflammation complex syndrome (MICS)”. Recent basic and clinical studies have shown that CKD–MBD directly induces inflammation as well as malnutrition/PEW. Indeed, higher circulating levels of inorganic phosphate, fibroblast growth factor 23, parathyroid hormone, and calciprotein particles, as markers for critical components and effectors of CKD–MBD, were shown to directly induce inflammatory responses, thereby leading to malnutrition/PEW, cardiovascular diseases, and clinically relevant complications. In this short review, we discuss the close interplay between CKD–MBD and MICS and emphasize the significance of simultaneous control of these two seemingly distinct pathologies in patients with CKD, especially those receiving dialysis therapy, for better management of the CKD/hemodialysis population.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan.
| | | | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| |
Collapse
|
9
|
Arroyo E, Troutman AD, Moorthi RN, Avin KG, Coggan AR, Lim K. Klotho: An Emerging Factor With Ergogenic Potential. FRONTIERS IN REHABILITATION SCIENCES 2022; 2:807123. [PMID: 36188832 PMCID: PMC9397700 DOI: 10.3389/fresc.2021.807123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022]
Abstract
Sarcopenia and impaired cardiorespiratory fitness are commonly observed in older individuals and patients with chronic kidney disease (CKD). Declines in skeletal muscle function and aerobic capacity can progress into impaired physical function and inability to perform activities of daily living. Physical function is highly associated with important clinical outcomes such as hospitalization, functional independence, quality of life, and mortality. While lifestyle modifications such as exercise and dietary interventions have been shown to prevent and reverse declines in physical function, the utility of these treatment strategies is limited by poor widespread adoption and adherence due to a wide variety of both perceived and actual barriers to exercise. Therefore, identifying novel treatment targets to manage physical function decline is critically important. Klotho, a remarkable protein with powerful anti-aging properties has recently been investigated for its role in musculoskeletal health and physical function. Klotho is involved in several key processes that regulate skeletal muscle function, such as muscle regeneration, mitochondrial biogenesis, endothelial function, oxidative stress, and inflammation. This is particularly important for older adults and patients with CKD, which are known states of Klotho deficiency. Emerging data support the existence of Klotho-related benefits to exercise and for potential Klotho-based therapeutic interventions for the treatment of sarcopenia and its progression to physical disability. However, significant gaps in our understanding of Klotho must first be overcome before we can consider its potential ergogenic benefits. These advances will be critical to establish the optimal approach to future Klotho-based interventional trials and to determine if Klotho can regulate physical dysfunction.
Collapse
Affiliation(s)
- Eliott Arroyo
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ashley D. Troutman
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, Indianapolis, IN, United States
| | - Ranjani N. Moorthi
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Keith G. Avin
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, Indianapolis, IN, United States
| | - Andrew R. Coggan
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
| | - Kenneth Lim
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
10
|
Navarro-García JA, González-Lafuente L, Fernández-Velasco M, Ruilope LM, Ruiz-Hurtado G. Fibroblast Growth Factor-23-Klotho Axis in Cardiorenal Syndrome: Mediators and Potential Therapeutic Targets. Front Physiol 2021; 12:775029. [PMID: 34867481 PMCID: PMC8634640 DOI: 10.3389/fphys.2021.775029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiorenal syndrome (CRS) is a complex disorder that refers to the category of acute or chronic kidney diseases that induce cardiovascular disease, and inversely, acute or chronic heart diseases that provoke kidney dysfunction. There is a close relationship between renal and cardiovascular disease, possibly due to the presence of common risk factors for both diseases. Thus, it is well known that renal diseases are associated with increased risk of developing cardiovascular disease, suffering cardiac events and even mortality, which is aggravated in those patients with end-stage renal disease or who are undergoing dialysis. Recent works have proposed mineral bone disorders (MBD) as the possible link between kidney dysfunction and the development of cardiovascular outcomes. Traditionally, increased serum phosphate levels have been proposed as one of the main factors responsible for cardiovascular damage in kidney patients. However, recent studies have focused on other MBD components such as the elevation of fibroblast growth factor (FGF)-23, a phosphaturic bone-derived hormone, and the decreased expression of the anti-aging factor Klotho in renal patients. It has been shown that increased FGF-23 levels induce cardiac hypertrophy and dysfunction and are associated with increased cardiovascular mortality in renal patients. Decreased Klotho expression occurs as renal function declines. Despite its expression being absent in myocardial tissue, several studies have demonstrated that this antiaging factor plays a cardioprotective role, especially under elevated FGF-23 levels. The present review aims to collect the recent knowledge about the FGF-23-Klotho axis in the connection between kidney and heart, focusing on their specific role as new therapeutic targets in CRS.
Collapse
Affiliation(s)
- José Alberto Navarro-García
- Cardiorenal Translational Laboratory, Institute of Research i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Laura González-Lafuente
- Cardiorenal Translational Laboratory, Institute of Research i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Luis M Ruilope
- Cardiorenal Translational Laboratory, Institute of Research i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain.,School of Doctoral Studies and Research, European University of Madrid, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Institute of Research i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
11
|
Zhou H, Pu S, Zhou H, Guo Y. Klotho as Potential Autophagy Regulator and Therapeutic Target. Front Pharmacol 2021; 12:755366. [PMID: 34737707 PMCID: PMC8560683 DOI: 10.3389/fphar.2021.755366] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/07/2021] [Indexed: 12/22/2022] Open
Abstract
The protein Klotho can significantly delay aging, so it has attracted widespread attention. Abnormal downregulation of Klotho has been detected in several aging-related diseases, such as Alzheimer’s disease, kidney injury, cancer, chronic obstructive pulmonary disease (COPD), vascular disease, muscular dystrophy and diabetes. Conversely, many exogenous and endogenous factors, several drugs, lifestyle changes and genetic manipulations were reported to exert therapeutic effects through increasing Klotho expression. In recent years, Klotho has been identified as a potential autophagy regulator. How Klotho may contribute to reversing the effects of aging and disease became clearer when it was linked to autophagy, the process in which eukaryotic cells clear away dysfunctional proteins and damaged organelles: the abovementioned diseases involve abnormal autophagy. Interestingly, growing evidence indicates that Klotho plays a dual role as inducer or inhibitor of autophagy in different physiological or pathological conditions through its influence on IGF-1/PI3K/Akt/mTOR signaling pathway, Beclin 1 expression and activity, as well as aldosterone level, which can help restore autophagy to beneficial levels. The present review examines the role of Klotho in regulating autophagy in Alzheimer’s disease, kidney injury, cancer, COPD, vascular disease, muscular dystrophy and diabetes. Targeting Klotho may provide a new perspective for preventing and treating aging-related diseases.
Collapse
Affiliation(s)
- Hongjing Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyun Pu
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Houfeng Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanxin Guo
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Lu W, Xiao W, Xie W, Fu X, Pan L, Jin H, Yu Y, Zhang Y, Li Y. The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects. Front Cell Dev Biol 2021; 9:735374. [PMID: 34650980 PMCID: PMC8505767 DOI: 10.3389/fcell.2021.735374] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
Sarcopenia is an age-related disease in which muscle mass, strength and function may decline with age or can be secondary to cachexia or malnutrition and can lead to weakness, falls and even death. With the increase in life expectancy, sarcopenia has become a major threat to the health of the elderly. Currently, our understanding of bone-muscle interactions is not limited to their mechanical coupling. Bone and muscle have been identified as secretory endocrine organs, and their interaction may affect the function of each. Both muscle-derived factors and osteokines can play a role in regulating muscle and bone metabolism via autocrine, paracrine and endocrine mechanisms. Herein, we comprehensively summarize the latest research progress on the effects of the osteokines FGF-23, IGF-1, RANKL and osteocalcin on muscle to explore whether these cytokines can be utilized to treat and prevent sarcopenia.
Collapse
Affiliation(s)
- Wenhao Lu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenfeng Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqing Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Fu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Linyuan Pan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Jin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yongle Yu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yi Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
FGF23: A Review of Its Role in Mineral Metabolism and Renal and Cardiovascular Disease. DISEASE MARKERS 2021; 2021:8821292. [PMID: 34055103 PMCID: PMC8149241 DOI: 10.1155/2021/8821292] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/01/2020] [Accepted: 05/04/2021] [Indexed: 01/03/2023]
Abstract
FGF23 is a hormone secreted mainly by osteocytes and osteoblasts in bone. Its pivotal role concerns the maintenance of mineral ion homeostasis. It has been confirmed that phosphate and vitamin D metabolisms are related to the effect of FGF23 and its excess or deficiency leads to various hereditary diseases. Multiple studies have shown that FGF23 level increases in the very early stages of chronic kidney disease (CKD), and its concentration may also be highly associated with cardiac complications. The present review is limited to some of the most important aspects of calcium and phosphate metabolism. It discusses the role of FGF23, which is considered an early and sensitive marker for CKD-related bone disease but also as a novel and potent cardiovascular risk factor. Furthermore, this review gives particular attention to the reliability of FGF23 measurement and various confounding factors that may impact on the clinical utility of FGF23. Finally, this review elaborates on the clinical usefulness of FGF23 and evaluates whether FGF23 may be considered a therapeutic target.
Collapse
|
14
|
Usui T, Zhao J, Fuller DS, Hanafusa N, Hasegawa T, Fujino H, Nomura T, Zee J, Young E, Robinson BM, Nangaku M. Association of erythropoietin resistance and fibroblast growth factor 23 in dialysis patients: Results from the Japanese Dialysis Outcomes and Practice Patterns Study. Nephrology (Carlton) 2021; 26:46-53. [PMID: 32743932 PMCID: PMC7754421 DOI: 10.1111/nep.13765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/12/2020] [Accepted: 07/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fibroblast growth factor 23 (FGF23) plays an important role in chronic kidney disease (CKD)-related mineral and bone disorders. High FGF23 levels are associated with increased risk of anaemia in non-haemodialysis CKD patients. FGF23 also negatively regulates erythropoiesis in mice. We hypothesized that higher FGF23 levels are associated with increased erythropoietin hyporesponsiveness among haemodialysis patients. METHODS The study included 1044 patients from the Japanese Dialysis Outcomes and Practice Patterns Study (J-DOPPS) phase 5 (2012-2015). The outcome was erythropoiesis-stimulating agent hyporesponsiveness (ESA-hypo), defined as mean Hgb <10 g/dL and standardized mean ESA dose >6000 u/week over 4 months following FGF23 measurement. The association between ESA-hypo and FGF23 was estimated using multivariable-adjusted logistic generalized estimating equation regression models. RESULTS Patients with higher levels of FGF23 were younger and had higher levels of serum albumin, creatinine, albumin-corrected calcium, phosphorus, PTH, 25(OH)-vitamin D, and had higher percentages of intravenous (IV) iron, IV vitamin D and cinacalcet use. ESA-hypo was present in 144 patients (13.8%). Compared with the third quintile of FGF23 levels, the odds ratio (95% CI) of ESA-hypo was 2.14 (0.99, 4.62) and 1.74 (0.74, 4.11) for the first and fifth quintiles, respectively. CONCLUSION The lowest and highest levels of FGF23 were associated with higher odds of ESA-hypo in patients on maintenance haemodialysis, although the associations were not statistically significant. The relationship between FGF23 and anaemia, and particularly the increased risks of ESA-hypo at low FGF23 levels which might be the result of energy saving, must be confirmed in larger clinical studies.
Collapse
Affiliation(s)
- Tomoko Usui
- Division of Nephrology and EndocrinologyThe University of Tokyo HospitalTokyoJapan
| | - Junhui Zhao
- Arbor Research Collaborative for HealthAnn ArborMichiganUSA
| | | | - Norio Hanafusa
- Department of Blood Purification, Kidney Center, Tokyo Women's Medical UniversityTokyoJapan
| | - Takeshi Hasegawa
- Showa University Research Administration Center (SURAC)Showa UniversityTokyoJapan
- Division of Nephrology (Fujigaoka Hospital), Department of Medicine, School of MedicineShowa UniversityYokohamaJapan
- Center for Innovative Research for Communities and Clinical ExcellenceFukushima Medical UniversityFukushimaJapan
| | - Hiroshi Fujino
- Medical Affairs Department, Kyowa Kirin Co. Ltd.TokyoJapan
| | | | - Jarcy Zee
- Arbor Research Collaborative for HealthAnn ArborMichiganUSA
| | - Eric Young
- Arbor Research Collaborative for HealthAnn ArborMichiganUSA
| | | | - Masaomi Nangaku
- Division of Nephrology and EndocrinologyThe University of Tokyo HospitalTokyoJapan
| |
Collapse
|
15
|
Pan YJ, Zhou SJ, Feng J, Bai Q, A LT, Zhang AH. Urotensin II Induces Mice Skeletal Muscle Atrophy Associated with Enhanced Autophagy and Inhibited Irisin Precursor (Fibronectin Type III Domain Containing 5) Expression in Chronic Renal Failure. Kidney Blood Press Res 2019; 44:479-495. [PMID: 31238319 DOI: 10.1159/000499880] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 03/17/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Skeletal muscle atrophy is one of the main manifestations of protein energy wasting. We hypothesized that urotensin II (UII) can lead to skeletal muscle atrophy through upregulating autophagy and affecting Irisin precursor fibronectin type III domain containing 5 (FNDC5) expressions. METHODS Three animal models (the sham operation, wild-type C57BL/6 mice with 5/6 nephrectomy, UII receptor (UT) gene knockout (UTKO) mice with 5/6 nephrectomy) were designed. Skeletal muscle weight, cross-sectional area (CSA) along with UII, FNDC5, LC3, and p62 expression were investigated. C2C12 cells were differentiated for up to 4 days into myotubes. These cells were then exposed to different UII concentrations (10-5 to 10-7 M) for 6-12 h and analyzed for the expressions of autophagic markers. These cells were also exposed to the same predetermined UII concentrations for 48-72 h and analyzed for the FNDC5 expression. Myotube diameter was measured. RESULTS Upregulation of UII expression in skeletal muscle tissue was accompanied by reduced muscle weight and skeletal muscle CSA in the 2 posterior limbs, upregulated autophagy markers expression, and downregulated FNDC5 expression in 5/6 nephrectomy mice. The decrease of skeletal muscle weight, skeletal muscle CSA, downregulation of FNDC5 expression, and the upregulation of autophagy markers were inhibited in UTKO with 5/6 nephrectomy mice. Our in vitrostudy showed that UII could directly decrease myotube diameter, induce autophagy markers upregulation, and inhibit expression of FNDC5. When UII receptor gene was interfered by UT-specific siRNA, UII induced autophagy markers upregulation and FNDC5 downregulation were inhibited. CONCLUSION We are the first to verify UII induces mice skeletal muscle atrophy associated with enhanced skeletal muscle autophagy and inhibited FNDC5 expression in chronic renal failure.
Collapse
Affiliation(s)
- Ya-Jing Pan
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Si-Jia Zhou
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Jin Feng
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Qiong Bai
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - La-Ta A
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Ai-Hua Zhang
- Department of Nephrology, Peking University Third Hospital, Beijing, China,
| |
Collapse
|
16
|
Beck-Nielsen SS, Mughal Z, Haffner D, Nilsson O, Levtchenko E, Ariceta G, de Lucas Collantes C, Schnabel D, Jandhyala R, Mäkitie O. FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet J Rare Dis 2019; 14:58. [PMID: 30808384 PMCID: PMC6390548 DOI: 10.1186/s13023-019-1014-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/30/2019] [Indexed: 12/29/2022] Open
Abstract
Background X-linked hypophosphatemia (XLH) is an inherited disease of phosphate metabolism in which inactivating mutations of the Phosphate Regulating Endopeptidase Homolog, X-Linked (PHEX) gene lead to local and systemic effects including impaired growth, rickets, osteomalacia, bone abnormalities, bone pain, spontaneous dental abscesses, hearing difficulties, enthesopathy, osteoarthritis, and muscular dysfunction. Patients with XLH present with elevated levels of fibroblast growth factor 23 (FGF23), which is thought to mediate many of the aforementioned manifestations of the disease. Elevated FGF23 has also been observed in many other diseases of hypophosphatemia, and a range of animal models have been developed to study these diseases, yet the role of FGF23 in the pathophysiology of XLH is incompletely understood. Methods The role of FGF23 in the pathophysiology of XLH is here reviewed by describing what is known about phenotypes associated with various PHEX mutations, animal models of XLH, and non-nutritional diseases of hypophosphatemia, and by presenting molecular pathways that have been proposed to contribute to manifestations of XLH. Results The pathophysiology of XLH is complex, involving a range of molecular pathways that variously contribute to different manifestations of the disease. Hypophosphatemia due to elevated FGF23 is the most obvious contributor, however localised fluctuations in tissue non-specific alkaline phosphatase (TNAP), pyrophosphate, calcitriol and direct effects of FGF23 have been observed to be associated with certain manifestations. Conclusions By describing what is known about these pathways, this review highlights key areas for future research that would contribute to the understanding and clinical treatment of non-nutritional diseases of hypophosphatemia, particularly XLH.
Collapse
Affiliation(s)
| | - Zulf Mughal
- Royal Manchester Children's Hospital, Manchester, UK
| | | | - Ola Nilsson
- Karolinska Institutet, Stockholm, Sweden and Örebro University, Örebro, Sweden
| | | | - Gema Ariceta
- Hospital Universitario Materno-Infantil Vall d'Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Dirk Schnabel
- University Children's Hospital of Berlin, Berlin, Germany
| | | | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
17
|
Lower thigh muscle mass is associated with all-cause and cardiovascular mortality in elderly hemodialysis patients. Eur J Clin Nutr 2016; 71:64-69. [PMID: 27759066 DOI: 10.1038/ejcn.2016.186] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND/OBJECTIVES Higher body mass index appears protective in hemodialysis patients, although it remains to be determined which component of muscle or fat mass is primarily associated with this survival advantage. SUBJECTS/METHODS Eighty-one hemodialysis patients in our institution were prospectively followed from July 2011 to August 2015. Muscle and fat mass were evaluated by measuring the cross-sectional areas of the thigh and abdomen using computed tomography. The relationship between muscle and fat mass, and all-cause and cardiovascular mortality was studied using the Kaplan-Meier analyses and multivariate Cox proportional hazard models. RESULTS During more than 4 years of follow-up, 26 patients (32%) died. In the Kaplan-Meier curve analyses, lower thigh muscle mass was significantly associated with all-cause and cardiovascular mortality (log-rank test, P<0.01 and P<0.001, respectively), but there was no such association with thigh fat, abdominal muscle and fat mass levels. In multivariate Cox proportional hazard models, each 0.1 cm2/kg increase in the thigh muscle area adjusted by dry weight was associated with an estimated 22% lower risk of all-cause mortality (95% confidence interval (95% CI), 0.64-0.95, P<0.05) and a 30% lower risk of cardiovascular mortality (95% CI, 0.54-0.90, P<0.01). CONCLUSIONS Lower thigh muscle mass is significantly associated with all-cause and cardiovascular mortality in hemodialysis patients. Our findings indicate the importance of focusing on the muscle mass of lower extremities to predict the clinical outcomes of hemodialysis patients.
Collapse
|