1
|
San-Juan D, Velez-Jimenez K, Hoffmann J, Martínez-Mayorga AP, Melo-Carrillo A, Rodríguez-Leyva I, García S, Collado-Ortiz MÁ, Chiquete E, Gudiño-Castelazo M, Juárez-Jimenez H, Martínez-Gurrola M, Marfil A, Nader-Kawachi JA, Uribe-Jaimes PD, Darío-Vargas R, Villareal-Careaga J. Cluster headache: an update on clinical features, epidemiology, pathophysiology, diagnosis, and treatment. FRONTIERS IN PAIN RESEARCH 2024; 5:1373528. [PMID: 38524268 PMCID: PMC10957682 DOI: 10.3389/fpain.2024.1373528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
Cluster headache (CH) is one of the worst primary headaches that remain underdiagnosed and inappropriately treated. There are recent advances in the understanding of this disease and available treatments. This paper aims to review CH's recent clinical and pathophysiological findings, diagnosis, and treatment. We performed a narrative literature review on the socio-demographics, clinical presentations, pathophysiological findings, and diagnosis and treatment of CH. CH affects 0.1% of the population with an incidence of 2.07-9.8/100,00 person-years-habitants, a mean prevalence of 53/100,000 inhabitants (3-150/100,000 inhabitants). The male-to-female ratio remains inconclusive, as the ratio of 4.3:1 has recently been modified to 1.3-2.6, possibly due to previous misdiagnosis in women. Episodic presentation is the most frequent (80%). It is a polygenetic and multifactorial entity that involves dysfunction of the trigeminovascular system, the trigeminal autonomic reflex, and the hypothalamic networks. An MRI of the brain is mandatory to exclude secondary etiologies. There are effective and safe pharmacological treatments oxygen, sphenopalatine, and great occipital nerve block, with the heterogeneity of clinical trial designs for patients with CH divided into acute, transitional, or bridge treatment (prednisone) and preventive interventions. In conclusion, CH remains underdiagnosed, mainly due to a lack of awareness within the medical community, frequently causing a long delay in reaching a final diagnosis. Recent advances in understanding the principal risk factors and underlying pathophysiology exist. There are new therapeutic possibilities that are effective for CH. Indeed, a better understanding of this challenging pathology will continue to be a subject of research, study, and discoveries in its diagnostic and therapeutic approach.
Collapse
Affiliation(s)
- Daniel San-Juan
- Epilepsy Clinic, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | | | - Jan Hoffmann
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | | | - Agustín Melo-Carrillo
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Ildefonso Rodríguez-Leyva
- Department of Neurology, Hospital Central “Dr. Ignacio Morones Prieto”, and Faculty of Medicine, Universidad Autonoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Silvia García
- Clinical Research Department, Centro Médico Nacional “20 de Noviembre”, ISSSTE, Mexico City, Mexico
| | | | - Erwin Chiquete
- Department of Neurology and Psychiatry, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | | | | - Alejandro Marfil
- Headache and Chronic Pain Clinic, Neurology Service, Hospital Universitario “Dr. J. E. González” of the Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | | | | | - Rubén Darío-Vargas
- Department of Neurology and Psychiatry, Clínica de Mérida, Merida, Mexico
| | | |
Collapse
|
2
|
Veilleux C, Khousakoun D, Kwon CS, Amoozegar F, Girgis F. Efficacy of Occipital Nerve Stimulation in Trigeminal Autonomic Cephalalgias: A Systematic Review. Neurosurgery 2023; 93:755-763. [PMID: 37712710 DOI: 10.1227/neu.0000000000002490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/14/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Trigeminal autonomic cephalalgias (TACs) are a group of highly disabling primary headache disorders. Although pharmacological treatments exist, they are not always effective or well tolerated. Occipital nerve stimulation (ONS) is a potentially effective surgical treatment. OBJECTIVE To perform a systematic review of the efficacy of ONS in treating TACs. METHODS A systematic review was performed using Medline, Embase, and Cochrane databases. Primary outcomes were reduction in headache intensity, duration, and frequency. Secondary outcomes included adverse event rate and reduction in medication use. Because of large differences in outcome measures, data for patients suffering from short-lasting, unilateral, and neuralgiform headache attacks with conjunctival injection and tearing (SUNCT) and cranial autonomic symptoms (SUNA) were reported separately. Risk of bias was assessed using the NIH Quality Assessment Tools. RESULTS A total of 417 patients from 14 published papers were included in the analysis, of which 15 patients were in the SUNCT/SUNA cohort. The mean reduction in headache intensity and duration was 26.2% and 31.4%, respectively. There was a mean reduction in headache frequency of 50%, as well as a 61.2% reduction in the use of abortive medications and a 31.1% reduction in the use of prophylactic medications. In the SUNCT/SUNA cohort, the mean decrease in headache intensity and duration was 56.8% and 42.8%. The overall responder rate, defined as a >50% reduction in attack frequency, was 60.8% for the non-SUNCT/non-SUNA cohort and 66.7% for the SUNCT/SUNA cohort. Adverse events requiring repeat surgery were reported in 33% of cases. Risk of bias assessment suggests that articles included in this review had reasonable internal validity. CONCLUSION ONS may be an effective surgical treatment for approximately two thirds of patients with medically refractory TACs.
Collapse
Affiliation(s)
- Catherine Veilleux
- Department of Clinical Neurosciences, Division of Neurosurgery, University of Calgary, Calgary , Alberta , Canada
| | - Devon Khousakoun
- Department of Clinical Neurosciences, Division of Neurosurgery, University of Calgary, Calgary , Alberta , Canada
| | - Churl-Su Kwon
- Departments of Neurology, Epidemiology, Neurosurgery and the Gertrude H. Sergievsky Center, Columbia University, New York , New York , USA
| | - Farnaz Amoozegar
- Department of Clinical Neurosciences, Division of Neurology, University of Calgary, Calgary , Alberta , Canada
| | - Fady Girgis
- Department of Clinical Neurosciences, Division of Neurosurgery, University of Calgary, Calgary , Alberta , Canada
| |
Collapse
|
3
|
Pandey H, Sharma N, Alam MA, Khan FA, Dhoundiyal S. Approaching headaches and facial pains in eye care practice. Int Ophthalmol 2023:10.1007/s10792-023-02741-y. [PMID: 37195565 DOI: 10.1007/s10792-023-02741-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/06/2023] [Indexed: 05/18/2023]
Abstract
Headaches and facial pains are among the most frequent ailments seen in outpatient or emergency settings. Given the fact that some of the primary headaches and facial pains mimic the characteristic patterns seen in ocular diseases and related conditions, it is fairly common for these situations to be sent to an ophthalmology or optometry clinic and misdiagnosed as ocular headaches. This may result in a delay in starting an appropriate therapy, therefore extending the patient's illness. This review article aims to help the practitioners in understanding common causes of headaches and facial pains, approaching such cases in eye OPD and differentiating them for similar ocular conditions to impart an appropriate treatment or referral.
Collapse
Affiliation(s)
- Harshita Pandey
- Department of Paramedical and Allied Health Sciences, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
| | - Neha Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Uttar Pradesh, Greater Noida, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Uttar Pradesh, Greater Noida, India.
| | - Faiyaz Ahmed Khan
- Integral Institute of Allied Health Sciences and Research, Integral University, Lucknow, India
| | - Shivang Dhoundiyal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Uttar Pradesh, Greater Noida, India
| |
Collapse
|
4
|
Levinson S, Miller M, Iftekhar A, Justo M, Arriola D, Wei W, Hazany S, Avecillas-Chasin JM, Kuhn TP, Horn A, Bari AA. A structural connectivity atlas of limbic brainstem nuclei. FRONTIERS IN NEUROIMAGING 2023; 1:1009399. [PMID: 37555163 PMCID: PMC10406319 DOI: 10.3389/fnimg.2022.1009399] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/13/2022] [Indexed: 08/10/2023]
Abstract
Background Understanding the structural connectivity of key brainstem nuclei with limbic cortical regions is essential to the development of therapeutic neuromodulation for depression, chronic pain, addiction, anxiety and movement disorders. Several brainstem nuclei have been identified as the primary central nervous system (CNS) source of important monoaminergic ascending fibers including the noradrenergic locus coeruleus, serotonergic dorsal raphe nucleus, and dopaminergic ventral tegmental area. However, due to practical challenges to their study, there is limited data regarding their in vivo anatomic connectivity in humans. Objective To evaluate the structural connectivity of the following brainstem nuclei with limbic cortical areas: locus coeruleus, ventral tegmental area, periaqueductal grey, dorsal raphe nucleus, and nucleus tractus solitarius. Additionally, to develop a group average atlas of these limbic brainstem structures to facilitate future analyses. Methods Each nucleus was manually masked from 197 Human Connectome Project (HCP) structural MRI images using FSL software. Probabilistic tractography was performed using FSL's FMRIB Diffusion Toolbox. Connectivity with limbic cortical regions was calculated and compared between brainstem nuclei. Results were aggregated to produce a freely available MNI structural atlas of limbic brainstem structures. Results A general trend was observed for a high probability of connectivity to the amygdala, hippocampus and DLPFC with relatively lower connectivity to the orbitofrontal cortex, NAc, hippocampus and insula. The locus coeruleus and nucleus tractus solitarius demonstrated significantly greater connectivity to the DLPFC than amygdala while the periaqueductal grey, dorsal raphe nucleus, and ventral tegmental area did not demonstrate a significant difference between these two structures. Conclusion Monoaminergic and other modulatory nuclei in the brainstem project widely to cortical limbic regions. We describe the structural connectivity across the several key brainstem nuclei theorized to influence emotion, reward, and cognitive functions. An increased understanding of the anatomic basis of the brainstem's role in emotion and other reward-related processing will support targeted neuromodulatary therapies aimed at alleviating the symptoms of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Simon Levinson
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
- Stanford Department of Neurosurgery, Stanford University, Palo Alto CA, United States
| | - Michelle Miller
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Ahmed Iftekhar
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Monica Justo
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel Arriola
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Wenxin Wei
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Saman Hazany
- Department of Radiology, VA Greater Los Angeles Healthcare System, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | | | - Taylor P. Kuhn
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu Berlin, Berlin, Germany
- Department of Neurology, Center for Brain Circuit Therapeutics, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
- Massachusetts General Hospital Neurosurgery and Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Ausaf A. Bari
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
Lu C, Feng Y, Li H, Gao Z, Zhu X, Hu J. A preclinical study of deep brain stimulation in the ventral tegmental area for alleviating positive psychotic-like behaviors in mice. Front Hum Neurosci 2022; 16:945912. [PMID: 36034113 PMCID: PMC9399924 DOI: 10.3389/fnhum.2022.945912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Deep brain stimulation (DBS) is a clinical intervention for the treatment of movement disorders. It has also been applied to the treatment of psychiatric disorders such as depression, anorexia nervosa, obsessive-compulsive disorder, and schizophrenia. Psychiatric disorders including schizophrenia, bipolar disorder, and major depression can lead to psychosis, which can cause patients to lose touch with reality. The ventral tegmental area (VTA), located near the midline of the midbrain, is an important region involved in psychosis. However, the clinical application of electrical stimulation of the VTA to treat psychotic diseases has been limited, and related mechanisms have not been thoroughly studied. In the present study, hyperlocomotion and stereotyped behaviors of the mice were employed to mimic and evaluate the positive-psychotic-like behaviors. We attempted to treat positive psychotic-like behaviors by electrically stimulating the VTA in mice and exploring the neural mechanisms behind behavioral effects. Local field potential recording and in vivo fiber photometry to observe the behavioral effects and changes in neural activities caused by DBS in the VTA of mice. Optogenetic techniques were used to verify the neural mechanisms underlying the behavioral effects induced by DBS. Our results showed that electrical stimulation of the VTA activates local gamma-aminobutyric acid (GABA) neurons, and dopamine (DA) neurons, reduces hyperlocomotion, and relieves stereotyped behaviors induced by MK-801 (dizocilpine) injection. The results of optogenetic manipulation showed that the activation of the VTA GABA neurons, but not DA neurons, is involved in the alleviation of hyperlocomotion and stereotyped behaviors. We visualized changes in the activity of specific types in specific brain areas induced by DBS, and explored the neural mechanism of DBS in alleviating positive psychotic-like behaviors. This preclinical study not only proposes new technical means of exploring the mechanism of DBS, but also provides experimental justification for the clinical treatment of psychotic diseases by electrical stimulation of the VTA.
Collapse
Affiliation(s)
- Chen Lu
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Feng
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Hongxia Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilong Gao
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiaona Zhu
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Ji Hu
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| |
Collapse
|
6
|
Rusanen SS, De S, Schindler EAD, Artto VA, Storvik M. Self-Reported Efficacy of Treatments in Cluster Headache: a Systematic Review of Survey Studies. Curr Pain Headache Rep 2022; 26:623-637. [PMID: 35759175 PMCID: PMC9436841 DOI: 10.1007/s11916-022-01063-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The use and efficacy of various substances in the treatment of CH have been studied in several retrospective surveys. The aim of the study is to systematically review published survey studies to evaluate the reported efficacies of both established and unconventional substances in abortive and prophylactic treatment of both episodic and chronic CH, specifically assessing the consistency of the results. RECENT FINDINGS No systematic review have been conducted of these studies previously. A systematic literature search with a set of search terms was conducted on PubMed. Retrospective surveys that quantified the self-reported efficacy of two or more CH treatments, published in English during 2000-2020, were included. Several key characteristics and results of the studies were extracted. A total of 994 articles were identified of which 9 were found to be eligible based on the selection criteria. In total, 5419 respondents were included. Oxygen and subcutaneous triptan injections were most reported as effective abortive treatments, while psilocybin and lysergic acid diethylamide were most commonly reported as effective prophylactic treatments. The reported efficacy of most substances was consistent across different studies, and there were marked differences in the reported efficacies of different substances. The reported order of efficacy is generally in agreement with clinical studies. The findings suggest that retrospective surveys can be used to obtain supporting information on the effects of various substances used in the treatment of CH and to form hypotheses about novel treatment methods. The consistently reported efficacy of psilocybin and LSD in prophylactic treatment indicates need for clinical studies.
Collapse
Affiliation(s)
| | - Suchetana De
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | | - Ville Aleksi Artto
- Department of Neurology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Markus Storvik
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
7
|
Moreno-Ajona D, Hoffmann J. From basic mechanisms to therapeutic perspectives in cluster headache. Curr Opin Neurol 2022; 35:336-342. [PMID: 35674077 DOI: 10.1097/wco.0000000000001055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The pathophysiological understanding of cluster headache has evolved significantly over the past years. Although it is now well known that the trigeminovascular system, the parasympathetic system and the hypothalamus play important roles in its pathomechanism, we increasingly understand the functional role several neurotransmitters and hormones play in the communication between these structures. RECENT FINDINGS This work will give an overview of the current understanding of the role of calcitonin gene-related peptide, vasoactive intestinal peptide, pituitary adenylate cyclase-activating peptide, melatonin and orexins in cluster headache. On the basis of recent evidence, this study will also review the relevance of the monoclonal calcitonin gene-related peptide antibody galcanezumab as well as the sleep-regulating hormone melatonin in the treatment of cluster headache. SUMMARY Herein, we aim to review the basic mechanisms implicated in the pathophysiology of cluster headache and how the increased mechanistic understanding may lead to the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- David Moreno-Ajona
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London.,NIHR-Wellcome Trust King's Clinical Research Facility/SLaM Biomedical Research Centre, King's College Hospital, London, UK
| | - Jan Hoffmann
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London.,NIHR-Wellcome Trust King's Clinical Research Facility/SLaM Biomedical Research Centre, King's College Hospital, London, UK
| |
Collapse
|
8
|
Swinnen BEKS, Buijink AW, Piña-Fuentes D, de Bie RMA, Beudel M. Diving into the Subcortex: The Potential of Chronic Subcortical Sensing for Unravelling Basal Ganglia Function and Optimization of Deep Brain STIMULATION. Neuroimage 2022; 254:119147. [PMID: 35346837 DOI: 10.1016/j.neuroimage.2022.119147] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/18/2022] Open
Abstract
Subcortical structures are a relative neurophysiological 'terra incognita' owing to their location within the skull. While perioperative subcortical sensing has been performed for more than 20 years, the neurophysiology of the basal ganglia in the home setting has remained almost unexplored. However, with the recent advent of implantable pulse generators (IPG) that are able to record neural activity, the opportunity to chronically record local field potentials (LFPs) directly from electrodes implanted for deep brain stimulation opens up. This allows for a breakthrough of chronic subcortical sensing into fundamental research and clinical practice. In this review an extensive overview of the current state of subcortical sensing is provided. The widespread potential of chronic subcortical sensing for investigational and clinical use is discussed. Finally, status and future perspectives of the most promising application of chronic subcortical sensing -i.e., adaptive deep brain stimulation (aDBS)- are discussed in the context of movement disorders. The development of aDBS based on both chronic subcortical and cortical sensing has the potential to dramatically change clinical practice and the life of patients with movement disorders. However, several barriers still stand in the way of clinical implementation. Advancements regarding IPG and lead technology, physiomarkers, and aDBS algorithms as well as harnessing artificial intelligence, multimodality and sensing in the naturalistic setting are needed to bring aDBS to clinical practice.
Collapse
Affiliation(s)
- Bart E K S Swinnen
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical, Centers, Amsterdam Neuroscience, University of Amsterdam, PO Box 22660, Amsterdam 1100DD, the Netherland.
| | - Arthur W Buijink
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical, Centers, Amsterdam Neuroscience, University of Amsterdam, PO Box 22660, Amsterdam 1100DD, the Netherland
| | - Dan Piña-Fuentes
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical, Centers, Amsterdam Neuroscience, University of Amsterdam, PO Box 22660, Amsterdam 1100DD, the Netherland
| | - Rob M A de Bie
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical, Centers, Amsterdam Neuroscience, University of Amsterdam, PO Box 22660, Amsterdam 1100DD, the Netherland
| | - Martijn Beudel
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical, Centers, Amsterdam Neuroscience, University of Amsterdam, PO Box 22660, Amsterdam 1100DD, the Netherland
| |
Collapse
|
9
|
Wilbrink LA, de Coo IF, Doesborg PGG, Mulleners WM, Teernstra OPM, Bartels EC, Burger K, Wille F, van Dongen RTM, Kurt E, Spincemaille GH, Haan J, van Zwet EW, Huygen FJPM, Ferrari MD. Safety and efficacy of occipital nerve stimulation for attack prevention in medically intractable chronic cluster headache (ICON): a randomised, double-blind, multicentre, phase 3, electrical dose-controlled trial. Lancet Neurol 2021; 20:515-525. [PMID: 34146510 DOI: 10.1016/s1474-4422(21)00101-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/14/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Occipital nerve stimulation (ONS) has shown promising results in small uncontrolled trials in patients with medically intractable chronic cluster headache (MICCH). We aimed to establish whether ONS could serve as an effective treatment for patients with MICCH. METHODS The ONS in MICCH (ICON) study is an investigator-initiated, international, multicentre, randomised, double-blind, phase 3, electrical dose-controlled clinical trial. The study took place at four hospitals in the Netherlands, one hospital in Belgium, one in Germany, and one in Hungary. After 12 weeks' baseline observation, patients with MICCH, at least four attacks per week, and history of being non-responsive to at least three standard preventive drugs, were randomly allocated (at a 1:1 ratio using a computer-generated permuted block) to 24 weeks of occipital nerve stimulation at either 100% or 30% of the individually determined range between paraesthesia threshold and near-discomfort (double-blind study phase). Because ONS causes paraesthesia, preventing masked comparison versus placebo, we compared high-intensity versus low-intensity ONS, which are hypothesised to cause similar paraesthesia, but with different efficacy. In weeks 25-48, participants received individually optimised open-label ONS. The primary outcome was the weekly mean attack frequency in weeks 21-24 compared with baseline across all patients and, if a decrease was shown, to show a group-wise difference. The trial is closed to recruitment (ClinicalTrials.gov NCT01151631). FINDINGS Patients were enrolled between Oct 12, 2010, and Dec 3, 2017. We enrolled 150 patients and randomly assigned 131 (87%) to treatment; 65 (50%) patients to 100% ONS and 66 (50%) to 30% ONS. One of the 66 patients assigned to 30% ONS was not implanted and was therefore excluded from the intention-to-treat analysis. Because the weekly mean attack frequencies at baseline were skewed (median 15·75; IQR 9·44 to 24·75) we used log transformation to analyse the data and medians to present the results. Median weekly mean attack frequencies in the total population decreased from baseline to 7·38 (2·50 to 18·50; p<0·0001) in weeks 21-24, a median change of -5·21 (-11·18 to -0·19; p<0·0001) attacks per week. In the 100% ONS stimulation group, mean attack frequency decreased from 17·58 (9·83 to 29·33) at baseline to 9·50 (3·00 to 21·25) at 21-24 weeks (median change from baseline -4·08, -11·92 to -0·25), and for the 30% ONS stimulation group, mean attack frequency decreased from 15·00 (9·25 to 22·33) to 6·75 (1·50 to 16·50; -6·50, -10·83 to -0·08). The difference in median weekly mean attack frequency between groups at the end of the masked phase in weeks 21-24 was -2·42 (95% CI -5·17 to 3·33). In the masked study phase, 129 adverse events occurred with 100% ONS and 95 occurred with 30% ONS. None of the adverse events was unexpected but 17 with 100% ONS and eight with 30% ONS were labelled as serious, given they required brief hospital admission for minor hardware-related issues. The most common adverse events were local pain, impaired wound healing, neck stiffness, and hardware damage. INTERPRETATION In patients with MICCH, both 100% ONS intensity and 30% ONS intensity substantially reduced attack frequency and were safe and well tolerated. Future research should focus on optimising stimulation protocols and disentangling the underlying mechanism of action. FUNDING The Netherlands Organisation for Scientific Research, the Dutch Ministry of Health, the NutsOhra Foundation from the Dutch Health Insurance Companies, and Medtronic.
Collapse
Affiliation(s)
- Leopoldine A Wilbrink
- Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands; Department of Neurology, Zuyderland Medical Centre, Heerlen, Netherlands
| | - Ilse F de Coo
- Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands; Basalt Rehabilitation Centre, the Hague, Netherlands
| | - Patty G G Doesborg
- Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands
| | - Wim M Mulleners
- Department of Neurology, Canisius-Wilhelmina Hospital, Nijmegen, Netherlands
| | - Onno P M Teernstra
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Eveline C Bartels
- Department of Anaesthesiology, Leiden University Medical Centre, Leiden, Netherlands
| | - Katja Burger
- Department of Anaesthesiology, Alrijne Hospital, Leiderdorp, Netherlands
| | - Frank Wille
- Department of Anaesthesiology, Diakonessenhuis Hospital, Zeist, Netherlands
| | - Robert T M van Dongen
- Department of Anaesthesiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Erkan Kurt
- Department of Neurosurgery, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Geert H Spincemaille
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Joost Haan
- Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands; Department of Neurology, Alrijne Hospital, Leiderdorp, Netherlands
| | - Erik W van Zwet
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands
| | | | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands.
| | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The trigeminal autonomic cephalalgias (TACs) are relatively rare, but they represent a distinct set of syndromes that are important to recognize. Despite their unique features, TACs often go undiagnosed or misdiagnosed for several years, leading to unnecessary pain and suffering. A significant proportion of TAC presentations may have secondary causes. RECENT FINDINGS The underlying pathophysiology of TACs is likely rooted in hypothalamic dysfunction and derangements in the interplay of circuitry involving trigeminovascular, trigeminocervical, trigeminoautonomic, circadian, and nociceptive systems. Recent therapeutic advancements include a better understanding of how to use older therapies more effectively and the identification of new approaches. SUMMARY TAC syndromes are rare but important to recognize because of their debilitating nature and greater likelihood for having potentially serious underlying causes. Although treatment options have remained somewhat limited, scientific inquiry is continually advancing our understanding of these syndromes and how best to manage them.
Collapse
|
11
|
Díaz-de-Terán J, Membrilla JA, Paz-Solís J, de Lorenzo I, Roa J, Lara-Lara M, Gil-Martínez A, Díez-Tejedor E. Occipital Nerve Stimulation for Pain Modulation in Drug-Resistant Chronic Cluster Headache. Brain Sci 2021; 11:brainsci11020236. [PMID: 33668570 PMCID: PMC7918621 DOI: 10.3390/brainsci11020236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/23/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022] Open
Abstract
Occipital nerve stimulation (ONS) is a surgical treatment proposed for drug-resistant chronic cluster headache (drCCH). Long-term series assessing its efficacy are scarce. We designed a retrospective observational study with consecutive sampling, evaluating the follow-up of 17 drCCH patients who underwent ONS. Our main endpoint was the reduction the rate of attacks per week. We also evaluated the pain intensity through the Visual Analogue Scale (VAS), patient overall perceived improvement and decrease in oral medication intake. After a median follow-up of 6.0 years (4.5–9.0), patients decreased from a median of 30 weekly attacks to 22.5 (5.6–37.5, p = 0.012), 7.5 at 1 year (p = 0.006) and 15.0 at the end of follow-up (p = 0.041). The VAS decreased from a median of 10.0 to 8.0 (p = 0.011) at three months, to 7.0 (p = 0.008) at twelve months and 7.0 (p = 0.003) at the end of the follow-up. A total of 23.5% had an overall perceived improvement of ≥70% at 3 months, 41.2% at 1 year and 27.8% at the end of follow-up. Reducing prophylactic oral medication was possible in 76.5% and it was stopped in 17.7%. Triptan use decreased in all the responder patients and 17.7% stopped its intake. A total of 41.2% presented mild adverse events. In conclusion, our long-term experience suggests that ONS could be an interesting option for drCCH-selected patients, as it is a beneficial and minimally invasive procedure with no serious adverse events.
Collapse
Affiliation(s)
- Javier Díaz-de-Terán
- Neurology Department, University Hospital La Paz, 28046 Madrid, Spain; (J.D.-d.-T.); (J.A.M.); (I.d.L.); (J.R.); (M.L.-L.); (E.D.-T.)
- CranioSPain Research Group, Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle (UAM), La Salle Campus Madrid, 28023 Madrid, Spain
| | - Javier A. Membrilla
- Neurology Department, University Hospital La Paz, 28046 Madrid, Spain; (J.D.-d.-T.); (J.A.M.); (I.d.L.); (J.R.); (M.L.-L.); (E.D.-T.)
| | - José Paz-Solís
- La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
- Neurosurgery Department, University Hospital La Paz, 28046 Madrid, Spain;
| | - Iñigo de Lorenzo
- Neurology Department, University Hospital La Paz, 28046 Madrid, Spain; (J.D.-d.-T.); (J.A.M.); (I.d.L.); (J.R.); (M.L.-L.); (E.D.-T.)
| | - Javier Roa
- Neurology Department, University Hospital La Paz, 28046 Madrid, Spain; (J.D.-d.-T.); (J.A.M.); (I.d.L.); (J.R.); (M.L.-L.); (E.D.-T.)
| | - Manuel Lara-Lara
- Neurology Department, University Hospital La Paz, 28046 Madrid, Spain; (J.D.-d.-T.); (J.A.M.); (I.d.L.); (J.R.); (M.L.-L.); (E.D.-T.)
- La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
| | - Alfonso Gil-Martínez
- CranioSPain Research Group, Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle (UAM), La Salle Campus Madrid, 28023 Madrid, Spain
- La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
- Unit of Physiotherapy, University Hospital La Paz, 28046 Madrid, Spain
- Correspondence: ; Tel.: +34-666-137-908
| | - Exuperio Díez-Tejedor
- Neurology Department, University Hospital La Paz, 28046 Madrid, Spain; (J.D.-d.-T.); (J.A.M.); (I.d.L.); (J.R.); (M.L.-L.); (E.D.-T.)
- La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
| |
Collapse
|
12
|
Neuromodulation in headache and craniofacial neuralgia: Guidelines from the Spanish Society of Neurology and the Spanish Society of Neurosurgery. NEUROLOGÍA (ENGLISH EDITION) 2021. [DOI: 10.1016/j.nrleng.2020.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Argyriou AA, Vikelis M, Mantovani E, Litsardopoulos P, Tamburin S. Recently available and emerging therapeutic strategies for the acute and prophylactic management of cluster headache: a systematic review and expert opinion. Expert Rev Neurother 2020; 21:235-248. [PMID: 33243037 DOI: 10.1080/14737175.2021.1857240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Introduction: Although it causes a huge burden to sufferers, cluster headache (CH), remains an undertreated condition, partly due to the absence of established acute and prophylactic treatment options. New therapeutic approaches providing fast and safe relief from CH are needed. Areas covered: A systematic review was conducted, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendation on recently published (last 5 years) papers on CH treatment. The authors also collected preliminary results from ongoing trials on emerging therapeutic/preventive pharmacological and interventional approaches for CH. Studies and results are reviewed and discussed. Expert opinion: The complexity of CH pathophysiology prevents the definition of reliable acute and preventive treatments. In the real-world clinical setting, several treatments are combined to provide relief to patients and increase their quality of life. Drugs targeting neuropeptides or their receptors within the trigeminovascular network are of particular interest to prevent CH attacks. Calcitonin gene-related peptide (CGRP) blockade seems attractive and promising, but studies on anti-CGRP monoclonal antibodies indicated rather modest or even absence of a prophylactic effect. A deeper insight into CH pathophysiology, and combined approaches may lead the path to new, more effective, and personalized CH therapies.
Collapse
Affiliation(s)
- Andreas A Argyriou
- Headache Outpatient Clinic, Department of Neurology, Saint Andrew's State General Hospital of Patras , Patras, Greece
| | - Michail Vikelis
- Headache Clinic, Mediterraneo Hospital , Glyfada, Greece.,Glyfada Headache Clinic , Glyfada, Greece
| | - Elisa Mantovani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona , Verona, Italy
| | - Pantelis Litsardopoulos
- Headache Outpatient Clinic, Department of Neurology, Saint Andrew's State General Hospital of Patras , Patras, Greece
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona , Verona, Italy
| |
Collapse
|
14
|
Belvís R, Irimia P, Seijo-Fernández F, Paz J, García-March G, Santos-Lasaosa S, Latorre G, González-Oria C, Rodríguez R, Pozo-Rosich P, Láinez JM. Neuromodulation in headache and craniofacial neuralgia: guidelines from the Spanish Society of Neurology and the Spanish Society of Neurosurgery. Neurologia 2020; 36:61-79. [PMID: 32718873 DOI: 10.1016/j.nrl.2020.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/11/2020] [Accepted: 04/15/2020] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Numerous invasive and non-invasive neuromodulation devices have been developed and applied to patients with headache and neuralgia in recent years. However, no updated review addresses their safety and efficacy, and no healthcare institution has issued specific recommendations on their use for these 2 conditions. METHODS Neurologists from the Spanish Society of Neurology's (SEN) Headache Study Group and neurosurgeons specialising in functional neurosurgery, selected by the Spanish Society of Neurosurgery (SENEC), performed a comprehensive review of articles on the MEDLINE database addressing the use of the technique in patients with headache and neuralgia. RESULTS We present an updated review and establish the first set of consensus recommendations of the SEN and SENC on the use of neuromodulation to treat headache and neuralgia, analysing the current levels of evidence on its effectiveness for each specific condition. CONCLUSIONS Current evidence supports the indication of neuromodulation techniques for patients with refractory headache and neuralgia (especially migraine, cluster headache, and trigeminal neuralgia) selected by neurologists and headache specialists, after pharmacological treatment options are exhausted. Furthermore, we recommend that invasive neuromodulation be debated by multidisciplinary committees, and that the procedure be performed by teams of neurosurgeons specialising in functional neurosurgery, with acceptable rates of morbidity and mortality.
Collapse
Affiliation(s)
- R Belvís
- Hospital de la Santa Creu i Sant Pau, Barcelona, España
| | - P Irimia
- Clínica Universitaria de Navarra, Pamplona, España.
| | | | - J Paz
- Hospital Universitario La Paz, Madrid, España
| | | | | | - G Latorre
- Hospital Universitario de Fuenlabrada, Madrid, España
| | | | - R Rodríguez
- Hospital de la Santa Creu i Sant Pau, Barcelona, España
| | | | - J M Láinez
- Hospital Clínico Universitario, Valencia, España
| |
Collapse
|
15
|
Mecklenburg J, Sanchez Del Rio M, Reuter U. Cluster headache therapies: pharmacology and mode of action. Expert Rev Clin Pharmacol 2020; 13:641-654. [DOI: 10.1080/17512433.2020.1774361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jasper Mecklenburg
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Uwe Reuter
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
16
|
Kakusa B, Saluja S, Dadey DYA, Barbosa DAN, Gattas S, Miller KJ, Cowan RP, Kouyoumdjian Z, Pouratian N, Halpern CH. Electrophysiology and Structural Connectivity of the Posterior Hypothalamic Region: Much to Learn From a Rare Indication of Deep Brain Stimulation. Front Hum Neurosci 2020; 14:164. [PMID: 32670034 PMCID: PMC7326144 DOI: 10.3389/fnhum.2020.00164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
Cluster headache (CH) is among the most common and debilitating autonomic cephalalgias. We characterize clinical outcomes of deep brain stimulation (DBS) to the posterior hypothalamic region through a novel analysis of the electrophysiological topography and tractography-based structural connectivity. The left posterior hypothalamus was targeted ipsilateral to the refractory CH symptoms. Intraoperatively, field potentials were captured in 1 mm depth increments. Whole-brain probabilistic tractography was conducted to assess the structural connectivity of the estimated volume of activated tissue (VAT) associated with therapeutic response. Stimulation of the posterior hypothalamic region led to the resolution of CH symptoms, and this benefit has persisted for 1.5-years post-surgically. Active contacts were within the posterior hypothalamus and dorsoposterior border of the ventral anterior thalamus (VAp). Delta- (3 Hz) and alpha-band (8 Hz) powers increased and peaked with proximity to the posterior hypothalamus. In the posterior hypothalamus, the delta-band phase was coupled to beta-band amplitude, the latter of which has been shown to increase during CH attacks. Finally, we identified that the VAT encompassing these regions had a high proportion of streamlines of pain processing regions, including the insula, anterior cingulate gyrus, inferior parietal lobe, precentral gyrus, and the brainstem. Our unique case study of posterior hypothalamic region DBS supports durable efficacy and provides a platform using electrophysiological topography and structural connectivity, to improve mechanistic understanding of CH and this promising therapy.
Collapse
Affiliation(s)
- Bina Kakusa
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Sabir Saluja
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - David Y A Dadey
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Daniel A N Barbosa
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Sandra Gattas
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States
| | - Robert P Cowan
- Department of Neurology and Neurosciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Zepure Kouyoumdjian
- Department of Neurology, South Valley Neurology, Morgan Hill, CA, United States
| | - Nader Pouratian
- Department of Neurosurgery, School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
17
|
Hanuska J, Urgosik D, Raev S, Ruzicka F, Jech R. Cerebrospinal Fluid Leak to the IPG Subcutaneous Pocket after Deep Brain Stimulation Implantation: A Case Report. Stereotact Funct Neurosurg 2019; 97:404-406. [PMID: 31852004 DOI: 10.1159/000504680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/11/2019] [Indexed: 11/19/2022]
Abstract
This case report presents a 54-year-old Parkinson´s disease patient who underwent a DBS implantation to the subthalamic nuclei bilaterally. Shortly after the operation, the subcutaneous pocket of the generator filled with a liquid. Repeated aspirations did not show any bacterial contamination, and an infection was not found. In the sample, a beta-trace protein was detected that proved the presence of cerebrospinal fluid. A lumbar drain was immediately placed, and a chest compression bandage was fastened for 7 days. After removing the lumbar drain and the compression bandage, no additional liquid was observed, and the wound healed without any other complication. We present an unusual adverse event related to DBS surgery and suggest an effective treatment that has led to uncomplicated healing.
Collapse
Affiliation(s)
- Jaromir Hanuska
- Department of Neurosurgery, Na Homolce Hospital, Prague, Czechia,
| | - Dusan Urgosik
- Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czechia
| | - Stefan Raev
- Department of Neurosurgery, Na Homolce Hospital, Prague, Czechia
| | - Filip Ruzicka
- Department of Neurology and Centre of Clinical Neuroscience, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Robert Jech
- Department of Neurology and Centre of Clinical Neuroscience, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| |
Collapse
|
18
|
|
19
|
Farrell SM, Green A, Aziz T. The Use of Neuromodulation for Symptom Management. Brain Sci 2019; 9:brainsci9090232. [PMID: 31547392 PMCID: PMC6769574 DOI: 10.3390/brainsci9090232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 01/23/2023] Open
Abstract
Pain and other symptoms of autonomic dysregulation such as hypertension, dyspnoea and bladder instability can lead to intractable suffering. Incorporation of neuromodulation into symptom management, including palliative care treatment protocols, is becoming a viable option scientifically, ethically, and economically in order to relieve suffering. It provides further opportunity for symptom control that cannot otherwise be provided by pharmacology and other conventional methods.
Collapse
Affiliation(s)
- Sarah Marie Farrell
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Alexander Green
- Nuffield department of clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Tipu Aziz
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
- Nuffield department of clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| |
Collapse
|
20
|
Cluster headache: crosspoint between otologists and neurologists—treatment of the sphenopalatine ganglion and systematic review. Neurol Sci 2019; 40:137-146. [DOI: 10.1007/s10072-019-03796-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
The neurosurgical treatment of craniofacial pain syndromes: current surgical indications and techniques. Neurol Sci 2019; 40:159-168. [DOI: 10.1007/s10072-019-03789-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|