1
|
Baranowski R, Amschler J, Wittwer D, Arendash GW. Memory enhancement by transcranial radiofrequency wave treatment occurs without appreciably increasing brain temperature. Phys Eng Sci Med 2025:10.1007/s13246-024-01508-8. [PMID: 39760845 DOI: 10.1007/s13246-024-01508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025]
Abstract
We have previously shown in small studies that full brain Transcranial Radiofrequency Wave Treatment (TRFT) to subjects with Alzheimer's Disease could stop and reverse their cognitive decline. An 8-emitter head device, the "MemorEM", was used in these studies to provide TRFT at 915 MHz frequency and power level of 1.6 W/kg Specific Absorption Rate (SAR) during daily 1-hour treatments. Although no deleterious side effects during up to 2.5 years of treatment were reported, it is important to rule out the possibility that brain heating will occur during TRFT in humans at a higher power level of 4.0 W/kg SAR, which is anticipated for future clinical testing in order to increase treatment intensity/efficacy to deep sub-cortical areas. To examine if brain heating occurs during a single 1-hour treatment at 4 W/kg SAR, a hollow human head phantom filled with brain-analogous gel and with an attached MemorEM head device was utilized. Brain temperatures were taken at 64 specific coordinates within the brain gel before and immediately following one-hour of TRFT. Results revealed none of the 64 sites having a temperature increase after TRFT of 1 °C or more. Indeed, 45 of the 64 sites exhibited a temperature rise of less than 0.5 °C, with just three sites exhibiting an increase between 0.75 and 0.9 °C. These results demonstrate that TRFT in a human head phantom that mimics the electromagnetic properties of the human head, does not appreciably increase brain temperature (i.e., is non-thermal) at 915 MHz frequency and 4 W/kg SAR power level. Thus, TRFT would appear to be safe at 4 W/kg for long-term daily treatments.
Collapse
Affiliation(s)
| | | | | | - Gary W Arendash
- RF Longevity, 428 E. Thunderbird Road, Phoenix, SE, AZ, 85022, USA.
- NeuroEM Therapeutics, 501 E. Kennedy Blvd, Tampa, FL, 33602, USA.
| |
Collapse
|
2
|
Skandalakis GP, Neudorfer C, Payne CA, Bond E, Tavakkoli AD, Barrios-Martinez J, Trutti AC, Koutsarnakis C, Coenen VA, Komaitis S, Hadjipanayis CG, Stranjalis G, Yeh FC, Banihashemi L, Hong J, Lozano AM, Kogan M, Horn A, Evans LT, Kalyvas A. Establishing connectivity through microdissections of midbrain stimulation-related neural circuits. Brain 2024; 147:3083-3098. [PMID: 38808482 PMCID: PMC11370807 DOI: 10.1093/brain/awae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/15/2024] [Accepted: 04/21/2024] [Indexed: 05/30/2024] Open
Abstract
Comprehensive understanding of the neural circuits involving the ventral tegmental area is essential for elucidating the anatomofunctional mechanisms governing human behaviour, in addition to the therapeutic and adverse effects of deep brain stimulation for neuropsychiatric diseases. Although the ventral tegmental area has been targeted successfully with deep brain stimulation for different neuropsychiatric diseases, the axonal connectivity of the region is not fully understood. Here, using fibre microdissections in human cadaveric hemispheres, population-based high-definition fibre tractography and previously reported deep brain stimulation hotspots, we find that the ventral tegmental area participates in an intricate network involving the serotonergic pontine nuclei, basal ganglia, limbic system, basal forebrain and prefrontal cortex, which is implicated in the treatment of obsessive-compulsive disorder, major depressive disorder, Alzheimer's disease, cluster headaches and aggressive behaviours.
Collapse
Affiliation(s)
- Georgios P Skandalakis
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
- Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens 10676, Greece
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Caitlin A Payne
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Evalina Bond
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Armin D Tavakkoli
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | | | - Anne C Trutti
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam 15926, The Netherlands
| | - Christos Koutsarnakis
- Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens 10676, Greece
| | - Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of the University of Freiburg, Freiburg 79106, Germany
- Medical Faculty of the University of Freiburg, Freiburg 79110, Germany
- Center for Deep Brain Stimulation, Medical Center of the University of Freiburg, Freiburg 79106, Germany
| | - Spyridon Komaitis
- Queens Medical Center, Nottingham University Hospitals NHS Foundation Trust, Nottingham NG7 2UH, UK
| | | | - George Stranjalis
- Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens 10676, Greece
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Layla Banihashemi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jennifer Hong
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Andres M Lozano
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Michael Kogan
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Andreas Horn
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Linton T Evans
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Aristotelis Kalyvas
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
3
|
Furrer RA, Merner AR, Stevens I, Zuk P, Williamson T, Shen FX, Lázaro-Muñoz G. Public Perceptions of Neurotechnologies Used to Target Mood, Memory, and Motor Symptoms. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.09.24308176. [PMID: 38946963 PMCID: PMC11213062 DOI: 10.1101/2024.06.09.24308176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Advances in the development of neurotechnologies have the potential to revolutionize treatment of brain-based conditions. However, a critical concern revolves around the willingness of the public to embrace these technologies, especially considering the tumultuous histories of certain neurosurgical interventions. Therefore, examining public attitudes is paramount to uncovering potential barriers to adoption ensuring ethically sound innovation. Methods In the present study, we investigate public attitudes towards the use of four neurotechnologies (within-subjects conditions): deep brain stimulation (DBS), transcranial magnetic stimulation (TMS), pills, and MRI-guided focused ultrasound (MRgFUS) as potential treatments to a person experiencing either mood, memory, or motor symptoms (between-subjects conditions). US-based participants (N=1052; stratified to be nationally representative based on sex, race, age) were asked about their perceptions of risk, benefit, invasiveness, acceptability, perceived change to the person, and personal interest in using these neurotechnologies for symptom alleviation. Results Descriptive results indicate variability between technologies that the U.S. public is willing to consider if experiencing severe mood, memory, or motor symptoms. The main effect of neurotechnology revealed DBS was viewed as the most invasive and risky treatment and was perceived to lead to the greatest change to who someone is as a person. DBS was also viewed as least likely to be personally used and least acceptable for use by others. When examining the main effects of symptomatology, we found that all forms of neuromodulation were perceived as significantly more beneficial, acceptable, and likely to be used by participants for motor symptoms, followed by memory symptoms, and lastly mood symptoms. Neuromodulation (averaging across neurotechnologies) was perceived as significantly riskier, more invasive, and leading to a greater change to person for mood versus motor symptoms; however, memory and motor symptoms were perceived similarly with respect to risk, invasiveness, and change to person. Conclusion These results suggest that the public views neuromodulatory approaches that require surgery (i.e., DBS and MRgFUS) as riskier, more invasive, and less acceptable than those that do not. Further, findings suggest individuals may be more reluctant to alter or treat psychological symptoms with neuromodulation compared to physical symptoms.
Collapse
|
4
|
Rapaka D, Tebogo MO, Mathew EM, Adiukwu PC, Bitra VR. Targeting papez circuit for cognitive dysfunction- insights into deep brain stimulation for Alzheimer's disease. Heliyon 2024; 10:e30574. [PMID: 38726200 PMCID: PMC11079300 DOI: 10.1016/j.heliyon.2024.e30574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Hippocampus is the most widely studied brain area coupled with impairment of memory in a variety of neurological diseases and Alzheimer's disease (AD). The limbic structures within the Papez circuit have been linked to various aspects of cognition. Unfortunately, the brain regions that include this memory circuit are often ignored in terms of understanding cognitive decline in these diseases. To properly comprehend where cognition problems originate, it is crucial to clarify any aberrant contributions from all components of a specific circuit -on both a local and a global level. The pharmacological treatments currently available are not long lasting. Deep Brain Stimulation (DBS) emerged as a new powerful therapeutic approach for alleviation of the cognitive dysfunctions. Metabolic, functional, electrophysiological, and imaging studies helped to find out the crucial nodes that can be accessible for DBS. Targeting these nodes within the memory circuit produced significant improvement in learning and memory by disrupting abnormal circuit activity and restoring the physiological network. Here, we provide an overview of the neuroanatomy of the circuit of Papez along with the mechanisms and various deep brain stimulation targets of the circuit structures which could be significant for improving cognitive dysfunctions in AD.
Collapse
Affiliation(s)
| | - Motshegwana O. Tebogo
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana, P/Bag-0022
| | - Elizabeth M. Mathew
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana, P/Bag-0022
| | | | - Veera Raghavulu Bitra
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana, P/Bag-0022
| |
Collapse
|
5
|
Smith JN, Dorfman N, Hurley M, Cenolli I, Kostick-Quenet K, Storch EA, Lázaro-Muñoz G, Blumenthal-Barby J. Adolescent OCD Patient and Caregiver Perspectives on Identity, Authenticity, and Normalcy in Potential Deep Brain Stimulation Treatment. Camb Q Healthc Ethics 2024:1-14. [PMID: 38602092 DOI: 10.1017/s0963180124000203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The ongoing debate within neuroethics concerning the degree to which neuromodulation such as deep brain stimulation (DBS) changes the personality, identity, and agency (PIA) of patients has paid relatively little attention to the perspectives of prospective patients. Even less attention has been given to pediatric populations. To understand patients' views about identity changes due to DBS in obsessive-compulsive disorder (OCD), the authors conducted and analyzed semistructured interviews with adolescent patients with OCD and their parents/caregivers. Patients were asked about projected impacts to PIA generally due to DBS. All patient respondents and half of caregivers reported that DBS would impact patient self-identity in significant ways. For example, many patients expressed how DBS could positively impact identity by allowing them to explore their identities free from OCD. Others voiced concerns that DBS-related resolution of OCD might negatively impact patient agency and authenticity. Half of patients expressed that DBS may positively facilitate social access through relieving symptoms, while half indicated that DBS could increase social stigma. These views give insights into how to approach decision-making and informed consent if DBS for OCD becomes available for adolescents. They also offer insights into adolescent experiences of disability identity and "normalcy" in the context of OCD.
Collapse
Affiliation(s)
- Jared N Smith
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Natalie Dorfman
- Department of Philosophy, University of Washington, Seattle, WA, USA
| | - Meghan Hurley
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Ilona Cenolli
- Center for Bioethics, Harvard Medical School, Boston, MA, USA
| | - Kristin Kostick-Quenet
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Eric A Storch
- Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
6
|
Liu Y, Wang Z, Wei T, Zhou S, Yin Y, Mi Y, Liu X, Tang Y. Alterations of Audiovisual Integration in Alzheimer's Disease. Neurosci Bull 2023; 39:1859-1872. [PMID: 37812301 PMCID: PMC10661680 DOI: 10.1007/s12264-023-01125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/22/2023] [Indexed: 10/10/2023] Open
Abstract
Audiovisual integration is a vital information process involved in cognition and is closely correlated with aging and Alzheimer's disease (AD). In this review, we evaluated the altered audiovisual integrative behavioral symptoms in AD. We further analyzed the relationships between AD pathologies and audiovisual integration alterations bidirectionally and suggested the possible mechanisms of audiovisual integration alterations underlying AD, including the imbalance between energy demand and supply, activity-dependent degeneration, disrupted brain networks, and cognitive resource overloading. Then, based on the clinical characteristics including electrophysiological and imaging data related to audiovisual integration, we emphasized the value of audiovisual integration alterations as potential biomarkers for the early diagnosis and progression of AD. We also highlighted that treatments targeted audiovisual integration contributed to widespread pathological improvements in AD animal models and cognitive improvements in AD patients. Moreover, investigation into audiovisual integration alterations in AD also provided new insights and comprehension about sensory information processes.
Collapse
Affiliation(s)
- Yufei Liu
- Department of Neurology and Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Zhibin Wang
- Department of Neurology and Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Tao Wei
- Department of Neurology and Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Shaojiong Zhou
- Department of Neurology and Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Yunsi Yin
- Department of Neurology and Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Yingxin Mi
- Department of Neurology and Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Xiaoduo Liu
- Department of Neurology and Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Yi Tang
- Department of Neurology and Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China.
| |
Collapse
|
7
|
Reiss AB, Muhieddine D, Jacob B, Mesbah M, Pinkhasov A, Gomolin IH, Stecker MM, Wisniewski T, De Leon J. Alzheimer's Disease Treatment: The Search for a Breakthrough. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1084. [PMID: 37374288 PMCID: PMC10302500 DOI: 10.3390/medicina59061084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
As the search for modalities to cure Alzheimer's disease (AD) has made slow progress, research has now turned to innovative pathways involving neural and peripheral inflammation and neuro-regeneration. Widely used AD treatments provide only symptomatic relief without changing the disease course. The recently FDA-approved anti-amyloid drugs, aducanumab and lecanemab, have demonstrated unclear real-world efficacy with a substantial side effect profile. Interest is growing in targeting the early stages of AD before irreversible pathologic changes so that cognitive function and neuronal viability can be preserved. Neuroinflammation is a fundamental feature of AD that involves complex relationships among cerebral immune cells and pro-inflammatory cytokines, which could be altered pharmacologically by AD therapy. Here, we provide an overview of the manipulations attempted in pre-clinical experiments. These include inhibition of microglial receptors, attenuation of inflammation and enhancement of toxin-clearing autophagy. In addition, modulation of the microbiome-brain-gut axis, dietary changes, and increased mental and physical exercise are under evaluation as ways to optimize brain health. As the scientific and medical communities work together, new solutions may be on the horizon to slow or halt AD progression.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Dalia Muhieddine
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Berlin Jacob
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Michael Mesbah
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Aaron Pinkhasov
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Irving H. Gomolin
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | | | - Thomas Wisniewski
- Center for Cognitive Neurology, Departments of Neurology, Pathology and Psychiatry, NYU School of Medicine, New York, NY 10016, USA;
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| |
Collapse
|
8
|
Senevirathne DKL, Mahboob A, Zhai K, Paul P, Kammen A, Lee DJ, Yousef MS, Chaari A. Deep Brain Stimulation beyond the Clinic: Navigating the Future of Parkinson's and Alzheimer's Disease Therapy. Cells 2023; 12:1478. [PMID: 37296599 PMCID: PMC10252401 DOI: 10.3390/cells12111478] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/30/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Deep brain stimulation (DBS) is a surgical procedure that uses electrical neuromodulation to target specific regions of the brain, showing potential in the treatment of neurodegenerative disorders such as Parkinson's disease (PD) and Alzheimer's disease (AD). Despite similarities in disease pathology, DBS is currently only approved for use in PD patients, with limited literature on its effectiveness in AD. While DBS has shown promise in ameliorating brain circuits in PD, further research is needed to determine the optimal parameters for DBS and address any potential side effects. This review emphasizes the need for foundational and clinical research on DBS in different brain regions to treat AD and recommends the development of a classification system for adverse effects. Furthermore, this review suggests the use of either a low-frequency system (LFS) or high-frequency system (HFS) depending on the specific symptoms of the patient for both PD and AD.
Collapse
Affiliation(s)
| | - Anns Mahboob
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Kevin Zhai
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Pradipta Paul
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Alexandra Kammen
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Darrin Jason Lee
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Neurorestoration Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Mohammad S. Yousef
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Ali Chaari
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| |
Collapse
|
9
|
Wang S, Zhu G, Shi L, Zhang C, Wu B, Yang A, Meng F, Jiang Y, Zhang J. Closed-Loop Adaptive Deep Brain Stimulation in Parkinson's Disease: Procedures to Achieve It and Future Perspectives. JOURNAL OF PARKINSON'S DISEASE 2023:JPD225053. [PMID: 37182899 DOI: 10.3233/jpd-225053] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with a heavy burden on patients, families, and society. Deep brain stimulation (DBS) can improve the symptoms of PD patients for whom medication is insufficient. However, current open-loop uninterrupted conventional DBS (cDBS) has inherent limitations, such as adverse effects, rapid battery consumption, and a need for frequent parameter adjustment. To overcome these shortcomings, adaptive DBS (aDBS) was proposed to provide responsive optimized stimulation for PD. This topic has attracted scientific interest, and a growing body of preclinical and clinical evidence has shown its benefits. However, both achievements and challenges have emerged in this novel field. To date, only limited reviews comprehensively analyzed the full framework and procedures for aDBS implementation. Herein, we review current preclinical and clinical data on aDBS for PD to discuss the full procedures for its achievement and to provide future perspectives on this treatment.
Collapse
Affiliation(s)
- Shu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunkui Zhang
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Bing Wu
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fangang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| |
Collapse
|
10
|
Kalita S, Bergman H, Dubey KD, Shaik S. How Can Static and Oscillating Electric Fields Serve in Decomposing Alzheimer's and Other Senile Plaques? J Am Chem Soc 2023; 145:3543-3553. [PMID: 36735972 PMCID: PMC9936589 DOI: 10.1021/jacs.2c12305] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease is one of the most common neurodegenerative conditions, which are ascribed to extracellular accumulation of β-amyloid peptides into plaques. This phenomenon seems to typify other related neurodegenerative diseases. The present study uses classical molecular-dynamics simulations to decipher the aggregation-disintegration behavior of β-amyloid peptide plaques in the presence of static and oscillating oriented external electric fields (OEEFs). A long-term disintegration of such plaques is highly desirable since this may improve the prospects of therapeutic treatments of Alzheimer's disease and of other neurodegenerative diseases typified by senile plaques. Our study illustrates the spontaneous aggregation of the β-amyloid, its prevention and breakdown when OEEF is applied, and the fate of the broken aggregate when the OEEF is removed. Notably, we demonstrate that the usage of an oscillating OEEF on β-amyloid aggregates appears to lead to an irreversible disintegration. Insight is provided into the root causes of the various modes of aggregation, as well as into the different fates of OEEF-induced disintegration in oscillating vs static fields. Finally, our simulation results are compared to the well-established TTFields and the Deep Brain Stimulation (DBS) therapies, which are currently used options for treatments of Alzheimer's disease and other related neurodegenerative diseases.
Collapse
Affiliation(s)
- Surajit Kalita
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Hagai Bergman
- Department of Medical Neurobiology (Physiology), The Hebrew University of Jerusalem, Hadassah Medical Faculty, Jerusalem, Israel 91120
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh 201314, India
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
11
|
Akwa Y, Di Malta C, Zallo F, Gondard E, Lunati A, Diaz-de-Grenu LZ, Zampelli A, Boiret A, Santamaria S, Martinez-Preciado M, Cortese K, Kordower JH, Matute C, Lozano AM, Capetillo-Zarate E, Vaccari T, Settembre C, Baulieu EE, Tampellini D. Stimulation of synaptic activity promotes TFEB-mediated clearance of pathological MAPT/Tau in cellular and mouse models of tauopathies. Autophagy 2023; 19:660-677. [PMID: 35867714 PMCID: PMC9851246 DOI: 10.1080/15548627.2022.2095791] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Synapses represent an important target of Alzheimer disease (AD), and alterations of their excitability are among the earliest changes associated with AD development. Synaptic activation has been shown to be protective in models of AD, and deep brain stimulation (DBS), a surgical strategy that modulates neuronal activity to treat neurological and psychiatric disorders, produced positive effects in AD patients. However, the molecular mechanisms underlying the protective role(s) of brain stimulation are still elusive. We have previously demonstrated that induction of synaptic activity exerts protection in mouse models of AD and frontotemporal dementia (FTD) by enhancing the macroautophagy/autophagy flux and lysosomal degradation of pathological MAPT/Tau. We now provide evidence that TFEB (transcription factor EB), a master regulator of lysosomal biogenesis and autophagy, is a key mediator of this cellular response. In cultured primary neurons from FTD-transgenic mice, synaptic stimulation inhibits MTORC1 signaling, thus promoting nuclear translocation of TFEB, which, in turn, induces clearance of MAPT/Tau oligomers. Conversely, synaptic activation fails to promote clearance of toxic MAPT/Tau in neurons expressing constitutively active RRAG GTPases, which sequester TFEB in the cytosol, or upon TFEB depletion. Activation of TFEB is also confirmed in vivo in DBS-stimulated AD mice. We also demonstrate that DBS reduces pathological MAPT/Tau and promotes neuroprotection in Parkinson disease patients with tauopathy. Altogether our findings indicate that stimulation of synaptic activity promotes TFEB-mediated clearance of pathological MAPT/Tau. This mechanism, underlying the protective effect of DBS, provides encouraging support for the use of synaptic stimulation as a therapeutic treatment against tauopathies.Abbreviations: 3xTg-AD: triple transgenic AD mice; AD: Alzheimer disease; CSA: cyclosporine A; DBS: deep brain stimulation; DIV: days in vitro; EC: entorhinal cortex; FTD: frontotemporal dementia; gLTP: glycine-induced long-term potentiation; GPi: internal segment of the globus pallidus; PD: Parkinson disease; STN: subthalamic nucleus; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Yvette Akwa
- Department of Diseases and Hormones of the Nervous System, U1195 INSERM - Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Chiara Di Malta
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy,Department. of Translational Medicine, Medical Genetics, Federico II University, Naples, Italy
| | - Fátima Zallo
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and Centro de Investigación en Red de Enfermedades, Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Elise Gondard
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Adele Lunati
- Institut Professeur Baulieu, Le Kremlin-Bicêtre, France
| | - Lara Z. Diaz-de-Grenu
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and Centro de Investigación en Red de Enfermedades, Neurodegenerativas (CIBERNED), Leioa, Spain,TECNALIA, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Angela Zampelli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Anne Boiret
- Department of Diseases and Hormones of the Nervous System, U1195 INSERM - Université Paris-Saclay, Le Kremlin-Bicêtre, France,Institut Professeur Baulieu, Le Kremlin-Bicêtre, France
| | - Sara Santamaria
- Cellular Electron Microscopy Lab, DIMES, Department of Experimental Medicine, University of Genoa, Genova, Italy
| | - Maialen Martinez-Preciado
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and Centro de Investigación en Red de Enfermedades, Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Katia Cortese
- Cellular Electron Microscopy Lab, DIMES, Department of Experimental Medicine, University of Genoa, Genova, Italy
| | - Jeffrey H. Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA,College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ, USA
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and Centro de Investigación en Red de Enfermedades, Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Andres M. Lozano
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Estibaliz Capetillo-Zarate
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and Centro de Investigación en Red de Enfermedades, Neurodegenerativas (CIBERNED), Leioa, Spain,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Thomas Vaccari
- Department of Biosciences, University of Milan, Milan, Italy
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy,Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Etienne E. Baulieu
- Department of Diseases and Hormones of the Nervous System, U1195 INSERM - Université Paris-Saclay, Le Kremlin-Bicêtre, France,Institut Professeur Baulieu, Le Kremlin-Bicêtre, France
| | - Davide Tampellini
- Department of Diseases and Hormones of the Nervous System, U1195 INSERM - Université Paris-Saclay, Le Kremlin-Bicêtre, France,Institut Professeur Baulieu, Le Kremlin-Bicêtre, France,CONTACT Davide Tampellini CHU Bicêtre, U 1195 Inserm - Université Paris-Saclay. Secteur Marron, Bât. G. Pincus, door 47, 80, rue du General Leclerc 94276 Kremlin-Bicêtre CedexFrance
| |
Collapse
|
12
|
Li M, Cao X, Yan H, Wang M, Tashibolati A, Maiwulanjiang M. Integrating Zebrafish Model to Screen Active Ingredients and Network Pharmacology Methods to Explore the Mechanism of Lavandula angustifolia Therapy for Alzheimer's Disease. ChemistrySelect 2022. [DOI: 10.1002/slct.202201364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Muchun Li
- State Key Laboratory Basis of Xinjiang indigenous medicinal plants resource utilization Xinjiang Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing South Road 40–1 Urumqi 830011 Xinjiang China
- University of Chinese Academy of Sciences Beijing 100049 China
- Xinjiang Academic Institute of Analysis and Testing Plant Resources Green Processing Engineering Technology Research Center of Xinjiang North Science Road 374 Urumqi 830011 Xinjiang China
| | - Xueqin Cao
- State Key Laboratory Basis of Xinjiang indigenous medicinal plants resource utilization Xinjiang Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing South Road 40–1 Urumqi 830011 Xinjiang China
- University of Chinese Academy of Sciences Beijing 100049 China
- Xinjiang Academic Institute of Analysis and Testing Plant Resources Green Processing Engineering Technology Research Center of Xinjiang North Science Road 374 Urumqi 830011 Xinjiang China
| | - Huan Yan
- Xinjiang Academic Institute of Analysis and Testing Plant Resources Green Processing Engineering Technology Research Center of Xinjiang North Science Road 374 Urumqi 830011 Xinjiang China
- College of Public Health Xinjiang Medical University Urumqi 830011 Xinjiang China
| | - Miaomiao Wang
- State Key Laboratory Basis of Xinjiang indigenous medicinal plants resource utilization Xinjiang Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing South Road 40–1 Urumqi 830011 Xinjiang China
- University of Chinese Academy of Sciences Beijing 100049 China
- Xinjiang Academic Institute of Analysis and Testing Plant Resources Green Processing Engineering Technology Research Center of Xinjiang North Science Road 374 Urumqi 830011 Xinjiang China
| | - Ayiguli Tashibolati
- Xinjiang Academic Institute of Analysis and Testing Plant Resources Green Processing Engineering Technology Research Center of Xinjiang North Science Road 374 Urumqi 830011 Xinjiang China
| | - Maitinuer Maiwulanjiang
- State Key Laboratory Basis of Xinjiang indigenous medicinal plants resource utilization Xinjiang Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing South Road 40–1 Urumqi 830011 Xinjiang China
| |
Collapse
|
13
|
Meng X, Liu J, Fan X, Bian C, Wei Q, Wang Z, Liu W, Jiao Z. Multi-Modal Neuroimaging Neural Network-Based Feature Detection for Diagnosis of Alzheimer’s Disease. Front Aging Neurosci 2022; 14:911220. [PMID: 35651528 PMCID: PMC9149574 DOI: 10.3389/fnagi.2022.911220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative brain disease, and it is challenging to mine features that distinguish AD and healthy control (HC) from multiple datasets. Brain network modeling technology in AD using single-modal images often lacks supplementary information regarding multi-source resolution and has poor spatiotemporal sensitivity. In this study, we proposed a novel multi-modal LassoNet framework with a neural network for AD-related feature detection and classification. Specifically, data including two modalities of resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) were adopted for predicting pathological brain areas related to AD. The results of 10 repeated experiments and validation experiments in three groups prove that our proposed framework outperforms well in classification performance, generalization, and reproducibility. Also, we found discriminative brain regions, such as Hippocampus, Frontal_Inf_Orb_L, Parietal_Sup_L, Putamen_L, Fusiform_R, etc. These discoveries provide a novel method for AD research, and the experimental study demonstrates that the framework will further improve our understanding of the mechanisms underlying the development of AD.
Collapse
Affiliation(s)
- Xianglian Meng
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Junlong Liu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Xiang Fan
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Chenyuan Bian
- Shandong Provincial Key Laboratory of Digital Medicine and Computer-Assisted Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qingpeng Wei
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Ziwei Wang
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Wenjie Liu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
- *Correspondence: Wenjie Liu,
| | - Zhuqing Jiao
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, China
- Zhuqing Jiao,
| |
Collapse
|
14
|
Swinnen BEKS, Buijink AW, Piña-Fuentes D, de Bie RMA, Beudel M. Diving into the Subcortex: The Potential of Chronic Subcortical Sensing for Unravelling Basal Ganglia Function and Optimization of Deep Brain STIMULATION. Neuroimage 2022; 254:119147. [PMID: 35346837 DOI: 10.1016/j.neuroimage.2022.119147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/18/2022] Open
Abstract
Subcortical structures are a relative neurophysiological 'terra incognita' owing to their location within the skull. While perioperative subcortical sensing has been performed for more than 20 years, the neurophysiology of the basal ganglia in the home setting has remained almost unexplored. However, with the recent advent of implantable pulse generators (IPG) that are able to record neural activity, the opportunity to chronically record local field potentials (LFPs) directly from electrodes implanted for deep brain stimulation opens up. This allows for a breakthrough of chronic subcortical sensing into fundamental research and clinical practice. In this review an extensive overview of the current state of subcortical sensing is provided. The widespread potential of chronic subcortical sensing for investigational and clinical use is discussed. Finally, status and future perspectives of the most promising application of chronic subcortical sensing -i.e., adaptive deep brain stimulation (aDBS)- are discussed in the context of movement disorders. The development of aDBS based on both chronic subcortical and cortical sensing has the potential to dramatically change clinical practice and the life of patients with movement disorders. However, several barriers still stand in the way of clinical implementation. Advancements regarding IPG and lead technology, physiomarkers, and aDBS algorithms as well as harnessing artificial intelligence, multimodality and sensing in the naturalistic setting are needed to bring aDBS to clinical practice.
Collapse
Affiliation(s)
- Bart E K S Swinnen
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical, Centers, Amsterdam Neuroscience, University of Amsterdam, PO Box 22660, Amsterdam 1100DD, the Netherland.
| | - Arthur W Buijink
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical, Centers, Amsterdam Neuroscience, University of Amsterdam, PO Box 22660, Amsterdam 1100DD, the Netherland
| | - Dan Piña-Fuentes
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical, Centers, Amsterdam Neuroscience, University of Amsterdam, PO Box 22660, Amsterdam 1100DD, the Netherland
| | - Rob M A de Bie
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical, Centers, Amsterdam Neuroscience, University of Amsterdam, PO Box 22660, Amsterdam 1100DD, the Netherland
| | - Martijn Beudel
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical, Centers, Amsterdam Neuroscience, University of Amsterdam, PO Box 22660, Amsterdam 1100DD, the Netherland
| |
Collapse
|
15
|
Liang C, Liu Y, Lu W, Tian G, Zhao Q, Yang D, Sun J, Qi D. Strategies for interface issues and challenges of neural electrodes. NANOSCALE 2022; 14:3346-3366. [PMID: 35179152 DOI: 10.1039/d1nr07226a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neural electrodes, as a bridge for bidirectional communication between the body and external devices, are crucial means for detecting and controlling nerve activity. The electrodes play a vital role in monitoring the state of neural systems or influencing it to treat disease or restore functions. To achieve high-resolution, safe and long-term stable nerve recording and stimulation, a neural electrode with excellent electrochemical performance (e.g., impedance, charge storage capacity, charge injection limit), and good biocompatibility and stability is required. Here, the charge transfer process in the tissues, the electrode-tissue interfaces and the electrode materials are discussed respectively. Subsequently, the latest research methods and strategies for improving the electrochemical performance and biocompatibility of neural electrodes are reviewed. Finally, the challenges in the development of neural electrodes are proposed. It is expected that the development of neural electrodes will offer new opportunities for the evolution of neural prosthesis, bioelectronic medicine, brain science, and so on.
Collapse
Affiliation(s)
- Cuiyuan Liang
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Yan Liu
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Weihong Lu
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Gongwei Tian
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Qinyi Zhao
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Dan Yang
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Jing Sun
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Dianpeng Qi
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| |
Collapse
|
16
|
Tatulian SA. Challenges and hopes for Alzheimer's disease. Drug Discov Today 2022; 27:1027-1043. [PMID: 35121174 DOI: 10.1016/j.drudis.2022.01.016] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/01/2021] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
Recent drug development efforts targeting Alzheimer's disease (AD) have failed to produce effective disease-modifying agents for many reasons, including the substantial presymptomatic neuronal damage that is caused by the accumulation of the amyloid β (Aβ) peptide and tau protein abnormalities, deleterious adverse effects of drug candidates, and inadequate design of clinical trials. New molecular targets, biomarkers, and diagnostic techniques, as well as alternative nonpharmacological approaches, are sorely needed to detect and treat early pathological events. This article analyzes the successes and debacles of pharmaceutical endeavors to date, and highlights new technologies that may lead to the more effective diagnosis and treatment of the pathologies that underlie AD. The use of focused ultrasound, deep brain stimulation, stem cell therapy, and gene therapy, in parallel with pharmaceuticals and judicious lifestyle adjustments, holds promise for the deceleration, prevention, or cure of AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Suren A Tatulian
- Department of Physics, College of Sciences, and Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
17
|
Kumaria A, Tolias CM. Response to: "Deep Brain Stimulation for Alzheimer's Disease: Tackling Circuit Dysfunction". Neuromodulation 2021; 24:1289-1290. [PMID: 34677875 DOI: 10.1111/ner.13539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ashwin Kumaria
- Department of Neurosurgery, Queen's Medical Centre, Nottingham, UK
| | | |
Collapse
|
18
|
Lam J, Lee DJ. Response to Letter to the Editor Regarding: "Deep Brain Stimulation for Alzheimer's Disease: Tackling Circuit Dysfunction". Neuromodulation 2021; 24:1291-1292. [PMID: 34677876 DOI: 10.1111/ner.13538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Stoiljkovic M, Horvath TL, Hajós M. Therapy for Alzheimer's disease: Missing targets and functional markers? Ageing Res Rev 2021; 68:101318. [PMID: 33711510 PMCID: PMC8131215 DOI: 10.1016/j.arr.2021.101318] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022]
Abstract
The development of the next generation therapy for Alzheimer's disease (AD) presents a huge challenge given the number of promising treatment candidates that failed in trials, despite recent advancements in understanding of genetic, pathophysiologic and clinical characteristics of the disease. This review reflects some of the most current concepts and controversies in developing disease-modifying and new symptomatic treatments. It elaborates on recent changes in the AD research strategy for broadening drug targets, and potentials of emerging non-pharmacological treatment interventions. Established and novel biomarkers are discussed, including emerging cerebrospinal fluid and plasma biomarkers reflecting tau pathology, neuroinflammation and neurodegeneration. These fluid biomarkers together with neuroimaging findings can provide innovative objective assessments of subtle changes in brain reflecting disease progression. A particular emphasis is given to neurophysiological biomarkers which are well-suited for evaluating the brain overall neural network integrity and function. Combination of multiple biomarkers, including target engagement and outcome biomarkers will empower translational studies and facilitate successful development of effective therapies.
Collapse
Affiliation(s)
- Milan Stoiljkovic
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA; Department of Pharmacology, University of Nis School of Medicine, Nis, Serbia.
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Mihály Hajós
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA; Cognito Therapeutics, Cambridge, MA, 02138, USA
| |
Collapse
|
20
|
Slater C, Wang Q. Alzheimer's disease: An evolving understanding of noradrenergic involvement and the promising future of electroceutical therapies. Clin Transl Med 2021; 11:e397. [PMID: 33931975 PMCID: PMC8087948 DOI: 10.1002/ctm2.397] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) poses a significant global health concern over the next several decades. Multiple hypotheses have been put forth that attempt to explain the underlying pathophysiology of AD. Many of these are briefly reviewed here, but to-date no disease-altering therapy has been achieved. Despite this, recent work expanding on the role of noradrenergic system dysfunction in both the pathogenesis and symptomatic exacerbation of AD has shown promise. The role norepinephrine (NE) plays in AD remains complicated but pre-tangle tau has consistently been shown to arise in the locus coeruleus (LC) of patients with AD decades before symptom onset. The current research reviewed here indicates NE can facilitate neuroprotective and memory-enhancing effects through β adrenergic receptors, while α2A adrenergic receptors may exacerbate amyloid toxicity through a contribution to tau hyperphosphorylation. AD appears to involve a disruption in the balance between these two receptors and their various subtypes. There is also a poorly characterized interplay between the noradrenergic and cholinergic systems. LC deterioration leads to maladaptation in the remaining LC-NE system and subsequently inhibits cholinergic neuron function, eventually leading to the classic cholinergic disruption seen in AD. Understanding AD as a dysfunctional noradrenergic system, provides new avenues for the use of advanced neural stimulation techniques to both study and therapeutically target the earliest stages of neuropathology. Direct LC stimulation and non-invasive vagus nerve stimulation (VNS) have both demonstrated potential use as AD therapeutics. Significant work remains, though, to better understand the role of the noradrenergic system in AD and how electroceuticals can provide disease-altering treatments.
Collapse
Affiliation(s)
- Cody Slater
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
- Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
| | - Qi Wang
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|