1
|
Quan X, Zhang M, Qiao Z, Kou X, Xue Q, Wang J, Li L. Nitric oxide and ion channels mediate L-cysteine-induced inhibition of colonic smooth muscle contraction. J Muscle Res Cell Motil 2024; 45:11-20. [PMID: 38141146 DOI: 10.1007/s10974-023-09664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Previous studies have suggested that L-cysteine regulates gut motility through hydrogen sulfide. However, the mechanisms involved in the L-cysteine-induced response have not been extensively studied. This study aimed to investigate the underlying mechanisms of action of L-cysteine on spontaneous contraction of rat colon. Longitudinal and circular muscle strips from rat middle colon were prepared to measure the spontaneous contractile activities of colon in an organ bath system. Whole-cell voltage-clamp techniques were applied to record the currents of L-type voltage-dependent Ca2+ channels (VDCCs) and voltage-gated K+ channels (Kv) in isolated smooth muscle cells (SMCs) from colon. L-cysteine inhibited the spontaneous contraction of longitudinal and circular muscle strips from the rat colon in a concentration-dependent manner. The inhibition induced by L-cysteine was significantly decreased by inhibitors of H2S synthesis (p < 0.05). Furthermore, the suppression induced by L-cysteine was partially attenuated by tetrodotoxin, L-NNA and glibenclamide (p < 0.05). Whole-cell voltage-clamp recordings showed that L-cysteine caused a remarkable reduction in the peak currents of VDCCs and significantly increased the membrane currents of Kv channels in isolated SMCs (p < 0.05). We concluded that L-cysteine inhibits the contractile activities of smooth muscle strips from the rat colon. The relaxation in response to L-cysteine may be in part mediated by a nitrergic pathway and by inhibiting the VDCCs in combination with a direct activation of the KV channels and KATP channels.
Collapse
Affiliation(s)
- Xiaojing Quan
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Min Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Zhaojun Qiao
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Xuan Kou
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Qiong Xue
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Lu Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| |
Collapse
|
2
|
Quan X, Chen W, Gao S, Zhai N, Wang J, Luo H, Dai F. Effects and underlying mechanisms of L-arginine on spontaneous muscle contraction of rat colon. Amino Acids 2023:10.1007/s00726-023-03264-7. [PMID: 36947257 DOI: 10.1007/s00726-023-03264-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
Arginine (Arg), as a basic amino acid, has been reported to be involved in regulation of gut motility. However, the evidence is limited and the underlying mechanism is not fully understood. Our study was conducted to investigate the effects of L-Arg on spontaneous contraction of the longitudinal muscle strip (LMS) of the rat colon and the relevant mechanisms. An organ bath system was used to detect the contractile force of the LMS. Whole-cell voltage-clamp techniques were applied to observe alterations in the currents of large conductance Ca2+-activated K+ (KCa) channels, voltage-dependent potassium (KV) channels, and L-type Ca2+ channels (LTCCs) in smooth muscle cells (SMCs) of the colon. We found that L-Arg within the physiological concentration had no effect on contraction of LMS, while 1 mM L-Arg significantly increased both the amplitude and frequency of LMS contractility. And the increase in force was mucosa-dependent, whereas changes in frequency as well as in amplitude were inhibited by atropine. In addition, L-Arg (1 mM) activated the LTTCs and inhibited both KCa channels and KV channels on SMCs. Thus, L-Arg above the physiological concentration exerted an excitatory effect on colonic LM contraction, and stimulation by L-Arg was mediated by ACh. In addition, LTCCs, KCa channels, and KV channels on SMCs were involved in the action of L-Arg.
Collapse
Affiliation(s)
- Xiaojing Quan
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Wei Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Shuna Gao
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Ning Zhai
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Jinhai Wang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Fei Dai
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
3
|
Wemelle E, Marousez L, de Lamballerie M, Knauf C, Lesage J. High Hydrostatic Pressure Processing of Human Milk Increases Apelin and GLP-1 Contents to Modulate Gut Contraction and Glucose Metabolism in Mice Compared to Holder Pasteurization. Nutrients 2022; 14:nu14010219. [PMID: 35011094 PMCID: PMC8747192 DOI: 10.3390/nu14010219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/29/2021] [Accepted: 01/02/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND High hydrostatic pressure (HHP) processing is a non-thermal method proposed as an alternative to Holder pasteurization (HoP) for the sterilization of human breast milk (BM). HHP preserves numerous milk bioactive factors that are degraded by HoP, but no data are available for milk apelin and glucagon-like peptide 1 (GLP-1), two hormones implicated in the control of glucose metabolism directly and via the gut-brain axis. This study aims to determine the effects of HoP and HHP processing on apelin and GLP-1 concentrations in BM and to test the effect of oral treatments with HoP- and HHP-BM on intestinal contractions and glucose metabolism in adult mice. METHODS Mice were treated by daily oral gavages with HoP- or HHP-BM during one week before intestinal contractions, and glucose tolerance was assessed. mRNA expression of enteric neuronal enzymes known to control intestinal contraction was measured. RESULTS HoP-BM displayed a reduced concentration of apelin and GLP-1, whereas HHP processing preserved these hormones close to their initial levels in raw milk. Chronic HHP-BM administration to mice increased ileal mRNA nNos expression level leading to a decrease in gut contraction associated with improved glucose tolerance. CONCLUSION In comparison to HoP, HPP processing of BM preserves both apelin and GLP-1 and improves glucose tolerance by acting on gut contractions. This study reinforces previous findings demonstrating that HHP processing provides BM with a higher biological value than BM treated by HoP.
Collapse
Affiliation(s)
- Eve Wemelle
- INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), Université Paul Sabatier, Toulouse III, CHU Purpan, Place du Docteur Baylac, CS 60039, CEDEX 3, 31024 Toulouse, France;
- European Associated Laboratory (EAL) «NeuroMicrobiota», International Research Projects (IRP) INSERM, 1000 Brussels, Belgium
- European Associated Laboratory (EAL) «NeuroMicrobiota», International Research Projects (IRP) INSERM, 31024 Toulouse, France
| | - Lucie Marousez
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France;
| | | | - Claude Knauf
- INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), Université Paul Sabatier, Toulouse III, CHU Purpan, Place du Docteur Baylac, CS 60039, CEDEX 3, 31024 Toulouse, France;
- European Associated Laboratory (EAL) «NeuroMicrobiota», International Research Projects (IRP) INSERM, 1000 Brussels, Belgium
- European Associated Laboratory (EAL) «NeuroMicrobiota», International Research Projects (IRP) INSERM, 31024 Toulouse, France
- Correspondence: (C.K.); (J.L.)
| | - Jean Lesage
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France;
- Correspondence: (C.K.); (J.L.)
| |
Collapse
|
4
|
Nakamori H, Iida K, Hashitani H. Mechanisms underlying the prokinetic effects of endogenous glucagon-like peptide-1 in the rat proximal colon. Am J Physiol Gastrointest Liver Physiol 2021; 321:G617-G627. [PMID: 34643099 DOI: 10.1152/ajpgi.00175.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 01/31/2023]
Abstract
Glucagon-like peptide-1 (GLP-1), a well-known insulin secretagogue, is released from enteroendocrine L cells both luminally and basolaterally to exert different effects. Basolaterally released GLP-1 increases epithelial ion transport by activating CGRP-containing enteric afferent neurons. Although bath-applied GLP-1 reduced the contractility of colonic segments, GLP-1-induced stimulation of afferent neurons could also accelerate peristaltic contractions. Here, the roles of endogenous GLP-1 in regulating colonic peristalsis were investigated using isolated colonic segments. Isolated segments of rat proximal colon were placed in an organ bath, serosally perfused with oxygenated physiological salt solution, and luminally perfused with degassed 0.9% saline. Colonic wall motion was recorded using a video camera and converted into spatiotemporal maps. Intraluminal administration of GLP-1 (100 nM) stimulating the secretion of GLP-1 from L cells increased the frequency of oro-aboral propagating peristaltic contractions. The acceleratory effect of GLP-1 was blocked by luminally applied exendin-3 (9-39) (100 nM), a GLP-1 receptor antagonist. GLP-1-induced acceleration of peristaltic contractions was also prevented by bath-applied BIBN4069 (1 μM), a CGRP receptor antagonist. In colonic segments that had been exposed to bath-applied capsaicin (100 nM) that desensitizes extrinsic afferents, GLP-1 was still capable of exerting its prokinetic effect. Stimulation of endogenous GLP-1 secretion with a luminally applied cocktail of short-chain fatty acids (1 mM) increased the frequency of peristaltic waves in an exendin-3 (9-39)-sensitive manner. Thus, GLP-1 activates CGRP-expressing intrinsic afferents to accelerate peristalsis in the proximal colon. Short-chain fatty acids appear to stimulate endogenous GLP-1 secretion from L cells resulting in the acceleration of colonic peristalsis.NEW & NOTEWORTHY Glucagon-like peptide-1 (GLP-1) activates CGRP-containing intrinsic afferent neurons resulting in the acceleration of colonic peristalsis. Short-chain fatty acids stimulate the secretion of endogenous GLP-1 from L cells that accelerates colonic peristalsis. Thus, besides the well-known humoral insulinotropic action, GLP-1 exerts a local action via the activation of the enteric nervous system to accelerate colonic motility. Such a prokinetic action of GLP-1 could underlie the mechanisms causing diarrhea in patients with type-2 diabetes treated with GLP-1 analogs.
Collapse
Affiliation(s)
- Hiroyuki Nakamori
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Koji Iida
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hikaru Hashitani
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
5
|
Holst JJ, Andersen DB, Grunddal KV. Actions of glucagon-like peptide-1 receptor ligands in the gut. Br J Pharmacol 2021; 179:727-742. [PMID: 34235727 DOI: 10.1111/bph.15611] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/31/2021] [Accepted: 06/13/2021] [Indexed: 12/11/2022] Open
Abstract
The incretin hormone glucagon-like peptide-1 (GLP-1) is inactivated by the enzyme dipeptidyl peptidase-4 even before it leaves the gut, but it seems to act predominantly via activation of intestinal sensory neurons expressing GLP-1 receptors. Thus, activation of vagal afferents is probably responsible for its effects on appetite and food intake, gastrointestinal secretion and motility, and pancreatic endocrine secretion. However, GLP-1 receptors are widely expressed in the gastrointestinal (GI) tract, including epithelial cells in the stomach, and the Brunner glands, in endocrine cells of the gut epithelium, and on mucosal lymphocytes. In this way, GLP-1 may have important local actions of epithelial protection and endocrine signalling and may interact with the immune system. We review the formation and release of GLP-1 from the endocrine L cells and its fate after release and describe the localization of its receptor throughout the GI tract and discuss its direct or indirect actions in the GI tract.
Collapse
Affiliation(s)
- Jens Juul Holst
- Department of Biomedical Sciences and NovoNordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Bjørklund Andersen
- Department of Biomedical Sciences and NovoNordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaare Villum Grunddal
- Department of Biomedical Sciences and NovoNordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|