1
|
Bhupenchandra I, Chongtham SK, Gangarani Devi A, Dutta P, Lamalakshmi E, Mohanty S, Choudhary AK, Das A, Sarika K, Kumar S, Yumnam S, Sagolsem D, Rupert Anand Y, Bhutia DD, Victoria M, Vinodh S, Tania C, Dhanachandra Sharma A, Deb L, Sahoo MR, Seth CS, Swapnil P, Meena M. Harnessing weedy rice as functional food and source of novel traits for crop improvement. PLANT, CELL & ENVIRONMENT 2025; 48:2498-2521. [PMID: 38436101 DOI: 10.1111/pce.14868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
A relative of cultivated rice (Oryza sativa L.), weedy or red rice (Oryza spp.) is currently recognized as the dominant weed, leading to a drastic loss of yield of cultivated rice due to its highly competitive abilities like producing more tillers, panicles, and biomass with better nutrient uptake. Due to its high nutritional value, antioxidant properties (anthocyanin and proanthocyanin), and nutrient absorption ability, weedy rice is gaining immense research attentions to understand its genetic constitution to augment future breeding strategies and to develop nutrition-rich functional foods. Consequently, this review focuses on the unique gene source of weedy rice to enhance the cultivated rice for its crucial features like water use efficiency, abiotic and biotic stress tolerance, early flowering, and the red pericarp of the seed. It explores the debating issues on the origin and evolution of weedy rice, including its high diversity, signalling aspects, quantitative trait loci (QTL) mapping under stress conditions, the intricacy of the mechanism in the expression of the gene flow, and ecological challenges of nutrient removal by weedy rice. This review may create a foundation for future researchers to understand the gene flow between cultivated crops and weedy traits and support an improved approach for the applicability of several models in predicting multiomics variables.
Collapse
Affiliation(s)
- Ingudam Bhupenchandra
- ICAR-Farm Science Centre Tamenglong, ICAR Research Complex for NEH Region, Manipur Centre, Imphal, Manipur, India
| | - Sunil Kumar Chongtham
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Ayam Gangarani Devi
- ICAR Research Complex for North Eastern Hill Region, Tripura Centre Lembucherra, Tripura, India
| | - Pranab Dutta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Elangbam Lamalakshmi
- ICAR Research Complex for North Eastern Hill Region, Sikkim Centre, Tadong, Sikkim, India
| | - Sansuta Mohanty
- Molecular Biology and Biotechnology Department, Faculty of Agricultural Sciences, Siksha O Anusandhan University, Bhubaneswar, Odisha, India
| | - Anil K Choudhary
- Division of Crop Production, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Anup Das
- ICAR Research Complex for North Eastern Hill Region, Lembucherra, Tripura, India
| | - Konsam Sarika
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | - Sumit Kumar
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- Department of Plant Pathology, B.M. College of Agriculture, Khandwa, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, Madhya Pradesh, India
| | - Sonika Yumnam
- All India Coordinated Research Project on Chickpea, Central Agricultural University, Imphal, Manipur, India
| | - Diana Sagolsem
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Y Rupert Anand
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Dawa Dolma Bhutia
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - M Victoria
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - S Vinodh
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Chongtham Tania
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | | | - Lipa Deb
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Manas Ranjan Sahoo
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | | | - Prashant Swapnil
- Department of Botany, School of Basic Science, Central University of Punjab, Bhatinda, Punjab, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
2
|
Cai XX, Wang Z, Yuan Y, Pang LH, Wang Y, Lu BR. Crop-Weed Introgression Plays Critical Roles in Genetic Differentiation and Diversity of Weedy Rice: A Case Study of Human-Influenced Weed Evolution. BIOLOGY 2023; 12:biology12050744. [PMID: 37237556 DOI: 10.3390/biology12050744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
As an important driving force, introgression plays an essential role in shaping the evolution of plant species. However, knowledge concerning how introgression affects plant evolution in agroecosystems with strong human influences is still limited. To generate such knowledge, we used InDel (insertion/deletion) molecular fingerprints to determine the level of introgression from japonica rice cultivars into the indica type of weedy rice. We also analyzed the impact of crop-to-weed introgression on the genetic differentiation and diversity of weedy rice, using InDel (insertion/deletion) and SSR (simple sequence repeat) molecular fingerprints. Results based on the STRUCTURE analysis indicated an evident admixture of some weedy rice samples with indica and japonica components, suggesting different levels of introgression from japonica rice cultivars to the indica type of weedy rice. The principal coordinate analyses indicated indica-japonica genetic differentiation among weedy rice samples, which was positively correlated with the introgression of japonica-specific alleles from the rice cultivars. In addition, increased crop-to-weed introgression formed a parabola pattern of dynamic genetic diversity in weedy rice. Our findings based on this case study provide evidence that human activities, such as the frequent change in crop varieties, can strongly influence weed evolution by altering genetic differentiation and genetic diversity through crop-weed introgression in agroecosystems.
Collapse
Affiliation(s)
- Xing-Xing Cai
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhi Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ye Yuan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Li-Hao Pang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ying Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Bao-Rong Lu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
3
|
Wang W, Huang R, Wu G, Sun J, Zhu Y, Wang H. Transcriptomic and QTL Analysis of Seed Germination Vigor under Low Temperature in Weedy Rice WR04-6. PLANTS (BASEL, SWITZERLAND) 2023; 12:871. [PMID: 36840221 PMCID: PMC9961040 DOI: 10.3390/plants12040871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Low temperature is one of the major factors affecting rice germination, and low temperature germination (LTG) is an important agronomic trait. Although significant progress has been made in the study of rice LTG, the molecular mechanism of LTG remains poorly understood. To explore more rice LTG gene resources, we first demonstrated that weedy rice WR04-6 (Oryza sativa f. spontanea) had significantly higher LTG ability at 10 °C than the cultivated rice Qishanzhan (QSZ Oryza sativa L. ssp. indica). RNA-seq was used to investigate the gene expression of WR04-6 and QSZ at 10 °C for 10, 12 and 14 days after imbibition (DAI) of seed germination. The results of Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment revealed that the differentially expressed genes (DEGs) between WR04-6 and QSZ were mainly concentrated on the response to starch catabolic processes and the response to abscisic acid (ABA). This is consistent with the results of α-amylase activity, ABA and gibberellins (GA) treatment. A recombinant inbred line (RIL) population derived from a cross between WR04-6 and QSZ and its high-density SNP genetic map were used to detect quantitative trait loci (QTL) for LTG rates. The results showed that two new QTLs were located on chromosome 3 and chromosome 12. Combined with the mapped QTLs and RNA-seq DEGs, sixteen candidate genes potentially associated with LTG were identified. Validation of the expression of the candidates by qRT-PCR were consistent with the RNA-seq data. These results will enable us to understand the genetic basis of LTG in weedy rice and provide new genetic resources for the generation of rice germplasm with improved LTG.
Collapse
Affiliation(s)
- Wenjia Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ruizhi Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Gengwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian Sun
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
4
|
Li Z, Gui R, Yu X, Liang C, Cui J, Zhao X, Zhang X, Yu P, Chen W, Sun J. Genetic basis of the early heading of high-latitude weedy rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1059197. [PMID: 36544870 PMCID: PMC9760980 DOI: 10.3389/fpls.2022.1059197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Japonica rice (Oryza sativa L.) is an important staple food in high-latitude regions and is widely distributed in northern China, Japan, Korea, and Europe. However, the genetic diversity of japonica rice is relatively narrow and poorly adapted. Weedy rice (Oryza sativa f. spontanea) is a semi-domesticated rice. Its headings are earlier than the accompanied japonica rice, making it a potential new genetic resource, which can make up for the defects of wild rice that are difficult to be directly applied to japonica rice improvement caused by reproductive isolation. In this study, we applied a natural population consisting of weedy rice, japonica landrace, and japonica cultivar to conduct a genome-wide association study (GWAS) of the heading date and found four loci that could explain the natural variation of the heading date in this population. At the same time, we developed recombinant inbred lines (RILs) crossed by the early-heading weedy rice WR04-6 and its accompanied japonica cultivar ShenNong 265 (SN265) to carry out a QTL mapping analysis of the heading date and mapped four quantitative trait locus (QTLs) and three epistatic effect gene pairs. The major locus on chromosome 6 overlapped with the GWAS result. Further analysis found that two genes, Hd1 and OsCCT22, on chromosome 6 (Locus 2 and Locus 3) may be the key points of the early-heading character of weedy rice. As minor effect genes, Dth7 and Hd16 also have genetic contributions to the early heading of weedy rice. In the process of developing the RIL population, we introduced fragments of Locus 2 and Locus 3 from the weedy rice into super-high-yielding japonica rice, which successfully promoted its heading date by at least 10 days and expanded the rice suitable cultivation area northward by about 400 km. This study successfully revealed the genetic basis of the early heading of weedy rice and provided a new idea for the genetic improvement of cultivated rice by weedy rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wenfu Chen
- *Correspondence: Wenfu Chen, ; Jian Sun,
| | - Jian Sun
- *Correspondence: Wenfu Chen, ; Jian Sun,
| |
Collapse
|
5
|
Wu Y, Sun J, Yu P, Zhang W, Lin Y, Ma D. The rhizosphere bacterial community contributes to the nutritional competitive advantage of weedy rice over cultivated rice in paddy soil. BMC Microbiol 2022; 22:232. [PMID: 36180838 PMCID: PMC9523940 DOI: 10.1186/s12866-022-02648-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
Background Weedy rice competes for nutrients and living space with cultivated rice, which results in serious reductions in rice production. The rhizosphere bacterial community plays an important role in nutrient competition between species. It is therefore important to clarify the differences in the diversities of the inter rhizosphere bacterial community between cultivated rice and weedy rice. The differences in compositions and co-occurrence networks of the rhizosphere bacterial community of cultivated rice and weedy rice are largely unknown and thus the aim of our study. Results In our study, the different rhizosphere bacterial community structures in weedy rice (AW), cultivated rice (AY) and cultivated rice surrounded by weedy rice (WY) were determined based on 16S rRNA gene sequencing. The majority of the WY rhizosphere was enriched with unique types of microorganisms belonging to Burkholderia. The rhizosphere bacterial community showed differences in relative abundance among the three groups. Network analysis revealed a more complex co-occurrence network structure in the rhizosphere bacterial community of AW than in those of AY and WY due to a higher degree of Microbacteriaceae and Micrococcaceae in the network. Both network analysis and functional predictions reveal that weedy rice contamination dramatically impacts the iron respiration of the rhizosphere bacterial community of cultivated rice. Conclusions Our study shows that there are many differences in the rhizosphere bacterial community of weedy rice and cultivated rice. When cultivated rice was disturbed by weedy rice, the rhizosphere bacterial community and co-occurrence network also changed. The above differences tend to lead to a nutritional competitive advantage for weedy rice in paddy soils. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02648-1.
Collapse
Affiliation(s)
- Yue Wu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Jian Sun
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Pengcheng Yu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Weiliang Zhang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Youze Lin
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Dianrong Ma
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
6
|
Han B, Cui D, Ma X, Cao G, Zhang H, Koh HJ, Han L. Evidence for evolution and selection of drought-resistant genes based on high-throughput resequencing in weedy rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1949-1962. [PMID: 35179195 DOI: 10.1093/jxb/erab515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Weedy rice (Oryza sativa f. spontanea) is a relative of cultivated rice that propagates in paddy fields and has strong drought resistance. In this study, we used 501 rice accessions to reveal the selection mechanism of drought resistance in weedy rice through a combination of selection analysis, genome-wide association studies, gene knockout and overexpression analysis, and Ca2+ and K+ ion flux assays. The results showed that the weedy rice species investigated have gene introgression with cultivated rice, which is consistent with the hypothesis that weedy rice originated from de-domestication of cultivated rice. Regions related to tolerance have particularly diversified during de-domestication and three drought-tolerance genes were identified. Of these, Os01g0800500 was also identified using an assay of the degree of leaf withering under drought, and it was named as PAPH1, encoding a PAP family protein. The drought-resistance capacity of PAPH1-knockout lines was much lower than that of the wild type, while that of overexpression lines was much higher. Concentrations of Ca2+ and K+ were lower in the knockout lines and higher in the overexpression lines compared with those of the wild type, suggesting that PAPH1 plays important roles in coping with drought stress. Our study therefore provides new insights into the genetic mechanisms underlying adaptive tolerance to drought in wild rice and highlights potential new resistance genes for future breeding programs in cultivated rice.
Collapse
Affiliation(s)
- Bing Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Di Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoding Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guilan Cao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hee Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute of Agriculture and Life Science, Seoul National University, Seoul, >Korea
| | - Longzhi Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Li F, Han Z, Qiao W, Wang J, Song Y, Cui Y, Li J, Ge J, Lou D, Fan W, Li D, Nong B, Zhang Z, Cheng Y, Zhang L, Zheng X, Yang Q. High-Quality Genomes and High-Density Genetic Map Facilitate the Identification of Genes From a Weedy Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:775051. [PMID: 34868173 PMCID: PMC8639688 DOI: 10.3389/fpls.2021.775051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Genes have been lost or weakened from cultivated rice during rice domestication and breeding. Weedy rice (Oryza sativa f. spontanea) is usually recognized as the progeny between cultivated rice and wild rice and is also known to harbor an gene pool for rice breeding. Therefore, identifying genes from weedy rice germplasms is an important way to break the bottleneck of rice breeding. To discover genes from weedy rice germplasms, we constructed a genetic map based on w-hole-genome sequencing of a F2 population derived from the cross between LM8 and a cultivated rice variety. We further identified 31 QTLs associated with 12 important agronomic traits and revealed that ORUFILM03g000095 gene may play an important role in grain length regulation and participate in grain formation. To clarify the genomic characteristics from weedy rice germplasms of LM8, we generated a high-quality genome assembly using single-molecule sequencing, Bionano optical mapping, and Hi-C technologies. The genome harbored a total size of 375.8 Mb, a scaffold N50 of 24.1 Mb, and originated approximately 0.32 million years ago (Mya) and was more closely related to Oryza sativa ssp. japonica. and contained 672 unique genes. It is related to the formation of grain shape, heading date and tillering. This study generated a high-quality reference genome of weedy rice and high-density genetic map that would benefit the analysis of genome evolution for related species and suggested an effective way to identify genes related to important agronomic traits for further rice breeding.
Collapse
Affiliation(s)
- Fei Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenyun Han
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weihua Qiao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junrui Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Yue Song
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongxia Cui
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Jiaqi Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Little Berry Research Room, Liaoning Institute of Fruit Science, Yingkou, China
| | - Jinyue Ge
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Danjing Lou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiya Fan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Danting Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Baoxuan Nong
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zongqiong Zhang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yunlian Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lifang Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoming Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingwen Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Key Roles of De-Domestication and Novel Mutation in Origin and Diversification of Global Weedy Rice. BIOLOGY 2021; 10:biology10090828. [PMID: 34571705 PMCID: PMC8472751 DOI: 10.3390/biology10090828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Weedy rice is a noxious weed infesting rice fields worldwide and causing tremendous losses of rice yield and quality. The control of this conspecific weed is difficult owing to abundant genetic diversity associated with its complex origins and evolution. Applying different molecular methods, we demonstrate the multiple origins of weedy rice with the major pathway from its cultivar progenitors. The origin and diversification of weedy rice are also closely associated with differentiation of indica-japonica rice varieties. In addition, novel mutations are identified, which may promote continued evolution and genetic diversity of weedy rice. Knowledge generated from this study provides deep insights into the origin and evolution of conspecific weeds, in addition to the design of effective measures to control these weeds. Abstract Agricultural weeds pose great challenges to sustainable crop production, owing to their complex origins and abundant genetic diversity. Weedy rice (WD) infests rice fields worldwide causing tremendous losses of rice yield/quality. To explore WD origins and evolution, we analyzed DNA sequence polymorphisms of the seed shattering genes (sh4 and qsh1) in weedy, wild, and cultivated rice from a worldwide distribution. We also used microsatellite and insertion/deletion molecular fingerprinting to determine their genetic relationship and structure. Results indicate multiple origins of WD with most samples having evolved from their cultivated progenitors and a few samples from wild rice. WD that evolved from de-domestication showed distinct genetic structures associated with indica and japonica rice differentiation. In addition, the weed-unique haplotypes that were only identified in the WD samples suggest their novel mutations. Findings in this study demonstrate the key role of de-domestication in WD origins, in which indica and japonica cultivars stimulated further evolution and divergence of WD in various agroecosystems. Furthermore, novel mutations promote continued evolution and genetic diversity of WD adapting to different environments. Knowledge generated from this study provides deep insights into the origin and evolution of conspecific weeds, in addition to the design of effective measures to control these weeds.
Collapse
|
9
|
Zhang G, Liu Y, Gui R, Wang Z, Li Z, Han Y, Guo X, Sun J. Comparative multi-omics analysis of hypoxic germination tolerance in weedy rice embryos and coleoptiles. Genomics 2021; 113:3337-3348. [PMID: 34298069 DOI: 10.1016/j.ygeno.2021.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/04/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Hypoxic germination tolerance is an important trait for seedling establishment of direct-seeded rice. Our comparative metabolomics analysis revealed that weedy rice accumulated more sugar and amino acids than cultivated rice accumulated in the embryo and coleoptile tissues under hypoxic stress. At the transcriptional level, oxidative phosphorylation activity in weedy rice was higher than in cultivated rice that likely led to more efficient energy metabolism during hypoxic stress. Based on our comparative proteomics analysis, enriched proteins related to cell wall implied that the advantages in energy metabolism of weedy rice were ultimately reflected in the formation of tissue structures. In this study, we found that most of key hypoxic germination tolerance (HGT) genes shared the same genetic backgrounds with Oryza japonica, however, several of them genetically similar to other Oryza plant also play important roles. Our findings suggest weedy rice can serve as genetic resources for the improvement of direct-seeding rice.
Collapse
Affiliation(s)
- Guangchen Zhang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110161, China
| | - Youhong Liu
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Heilongjiang Provincial Key Laboratory of Crop Molecular Design and Germplasm Innovation, Haerbin, 150086, China
| | - Rui Gui
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110161, China
| | - Ziming Wang
- College of forestry, Shenyang Agricultural University, Shenyang 110161, China
| | - Zhuan Li
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110161, China
| | - Yuqing Han
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110161, China
| | - Xiaojia Guo
- Jinzhou Institute of Science and Technology, Jinzhou, 121000, China
| | - Jian Sun
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110161, China.
| |
Collapse
|
10
|
Wu CC, Wei FJ, Chiou WY, Tsai YC, Wu HP, Gotarkar D, Wei ZH, Lai MH, Hsing YIC. Studies of rice Hd1 haplotypes worldwide reveal adaptation of flowering time to different environments. PLoS One 2020; 15:e0239028. [PMID: 32941524 PMCID: PMC7498076 DOI: 10.1371/journal.pone.0239028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/29/2020] [Indexed: 11/30/2022] Open
Abstract
Rice domestication/adaptation is a good model for studies of the development and spread of this important crop. Mutations that caused morphological and physiological change, followed by human selection/expansion, finally led to the improvement of phenotypes suitable for different kinds of environments. We used the sequence information for Heading date 1 (Hd1) gene to reveal the association between sequence changes and flowering phenotypes of rice in different regions. Seven loss-of-function hd1 haplotypes had been reported. By data-mining the genome sequencing information in the public domain, we discovered 3 other types. These loss-of-function allele haplotypes are present in subtropical and tropical regions, which indicates human selection. Some of these haplotypes are present locally. However, types 7 and 13 are present in more than one-third of the world's rice accessions, including landraces and modern varieties. In the present study, phylogenetic, allele network and selection pressure analyses revealed that these two haplotypes might have occurred early in Southeastern Asia and then were introgressed in many local landraces in nearby regions. We also demonstrate that these haplotypes are present in weedy rice populations, which again indicates that these alleles were present in rice cultivation for long time. In comparing the wild rice sequence information, these loss-of-function haplotypes occurred in agro but were not from wild rice.
Collapse
Affiliation(s)
- Cheng-Chieh Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Institute of Plant Science, National Taiwan University, Taipei, Taiwan
| | - Fu-Jin Wei
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wan-Yi Chiou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yuan-Ching Tsai
- Department of Agronomy, National Chia-yi University, Chiayi, Taiwan
| | - Hshin-Ping Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Dhananjay Gotarkar
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Zhi-Han Wei
- Department of Agronomy, National Chia-yi University, Chiayi, Taiwan
| | - Ming-Hsin Lai
- Crop Science Division, Taiwan Agriculture Research Institute, Taichung, Taiwan
| | - Yue-Ie Caroline Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Wang W, Zhao M, Zhang G, Liu Z, Hua Y, Jia X, Song J, Ma D, Sun J. Weedy Rice as a Novel Gene Resource: A Genome-Wide Association Study of Anthocyanin Biosynthesis and an Evaluation of Nutritional Quality. FRONTIERS IN PLANT SCIENCE 2020; 11:878. [PMID: 32595693 PMCID: PMC7300295 DOI: 10.3389/fpls.2020.00878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/28/2020] [Indexed: 05/24/2023]
Abstract
The pericarp color of rice grains is an important agronomic trait affected by domestication, and the color pigment, anthocyanin, is one of the key determinants of rice nutritional quality. Weedy rice, also called red rice because its pericarp is often red, may be a novel gene resource for the development of new rice. However, the genetic basis and nutritional quality of anthocyanin are poorly known. In this study, we used a genome-wide association study (GWAS) to find novel and specific QTLs of red pericarp in weedy rice. The known key gene site of red pericarp Rc was detected as the common genetic basis of both weedy and cultivated rice, and another 13 associated signals of pericarp color that were identified may contribute specifically to weedy rice pericarp color. We then nominated three pericarp color genes that may contribute to weedy rice divergence from cultivated rice based on selection sweep analysis. After clarifying the distribution and growth dynamics of pigment in weedy rice caryopsis, we compared its nutritional quality with cultivated rice. We found that sampled weedy rice pericarps had much greater quantities of anthocyanin, beneficial trace elements, free amino acids, and unsaturated fatty acids than the cultivated rice. In conclusion, the gene resources and novel genetic systems of rice anthocyanin biosynthesis explored in this study are of great value for the development of nutritious, high anthocyanin content rice.
Collapse
|
12
|
Mohd Hanafiah N, Mispan MS, Lim PE, Baisakh N, Cheng A. The 21st Century Agriculture: When Rice Research Draws Attention to Climate Variability and How Weedy Rice and Underutilized Grains Come in Handy. PLANTS (BASEL, SWITZERLAND) 2020; 9:E365. [PMID: 32188108 PMCID: PMC7154822 DOI: 10.3390/plants9030365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
Rice, the first crop to be fully sequenced and annotated in the mid-2000s, is an excellent model species for crop research due mainly to its relatively small genome and rich genetic diversity. The 130-million-year-old cereal came into the limelight in the 1960s when the semi-dwarfing gene sd-1, better known as the "green revolution" gene, resulted in the establishment of a high-yielding semi-dwarf variety IR8. Deemed as the miracle rice, IR8 saved millions of lives and revolutionized irrigated rice farming particularly in the tropics. The technology, however, spurred some unintended negative consequences, especially in prompting ubiquitous monoculture systems that increase agricultural vulnerability to extreme weather events and climate variability. One feasible way to incorporate resilience in modern rice varieties with narrow genetic backgrounds is by introgressing alleles from the germplasm of its weedy and wild relatives, or perhaps from the suitable underutilized species that harbor novel genes responsive to various biotic and abiotic stresses. This review reminisces the fascinating half-century journey of rice research and highlights the potential utilization of weedy rice and underutilized grains in modern breeding programs. Other possible alternatives to improve the sustainability of crop production systems in a changing climate are also discussed.
Collapse
Affiliation(s)
- Noraikim Mohd Hanafiah
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Muhamad Shakirin Mispan
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- The Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Phaik Eem Lim
- Institute of Ocean and Earth Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Niranjan Baisakh
- School of Plant, Environmental, and Soil Science, Louisiana State University Agricultural Center, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Acga Cheng
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
13
|
Han B, Ma X, Cui D, Wang Y, Geng L, Cao G, Zhang H, Koh H, Han L. Analysis of evolutionary relationships provides new clues to the origins of weedy rice. Ecol Evol 2020; 10:891-900. [PMID: 32015852 PMCID: PMC6988545 DOI: 10.1002/ece3.5948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 11/18/2022] Open
Abstract
Weedy rice (WR) (Oryza sativa f. spontanea) is considered to be a pest in modern rice production systems because it competes for resources, has poor yield characteristics, and subsequently has a negative effect on rice grain yield. The evolutionary relationships among WR, landrace rice (LR), improved rice (IR) cultivars, and wild rice are largely unknown. In this study, we conducted a population genetic analysis based on neutral markers and gene haplotypes in 524 rice accessions and a comparative transcriptomic analysis using 15 representative samples. The results showed that WR populations have the highest level of genetic diversity (H e = 0.8386) and can be divided into two groups (japonica-type and indica-type). The japonica-type WR accessions from Heilongjiang province (HLJ), Jilin province (JL), Liaoning province (LN), and NX provinces clustered with the landraces grown in these same provinces. The indica-types from Jiangsu province (JS) also clustered with the indica-type landraces from JS province. Comparative transcriptome analysis of WR' IR and LR from HLJ, JL, and LN provinces showed that the WR still clustered with the LR, and that the IR lines comprise a single population. Thirty-two differentially expressed genes were shared by the IR and LR groups as well as between the IR and WR groups. Using Gene ontology (GO) analysis, we identified 19 shared GO terms in the IR and LR groups as well as between the IR and WR groups. Our results suggest that WR populations in China have diverse origins, and comparative transcriptome analysis of different types of rice from HLJ, JL, and LN provinces suggests that IR populations have become a end point in the evolution of WR, which provides a new perspective for the study of WR origins and lays a solid foundation for rice breeding.
Collapse
Affiliation(s)
- Bing Han
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xiaoding Ma
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Di Cui
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yanjie Wang
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Leiyue Geng
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Guilan Cao
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Hui Zhang
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Hee‐Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute of Agriculture and Life ScienceSeoul National UniversitySeoulKorea
| | - Longzhi Han
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
14
|
Xie H, Han Y, Li X, Dai W, Song X, Olsen KM, Qiang S. Climate‐dependent variation in cold tolerance of weedy rice and rice mediated by
OsICE1
promoter methylation. Mol Ecol 2019; 29:121-137. [DOI: 10.1111/mec.15305] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Hongjie Xie
- Weed Research Laboratory Nanjing Agricultural University Nanjing China
| | - Yihao Han
- Weed Research Laboratory Nanjing Agricultural University Nanjing China
| | - Xinyue Li
- Weed Research Laboratory Nanjing Agricultural University Nanjing China
| | - Weimin Dai
- Weed Research Laboratory Nanjing Agricultural University Nanjing China
| | - Xiaoling Song
- Weed Research Laboratory Nanjing Agricultural University Nanjing China
| | - Kenneth M. Olsen
- Department of Biology Washington University in St. Louis St. Louis MO USA
| | - Sheng Qiang
- Weed Research Laboratory Nanjing Agricultural University Nanjing China
| |
Collapse
|
15
|
Guo S, Zhao S, Sun H, Wang X, Wu S, Lin T, Ren Y, Gao L, Deng Y, Zhang J, Lu X, Zhang H, Shang J, Gong G, Wen C, He N, Tian S, Li M, Liu J, Wang Y, Zhu Y, Jarret R, Levi A, Zhang X, Huang S, Fei Z, Liu W, Xu Y. Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nat Genet 2019; 51:1616-1623. [PMID: 31676863 DOI: 10.1038/s41588-019-0518-4] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/23/2019] [Indexed: 12/31/2022]
Abstract
Fruit characteristics of sweet watermelon are largely the result of human selection. Here we report an improved watermelon reference genome and whole-genome resequencing of 414 accessions representing all extant species in the Citrullus genus. Population genomic analyses reveal the evolutionary history of Citrullus, suggesting independent evolutions in Citrullus amarus and the lineage containing Citrullus lanatus and Citrullus mucosospermus. Our findings indicate that different loci affecting watermelon fruit size have been under selection during speciation, domestication and improvement. A non-bitter allele, arising in the progenitor of sweet watermelon, is largely fixed in C. lanatus. Selection for flesh sweetness started in the progenitor of C. lanatus and continues through modern breeding on loci controlling raffinose catabolism and sugar transport. Fruit flesh coloration and sugar accumulation might have co-evolved through shared genetic components including a sugar transporter gene. This study provides valuable genomic resources and sheds light on watermelon speciation and breeding history.
Collapse
Affiliation(s)
- Shaogui Guo
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Shengjie Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Honghe Sun
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China.,Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, USA
| | - Xin Wang
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, USA
| | - Shan Wu
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, USA
| | - Tao Lin
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yi Ren
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Lei Gao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, USA
| | - Yun Deng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jie Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Xuqiang Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Haiying Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Jianli Shang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Guoyi Gong
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Changlong Wen
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Nan He
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Shouwei Tian
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Maoying Li
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Junpu Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yanping Wang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Yingchun Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Robert Jarret
- U.S. Department of Agriculture-Agricultural Research Service, Plant Genetic Resources Conservation Unit, Griffin, GA, USA
| | - Amnon Levi
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Vegetable Lab, Charleston, SC, USA
| | - Xingping Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Sanwen Huang
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China. .,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, USA. .,U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA.
| | - Wenge Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
| | - Yong Xu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China.
| |
Collapse
|
16
|
When West Meets East: The Origins and Spread of Weedy Rice Between Continental and Island Southeast Asia. G3-GENES GENOMES GENETICS 2019; 9:2941-2950. [PMID: 31292156 PMCID: PMC6723143 DOI: 10.1534/g3.119.400021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Weedy crop relatives are among the world’s most problematic agricultural weeds, and their ability to rapidly evolve can be enhanced by gene flow from both domesticated crop varieties and wild crop progenitor species. In this study, we examined the role of modern commercial crop cultivars, traditional landraces, and wild relatives in the recent emergence and proliferation of weedy rice in East Malaysia on the island of Borneo. This region of Malaysia is separated from the Asian continent by the South China Sea, and weedy rice has become a major problem there more recently than on the Malaysian peninsular mainland. Using 24 polymorphic SSR loci and genotype data from the awn-length domestication gene An-1, we assessed the genetic diversity, population structure and potential origins of East Malaysian weeds; 564 weedy, cultivated and wild rice accessions were analyzed from samples collected in East Malaysia, Peninsular Malaysia and neighboring countries. While there is considerable evidence for contributions of Peninsular Malaysian weed ecotypes to East Malaysian populations, we find that local crop cultivars and/or landraces from neighboring countries are also likely contributors to the weedy rice infestations. These findings highlight the implications of genetic admixture from different cultivar source populations in the spread of weedy crop relatives and the urgent need for preventive measurements to maintain sustainable crop yields.
Collapse
|
17
|
Donde R, Kumar J, Gouda G, Gupta MK, Mukherjee M, Baksh SY, Mahadani P, Sahoo KK, Behera L, Dash SK. Assessment of Genetic Diversity of Drought Tolerant and Susceptible Rice Genotypes Using Microsatellite Markers. RICE SCIENCE 2019; 26:239-247. [DOI: 10.1016/j.rsci.2019.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
18
|
Discordant Patterns of Introgression Suggest Historical Gene Flow into Thai Weedy Rice from Domesticated and Wild Relatives. J Hered 2019; 110:601-609. [DOI: 10.1093/jhered/esz030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/04/2019] [Indexed: 12/12/2022] Open
Abstract
Abstract
Weedy relatives of crop species infest agricultural fields worldwide, reducing harvests and threatening global food security. These weeds can potentially evolve and adapt through gene flow from both domesticated crop varieties and reproductively compatible wild relatives. We studied populations of weedy rice in Thailand to investigate the role of introgression from cultivated and wild rice in their evolution. We examined 2 complementary sources of genetic data: allelic variation at 3 rice domestication genes (Bh4, controlling hull color; Rc, controlling pericarp color and seed dormancy; and sh4, controlling seed shattering), and 12 previously published SSR markers. Sampling spanned 3 major rice growing regions in Thailand (Lower North, North East, and Central Plain) and included 124 cultivated rice accessions, 166 weedy rice accessions, and 98 wild rice accessions. Weedy rice strains were overall closely related to the cultivated varieties with which they co-occur. Domestication gene data revealed potential adaptive introgression of sh4 shattering alleles from wild rice. Introgression of potentially maladaptive rc crop alleles (conferring reduced dormancy) was also detected, with the frequency of the crop allele highest in northern populations. Although SSR markers also indicated introgression into weed populations from wild and cultivated rice, there was little overlap with domestication genes in the accessions showing admixed ancestry. This suggests that much of the introgression we detected at domestication genes most likely reflects past introgression rather than recent gene flow. This finding has implications for understanding long-term gene flow dynamics between rice and its weedy and wild relatives, including potential risks of transgene escape.
Collapse
|
19
|
Sun J, Ma D, Tang L, Zhao M, Zhang G, Wang W, Song J, Li X, Liu Z, Zhang W, Xu Q, Zhou Y, Wu J, Yamamoto T, Dai F, Lei Y, Li S, Zhou G, Zheng H, Xu Z, Chen W. Population Genomic Analysis and De Novo Assembly Reveal the Origin of Weedy Rice as an Evolutionary Game. MOLECULAR PLANT 2019; 12:632-647. [PMID: 30710646 DOI: 10.1016/j.molp.2019.01.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 05/27/2023]
Abstract
Crop weediness, especially that of weedy rice (Oryza sativa f. spontanea), remains mysterious. Weedy rice possesses robust ecological adaptability; however, how this strain originated and gradually formed proprietary genetic features remains unclear. Here, we demonstrate that weedy rice at Asian high latitudes (WRAH) is phylogenetically well defined and possesses unselected genomic characteristics in many divergence regions between weedy and cultivated rice. We also identified novel quantitative trait loci underlying weedy-specific traits, and revealed that a genome block on the end of chromosome 1 is associated with rice weediness. To identify the genomic modifications underlying weedy rice evolution, we generated the first de novo assembly of a high-quality weedy rice genome (WR04-6), and conducted a comparative genomics study between WR04-6 with other rice reference genomes. Multiple lines of evidence, including the results of demographic scenario comparisons, suggest that differentiation between weedy rice and cultivated rice was initiated by genetic improvement of cultivated rice and that the essence of weediness arose through semi-domestication. A plant height model further implied that the origin of WRAH can be modeled as an evolutionary game and indicated that strategy-based selection driven by fitness shaped its genomic diversity.
Collapse
Affiliation(s)
- Jian Sun
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Dianrong Ma
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Liang Tang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Minghui Zhao
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Guangchen Zhang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Wenjia Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Jiayu Song
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xiang Li
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Zimeng Liu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Wenxing Zhang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Quan Xu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Yuncheng Zhou
- College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang, China
| | - Jianzhong Wu
- Institute of Crop Science, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Toshio Yamamoto
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Fei Dai
- Department of Agronomy, Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Yan Lei
- Biomarker Technologies Corporation, Beijing, China
| | - Song Li
- Biomarker Technologies Corporation, Beijing, China
| | - Gang Zhou
- Biomarker Technologies Corporation, Beijing, China
| | | | - Zhengjin Xu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Wenfu Chen
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
20
|
Chen E, Huang X, Tian Z, Wing RA, Han B. The Genomics of Oryza Species Provides Insights into Rice Domestication and Heterosis. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:639-665. [PMID: 31035826 DOI: 10.1146/annurev-arplant-050718-100320] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Here, we review recent progress in genetic and genomic studies of the diversity of Oryza species. In recent years, unlocking the genetic diversity of Oryza species has provided insights into the genomics of rice domestication, heterosis, and complex traits. Genome sequencing and analysis of numerous wild rice (Oryza rufipogon) and Asian cultivated rice (Oryza sativa) accessions have enabled the identification of genome-wide signatures of rice domestication and the unlocking of the origin of Asian cultivated rice. Moreover, similar studies on genome variations of African rice (Oryza glaberrima) cultivars and their closely related wild progenitor Oryza barthii accessions have provided strong evidence to support a theory of independent domestication in African rice. Integrated genomic approaches have efficiently investigated many heterotic loci in hybrid rice underlying yield heterosis advantages and revealed the genomic architecture of rice heterosis. We conclude that in-depth unlocking of genetic variations among Oryza species will further enhance rice breeding.
Collapse
Affiliation(s)
- Erwang Chen
- National Center of Plant Gene Research; Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences; and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200233, China;
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Xuehui Huang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rod A Wing
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA;
| | - Bin Han
- National Center of Plant Gene Research; Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences; and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200233, China;
| |
Collapse
|
21
|
Chai C, Shankar R, Jain M, Subudhi PK. Genome-wide discovery of DNA polymorphisms by whole genome sequencing differentiates weedy and cultivated rice. Sci Rep 2018; 8:14218. [PMID: 30242197 PMCID: PMC6155081 DOI: 10.1038/s41598-018-32513-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
Analyzing the genome level DNA polymorphisms between weedy and cultivated rice is crucial to elucidate the molecular basis of weedy and agronomic traits, which in turn can enhance our ability to control weedy rice and its utilization for rice improvement. Here, we presented the genome-wide genetic variations between a weedy rice accession PSRR-1 and two cultivated rice accessions, Bengal and Nona Bokra, belonging to japonica and indica subspecies, respectively. The total number of SNPs and InDels in PSRR/Bengal was similar to that of Nona Bokra/Bengal, but was three times greater than that of PSRR/Nona Bokra. There were 11546 large-effect SNPs/InDels affecting 5673 genes, which most likely differentiated weedy rice from cultivated rice. These large effect DNA polymorphisms were mostly resulted in stop codon gain and least by start codon loss. Analysis of the molecular functions and biological processes of weedy rice specific SNPs/InDels indicated that most of these genes were involved in protein modification/phosphorylation, protein kinase activity, and protein/nucleotide binding. By integrating previous QTL mapping results with the DNA polymorphisms data, the candidate genes for seed dormancy and seed shattering were narrowed down. The genomic resource generated in this study will facilitate discovery of functional variants for weedy and agronomic traits.
Collapse
Affiliation(s)
- Chenglin Chai
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Rama Shankar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mukesh Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Prasanta K Subudhi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
22
|
Zhang J, Kang Y, Valverde BE, Dai W, Song X, Qiang S. Feral rice from introgression of weedy rice genes into transgenic herbicide-resistant hybrid-rice progeny. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3855-3865. [PMID: 29873749 DOI: 10.1093/jxb/ery210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Pollen-mediated transgenic flow of herbicide resistance occurs bidirectionally between transgenic cultivated rice and weedy rice. The potential risk of weedy traits introgressing into hybrid rice has been underestimated and is poorly understood. In this study, two glufosinate-resistant transgenic rice varieties, hybrid rice (F1), and their succeeding generations (F2-F4) were planted for 3 years in field plots free of weedy rice adjacent to experimental weedy-rice fields. Weedy-rice-like (feral) plants that were both glufosinate-resistant and had red-pericarp seed were initially found only among the F3 generations of the two glufosinate-resistant transgenic hybrid cultivars. The composite fitness (an index based on eight productivity and weediness traits) of the feral progeny was significantly higher than that of the glufosinate-resistant transgenic hybrid (the original female parent of the feral progeny) under monoculture common garden conditions. The hybrid rice progeny segregated into individuals of variable height and extended flowering. The hybrid rice F2 generations had higher outcrossing rates by pollen reception (0.96-1.65%) than their progenitors (0.07-0.98%). The results show that herbicide-resistant weedy rice can rapidly arise by pollen-mediated gene flow from weedy to transgenic hybrid rice, and their segregating pollen-receptive progeny pose a greater agro-ecological risk than transgenic varieties. The safety assessment and management regulations for transgenic hybrid rice should take into account the risk of bidirectional gene flow.
Collapse
Affiliation(s)
- Jingxu Zhang
- Weed Research Laboratory of Nanjing Agricultural University, Xuanwu District, Nanjing, China
| | - Ye Kang
- Weed Research Laboratory of Nanjing Agricultural University, Xuanwu District, Nanjing, China
| | - Bernal E Valverde
- Weed Research Laboratory of Nanjing Agricultural University, Xuanwu District, Nanjing, China
- Investigación y Desarrollo en Agricultura Tropical, S.A., Tambor, Alajuela, Costa Rica
| | - Weimin Dai
- Weed Research Laboratory of Nanjing Agricultural University, Xuanwu District, Nanjing, China
| | - Xiaoling Song
- Weed Research Laboratory of Nanjing Agricultural University, Xuanwu District, Nanjing, China
| | - Sheng Qiang
- Weed Research Laboratory of Nanjing Agricultural University, Xuanwu District, Nanjing, China
| |
Collapse
|
23
|
|
24
|
Sahu PK, Mondal S, Sharma D, Vishwakarma G, Kumar V, Das BK. InDel marker based genetic differentiation and genetic diversity in traditional rice (Oryza sativa L.) landraces of Chhattisgarh, India. PLoS One 2017; 12:e0188864. [PMID: 29190790 PMCID: PMC5708757 DOI: 10.1371/journal.pone.0188864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/14/2017] [Indexed: 11/28/2022] Open
Abstract
Rice has been cultivating and utilizing by humans for thousands of years under diverse environmental conditions. Therefore, tremendous genetic differentiation and diversity has occurred at various agro-ecosystems. The significant indica–japonica differentiation in rice provides great opportunities for its genetic improvement. In the present investigation, a total of 42 polymorphic InDel markers were used for differentiating 188 rice landraces and two local varieties of Chhattisgarh, India into indica and japonica related genotypes based on ‘InDel molecular index’. Frequency of japonica alleles varied from 0.11 to 0.89 among landraces. Results revealed that 104 rice landraces have indica type genetic architecture along with three tested indica cultivars Swarna, Mahamaya and Rajeshwari. Another 60 landraces were placed under ‘close to indica’ type. It was found that three rice landraces i.e. Kalajeera, Kapri, Tulsimala were ‘close to japonica’ type and 21 landraces were ‘intermediate’ type. The result from the calculation of ‘InDel molecular index’ was further verified with STRUCTURE, AMOVA, PCA and cluster analysis. Population structure analysis revealed two genetically distinct populations within the 190 rice landraces/genotypes. Based on AMOVA, ‘intermediate’ type, ‘close to japonica’ type and Dongjinbyeo (a japonica cultivar from Republic of Korea) displayed significant genetic differentiation (ɸPT = 0.642, P = 0.000) from ‘indica’ and ‘close to indica’ groups. The PCA scatter plot and dendrogram demonstrated a clear pattern of two major group differentiations. ‘Close to japonica’ type and ‘intermediate’ type landraces/genotypes were grouped with Dongjinbyeo and formed a separate cluster at 30% Jaccard’s similarity level from rest of the landraces/genotypes which were ‘close to indica’ or ‘indica’ type. Such a significant genetic differentiation among the locally adapted landraces could be exploited for the development of rice varieties introgressing higher yield potential and better plant types of japonica type as per the need of consumers and rice traders.
Collapse
Affiliation(s)
- Parmeshwar Kumar Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- * E-mail: (SM); (DS)
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India
- * E-mail: (SM); (DS)
| | - Gautam Vishwakarma
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Vikash Kumar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Bikram Kishore Das
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| |
Collapse
|
25
|
Qiu J, Zhou Y, Mao L, Ye C, Wang W, Zhang J, Yu Y, Fu F, Wang Y, Qian F, Qi T, Wu S, Sultana MH, Cao YN, Wang Y, Timko MP, Ge S, Fan L, Lu Y. Genomic variation associated with local adaptation of weedy rice during de-domestication. Nat Commun 2017; 8:15323. [PMID: 28537247 PMCID: PMC5477509 DOI: 10.1038/ncomms15323] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/17/2017] [Indexed: 11/09/2022] Open
Abstract
De-domestication is a unique evolutionary process by which domesticated crops are converted into ‘wild predecessor like' forms. Weedy rice (Oryza sativa f. spontanea) is an excellent model to dissect the molecular processes underlying de-domestication. Here, we analyse the genomes of 155 weedy and 76 locally cultivated rice accessions from four representative regions in China that were sequenced to an average 18.2 × coverage. Phylogenetic and demographic analyses indicate that Chinese weedy rice was de-domesticated independently from cultivated rice and experienced a strong genetic bottleneck. Although evolving from multiple origins, critical genes underlying convergent evolution of different weedy types can be found. Allele frequency analyses suggest that standing variations and new mutations contribute differently to japonica and indica weedy rice. We identify a Mb-scale genomic region present in weedy rice but not cultivated rice genomes that shows evidence of balancing selection, thereby suggesting that there might be more complexity inherent to the process of de-domestication. De-domestication is the process by which cultivated plants adopt characteristics similar to that of their wild predecessors. Here Qiu et al. re-sequence de-domesticated weedy rice and matched cultivated varieties and identify genetic variants indicative of convergent evolution across multiple de-domestication events.
Collapse
Affiliation(s)
- Jie Qiu
- Institutue of Crop Science &Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yongjun Zhou
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Lingfeng Mao
- Institutue of Crop Science &Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chuyu Ye
- Institutue of Crop Science &Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Weidi Wang
- Institutue of Crop Science &Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jianping Zhang
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Yongyi Yu
- Institutue of Crop Science &Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fei Fu
- Institutue of Crop Science &Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunfei Wang
- Zhejiang Sheng Ting Biotechnology Co., Ltd., Taizhou 318020, China
| | - Feijian Qian
- Zhejiang Sheng Ting Biotechnology Co., Ltd., Taizhou 318020, China
| | - Ting Qi
- Institutue of Crop Science &Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Sanling Wu
- Analysis Center of Agrobiology and Environmental Sciences, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Most Humaira Sultana
- Institutue of Crop Science &Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ya-Nan Cao
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, Zhejiang University, Hangzhou 310058, China
| | - Yu Wang
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Longjiang Fan
- Institutue of Crop Science &Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yongliang Lu
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| |
Collapse
|
26
|
Huang Z, Young ND, Reagon M, Hyma KE, Olsen KM, Jia Y, Caicedo AL. All roads lead to weediness: Patterns of genomic divergence reveal extensive recurrent weedy rice origins from South Asian
Oryza. Mol Ecol 2017; 26:3151-3167. [DOI: 10.1111/mec.14120] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 01/21/2017] [Accepted: 03/10/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Zhongyun Huang
- Department of Biology University of Massachusetts Amherst MA USA
| | - Nelson D. Young
- Department of Biology University of Massachusetts Amherst MA USA
| | - Michael Reagon
- Department of Biology Ohio State University Lima Lima OH USA
| | - Katie E. Hyma
- Department of Biology University of Massachusetts Amherst MA USA
| | | | - Yulin Jia
- Dale Bumpers National Rice Research Center USDA‐ARS Stuttgart AR USA
| | - Ana L. Caicedo
- Department of Biology University of Massachusetts Amherst MA USA
| |
Collapse
|
27
|
Genetic variation architecture of mitochondrial genome reveals the differentiation in Korean landrace and weedy rice. Sci Rep 2017; 7:43327. [PMID: 28256554 PMCID: PMC5335689 DOI: 10.1038/srep43327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/24/2017] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial genome variations have been detected despite the overall conservation of this gene content, which has been valuable for plant population genetics and evolutionary studies. Here, we describe mitochondrial variation architecture and our performance of a phylogenetic dissection of Korean landrace and weedy rice. A total of 4,717 variations across the mitochondrial genome were identified adjunct with 10 wild rice. Genetic diversity assessment revealed that wild rice has higher nucleotide diversity than landrace and/or weedy, and landrace rice has higher diversity than weedy rice. Genetic distance was suggestive of a high level of breeding between landrace and weedy rice, and the landrace showing a closer association with wild rice than weedy rice. Population structure and principal component analyses showed no obvious difference in the genetic backgrounds of landrace and weedy rice in mitochondrial genome level. Phylogenetic, population split, and haplotype network evaluations were suggestive of independent origins of the indica and japonica varieties. The origin of weedy rice is supposed to be more likely from cultivated rice rather than from wild rice in mitochondrial genome level.
Collapse
|
28
|
He Q, Kim K, Park Y. Population genomics identifies the origin and signatures of selection of Korean weedy rice. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:357-366. [PMID: 27589078 PMCID: PMC5316921 DOI: 10.1111/pbi.12630] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/25/2016] [Accepted: 08/21/2016] [Indexed: 05/25/2023]
Abstract
Weedy rice is the same biological species as cultivated rice (Oryza sativa); it is also a noxious weed infesting rice fields worldwide. Its formation and population-selective or -adaptive signatures are poorly understood. In this study, we investigated the phylogenetics, population structure and signatures of selection of Korean weedy rice by determining the whole genomes of 30 weedy rice, 30 landrace rice and ten wild rice samples. The phylogenetic tree and results of ancestry inference study clearly showed that the genetic distance of Korean weedy rice was far from the wild rice and near with cultivated rice. Furthermore, 537 genes showed evidence of recent positive or divergent selection, consistent with some adaptive traits. This study indicates that Korean weedy rice originated from hybridization of modern indica/indica or japonica/japonica rather than wild rice. Moreover, weedy rice is not only a notorious weed in rice fields, but also contains many untapped valuable traits or haplotypes that may be a useful genetic resource for improving cultivated rice.
Collapse
Affiliation(s)
- Qiang He
- Department of Plant ResourcesCollege of Industrial ScienceKongju National UniversityYesan32439Korea
| | - Kyu‐Won Kim
- Department of Plant ResourcesCollege of Industrial ScienceKongju National UniversityYesan32439Korea
| | - Yong‐Jin Park
- Department of Plant ResourcesCollege of Industrial ScienceKongju National UniversityYesan32439Korea
- Center for crop genetic resource and breeding (CCGRB)Kongju National UniversityCheonan31080Republic of Korea
| |
Collapse
|
29
|
Zhang J, Lu Z, Dai W, Song X, Peng Y, Valverde BE, Qiang S. Cytoplasmic-genetic male sterility gene provides direct evidence for some hybrid rice recently evolving into weedy rice. Sci Rep 2015; 5:10591. [PMID: 26012494 PMCID: PMC4445040 DOI: 10.1038/srep10591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 04/20/2015] [Indexed: 11/09/2022] Open
Abstract
Weedy rice infests paddy fields worldwide at an alarmingly increasing rate. There is substantial evidence indicating that many weedy rice forms originated from or are closely related to cultivated rice. There is suspicion that the outbreak of weedy rice in China may be related to widely grown hybrid rice due to its heterosis and the diversity of its progeny, but this notion remains unsupported by direct evidence. We screened weedy rice accessions by both genetic and molecular marker tests for the cytoplasmic male sterility (CMS) genes (Wild abortive, WA, and Boro type, BT) most widely used in the production of indica and japonica three-line hybrid rice as a diagnostic trait of direct parenthood. Sixteen weedy rice accessions of the 358 tested (4.5%) contained the CMS-WA gene; none contained the CMS-BT gene. These 16 accessions represent weedy rices recently evolved from maternal hybrid rice derivatives, given the primarily maternal inheritance of this trait. Our results provide key direct evidence that hybrid rice can be involved in the evolution of some weedy rice accessions, but is not a primary factor in the recent outbreak of weedy rice in China.
Collapse
Affiliation(s)
- Jingxu Zhang
- Weed Research Laboratory of Nanjing Agricultural University, No.1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Zuomei Lu
- State Key Laboratory of Crop Genetics &Germplasm Enhancement, Nanjing Agricultural University, No.1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Weimin Dai
- Weed Research Laboratory of Nanjing Agricultural University, No.1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Xiaoling Song
- Weed Research Laboratory of Nanjing Agricultural University, No.1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Yufa Peng
- Institute of Plant Protection, China Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Beijing 100193,China
| | - Bernal E Valverde
- 1] Weed Research Laboratory of Nanjing Agricultural University, No.1 Weigang, Xuanwu District, Nanjing 210095, China [2] Faculty of Life Sciences, The University of Copenhagen, Hojebakkegaard Allé 13, Taastrup, DK-2630, Denmark
| | - Sheng Qiang
- Weed Research Laboratory of Nanjing Agricultural University, No.1 Weigang, Xuanwu District, Nanjing 210095, China
| |
Collapse
|
30
|
Qiu J, Zhu J, Fu F, Ye CY, Wang W, Mao L, Lin Z, Chen L, Zhang H, Guo L, Qiang S, Lu Y, Fan L. Genome re-sequencing suggested a weedy rice origin from domesticated indica-japonica hybridization: a case study from southern China. PLANTA 2014; 240:1353-1363. [PMID: 25187076 DOI: 10.1007/s00425-014-2159-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/16/2014] [Indexed: 06/03/2023]
Abstract
Whole-genome re-sequencing of weedy rice from southern China reveals that weedy rice can originate from hybridization of domesticated indica and japonica rice. Weedy rice (Oryza sativa f. spontanea Rosh.), which harbors phenotypes of both wild and domesticated rice, has become one of the most notorious weeds in rice fields worldwide. While its formation is poorly understood, massive amounts of rice genomic data may provide new insights into this issue. In this study, we determined genomes of three weedy rice samples from the lower Yangtze region, China, and investigated their phylogenetics, population structure and chromosomal admixture patterns. The phylogenetic tree and principle component analysis based on 46,005 SNPs with 126 other Oryza accessions suggested that the three weedy rice accessions were intermediate between japonica and indica rice. An ancestry inference study further demonstrated that weedy rice had two dominant genomic components (temperate japonica and indica). This strongly suggests that weedy rice originated from indica-japonica hybridization. Furthermore, 22,443 novel fixed single nucleotide polymorphisms were detected in the weedy genomes and could have been generated after indica-japonica hybridization for environmental adaptation.
Collapse
Affiliation(s)
- Jie Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gressel J, Levy AA. Use of multicopy transposons bearing unfitness genes in weed control: four example scenarios. PLANT PHYSIOLOGY 2014; 166:1221-31. [PMID: 24820021 PMCID: PMC4226382 DOI: 10.1104/pp.114.236935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/09/2014] [Indexed: 05/09/2023]
Abstract
We speculate that multicopy transposons, carrying both fitness and unfitness genes, can provide new positive and negative selection options to intractable weed problems. Multicopy transposons rapidly disseminate through populations, appearing in approximately 100% of progeny, unlike nuclear transgenes, which appear in a proportion of segregating populations. Different unfitness transgenes and modes of propagation will be appropriate for different cases: (1) outcrossing Amaranthus spp. (that evolved resistances to major herbicides); (2) Lolium spp., important pasture grasses, yet herbicide-resistant weeds in crops; (3) rice (Oryza sativa), often infested with feral weedy rice, which interbreeds with the crop; and (4) self-compatible sorghum (Sorghum bicolor), which readily crosses with conspecific shattercane and with allotetraploid johnsongrass (Sorghum halepense). The speculated outcome of these scenarios is to generate weed populations that contain the unfitness gene and thus are easily controllable. Unfitness genes can be under chemically or environmentally inducible promoters, activated after gene dissemination, or under constitutive promoters where the gene function is utilized only at special times (e.g. sensitivity to an herbicide). The transposons can be vectored to the weeds by introgression from the crop (in rice, sorghum, and Lolium spp.) or from planted engineered weed (Amaranthus spp.) using a gene conferring the degradation of a no longer widely used herbicide, especially in tandem with an herbicide-resistant gene that kills all nonhybrids, facilitating the rapid dissemination of the multicopy transposons in a weedy population.
Collapse
Affiliation(s)
- Jonathan Gressel
- Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avraham A Levy
- Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
32
|
Hovick SM, Whitney KD. Hybridisation is associated with increased fecundity and size in invasive taxa: meta-analytic support for the hybridisation-invasion hypothesis. Ecol Lett 2014; 17:1464-77. [PMID: 25234578 PMCID: PMC4231983 DOI: 10.1111/ele.12355] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/11/2014] [Accepted: 08/14/2014] [Indexed: 02/04/2023]
Abstract
The hypothesis that interspecific hybridisation promotes invasiveness has received much recent
attention, but tests of the hypothesis can suffer from important limitations. Here, we provide the
first systematic review of studies experimentally testing the hybridisation-invasion (H-I)
hypothesis in plants, animals and fungi. We identified 72 hybrid systems for which hybridisation has
been putatively associated with invasiveness, weediness or range expansion. Within this group, 15
systems (comprising 34 studies) experimentally tested performance of hybrids vs. their parental
species and met our other criteria. Both phylogenetic and non-phylogenetic meta-analyses
demonstrated that wild hybrids were significantly more fecund and larger than their parental taxa,
but did not differ in survival. Resynthesised hybrids (which typically represent earlier generations
than do wild hybrids) did not consistently differ from parental species in fecundity, survival or
size. Using meta-regression, we found that fecundity increased (but survival decreased) with
generation in resynthesised hybrids, suggesting that natural selection can play an important role in
shaping hybrid performance – and thus invasiveness – over time. We conclude that the
available evidence supports the H-I hypothesis, with the caveat that our results are clearly driven
by tests in plants, which are more numerous than tests in animals and fungi.
Collapse
Affiliation(s)
- Stephen M Hovick
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, 43210, USA
| | | |
Collapse
|
33
|
Craig SM, Reagon M, Resnick LE, Caicedo AL. Allele distributions at hybrid incompatibility loci facilitate the potential for gene flow between cultivated and weedy rice in the US. PLoS One 2014; 9:e86647. [PMID: 24489758 PMCID: PMC3904945 DOI: 10.1371/journal.pone.0086647] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 12/15/2013] [Indexed: 11/18/2022] Open
Abstract
The accumulation of independent mutations over time in two populations often leads to reproductive isolation. Reproductive isolation between diverging populations may be reinforced by barriers that occur either pre- or postzygotically. Hybrid sterility is the most common form of postzygotic isolation in plants. Four postzygotic sterility loci, comprising three hybrid sterility systems (Sa, s5, DPL), have been recently identified in Oryza sativa. These loci explain, in part, the limited hybridization that occurs between the domesticated cultivated rice varieties, O. sativa spp. japonica and O. sativa spp. indica. In the United States, cultivated fields of japonica rice are often invaded by conspecific weeds that have been shown to be of indica origin. Crop-weed hybrids have been identified in crop fields, but at low frequencies. Here we examined the possible role of these hybrid incompatibility loci in the interaction between cultivated and weedy rice. We identified a novel allele at Sa that seemingly prevents loss of fertility in hybrids. Additionally, we found wide-compatibility type alleles at strikingly high frequencies at the Sa and s5 loci in weed groups, and a general lack of incompatible alleles between crops and weeds at the DPL loci. Our results suggest that weedy individuals, particularly those of the SH and BRH groups, should be able to freely hybridize with the local japonica crop, and that prezygotic factors, such as differences in flowering time, have been more important in limiting weed-crop gene flow in the past. As the selective landscape for weedy rice changes due to increased use of herbicide resistant strains of cultivated rice, the genetic barriers that hinder indica-japonica hybridization cannot be counted on to limit the flow of favorable crop genes into weeds.
Collapse
Affiliation(s)
- Stephanie M. Craig
- Biology Department, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Michael Reagon
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Lima, Ohio, United States of America
| | - Lauren E. Resnick
- Biology Department, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Ana L. Caicedo
- Biology Department, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|