1
|
Achary VMM, Sheri V, Manna M, Panditi V, Borphukan B, Ram B, Agarwal A, Fartyal D, Teotia D, Masakapalli SK, Agrawal PK, Reddy MK. Overexpression of improved EPSPS gene results in field level glyphosate tolerance and higher grain yield in rice. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2504-2519. [PMID: 32516520 PMCID: PMC7680544 DOI: 10.1111/pbi.13428] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/29/2020] [Accepted: 04/18/2020] [Indexed: 05/15/2023]
Abstract
Glyphosate is a popular, systemic, broad-spectrum herbicide used in modern agriculture. Being a structural analog of phosphoenolpyruvate (PEP), it inhibits 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) which is responsible for the biosynthesis of aromatic amino acids and various aromatic secondary metabolites. Taking a lead from glyphosate-resistant weeds, two mutant variants of the rice EPSPS gene were developed by amino acid substitution (T173I + P177S; TIPS-OsEPSPS and G172A + T173I + P177S; GATIPS-OsEPSPS). These mutated EPSPS genes were overexpressed in rice under the control of either native EPSPS or constitutive promoters (maize ubiquitin [ZmUbi] promoter). The overexpression of TIPS-OsEPSPS under the control of the ZmUbi promoter resulted in higher tolerance to glyphosate (up to threefold of the recommended dose) without affecting the fitness and related agronomic traits of plants in both controlled and field conditions. Furthermore, such rice lines produced 17%-19% more grains compared to the wild type (WT) in the absence of glyphosate application and the phenylalanine and tryptophan contents in the transgenic seeds were found to be significantly higher in comparison with WT seeds. Our results also revealed that the native promoter guided expression of modified EPSPS genes did not significantly improve the glyphosate tolerance. The present study describing the introduction of a crop-specific TIPS mutation in class I aroA gene of rice and its overexpression have potential to substantially improve the yield and field level glyphosate tolerance in rice. This is the first report to observe that the EPSPS has role to play in improving grain yield of rice.
Collapse
Affiliation(s)
- V. Mohan Murali Achary
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Vijay Sheri
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Mrinalini Manna
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Varakumar Panditi
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Bhabesh Borphukan
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Babu Ram
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Aakrati Agarwal
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Dhirendra Fartyal
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Deepa Teotia
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | | | | | - Malireddy K. Reddy
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| |
Collapse
|
2
|
Nam KH, Kim DY, Moon YS, Pack IS, Jeong SC, Kim HB, Kim CG. Performance of hybrids between abiotic stress-tolerant transgenic rice and its weedy relatives under water-stressed conditions. Sci Rep 2020; 10:9319. [PMID: 32518274 PMCID: PMC7283212 DOI: 10.1038/s41598-020-66206-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/04/2020] [Indexed: 11/16/2022] Open
Abstract
Gene transfer from transgenic crops to their weedy relatives may introduce undesired ecological consequences that can increase the fitness and invasiveness of weedy populations. Here, we examined the rate of gene flow from abiotic stress-tolerant transgenic rice that over-express AtCYP78A7, a gene encoding cytochrome P450 protein, to six weedy rice accessions and compared the phenotypic performance and drought tolerance of their hybrids over generations. The rate of transgene flow from AtCYP78A7-overexpressing transgenic to weedy rice varied between 0% and 0.0396%. F1 hybrids containing AtCYP78A7 were significantly taller and heavier, but the percentage of ripened grains, grain numbers and weight per plant were significantly lower than their transgenic and weedy parents. The homozygous and hemizygous F2 progeny showed higher tolerance to drought stress than the nullizygous F2 progeny, as indicated by leaf rolling scores. Shoot growth of nullizygous F3 progeny was significantly greater than weedy rice under water-deficient conditions in a rainout shelter, however, that of homozygous F3 progeny was similar to weedy rice, indicating the cost of continuous expression of transgene. Our findings imply that gene flow from AtCYP78A7-overexpressing transgenic to weedy rice might increase drought tolerance as shown in the pot experiment, however, increased fitness under stressed conditions in the field were not observed for hybrid progeny containing transgenes.
Collapse
Affiliation(s)
- Kyong-Hee Nam
- LMO research team, National Institute of Ecology, Seocheon, 33657, Republic of Korea
| | - Do Young Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, 28116, Republic of Korea
| | - Ye Seul Moon
- Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, 28116, Republic of Korea
| | - In Soon Pack
- Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, 28116, Republic of Korea
| | - Soon-Chun Jeong
- Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, 28116, Republic of Korea
| | - Ho Bang Kim
- Life Sciences Research Institute, Biomedic Co., Ltd., Bucheon, 14548, Republic of Korea
| | - Chang-Gi Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, 28116, Republic of Korea.
| |
Collapse
|
3
|
Fang J, Nan P, Gu Z, Ge X, Feng YQ, Lu BR. Overexpressing Exogenous 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS) Genes Increases Fecundity and Auxin Content of Transgenic Arabidopsis Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:233. [PMID: 29535747 PMCID: PMC5835131 DOI: 10.3389/fpls.2018.00233] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/09/2018] [Indexed: 05/24/2023]
Abstract
Transgenic glyphosate-tolerant plants overproducing EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) may exhibit enhanced fitness in glyphosate-free environments. If so, introgression of transgenes overexpressing EPSPS into wild relative species may lead to increased competitiveness of crop-wild hybrids, resulting in unpredicted environmental impact. Assessing fitness effects of transgenes overexpressing EPSPS in a model plant species can help address this question, while elucidating how overproducing EPSPS affects the fitness-related traits of plants. We produced segregating T2 and T3Arabidopsis thaliana lineages with or without a transgene overexpressing EPSPS isolated from rice or Agrobacterium (CP4). For each of the three transgenes, we compared glyphosate tolerance, some fitness-related traits, and auxin (indole-3-acetic acid) content in transgene-present, transgene-absent, empty vector (EV), and parental lineages in a common-garden experiment. We detected substantially increased glyphosate tolerance in T2 plants of transgene-present lineages that overproduced EPSPS. We also documented significant increases in fecundity, which was associated with increased auxin content in T3 transgene-present lineages containing rice EPSPS genes, compared with their segregating transgene-absent lineages, EV, and parental controls. Our results from Arabidopsis with nine transgenic events provide a strong support to the hypothesis that transgenic plants overproducing EPSPS can benefit from a fecundity advantage in glyphosate-free environments. Stimulated biosynthesis of auxin, an important plant growth hormone, by overproducing EPSPS may play a role in enhanced fecundity of the transgenic Arabidopsis plants. The obtained knowledge is useful for assessing environmental impact caused by introgression of transgenes overproducing EPSPS from any GE crop into populations of its wild relatives.
Collapse
Affiliation(s)
- Jia Fang
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Shanghai, China
| | - Peng Nan
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Shanghai, China
| | - Zongying Gu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Molecular Biology, School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai, China
| | - Xiaochun Ge
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Molecular Biology, School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai, China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, China
| | - Bao-Rong Lu
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Beacham TA, Sweet JB, Allen MJ. Large scale cultivation of genetically modified microalgae: A new era for environmental risk assessment. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.04.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Abstract
Convincing evidence has accumulated that unintended transgene escape occurs in oilseed rape, maize, cotton and creeping bentgrass. The escaped transgenes are found in variant cultivars, in wild type plants as well as in hybrids of sexually compatible species. The fact that in some cases stacked events are present that have not been planted commercially, implies unintended recombination of transgenic traits. As the consequences of this continuous transgene escape for the ecosystem cannot be reliably predicted, I propose to use more sophisticated approaches of gene technology in future. If possible GM plants should be constructed using either site-directed mutagenesis or cisgenic strategies to avoid the problem of transgene escape. In cases where a transgenic trait is needed, efficient containment should be the standard approach. Various strategies available or in development are discussed. Such a cautious approach in developing novel types of GM crops will enhance the sustainable potential of GM crops and thus increase the public trust in green gene technology.
Collapse
Affiliation(s)
- Gerhart U Ryffel
- a Institut für Zellbiologie (Tumorforschung); Universitätsklinikum Essen ; Essen , Germany
| |
Collapse
|
6
|
Lu BR, Snow AA, Yang X, Wang W. Scientific data published by a peer-reviewed journal should be properly interpreted: a reply to the letter by Gressel et al. (2014). THE NEW PHYTOLOGIST 2014; 202:363-366. [PMID: 24645783 DOI: 10.1111/nph.12684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Bao-Rong Lu
- Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Handan Road 220, Shanghai, 200433, China
| | - Allison A Snow
- Department of Evolution, Ecology & Organismal Biology, Ohio State University, Columbus, OH, USA
| | - Xiao Yang
- Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Handan Road 220, Shanghai, 200433, China
| | - Wei Wang
- Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Handan Road 220, Shanghai, 200433, China
| |
Collapse
|