1
|
Zhang L, Li P, Zhang X, Li J. Two floral forms in the same species-distyly. PLANTA 2023; 258:72. [PMID: 37656285 DOI: 10.1007/s00425-023-04229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
MAIN CONCLUSION This paper reviews the progress of research on the morphology, physiology and molecular biology of distyly in plants. It will help to elucidate the mysteries of distyly in plants. Distyly is a unique representative type of heterostyly in plants, primarily characterized by the presence of long style and short style within the flowers of the same species. This interesting trait has always fascinated researchers. With the rapid development of molecular biology, the molecular mechanism for the production of dimorphic styles in plants is also gaining ground. Researchers have been studying plant dimorphic styles from various perspectives. The researchers are gradually unravelling the mechanisms by which plants produce distyly traits. This paper reviews advances in the study of plant dimorphic style characteristics, mainly in terms of the morphology, physiology and molecular biology of plants with dimorphic styles. The aim is to provide a theoretical basis for the study of the mechanism of distyly formation in plants.
Collapse
Affiliation(s)
- Lu Zhang
- College of Landscape and Tourism, Hebei Agricultural University, No. 289 Lingyusi Street, P. O. Box 28, Baoding, 071000, Hebei, China
| | - Ping Li
- College of Landscape and Tourism, Hebei Agricultural University, No. 289 Lingyusi Street, P. O. Box 28, Baoding, 071000, Hebei, China.
| | - Xiaoman Zhang
- College of Landscape and Tourism, Hebei Agricultural University, No. 289 Lingyusi Street, P. O. Box 28, Baoding, 071000, Hebei, China.
| | - Jinfeng Li
- College of Landscape and Tourism, Hebei Agricultural University, No. 289 Lingyusi Street, P. O. Box 28, Baoding, 071000, Hebei, China
| |
Collapse
|
2
|
Mora‐Carrera E, Stubbs RL, Keller B, Léveillé‐Bourret É, de Vos JM, Szövényi P, Conti E. Different molecular changes underlie the same phenotypic transition: Origins and consequences of independent shifts to homostyly within species. Mol Ecol 2023; 32:61-78. [PMID: 34761469 PMCID: PMC10078681 DOI: 10.1111/mec.16270] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/29/2022]
Abstract
The repeated transition from outcrossing to selfing is a key topic in evolutionary biology. However, the molecular basis of such shifts has been rarely examined due to lack of knowledge of the genes controlling these transitions. A classic example of mating system transition is the repeated shift from heterostyly to homostyly. Occurring in 28 angiosperm families, heterostyly is characterized by the reciprocal position of male and female sexual organs in two (or three) distinct, usually self-incompatible floral morphs. Conversely, homostyly is characterized by a single, self-compatible floral morph with reduced separation of male and female organs, facilitating selfing. Here, we investigate the origins of homostyly in Primula vulgaris and its microevolutionary consequences by integrating surveys of the frequency of homostyles in natural populations, DNA sequence analyses of the gene controlling the position of female sexual organs (CYPᵀ), and microsatellite genotyping of both progeny arrays and natural populations characterized by varying frequencies of homostyles. As expected, we found that homostyles displace short-styled individuals, but long-style morphs are maintained at low frequencies within populations. We also demonstrated that homostyles repeatedly evolved from short-styled individuals in association with different types of loss-of-function mutations in CYPᵀ. Additionally, homostyly triggers a shift to selfing, promoting increased inbreeding within and genetic differentiation among populations. Our results elucidate the causes and consequences of repeated transitions to homostyly within species, and the putative mechanisms precluding its fixation in P. vulgaris. This study represents a benchmark for future analyses of losses of heterostyly in other angiosperms.
Collapse
Affiliation(s)
- Emiliano Mora‐Carrera
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - Rebecca L. Stubbs
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - Barbara Keller
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - Étienne Léveillé‐Bourret
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
- Département de Sciences BiologiquesInstitut de Recherche en Biologie VégétaleUniversité de MontréalMontréalQuébecCanada
| | - Jurriaan M. de Vos
- Department of Environmental Sciences – BotanyUniversity of BaselBaselSwitzerland
| | - Peter Szövényi
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - Elena Conti
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
3
|
Wang XJ, Barrett SCH, Zhong L, Wu ZK, Li DZ, Wang H, Zhou W. The Genomic Selfing Syndrome Accompanies the Evolutionary Breakdown of Heterostyly. Mol Biol Evol 2021; 38:168-180. [PMID: 32761213 PMCID: PMC7782863 DOI: 10.1093/molbev/msaa199] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The evolutionary transition from outcrossing to selfing can have important genomic consequences. Decreased effective population size and the reduced efficacy of selection are predicted to play an important role in the molecular evolution of the genomes of selfing species. We investigated evidence for molecular signatures of the genomic selfing syndrome using 66 species of Primula including distylous (outcrossing) and derived homostylous (selfing) taxa. We complemented our comparative analysis with a microevolutionary study of P. chungensis, which is polymorphic for mating system and consists of both distylous and homostylous populations. We generated chloroplast and nuclear genomic data sets for distylous, homostylous, and distylous–homostylous species and identified patterns of nonsynonymous to synonymous divergence (dN/dS) and polymorphism (πN/πS) in species or lineages with contrasting mating systems. Our analysis of coding sequence divergence and polymorphism detected strongly reduced genetic diversity and heterozygosity, decreased efficacy of purifying selection, purging of large-effect deleterious mutations, and lower rates of adaptive evolution in samples from homostylous compared with distylous populations, consistent with theoretical expectations of the genomic selfing syndrome. Our results demonstrate that self-fertilization is a major driver of molecular evolutionary processes with genomic signatures of selfing evident in both old and relatively young homostylous populations.
Collapse
Affiliation(s)
- Xin-Jia Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Li Zhong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Kun Wu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - De-Zhu Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hong Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wei Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
4
|
Cocker JM, Wright J, Li J, Swarbreck D, Dyer S, Caccamo M, Gilmartin PM. Primula vulgaris (primrose) genome assembly, annotation and gene expression, with comparative genomics on the heterostyly supergene. Sci Rep 2018; 8:17942. [PMID: 30560928 PMCID: PMC6299000 DOI: 10.1038/s41598-018-36304-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 11/14/2018] [Indexed: 11/24/2022] Open
Abstract
Primula vulgaris (primrose) exhibits heterostyly: plants produce self-incompatible pin- or thrum-form flowers, with anthers and stigma at reciprocal heights. Darwin concluded that this arrangement promotes insect-mediated cross-pollination; later studies revealed control by a cluster of genes, or supergene, known as the S (Style length) locus. The P. vulgaris S locus is absent from pin plants and hemizygous in thrum plants (thrum-specific); mutation of S locus genes produces self-fertile homostyle flowers with anthers and stigma at equal heights. Here, we present a 411 Mb P. vulgaris genome assembly of a homozygous inbred long homostyle, representing ~87% of the genome. We annotate over 24,000 P. vulgaris genes, and reveal more genes up-regulated in thrum than pin flowers. We show reduced genomic read coverage across the S locus in other Primula species, including P. veris, where we define the conserved structure and expression of the S locus genes in thrum. Further analysis reveals the S locus has elevated repeat content (64%) compared to the wider genome (37%). Our studies suggest conservation of S locus genetic architecture in Primula, and provide a platform for identification and evolutionary analysis of the S locus and downstream targets that regulate heterostyly in diverse heterostylous species.
Collapse
Affiliation(s)
- Jonathan M Cocker
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom.,Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, United Kingdom
| | - Jonathan Wright
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, United Kingdom
| | - Jinhong Li
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom.,Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, United Kingdom
| | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, United Kingdom
| | - Sarah Dyer
- National Institute for Agricultural Botany, Huntingdon Road, Cambridge, CB3 0LE, United Kingdom
| | - Mario Caccamo
- National Institute for Agricultural Botany, Huntingdon Road, Cambridge, CB3 0LE, United Kingdom
| | - Philip M Gilmartin
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom. .,Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, United Kingdom.
| |
Collapse
|
5
|
Kappel C, Huu CN, Lenhard M. A short story gets longer: recent insights into the molecular basis of heterostyly. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5719-5730. [PMID: 29099983 DOI: 10.1093/jxb/erx387] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
Heterostyly is a fascinating adaptation to promote outbreeding and a classical paradigm of botany. In the most common type of heterostyly, plants either form flowers with long styles and short stamens, or short styles and long stamens. This reciprocal organ positioning reduces pollen wastage and promotes cross-pollination, thus increasing male fitness. In addition, in many heterostylous species selfing and the generation of unfit progeny due to inbreeding depression is limited by a self-incompatibility system, thus promoting female fitness. The two floral forms are genetically determined by the S locus as a complex supergene, namely a chromosomal region containing several individual genes that control the different traits, such as style or stamen length, and are held together by very tight linkage due to suppressed recombination. Recent molecular-genetic studies in several systems, including Turnera, Fagopyrum, Linum, and Primula have begun to identify and characterize the causal heterostyly genes residing at the S locus. An emerging theme from several families is that the dominant S haplotype represents a hemizygous region not present on the recessive s haplotype. This provides an explanation for the suppressed recombination and suggests a scenario for the chromosomal evolution of the S locus. In this review, we discuss the results from recent molecular-genetic analyses in light of the classical models on the genetics and evolution of heterostyly.
Collapse
Affiliation(s)
- Christian Kappel
- Institute for Biochemistry and Biology, University of Potsdam, Germany
| | - Cuong Nguyen Huu
- Institute for Biochemistry and Biology, University of Potsdam, Germany
| | | |
Collapse
|
6
|
Li J, Cocker JM, Wright J, Webster MA, McMullan M, Dyer S, Swarbreck D, Caccamo M, Oosterhout CV, Gilmartin PM. Genetic architecture and evolution of the S locus supergene in Primula vulgaris. NATURE PLANTS 2016; 2:16188. [PMID: 27909301 DOI: 10.1038/nplants.2016.188] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
Darwin's studies on heterostyly in Primula described two floral morphs, pin and thrum, with reciprocal anther and stigma heights that promote insect-mediated cross-pollination. This key innovation evolved independently in several angiosperm families. Subsequent studies on heterostyly in Primula contributed to the foundation of modern genetic theory and the neo-Darwinian synthesis. The established genetic model for Primula heterostyly involves a diallelic S locus comprising several genes, with rare recombination events that result in self-fertile homostyle flowers with anthers and stigma at the same height. Here we reveal the S locus supergene as a tightly linked cluster of thrum-specific genes that are absent in pins. We show that thrums are hemizygous not heterozygous for the S locus, which suggests that homostyles do not arise by recombination between S locus haplotypes as previously proposed. Duplication of a floral homeotic gene 51.7 million years (Myr) ago, followed by its neofunctionalization, created the current S locus assemblage which led to floral heteromorphy in Primula. Our findings provide new insights into the structure, function and evolution of this archetypal supergene.
Collapse
Affiliation(s)
- Jinhong Li
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jonathan M Cocker
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jonathan Wright
- The Earlham Institute, Norwich Research Park, Norwich NR4 7UH, UK
| | - Margaret A Webster
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Mark McMullan
- The Earlham Institute, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sarah Dyer
- The Earlham Institute, Norwich Research Park, Norwich NR4 7UH, UK
| | - David Swarbreck
- The Earlham Institute, Norwich Research Park, Norwich NR4 7UH, UK
| | - Mario Caccamo
- The Earlham Institute, Norwich Research Park, Norwich NR4 7UH, UK
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Philip M Gilmartin
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
7
|
Li J, Webster MA, Wright J, Cocker JM, Smith MC, Badakshi F, Heslop‐Harrison P, Gilmartin PM. Integration of genetic and physical maps of the Primula vulgaris S locus and localization by chromosome in situ hybridization. THE NEW PHYTOLOGIST 2015; 208:137-48. [PMID: 25865367 PMCID: PMC6680154 DOI: 10.1111/nph.13373] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/07/2015] [Indexed: 06/04/2023]
Abstract
Heteromorphic flower development in Primula is controlled by the S locus. The S locus genes, which control anther position, pistil length and pollen size in pin and thrum flowers, have not yet been characterized. We have integrated S-linked genes, marker sequences and mutant phenotypes to create a map of the P. vulgaris S locus region that will facilitate the identification of key S locus genes. We have generated, sequenced and annotated BAC sequences spanning the S locus, and identified its chromosomal location. We have employed a combination of classical genetics and three-point crosses with molecular genetic analysis of recombinants to generate the map. We have characterized this region by Illumina sequencing and bioinformatic analysis, together with chromosome in situ hybridization. We present an integrated genetic and physical map across the P. vulgaris S locus flanked by phenotypic and DNA sequence markers. BAC contigs encompass a 1.5-Mb genomic region with 1 Mb of sequence containing 82 S-linked genes anchored to overlapping BACs. The S locus is located close to the centromere of the largest metacentric chromosome pair. These data will facilitate the identification of the genes that orchestrate heterostyly in Primula and enable evolutionary analyses of the S locus.
Collapse
Affiliation(s)
- Jinhong Li
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Margaret A. Webster
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Jonathan Wright
- The Genome Analysis CentreNorwich, Research ParkNorwichNR4 7UHUK
| | - Jonathan M. Cocker
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Matthew C. Smith
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
- School of Biological SciencesDurham UniversityDurhamDH1 3LEUK
| | - Farah Badakshi
- Department of BiologyUniversity of LeicesterLeicesterLE1 7RHUK
| | | | - Philip M. Gilmartin
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| |
Collapse
|
8
|
Gilmartin PM. On the origins of observations of heterostyly in Primula. THE NEW PHYTOLOGIST 2015; 208:39-51. [PMID: 26255981 DOI: 10.1111/nph.13558] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
In 1862, Charles Darwin published his landmark study on the different forms of flower in Primula; he coined the term distyly and subsequently expanded his studies to other species, including those with tristyly. Darwin is widely recognized as the first to study pin and thrum flowers in Primula, and to provide an explanation for the functional significance of the two floral morphs. Our laboratory is pursuing the genes that underpin floral heteromorphy in Primula, work influenced by Darwin's observations. One day, while appreciating a print of Primula vulgaris from William Curtis' Flora Londinensis, I was struck by the fact that I was looking at images of dimorphic Primula flowers captured in a late-1700s copper-plate engraving that predated Darwin's observations by over 70 yr. This realization triggered a journey into archives of botanical texts, herbals and florilegia from the 16(th) to 19(th) Centuries, and correspondence archives, in search of earlier documents that could have influenced Darwin and the origins of an idea. Darwin was not the first to observe floral heteromorphy in Primula, but he was the first to realize the significance of the two floral morphs. Darwin's insight and exposition of purpose have underpinned all consequent work on the subject.
Collapse
Affiliation(s)
- Philip M Gilmartin
- School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|