1
|
Speed M, Ruxton G. Refining our understanding of the diversity of plant specialised metabolites. THE NEW PHYTOLOGIST 2025; 245:924-926. [PMID: 39385406 PMCID: PMC11711947 DOI: 10.1111/nph.20173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
This article is a Commentary on Wittmann & Bräutigam (2025), 245 : 1302–1314 .
Collapse
Affiliation(s)
- Mike Speed
- School of Biosciences, Faculty of Health & Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Graeme Ruxton
- School of BiologyUniversity of St AndrewsSt AndrewsUK
| |
Collapse
|
2
|
Wittmann MJ, Bräutigam A. How does plant chemodiversity evolve? Testing five hypotheses in one population genetic model. THE NEW PHYTOLOGIST 2025; 245:1302-1314. [PMID: 39238109 PMCID: PMC11711931 DOI: 10.1111/nph.20096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024]
Abstract
Plant chemodiversity, the diversity of plant-specialized metabolites, is an important dimension of biodiversity. However, there are so far few mathematical models to test verbal hypotheses on how chemodiversity evolved. Here, we develop such a model to test predictions of five hypotheses: the 'fluctuating selection hypothesis', the 'dominance reversal hypothesis', the interaction diversity hypothesis, the synergy hypothesis, and the screening hypothesis. We build a population genetic model of a plant population attacked by herbivore species whose occurrence fluctuates over time. We study the model using mathematical analysis and individual-based simulations. As predicted by the 'dominance reversal hypothesis', chemodiversity can be maintained if alleles conferring a defense metabolite are dominant with respect to the benefits, but recessive with respect to costs. However, even smaller changes in dominance can maintain polymorphism. Moreover, our results underpin and elaborate predictions of the synergy and interaction diversity hypotheses, and, to the extent that our model can address it, the screening hypotheses. By contrast, we found only partial support for the 'fluctuating selection hypothesis'. In summary, we have developed a flexible model and tested various verbal models for the evolution of chemodiversity. Next, more mechanistic models are needed that explicitly consider the organization of metabolic pathways.
Collapse
Affiliation(s)
- Meike J. Wittmann
- Faculty of Biology, Theoretical BiologyBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
- Joint Institute for Individualisation in a Changing Environment (JICE)University of Münster and Bielefeld University33615BielefeldGermany
| | - Andrea Bräutigam
- Faculty of Biology, Computational BiologyBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
- Center for BiotechnologyBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
3
|
Liu Y, Shi J, Patra B, Singh SK, Wu X, Lyu R, Liu X, Li Y, Wang Y, Zhou X, Pattanaik S, Yuan L. Transcriptional Reprogramming Deploys a Compartmentalized 'Timebomb' in Catharanthus roseus to Fend Off Chewing Herbivores. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39718032 DOI: 10.1111/pce.15324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/14/2024] [Accepted: 11/29/2024] [Indexed: 12/25/2024]
Abstract
The evolutionary arms race between plants and insects has led to key adaptive innovations that drive diversification. Alkaloids are well-documented anti-herbivory compounds in plant chemical defences, but how these specialized metabolites are allocated to cope with both biotic and abiotic stresses concomitantly is largely unknown. To examine how plants prioritize their metabolic resources responding to herbivory and cold, we integrated dietary toxicity bioassay in insects with co-expression analysis, hierarchical clustering, promoter assay, and protein-protein interaction in plants. Catharanthus roseus, a medicinal plant known for its insecticidal property against chewing herbivores, produces two terpenoid indole alkaloid monomers, vindoline and catharanthine. Individually, they exhibited negligible toxicity against Manduca sexta, a chewing herbivore; their condensed product, anhydrovinblastine; however, was highly toxic. Such a unique insecticidal mode of action demonstrates that terpenoid indole alkaloid 'timebomb' can only be activated when the two spatially isolated monomeric precursors are dimerized by herbivory. Without initial selection pressure and apparent fitness costs, this adaptive chemical defence against herbivory is innovative and sustainable. The biosynthesis of insecticidal terpenoid indole alkaloids is induced by herbivory but suppressed by cold. Here, we identified a transcription factor, herbivore-induced vindoline-gene Expression (HIVE), that coordinates the production of terpenoid indole alkaloids in response to herbivory and cold stress. The HIVE-mediated transcriptional reprogramming allows this herbaceous perennial to allocate its metabolic resources for chemical defence at a normal temperature when herbivory pressure is high, but switches to cold tolerance under a cooler temperature when insect infestation is secondary.
Collapse
Affiliation(s)
- Yongliang Liu
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky, USA
| | - Jizhe Shi
- Department of Entomology, University of Kentucky, Martin-Gatton College of Agriculture, Food and Environment, Lexington, Kentucky, USA
| | - Barunava Patra
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky, USA
| | - Sanjay Kumar Singh
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky, USA
| | - Xia Wu
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky, USA
| | - Ruiqing Lyu
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky, USA
| | - Xiaoyu Liu
- Pomology Institute, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yongqing Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Martin-Gatton College of Agriculture, Food and Environment, Lexington, Kentucky, USA
- Department of Entomology, School of Integrative Biology, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky, USA
| | - Ling Yuan
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Aggarwal PR, Mehanathan M, Choudhary P. Exploring genetics and genomics trends to understand the link between secondary metabolic genes and agronomic traits in cereals under stress. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154379. [PMID: 39549316 DOI: 10.1016/j.jplph.2024.154379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
The plant metabolome is considered an important interface between the genome and its phenome, where it plays a significant role in regulating plant growth in response to various environmental cues. A wide array of specialized metabolites is produced by plants, which are essential for mediating environmental interactions and their adaptation. Notably, enhanced accumulation of these specialized metabolites, particularly plant secondary metabolites (PSMs), is a part of the chemical defense response that is directly linked to improved stress tolerance. Therefore, exploring the genetic diversity underlying the immense variation of the secondary metabolite pool could unravel the adaptation mechanisms in plants against different environmental stresses. The post-genomic profiling platforms have enabled the exploration of the link between metabolic diversity and important agronomic traits. The current review focuses on the major achievements and future challenges associated with plant secondary metabolite (PSM) research in graminaceous crops using advanced omics approaches. Given this, we briefly summarize different strategies adopted to explore the genetic diversity and evolution of PSMs in cereal crops. Further, we have discussed the recent technological advancements to integrate multi-omics approaches linking the metabolome diversity with the genome, transcriptome, and proteome of these crops under stress. Combining these data with phenomics (the omics of phenotypes) provides a holistic view of how plants respond to stress. Next, we outlined the genetic manipulation studies performed so far in cereals to engineer secondary metabolic pathways for enhanced stress tolerance. In summary, our review provides new insight into developing genetic and genomic trends in exploring the secondary metabolite diversity in graminaceous crops and discusses how this information can be utilized in designing strategies to generate future stress-resilient crops.
Collapse
Affiliation(s)
- Pooja R Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Muthamilarasan Mehanathan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pooja Choudhary
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India.
| |
Collapse
|
5
|
Yuan J, Wu F, Peng X, Wu Q, Yue K, Yuan C, An N, Peng Y. Global patterns and determinants of the initial concentrations of litter carbon components. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175844. [PMID: 39214368 DOI: 10.1016/j.scitotenv.2024.175844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Plant litter is an important carbon (C) and nutrient pool in terrestrial ecosystems. The C components in plant litter are important because they regulate plant litter decomposition rate, but little is known on the global patterns and determinants of their concentrations in freshly fallen plant litter. Here, we quantified the concentrations of leaf litter C components (i.e., carbohydrate, polyphenol, tannin, and condensed tannin) with 864 measurements from 161 independent publications. We found that (1) the mean concentrations of leaf litter carbohydrate, polyphenol, tannin and condensed tannin were 27.7, 6.08, 8.84 and 5.7 %, respectively; (2) the concentrations of leaf litter C components were affected by taxonomic division, mycorrhizal association, life form, and/or leaf shedding strategy; (3) soil property had similar impacts on the concentrations of the four C compounds, while the influence of mean annual temperature and precipitation varied; and (4) elevation had opposing effects on carbohydrate and polyphenol concentrations, but not on that of tannin and condensed tannin, and only carbohydrate concentration was strongly affected by absolute latitude. In general, our results clearly show the global patterns and drivers of the concentrations of litter C compounds, providing new insights into the role of litter decomposition in global C dynamics.
Collapse
Affiliation(s)
- Ji Yuan
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Fuzhong Wu
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Xin Peng
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Qiqian Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an 311300, China
| | - Kai Yue
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Chaoxiang Yuan
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Nannan An
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Sanming 365002, China
| | - Yan Peng
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Sanming 365002, China.
| |
Collapse
|
6
|
Carmelet-Rescan D, Morgan-Richards M, Trewick SA. Metabolic differentiation of brushtail possum populations resistant and susceptible to plant toxins revealed via differential gene expression. J Comp Physiol B 2024:10.1007/s00360-024-01591-z. [PMID: 39495241 DOI: 10.1007/s00360-024-01591-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/02/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
The Australian brushtail possum (Trichosurus vulpecula) is adapted to a wide range of food plants across its range and is exposed to numerous physiological challenges. Populations that are resistant to the plant toxin sodium fluoroacetate are of particular interest as this compound has been used since the 1940s for vertebrate pest management around the world. Candidate gene identification is an important first step in understanding how spatial populations have responded to local selection resulting in local physiological divergence. We employ differential gene expression of liver samples from wild-caught brushtail possums from toxin-resistant and toxin-susceptible populations to identify candidate genes that might be involved in metabolic pathways associated with toxin-resistance. This allowed us to identify genetic pathways involved in resistance to the plant toxin sodium fluoroacetate in Western Australian possums but not those originally from south eastern Australia. We identified differentially expressed genes in the liver that are associated with cell signalling, encapsulating structure, cell mobility, and tricarboxylic acid cycle. The gene expression differences detected indicate which metabolic pathways are most likely to be associated with sodium fluoroacetate resistance in these marsupials and we provide a comprehensive list of candidate genes and pathways to focus on for future studies.
Collapse
Affiliation(s)
- David Carmelet-Rescan
- Wildlife and Ecology, School of Natural Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand.
| | - Mary Morgan-Richards
- Wildlife and Ecology, School of Natural Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Steven A Trewick
- Wildlife and Ecology, School of Natural Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| |
Collapse
|
7
|
Kshatriya K, Gershenzon J. Disarming the defenses: Insect detoxification of plant defense-related specialized metabolites. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102577. [PMID: 38889616 DOI: 10.1016/j.pbi.2024.102577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
The ability of certain insects to feed on plants containing toxic specialized metabolites may be attributed to detoxification enzymes. Representatives of a few large families of detoxification enzymes are widespread in insect herbivores acting to functionalize toxins and conjugate them with polar substituents to decrease toxicity, increase water solubility and enhance excretion. Insects have also developed specific enzymes for coping with toxins that are activated upon plant damage. Another source of detoxification potential in insects lies in their microbiomes, which are being increasingly recognized for their role in processing plant toxins. The evolution of insect detoxification systems to resist toxic specialized metabolites in plants may in turn have selected for the great diversity of such metabolites found in nature.
Collapse
Affiliation(s)
- Kristina Kshatriya
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany.
| |
Collapse
|
8
|
Li ZX, Wang DX, Shi WX, Weng BY, Zhang Z, Su SH, Sun YF, Tan JF, Xiao S, Xie RH. Nitrogen-mediated volatilisation of defensive metabolites in tomato confers resistance to herbivores. PLANT, CELL & ENVIRONMENT 2024; 47:3227-3240. [PMID: 38738504 DOI: 10.1111/pce.14945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/29/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
Plants synthesise a vast array of volatile organic compounds (VOCs), which serve as chemical defence and communication agents in their interactions with insect herbivores. Although nitrogen (N) is a critical resource in the production of plant metabolites, its regulatory effects on defensive VOCs remain largely unknown. Here, we investigated the effect of N content in tomato (Solanum lycopersicum) on the tobacco cutworm (Spodoptera litura), a notorious agricultural pest, using biochemical and molecular experiments in combination with insect behavioural and performance analyses. We observed that on tomato leaves with different N contents, S. litura showed distinct feeding preference and growth and developmental performance. Particularly, metabolomics profiling revealed that limited N availability conferred resistance upon tomato plants to S. litura is likely associated with the biosynthesis and emission of the volatile metabolite α-humulene as a repellent. Moreover, exogenous application of α-humulene on tomato leaves elicited a significant repellent response against herbivores. Thus, our findings unravel the key factors involved in N-mediated plant defence against insect herbivores and pave the way for innovation of N management to improve the plant defence responses to facilitate pest control strategies within agroecosystems.
Collapse
Affiliation(s)
- Zhi-Xing Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Dan-Xia Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Wen-Xuan Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Bo-Yang Weng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhi Zhang
- General Management Office, Shennong Technology Group Co., Ltd, Jinzhong, China
| | - Shi-Hao Su
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yu-Fei Sun
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jin-Fang Tan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ruo-Han Xie
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
9
|
Berasategui A, Salem H, Moller AG, Christopher Y, Vidaurre Montoya Q, Conn C, Read TD, Rodrigues A, Ziemert N, Gerardo N. Genomic insights into the evolution of secondary metabolism of Escovopsis and its allies, specialized fungal symbionts of fungus-farming ants. mSystems 2024; 9:e0057624. [PMID: 38904377 PMCID: PMC11265373 DOI: 10.1128/msystems.00576-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
The metabolic intimacy of symbiosis often demands the work of specialists. Natural products and defensive secondary metabolites can drive specificity by ensuring infection and propagation across host generations. But in contrast to bacteria, little is known about the diversity and distribution of natural product biosynthetic pathways among fungi and how they evolve to facilitate symbiosis and adaptation to their host environment. In this study, we define the secondary metabolism of Escovopsis and closely related genera, symbionts in the gardens of fungus-farming ants. We ask how the gain and loss of various biosynthetic pathways correspond to divergent lifestyles. Long-read sequencing allowed us to define the chromosomal features of representative Escovopsis strains, revealing highly reduced genomes composed of seven to eight chromosomes. The genomes are highly syntenic with macrosynteny decreasing with increasing phylogenetic distance, while maintaining a high degree of mesosynteny. An ancestral state reconstruction analysis of biosynthetic pathways revealed that, while many secondary metabolites are shared with non-ant-associated Sordariomycetes, 56 pathways are unique to the symbiotic genera. Reflecting adaptation to diverging ant agricultural systems, we observe that the stepwise acquisition of these pathways mirrors the ecological radiations of attine ants and the dynamic recruitment and replacement of their fungal cultivars. As different clades encode characteristic combinations of biosynthetic gene clusters, these delineating profiles provide important insights into the possible mechanisms underlying specificity between these symbionts and their fungal hosts. Collectively, our findings shed light on the evolutionary dynamic nature of secondary metabolism in Escovopsis and its allies, reflecting adaptation of the symbionts to an ancient agricultural system.IMPORTANCEMicrobial symbionts interact with their hosts and competitors through a remarkable array of secondary metabolites and natural products. Here, we highlight the highly streamlined genomic features of attine-associated fungal symbionts. The genomes of Escovopsis species, as well as species from other symbiont genera, many of which are common with the gardens of fungus-growing ants, are defined by seven chromosomes. Despite a high degree of metabolic conservation, we observe some variation in the symbionts' potential to produce secondary metabolites. As the phylogenetic distribution of the encoding biosynthetic gene clusters coincides with attine transitions in agricultural systems, we highlight the likely role of these metabolites in mediating adaptation by a group of highly specialized symbionts.
Collapse
Affiliation(s)
- Aileen Berasategui
- Department of Biology, Emory University, Atlanta, Georgia, USA
- Cluster of Excellence-Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen, Germany
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Hassan Salem
- Department of Biology, Emory University, Atlanta, Georgia, USA
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen, Germany
| | - Abraham G. Moller
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yuliana Christopher
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Ciudad del Saber, Panamá City, Panama
| | - Quimi Vidaurre Montoya
- Department of General and Applied Biology, São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, São Paulo, Brazil
| | - Caitlin Conn
- Department of Biology, Emory University, Atlanta, Georgia, USA
- Department of Biology, Berry College, Mount Berry, Georgia, USA
| | - Timothy D. Read
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Andre Rodrigues
- Department of General and Applied Biology, São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, São Paulo, Brazil
| | - Nadine Ziemert
- Cluster of Excellence-Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- Translational Genome Mining for Natural Products, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Nicole Gerardo
- Department of Biology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Guo X, Yang Z, Zhang J, Hua J, Luo S. Adaptation of Ustilago maydis to phenolic and alkaloid responsive metabolites in maize B73. FRONTIERS IN PLANT SCIENCE 2024; 15:1369074. [PMID: 39100087 PMCID: PMC11294074 DOI: 10.3389/fpls.2024.1369074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
The adaptation of pathogenic fungi to plant-specialized metabolites is necessary for their survival and reproduction. The biotrophic fungus Ustilago maydis can cause maize smut and produce tumors in maize (Zea mays), resulting in reduced maize yield and significant economic losses. Qualitative analysis using UPLC-MS/MS revealed that the infection of maize variety B73 with U. maydis resulted in increased levels of phytohormones, phenolics, and alkaloids in maize seedling tissues. However, correlation analysis showed that nearly all compounds in the mechanical damage group were significantly negatively correlated with the shoot growth indexes of maize B73. The correlation coefficients of 2-hydroxy-7-methoxy-1,4-benzoxazin-3-one (HMBOA) and maize B73 shoot length and shoot weight were r = -0.56 (p < 0.01) and r = -0.75 (p < 0.001), respectively. In the inoculation group, these correlations weakened, with the correlation coefficients between HMBOA and maize B73 shoot length and shoot weight being r = 0.02 and r = -0.1, respectively. The correlation coefficients between 6-methoxy-2-benzoxazolinone (MBOA) and the shoot weight were r = -0.73 (p < 0.001) and r = -0.15 in the mechanical damage group and inoculation group, respectively. These findings suggest that increased concentrations of these compounds are more positively associated with mechanical damage than with U. maydis infection. At high concentrations, most of these compounds had an inhibitory effect on U. maydis. This study investigated the ability of U. maydis to regulate various compounds, including phytohormones, phenolic acids, and alkaloids in maize B73, providing evidence that U. maydis has adapted to the specialized metabolites produced by maize B73.
Collapse
Affiliation(s)
| | | | | | - Juan Hua
- Engineering Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | | |
Collapse
|
11
|
Peters DH, Greenberg LO, Fatouros NE. Oviposition strategies in Pieridae butterflies and the role of an egg-killing plant trait therein. Ecol Evol 2024; 14:e11697. [PMID: 39026945 PMCID: PMC11257707 DOI: 10.1002/ece3.11697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
Most herbivorous insects are host-plant specialists that evolved detoxification mechanisms to overcome their host plant's toxins. In the evolutionary arms-races between Pieridae butterflies and Brassicaceae plants, some plant species have evolved another defence against the pierids: egg-killing. Underneath the eggs, leaves develop a so-called hypersensitive response (HR)-like cell death. Whether some butterflies have evolved oviposition strategies to counter-adapt against egg-killing remains to be studied. In this study, we assessed the oviposition site location of Pieridae butterflies on their natural host plants. We described the plant tissue on which we located the eggs of the most common Pieridae in the Netherlands: Gonepteryx rhamni, Anthocharis cardamines, Pieris rapae, P. napi, P. brassicae and P. mannii. Additionally, we assessed expression of HR-like cell death in response to the deposited butterfly eggs. We found that both A. cardamines and G. rhamni mainly oviposited on the floral stem and the branch, respectively, and oviposited on host plants from lineages not expected to kill pierid eggs. Accordingly, no HR-like cell death was seen. All Pieris eggs found were located on leaves of their host, the only tissue found to express HR-like cell death. Furthermore, each Pieris species was found to at least occasionally oviposit on Brassica nigra. This was the only plant species in this survey that expressed HR-like cell death in response to the eggs of P. rapae, P. napi and P. brassicae. Our observations demonstrate that HR-like cell death remains an effective defence strategy against these Pieris species and as such did not find evidence for the hypothesized counterstrategies. Surveying certain key species and disentangling the micro-evolution of oviposition strategies within a species would allow us to further investigate potential counter-adaptations that evolved against HR-like cell death. This study provides the basis for further investigation of potential counter-adaptations to egg-killing defences.
Collapse
Affiliation(s)
- Dorette H. Peters
- Biosystematics GroupWageningen UniversityWageningenThe Netherlands
- Present address:
Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| | | | - Nina E. Fatouros
- Biosystematics GroupWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
12
|
Xie X, Wang Q, Deng Z, Gu S, Liang G, Li X. Keap1 Negatively Regulates Transcription of Three Counter-Defense Genes and Susceptibility to Plant Toxin Gossypol in Helicoverpa armigera. INSECTS 2024; 15:328. [PMID: 38786884 PMCID: PMC11122223 DOI: 10.3390/insects15050328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Expressions of a wide range of cytoprotective counter-defense genes are mainly regulated by the Keap1-Nrf2-ARE signaling pathway in response to oxidative stress from xenobiotics. Gossypol is the major antiherbivore secondary metabolite of cotton, but how the polyphagous pest Helicoverpa armigera copes with this phytochemical to utilize its favorite host plant cotton remains largely elusive. In this study, we first suppressed the Keap1 gene in newly hatched larvae of cotton bollworm by feeding them the siRNA diet for 4 days. All of the larvae were subsequently fed the artificial diet supplied with gossypol or the control diet for 5 days. We identified that the knockdown of the Keap1 gene significantly decreased larval mortality and significantly increased the percentages of larval survival, reaching the fourth instar, compared with ncsiRNA when exposed to a diet containing gossypol. Three counter-defense genes CYP9A17, CYP4L11 and UGT41B3, which were related to the induction or metabolism of gossypol according to the report before, were all significantly up-regulated after the knockdown of the Keap1 gene. The Antioxidant Response Elements (AREs) were also detected in the promoter regions of the three counter-defense genes above. These data indicate that the suppression of the Keap1 gene activates the Keap1-Nrf2-ARE signaling pathway, up-regulates the expressions of counter-defense genes involved in the resistance of oxidative stress and finally contributes to reducing the susceptibility of gossypol. Our results provide more knowledge about the transcriptional regulation mechanisms of counter-defense genes that enable the cotton bollworm to adapt to the diversity of host plants including cotton.
Collapse
Affiliation(s)
- Xingcheng Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.X.); (Q.W.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.X.); (Q.W.)
| | - Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Shaohua Gu
- Department of Entomology, China Agricultural University, Beijing 100193, China;
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.X.); (Q.W.)
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
13
|
Gozashti L, Hartl DL, Corbett-Detig R. Universal signatures of transposable element compartmentalization across eukaryotic genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.17.562820. [PMID: 38585780 PMCID: PMC10996525 DOI: 10.1101/2023.10.17.562820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The evolutionary mechanisms that drive the emergence of genome architecture remain poorly understood but can now be assessed with unprecedented power due to the massive accumulation of genome assemblies spanning phylogenetic diversity1,2. Transposable elements (TEs) are a rich source of large-effect mutations since they directly and indirectly drive genomic structural variation and changes in gene expression3. Here, we demonstrate universal patterns of TE compartmentalization across eukaryotic genomes spanning ~1.7 billion years of evolution, in which TEs colocalize with gene families under strong predicted selective pressure for dynamic evolution and involved in specific functions. For non-pathogenic species these genes represent families involved in defense, sensory perception and environmental interaction, whereas for pathogenic species, TE-compartmentalized genes are highly enriched for pathogenic functions. Many TE-compartmentalized gene families display signatures of positive selection at the molecular level. Furthermore, TE-compartmentalized genes exhibit an excess of high-frequency alleles for polymorphic TE insertions in fruit fly populations. We postulate that these patterns reflect selection for adaptive TE insertions as well as TE-associated structural variants. This process may drive the emergence of a shared TE-compartmentalized genome architecture across diverse eukaryotic lineages.
Collapse
Affiliation(s)
- Landen Gozashti
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Daniel L. Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
14
|
Thon FM, Müller C, Wittmann MJ. The evolution of chemodiversity in plants-From verbal to quantitative models. Ecol Lett 2024; 27:e14365. [PMID: 38362774 DOI: 10.1111/ele.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/31/2023] [Accepted: 12/09/2023] [Indexed: 02/17/2024]
Abstract
Plants harbour a great chemodiversity, that is diversity of specialised metabolites (SMs), at different scales. For instance, individuals can produce a large number of SMs, and populations can differ in their metabolite composition. Given the ecological and economic importance of plant chemodiversity, it is important to understand how it arises and is maintained over evolutionary time. For other dimensions of biodiversity, that is species diversity and genetic diversity, quantitative models play an important role in addressing such questions. Here, we provide a synthesis of existing hypotheses and quantitative models, that is mathematical models and computer simulations, for the evolution of plant chemodiversity. We describe each model's ingredients, that is the biological processes that shape chemodiversity, the scales it considers and whether it has been formalized as a quantitative model. Although we identify several quantitative models, not all are dynamic and many influential models have remained verbal. To fill these gaps, we outline our vision for the future of chemodiversity modelling. We identify quantitative models used for genetic variation that may be adapted for chemodiversity, and we present a flexible framework for the creation of individual-based models that address different scales of chemodiversity and combine different ingredients that bring this chemodiversity about.
Collapse
Affiliation(s)
- Frans M Thon
- Faculty of Biology, Theoretical Biology, Bielefeld University, Bielefeld, Germany
| | - Caroline Müller
- Faculty of Biology, Chemical Ecology, Bielefeld University, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany
| | - Meike J Wittmann
- Faculty of Biology, Theoretical Biology, Bielefeld University, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany
| |
Collapse
|
15
|
Hoogshagen M, Hastings AP, Chavez J, Duckett M, Pettit R, Pahnke AP, Agrawal AA, de Roode JC. Mixtures of Milkweed Cardenolides Protect Monarch Butterflies against Parasites. J Chem Ecol 2024; 50:52-62. [PMID: 37932621 DOI: 10.1007/s10886-023-01461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023]
Abstract
Plants have evolved a diverse arsenal of defensive secondary metabolites in their evolutionary arms race with insect herbivores. In addition to the bottom-up forces created by plant chemicals, herbivores face top-down pressure from natural enemies, such as predators, parasitoids and parasites. This has led to the evolution of specialist herbivores that do not only tolerate plant secondary metabolites but even use them to fight natural enemies. Monarch butterflies (Danaus plexippus) are known for their use of milkweed chemicals (cardenolides) as protection against vertebrate predators. Recent studies have shown that milkweeds with high cardenolide concentrations can also provide protection against a virulent protozoan parasite. However, whether cardenolides are directly responsible for these effects, and whether individual cardenolides or mixtures of these chemicals are needed to reduce infection, remains unknown. We fed monarch larvae the four most abundant cardenolides found in the anti-parasitic-milkweed Asclepias curassavica at varying concentrations and compositions to determine which provided the highest resistance to parasite infection. Measuring infection rates and infection intensities, we found that resistance is dependent on both concentration and composition of cardenolides, with mixtures of cardenolides performing significantly better than individual compounds, even when mixtures included lower concentrations of individual compounds. These results suggest that cardenolides function synergistically to provide resistance against parasite infection and help explain why only milkweed species that produce diverse cardenolide compounds provide measurable parasite resistance. More broadly, our results suggest that herbivores can benefit from consuming plants with diverse defensive chemical compounds through release from parasitism.
Collapse
Affiliation(s)
| | - Amy P Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | | | | | | | | | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
16
|
Long ZG, Le JV, Katz BB, Lopez BG, Tenenbaum ED, Semmling B, Schmidt RJ, Grün F, Butts CT, Martin RW. Spatially resolved detection of small molecules from press-dried plant tissue using MALDI imaging. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11539. [PMID: 37915436 PMCID: PMC10617318 DOI: 10.1002/aps3.11539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 11/03/2023]
Abstract
Premise Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a chemical imaging method that can visualize spatial distributions of particular molecules. Plant tissue imaging has so far mostly used cryosectioning, which can be impractical for the preparation of large-area imaging samples, such as full flower petals. Imaging unsectioned plant tissue presents its own difficulties in extracting metabolites to the surface due to the waxy cuticle. Methods We address this by using established delipidation techniques combined with a solvent vapor extraction prior to applying the matrix with many low-concentration sprays. Results Using this procedure, we imaged tissue from three different plant species (two flowers and one carnivorous plant leaf). Material factorization analysis of the resulting data reveals a wide range of plant-specific small molecules with varying degrees of localization to specific portions of the tissue samples, while facilitating detection and removal of signal from background sources. Conclusions This work demonstrates applicability of MALDI-MSI to press-dried plant samples without freezing or cryosectioning, setting the stage for spatially resolved molecule identification. Increased mass resolution and inclusion of tandem mass spectrometry are necessary next steps to allow more specific and reliable compound identification.
Collapse
Affiliation(s)
- Zane G. Long
- Department of ChemistryUniversity of CaliforniaIrvineCalifornia92697‐2025USA
| | - Jonathan V. Le
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCalifornia92697‐3900USA
| | - Benjamin B. Katz
- Department of ChemistryUniversity of CaliforniaIrvineCalifornia92697‐2025USA
| | - Belen G. Lopez
- Department of ChemistryUniversity of CaliforniaIrvineCalifornia92697‐2025USA
| | | | - Bonnie Semmling
- The Chrysler Herbarium and Mycological Collection, School of Environmental and Biological SciencesRutgers UniversityNew BrunswickNew Jersey08901USA
| | - Ryan J. Schmidt
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNew Jersey08901USA
| | - Felix Grün
- Department of ChemistryUniversity of CaliforniaIrvineCalifornia92697‐2025USA
| | - Carter T. Butts
- Departments of Sociology, Statistics, Computer Science, and Electrical Engineering and Computer ScienceUniversity of CaliforniaIrvineCalifornia92697USA
| | - Rachel W. Martin
- Department of ChemistryUniversity of CaliforniaIrvineCalifornia92697‐2025USA
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCalifornia92697‐3900USA
| |
Collapse
|
17
|
Wang Y, Liu W, Dong B, Wang D, Nian Y, Zhou H. Isolation and Identification of Herbicidal Active Compounds from Brassica oleracea L. and Exploration of the Binding Sites of Brassicanate A Sulfoxide. PLANTS (BASEL, SWITZERLAND) 2023; 12:2576. [PMID: 37447136 DOI: 10.3390/plants12132576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Brassica oleracea L. has strong allelopathic effects on weeds. However, the allelochemicals with herbicidal activity in B. oleracea L. are still unknown. In this study, we evaluated the activity of allelochemicals isolated from Brassica oleracea L. based on the germination and growth of model plant Lactuca sativa Linn., grass weed Panicum miliaceum, and broadleaf weed Chenopodium album. Additionally, we employed molecular docking to predict the binding of brassicanate A sulfoxide to herbicide targets. The results of this study showed that eight compounds with herbicidal activity were isolated from B. oleracea L., and the predicted results indicated that brassicanate A sulfoxide was stably bound to dihydroxyacid dehydratase, hydroxymethylpyruvate dioxygenase, acetolactate synthase, PYL family proteins and transport inhibitor response 1. This research provides compound sources and a theoretical foundation for the development of natural herbicides.
Collapse
Affiliation(s)
- Yu Wang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010020, China
| | - Wanyou Liu
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010020, China
| | - Baozhu Dong
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010020, China
| | - Dong Wang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010020, China
| | - Yin Nian
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hongyou Zhou
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010020, China
| |
Collapse
|
18
|
Liu J, Hua J, Wang Y, Guo X, Luo S. Caterpillars Detoxify Diterpenoid from Nepeta stewartiana by the Molting Hormone Gene CYP306A1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37331015 DOI: 10.1021/acs.jafc.3c02779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Herbivorous insects are well known for detoxifying a broad range of the defense compounds produced by the plants that they feed on, but knowledge of the mechanisms of detoxification is still very limited. Here, we describe a system in which two species of lepidopteran caterpillars metabolize an abietane diterpene from the plants of Nepeta stewartiana Diels to an oxygenated derivative that is less active biologically. We found that this transformation could be catalyzed by a cytochrome P450 enzyme in caterpillars, which are associated with molting. Most interestingly, abietane diterpene targets the molting-associated gene CYP306A1 to alter the content of molting hormones in the insect at specific developmental stages and competitively inhibit molting hormone metabolism. These findings identify the mechanism by which caterpillars are able to detoxify abietane diterpenoid through hydroxylation at the C-19 position, which may be opening up exciting research questions into the mechanisms of interaction between plants and insects.
Collapse
Affiliation(s)
- Jiayi Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Juan Hua
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Yangyang Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Xuanyue Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Shihong Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| |
Collapse
|
19
|
Xu Z, Ullah N, Duan Y, Hou Z, Liu A, Xu L. Editorial: Plant secondary metabolites and their effects on environmental adaptation based on functional genomics. Front Genet 2023; 14:1211639. [PMID: 37260776 PMCID: PMC10227598 DOI: 10.3389/fgene.2023.1211639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023] Open
Affiliation(s)
- Zishu Xu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Najeeb Ullah
- Agricultural Research Station, Office of VP for Research and Graduate Studies, Qatar University, Doha, Qatar
| | - Yi Duan
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhuoni Hou
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Ling Xu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
20
|
El-Beltagi HS, El-Sayed SM, Abdelhamid AN, Hassan KM, Elshalakany WA, Nossier MI, Alabdallah NM, Al-Harbi NA, Al-Qahtani SM, Darwish DBE, Abbas ZK, Ibrahim HA. Potentiating Biosynthesis of Alkaloids and Polyphenolic Substances in Catharanthus roseus Plant Using ĸ-Carrageenan. Molecules 2023; 28:molecules28083642. [PMID: 37110876 PMCID: PMC10143362 DOI: 10.3390/molecules28083642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Catharanthus roseus is a medicinal plant that produces indole alkaloids, which are utilized in anticancer therapy. Vinblastine and vincristine, two commercially important antineoplastic alkaloids, are mostly found in the leaves of Catharanthus roseus. ĸ-carrageenan has been proven as plant growth promoting substance for a number of medicinal and agricultural plants. Considering the importance of ĸ-carrageenan as a promoter of plant growth and phytochemical constituents, especially alkaloids production in Catharanthus roseus, an experiment was carried out to explore the effect of ĸ-carrageenan on the plant growth, phytochemicals content, pigments content, and production of antitumor alkaloids in Catharanthus roseus after planting. Foliar application of ĸ-carrageenan (at 0, 400, 600 and 800 ppm) significantly improved the performance of Catharanthus roseus. Phytochemical analysis involved determining the amount of total phenolics (TP), flavonoids (F), free amino acids (FAA), alkaloids (TAC) and pigments contents by spectrophotometer, minerals by ICP, amino acids, phenolic compounds and alkaloids (Vincamine, Catharanthine, Vincracine (Vincristine), and vinblastine) analysis uses HPLC. The results indicated that all examined ĸ-carrageenan treatments led to a significant (p ≤ 0.05) increase in growth parameters compared to the untreated plants. Phytochemical examination indicates that the spray of ĸ-carrageenan at 800 mg L-1 increased the yield of alkaloids (Vincamine, Catharanthine and Vincracine (Vincristine)) by 41.85 μg/g DW, total phenolic compounds by 3948.6 μg gallic/g FW, the content of flavonoids 951.3 μg quercetin /g FW and carotenoids content 32.97 mg/g FW as compared to the control. An amount of 400 ppm ĸ-carrageenan treatment gave the best contents of FAA, Chl a, Chl b and anthocyanin. The element content of K, Ca, Cu, Zn and Se increased by treatments. Amino acids constituents and phenolics compounds contents were altered by ĸ-carrageenan.
Collapse
Affiliation(s)
- Hossam S El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Salwa M El-Sayed
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Ahmed N Abdelhamid
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Karim M Hassan
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Walaa A Elshalakany
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Mona Ibrahim Nossier
- Soil and Water Department, Faculty of Agriculture 11241, Ain Shams University, Cairo 11566, Egypt
| | - Nadiyah M Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Nadi Awad Al-Harbi
- Biology Department, University College of Tayma, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Salem Mesfir Al-Qahtani
- Biology Department, University College of Tayma, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Doaa Bahaa Eldin Darwish
- Biology department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35511, Egypt
| | - Zahid Khorshid Abbas
- Biology department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hemmat A Ibrahim
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
21
|
Lyu F, Hai X, Wang Z. A Review of the Host Plant Location and Recognition Mechanisms of Asian Longhorn Beetle. INSECTS 2023; 14:insects14030292. [PMID: 36975977 PMCID: PMC10054519 DOI: 10.3390/insects14030292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 05/31/2023]
Abstract
The Asian longhorn beetle (ALB), Anoplophora glabripennis Motschulsky, is a polyphagous xylophage with dozens of reported host tree species. However, the mechanisms by which individuals locate and recognize host plants are still unknown. We summarize the current knowledge of the host plant list, host kairomones, odorant-binding proteins (OBPs) and microbial symbionts of this beetle and their practical applications, and finally discuss the host localization and recognition mechanisms. A total of 209 species (or cultivars) were reported as ALB host plants, including 101 species of higher sensitivity; host kairomones were preferentially bound to ALB recombinant OBPs, including cis-3-hexen-1-ol, δ-3-carene, nonanal, linalool, and β-caryophyllene. In addition, microbial symbionts may help ALB degrade their host. Complementarity of tree species with different levels of resistance may reduce damage, but trapping effectiveness for adults was limited using a combination of host kairomones and sex pheromones in the field. Therefore, we discuss host location behavior from a new perspective and show that multiple cues are used by ALB to locate and recognize host plants. Further research into host resistance mechanisms and visual signal recognition, and the interaction of sex pheromone synthesis, symbiont microbiota, and host plants may help reveal the host recognition mechanisms of ALBs.
Collapse
Affiliation(s)
- Fei Lyu
- Correspondence: (F.L.); (Z.W.); Tel.: +86-03127520216 (F.L.)
| | | | - Zhigang Wang
- Correspondence: (F.L.); (Z.W.); Tel.: +86-03127520216 (F.L.)
| |
Collapse
|
22
|
Li J, Lv Y, Liu Y, Bi R, Pan Y, Shang Q. Inducible Gut-Specific Carboxylesterase SlCOE030 in Polyphagous Pests of Spodoptera litura Conferring Tolerance between Nicotine and Cyantraniliprole. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4281-4291. [PMID: 36877657 DOI: 10.1021/acs.jafc.3c00524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Insecticides tolerance in herbivorous arthropods is associated with preadaptation to host plant allelochemicals. However, how plant secondary metabolites activate detoxifying metabolic genes to develop tolerance remains unclear. Herein, the tolerance of Spodoptera litura larvae to cyantraniliprole was increased after nicotine exposure. An S. litura α esterase, SlCOE030, was predominantly expressed in the midgut and induced after exposure to cyantraniliprole, nicotine, and cyantraniliprole plus nicotine. Drosophila melanogaster with ectopically overexpressed SlCOE030 enhanced cyantraniliprole and nicotine tolerance by 4.91- and 2.12-fold, respectively. Compared to UAS-SlCOE030 and Esg-GAL4 lines, the Esg > SlCOE030 line laid more eggs after nicotine exposure. SlCOE030 knockdown decreased the sensitivity of nicotine-treated S. litura larvae to cyantraniliprole. Metabolism assays indicated that recombinant SlCOE030 protein metabolizes cyantraniliprole. Homology modeling and molecular docking analysis demonstrated that SlCOE030 exhibits effective affinities for cyantraniliprole and nicotine. Thus, insect CarEs may result in the development of cross-tolerance between synthetic insecticides and plant secondary metabolites.
Collapse
Affiliation(s)
- Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Yajing Liu
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Rui Bi
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| |
Collapse
|
23
|
Li T, Feng M, Chi Y, Shi X, Sun Z, Wu Z, Li A, Shi W. Defensive Resistance of Cowpea Vigna unguiculata Control Megalurothrips usitatus Mediated by Jasmonic Acid or Insect Damage. PLANTS (BASEL, SWITZERLAND) 2023; 12:942. [PMID: 36840292 PMCID: PMC9967092 DOI: 10.3390/plants12040942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Vigna unguiculata is a vital vegetable crop in Southeast Asia, and Megalurothrips usitatus can cause huge damage to this crop. Enhancing the resistance of V. unguiculata against M. usitatus is a promising way to protect this crop; however, there is limited information regarding the mechanism underlying the resistance of V. unguiculata against M. usitatus. Here, a behavior assay was performed to explore the resistance of V. unguiculata against M. usitatus after insect damage or treatment by jasmonic acid (JA). Furthermore, transcriptome and metabonomics analysis was used to detect the putative mechanism underlying the resistance of V. unguiculata against M. usitatus. The pre-treatment of Vigna unguiculata with JA or infestation with Megalurothrips usitatus alleviated the damage resulting from the pest insect. We further identified differentially expressed genes and different metabolites involved in flavonoid biosynthesis and alpha-linolenic acid metabolism. Genes of chalcone reductase and shikimate O-hydroxycinnamoyltransferase involved in flavonoid biosynthesis, as well as lipoxygenase and acyl-CoA oxidase involved in alpha-linolenic acid metabolism, were upregulated in plants after herbivory or JA supplementation. The upregulation of these genes contributed to the high accumulation of metabolites involved in flavonoid biosynthesis and the alpha-linolenic acid metabolism pathway. These transcriptional and metabolite changes are potentially responsible for plant defense and a putative regulatory model is thus proposed to illustrate the cowpea defense mechanism against insect attack. Our study provides candidate targets for the breeding of varieties with resistance to insect herbivory by molecular technology.
Collapse
Affiliation(s)
- Tao Li
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Mingyue Feng
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuanming Chi
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xing Shi
- Plant Protection Station of Guangxi Zhuang Autonomous Region, Nanning 530007, China
| | - Zilin Sun
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhen Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Aomei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Wangpeng Shi
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
24
|
Dinan L, Lafont F, Lafont R. The Distribution of Phytoecdysteroids among Terrestrial Vascular Plants: A Comparison of Two Databases and Discussion of the Implications for Plant/Insect Interactions and Plant Protection. PLANTS (BASEL, SWITZERLAND) 2023; 12:776. [PMID: 36840124 PMCID: PMC9967490 DOI: 10.3390/plants12040776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Phytoecdysteroids are a class of plant secondary compounds which are present in a wide diversity of vascular plant species, where they contribute to a reduction in invertebrate predation. Over the past 55 years, a significant body of heterogeneous literature on the presence, identities and/or quantities of ecdysteroids in plant species has accumulated, resulting in the compilation of a first database, the Ecdybase Literature Survey (ELS; 4908 entries, covering 2842 species). A second extensive database on the distribution of ecdysteroids in vascular plants is available as the Exeter Survey (ES; 4540 entries, covering 4155 species), which used standardised extraction and analysis methods to survey seeds/spores. We compare the usefulness of these two databases to provide information on the occurrence of phytoecdysteroids at the order/family levels in relation to the recent molecular classifications of gymnosperms, pteridophytes/lycophytes and angiosperms. The study, in conjunction with the other published literature, provides insights into the distribution of phytoecdysteroids in the plant world, their role in plant protection in nature and their potential future contribution to crop protection. Furthermore, it will assist future investigations in the chemotaxonomy of phytoecdysteroids and other classes of plant secondary compounds.
Collapse
|
25
|
Matignon L, Lo MM, Monpierre M, Correia MV, Valencia DP, Palmeira-Mello MV, Sylvestre MN, Pruneau L, Sylvestre M, Domenech A, Benfodda Z, Meffre P, Cebrián-Torrejón G. Phytochemical and Biological Study of Trophic Interaction between Pseudosphinx Tetrio L. Larvae and Allamanda Cathartica L. PLANTS (BASEL, SWITZERLAND) 2023; 12:520. [PMID: 36771605 PMCID: PMC9921458 DOI: 10.3390/plants12030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
In this article, we propose to explore the chemical interaction between Pseudosphinx tetrio L. and Allamanda cathartica L. using different analytical methods, including an innovative electrochemical approach (called electrochemical ecology) and multivariate analysis, and we investigate the potential antimicrobial effects (antibacterial and antifungal activities) of this interaction in order to gain a better understanding of their specific interaction. The analytical study presents a similar chemical profile between the leaves of healthy and herbivorous A. cathartica and the excretions of the caterpillars. The similar analytical profile of the leaves of A. cathartica and the excretions of P. tetrio, and the difference with the caterpillar bodies, suggests a selective excretion of compounds by the caterpillar. The measured antimicrobial activities support the physicochemical tests. The natural products found selectively in the excretions (rather than in the body) could explain the ability of P. tetrio to feed on this toxic Apocynaceae species.
Collapse
Affiliation(s)
- Linda Matignon
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, Fouillole Campus, University of the French West Indies, UFR SEN, CEDEX, 97157 Pointe-à-Pitre, France
| | - Mame Marietou Lo
- CHROME Laboratory, EA7352, University of Nîmes, CEDEX 1, 30021 Nîmes, France
| | - Magneric Monpierre
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Department of Chemistry, Fouillole Campus, University of the French West Indies, UFR SEN, CEDEX, 97157 Pointe-à-Pitre, France
| | - Mauro Vicentini Correia
- Instituto de Química, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Drochss Pettry Valencia
- Departamento de Ciencias Naturales y Matemáticas, Pontificia Universidad Javeriana sede Cali, Calle 18 No. 118-250, Cali 760031, Colombia
| | - Marcos V. Palmeira-Mello
- Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, Niterói 24020-141, Brazil
| | - Marie-Noëlle Sylvestre
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Department of Chemistry, Fouillole Campus, University of the French West Indies, UFR SEN, CEDEX, 97157 Pointe-à-Pitre, France
| | - Ludovic Pruneau
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Department of Chemistry, Fouillole Campus, University of the French West Indies, UFR SEN, CEDEX, 97157 Pointe-à-Pitre, France
| | - Muriel Sylvestre
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, Fouillole Campus, University of the French West Indies, UFR SEN, CEDEX, 97157 Pointe-à-Pitre, France
| | - Antonio Domenech
- Departament de Química Analítica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Valencia, Spain
| | - Zohra Benfodda
- CHROME Laboratory, EA7352, University of Nîmes, CEDEX 1, 30021 Nîmes, France
| | - Patrick Meffre
- CHROME Laboratory, EA7352, University of Nîmes, CEDEX 1, 30021 Nîmes, France
| | - Gerardo Cebrián-Torrejón
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, Fouillole Campus, University of the French West Indies, UFR SEN, CEDEX, 97157 Pointe-à-Pitre, France
| |
Collapse
|
26
|
Zhang S, Li Z, Shu J, Xue H, Guo K, Zhou X. Soil-derived bacteria endow Camellia weevil with more ability to resist plant chemical defense. MICROBIOME 2022; 10:97. [PMID: 35752840 PMCID: PMC9233397 DOI: 10.1186/s40168-022-01290-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Herbivorous insects acquire their gut microbiota from diverse sources, and these microorganisms play significant roles in insect hosts' tolerance to plant secondary defensive compounds. Camellia weevil (Curculio chinensis) (CW) is an obligate seed parasite of Camellia oleifera plants. Our previous study linked the CW's gut microbiome to the tolerance of the tea saponin (TS) in C. oleifera seeds. However, the source of these gut microbiomes, the key bacteria involved in TS tolerance, and the degradation functions of these bacteria remain unresolved. RESULTS Our study indicated that CW gut microbiome was more affected by the microbiome from soil than that from fruits. The soil-derived Acinetobacter served as the core bacterial genus, and Acinetobacter sp. was putatively regarded responsible for the saponin-degradation in CW guts. Subsequent experiments using fluorescently labeled cultures verified that the isolate Acinetobacter sp. AS23 can migrate into CW larval guts, and ultimately endow its host with the ability to degrade saponin, thereby allowing CW to subsist as a pest within plant fruits resisting to higher concentration of defensive chemical. CONCLUSIONS The systematic studies of the sources of gut microorganisms, the screening of taxa involved in plant secondary metabolite degradation, and the investigation of bacteria responsible for CW toxicity mitigation provide clarified evidence that the intestinal microorganisms can mediate the tolerance of herbivorous insects against plant toxins. Video Abstract.
Collapse
Affiliation(s)
- Shouke Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, Hangzhou, 311300, People's Republic of China
- College of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, Hangzhou, 311300, People's Republic of China
| | - Zikun Li
- College of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, Hangzhou, 311300, People's Republic of China
| | - Jinping Shu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang, Hangzhou, 311400, People's Republic of China.
| | - Huaijun Xue
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Kai Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, Hangzhou, 311300, People's Republic of China
- College of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, Hangzhou, 311300, People's Republic of China
| | - Xudong Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, Hangzhou, 311300, People's Republic of China.
- College of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, Hangzhou, 311300, People's Republic of China.
| |
Collapse
|
27
|
Xu L, Cao M, Wang Q, Xu J, Liu C, Ullah N, Li J, Hou Z, Liang Z, Zhou W, Liu A. Insights into the plateau adaptation of Salvia castanea by comparative genomic and WGCNA analyses. J Adv Res 2022; 42:221-235. [PMID: 36089521 PMCID: PMC9788944 DOI: 10.1016/j.jare.2022.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/30/2022] [Accepted: 02/10/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Salvia castanea, a wild plant species is adapted to extreme Qinghai-Tibetan plateau (QTP) environments. It is also used for medicinal purposes due to high ingredient of tanshinone IIA (T-IIA). Despite its importance to Chinese medicinal industry, the mechanisms associated with secondary metabolites accumulation (i.e. T-IIA and rosmarinic acid (RA)) in this species have not been characterized. Also, the role of special underground tissues in QTP adaptation of S. castanea is still unknown. OBJECTIVES We explored the phenomenon of periderm-like structure in underground stem center of S. castanea with an aim to unravel the molecular evolutionary mechanisms of QTP adaptation in this species. METHODS Morphologic observation and full-length transcriptome of S. castanea plants were conducted. Comparative genomic analyses of S. castanea with other 14 representative species were used to reveal its phylogenetic position and molecular evolutionary mechanisms. RNA-seq and WGCNA analyses were applied to understand the mechanisms of high accumulations of T-IIA and RA in S. castanea tissues. RESULTS Based on anatomical observations, we proposed a "trunk-branches" developmental model to explain periderm-like structure in the center of underground stem of S. castanea. Our study suggested that S. castanea branched off from cultivated Danshen around 16 million years ago. During the evolutionary process, significantly expanded orthologous gene groups, 24 species-specific and 64 positively selected genes contributed to morphogenesis and QTP adaptation in S. castanea. RNA-seq and WGCNA analyses unraveled underlying mechanisms of high accumulations of T-IIA and RA in S. castanea and identified NAC29 and TGA22 as key transcription factors. CONCLUSION We proposed a "trunk-branches" developmental model for the underground stem in S. castanea. Adaptations to extreme QTP environment in S. castanea are associated with accumulations of high secondary metabolites in this species.
Collapse
Affiliation(s)
- Ling Xu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mengting Cao
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qichao Wang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiahao Xu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chenglin Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Najeeb Ullah
- Queensland Alliance for Agriculture and Food Innovation, Centre for Plant Science, the University of Queensland, Toowoomba, QLD 4350, Australia,Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link Gadong BE1410, Brunei Darussalam
| | - Juanjuan Li
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Zhuoni Hou
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China,Corresponding authors.
| | - Weijun Zhou
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China,Corresponding authors.
| | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi 046011, China,Corresponding authors.
| |
Collapse
|
28
|
Whitehead SR, Bass E, Corrigan A, Kessler A, Poveda K. Interaction diversity explains the maintenance of phytochemical diversity. Ecol Lett 2021; 24:1205-1214. [PMID: 33783114 DOI: 10.1111/ele.13736] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/01/2022]
Abstract
The production of complex mixtures of secondary metabolites is a ubiquitous feature of plants. Several evolutionary hypotheses seek to explain how phytochemical diversity is maintained, including the synergy hypothesis, the interaction diversity hypothesis, and the screening hypothesis. We experimentally tested a set of predictions derived from these hypotheses by manipulating the richness and structural diversity of phenolic metabolites in the diets of eight plant consumers. Across 3940 total bioassays, there was clear support for the interaction diversity hypothesis over the synergy or screening hypotheses. The number of consumers affected by a particular phenolic composition increased with increasing richness and structural diversity of compounds. Furthermore, the bioactivity of phenolics was consumer-specific. All compounds tested reduced the performance of at least one consumer, but no compounds affected all consumers. These results show how phytochemical diversity may be maintained in nature by a complex selective landscape exerted by diverse communities of plant consumers.
Collapse
Affiliation(s)
- Susan R Whitehead
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Ethan Bass
- Department of Entomology, Cornell University, Ithaca, NY, USA.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Alexsandra Corrigan
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Katja Poveda
- Department of Entomology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
29
|
Xia J, Guo Z, Yang Z, Han H, Wang S, Xu H, Yang X, Yang F, Wu Q, Xie W, Zhou X, Dermauw W, Turlings TCJ, Zhang Y. Whitefly hijacks a plant detoxification gene that neutralizes plant toxins. Cell 2021; 184:1693-1705.e17. [PMID: 33770502 DOI: 10.1016/j.cell.2021.02.014] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/29/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
Plants protect themselves with a vast array of toxic secondary metabolites, yet most plants serve as food for insects. The evolutionary processes that allow herbivorous insects to resist plant defenses remain largely unknown. The whitefly Bemisia tabaci is a cosmopolitan, highly polyphagous agricultural pest that vectors several serious plant pathogenic viruses and is an excellent model to probe the molecular mechanisms involved in overcoming plant defenses. Here, we show that, through an exceptional horizontal gene transfer event, the whitefly has acquired the plant-derived phenolic glucoside malonyltransferase gene BtPMaT1. This gene enables whiteflies to neutralize phenolic glucosides. This was confirmed by genetically transforming tomato plants to produce small interfering RNAs that silence BtPMaT1, thus impairing the whiteflies' detoxification ability. These findings reveal an evolutionary scenario whereby herbivores harness the genetic toolkit of their host plants to develop resistance to plant defenses and how this can be exploited for crop protection.
Collapse
Affiliation(s)
- Jixing Xia
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zezhong Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haolin Han
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haifeng Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengshan Yang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA
| | - Wannes Dermauw
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, 8920 Merelbeke, Belgium; Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
30
|
Salehi B, Quispe C, Sharifi-Rad J, Giri L, Suyal R, Jugran AK, Zucca P, Rescigno A, Peddio S, Bobiş O, Moise AR, Leyva-Gómez G, Del Prado-Audelo ML, Cortes H, Iriti M, Martorell M, Cruz-Martins N, Kumar M, Zam W. Antioxidant potential of family Cucurbitaceae with special emphasis on Cucurbita genus: A key to alleviate oxidative stress-mediated disorders. Phytother Res 2021; 35:3533-3557. [PMID: 33590924 DOI: 10.1002/ptr.7045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/28/2020] [Accepted: 01/25/2021] [Indexed: 12/24/2022]
Abstract
Oxidative stress is the imbalance between reactive oxygen species (ROS) production, and accumulation and the ability of a biological system to clear these reactive products. This imbalance leads to cell and tissue damage causing several disorders in human body, such as neurodegeneration, metabolic problems, cardiovascular diseases, and cancer. Cucurbitaceae family consists of about 100 genera and 1,000 species of plants including mostly tropical, annual or perennial, monoecious, and dioecious herbs. The plants from Cucurbita species are rich sources of phytochemicals and act as a rich source of antioxidants. The most important phytochemicals present in the cucurbits are cucurbitacins, saponins, carotenoids, phytosterols, and polyphenols. These bioactive phyto-constituents are responsible for the pharmacological effects including antioxidant, antitumor, antidiabetic, hepatoprotective, antimicrobial, anti-obesity, diuretic, anti-ulcer activity, and antigenotoxic. A wide number of in vitro and in vivo studies have ascribed these health-promoting effects of Cucurbita genus. Results of clinical trials suggest that Cucurbita provides health benefits for diabetic patients, patients with benign prostate hyperplasia, infertile women, postmenopausal women, and stress urinary incontinence in women. The intend of the present review is to focus on the protective role of Cucurbita spp. phytochemicals on oxidative stress-related disorders on the basis of preclinical and human studies. The review will also give insights on the in vitro and in vivo antioxidant potential of the Cucurbitaceae family as a whole.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Lalit Giri
- G.B. Pant National Institute of Himalayan Environment & Sustainable Development, Almora, Uttarakhand, India
| | - Renu Suyal
- G.B. Pant National Institute of Himalayan Environment & Sustainable Development, Almora, Uttarakhand, India
| | - Arun K Jugran
- G.B. Pant National Institute of Himalayan Environment & Sustainable Development, Srinagar, Uttarakhand, India
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari - Cagliari, University Campus, Monserrato, Italy
| | - Antonio Rescigno
- Department of Biomedical Sciences, University of Cagliari - Cagliari, University Campus, Monserrato, Italy
| | - Stefania Peddio
- Department of Biomedical Sciences, University of Cagliari - Cagliari, University Campus, Monserrato, Italy
| | - Otilia Bobiş
- Life Science Institute, Apiculture and Sericulture Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Adela Ramona Moise
- Life Science Institute, Apiculture and Sericulture Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - María L Del Prado-Audelo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Hernán Cortes
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile.,Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción, Chile
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, India
| | - Wissam Zam
- Faculty of Pharmacy, Department of Analytical and Food Chemistry, Al-Wadi International University, Homs, Syria
| |
Collapse
|
31
|
Metabolomic differences between invasive alien plants from native and invaded habitats. Sci Rep 2020; 10:9749. [PMID: 32546786 PMCID: PMC7297986 DOI: 10.1038/s41598-020-66477-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
Globalization facilitated the spread of invasive alien species (IAS), undermining the stability of the world's ecosystems. We investigated the metabolomic profiles of three IAS species: Chromolaena odorata (Asteraceae) Datura stramonium (Solanaceae), and Xanthium strumarium (Asteraceae), comparing metabolites of individual plants in their native habitats (USA), to their invasive counterparts growing in and around Kruger National Park (South Africa, ZA). Metabolomic samples were collected using RApid Metabolome Extraction and Storage (RAMES) technology, which immobilizes phytochemicals on glass fiber disks, reducing compound degradation, allowing long-term, storage and simplifying biochemical analysis. Metabolomic differences were analyzed using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) of samples eluted from RAMES disks. Partial Least Squares-Discriminant Analysis (PLS-DA) of metabolomes of individual plants allowed statistical separation of species, native and invasive populations of each species, and some populations on the same continent. Invasive populations of all species were more phytochemically diverse than their native counterparts, and their metabolomic profiles were statistically distinguishable from their native relatives. These data may elucidate the mechanisms of successful invasion and rapid adaptive evolution of IAS. Moreover, RAMES technology combined with PLS-DA statistical analysis may allow taxonomic identification of species and, possibly, populations within each species.
Collapse
|
32
|
Thapsigargins and induced chemical defence in Thapsia garganica. CHEMOECOLOGY 2020. [DOI: 10.1007/s00049-020-00315-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Ljunggren J, Bylund D, Jonsson BG, Edman M, Hedenström E. Antifungal efficiency of individual compounds and evaluation of non-linear effects by recombining fractionated turpentine. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Albuquerque UP, do Nascimento ALB, Silva Chaves L, Feitosa IS, de Moura JMB, Gonçalves PHS, da Silva RH, da Silva TC, Ferreira Júnior WS. The chemical ecology approach to modern and early human use of medicinal plants. CHEMOECOLOGY 2020. [DOI: 10.1007/s00049-020-00302-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Chen Y, Zhang M, Jin X, Tao H, Wang Y, Peng B, Fu C, Yu L. Transcriptional reprogramming strategies and miRNA-mediated regulation networks of Taxus media induced into callus cells from tissues. BMC Genomics 2020; 21:168. [PMID: 32070278 PMCID: PMC7029464 DOI: 10.1186/s12864-020-6576-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/11/2020] [Indexed: 11/10/2022] Open
Abstract
Background Taxus cells are a potential sustainable and environment-friendly source of taxol, but they have low survival ratios and slow grow rates. Despite these limitations, Taxus callus cells induced through 6 months of culture contain more taxol than their parent tissues. In this work, we utilized 6-month-old Taxus media calli to investigate their regulatory mechanisms of taxol biosynthesis by applying multiomics technologies. Our results provide insights into the adaptation strategies of T. media by transcriptional reprogramming when induced into calli from parent tissues. Results Seven out of 12 known taxol, most of flavonoid and phenylpropanoid biosynthesis genes were significantly upregulated in callus cells relative to that in the parent tissue, thus indicating that secondary metabolism is significantly strengthened. The expression of genes involved in pathways metabolizing biological materials, such as amino acids and sugars, also dramatically increased because all nutrients are supplied from the medium. The expression level of 94.1% genes involved in photosynthesis significantly decreased. These results reveal that callus cells undergo transcriptional reprogramming and transition into heterotrophs. Interestingly, common defense and immune activities, such as “plant–pathogen interaction” and salicylic acid- and jasmonic acid-signaling transduction, were repressed in calli. Thus, it’s an intelligent adaption strategy to use secondary metabolites as a cost-effective defense system. MiRNA- and degradome-sequencing results showed the involvement of a precise regulatory network in the miRNA-mediated transcriptional reprogramming of calli. MiRNAs act as direct regulators to enhance the metabolism of biological substances and repress defense activities. Given that only 17 genes of secondary metabolite biosynthesis were effectively regulated, miRNAs are likely to play intermediate roles in the biosynthesis of secondary metabolites by regulating transcriptional factors (TFs), such as ERF, WRKY, and SPL. Conclusion Our results suggest that increasing the biosynthesis of taxol and other secondary metabolites is an active regulatory measure of calli to adapt to heterotrophic culture, and this alteration mainly involved direct and indirect miRNA-induced transcriptional reprogramming. These results expand our understanding of the relationships among the metabolism of biological substances, the biosynthesis of secondary metabolites, and defense systems. They also provide a series of candidate miRNAs and transcription factors for taxol biosynthesis.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, 430074, People's Republic of China
| | - Meng Zhang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, 430074, People's Republic of China
| | - Xiaofei Jin
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, 430074, People's Republic of China
| | - Haoran Tao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, 430074, People's Republic of China
| | - Yamin Wang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, 430074, People's Republic of China
| | - Bo Peng
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, 430074, People's Republic of China
| | - Chunhua Fu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China. .,Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China. .,Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, 430074, People's Republic of China.
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, 430074, People's Republic of China
| |
Collapse
|
36
|
Davies EL, Arbuckle K. Coevolution of Snake Venom Toxic Activities and Diet: Evidence that Ecological Generalism Favours Toxicological Diversity. Toxins (Basel) 2019; 11:E711. [PMID: 31817769 PMCID: PMC6950196 DOI: 10.3390/toxins11120711] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/10/2019] [Accepted: 12/04/2019] [Indexed: 01/02/2023] Open
Abstract
Snake venom evolution is typically considered to be predominantly driven by diet-related selection pressures. Most evidence for this is based on lethality to prey and non-prey species and on the identification of prey specific toxins. Since the broad toxicological activities (e.g., neurotoxicity, coagulotoxicity, etc.) sit at the interface between molecular toxinology and lethality, these classes of activity may act as a key mediator in coevolutionary interactions between snakes and their prey. Indeed, some recent work has suggested that variation in these functional activities may be related to diet as well, but previous studies have been limited in geographic and/or taxonomic scope. In this paper, we take a phylogenetic comparative approach to investigate relationships between diet and toxicological activity classes on a global scale across caenophidian snakes, using the clinically oriented database at toxinology.com. We generally find little support for specific prey types selecting for particular toxicological effects except that reptile-feeders are more likely to be neurotoxic. We find some support for endothermic prey (with higher metabolic rates) influencing toxic activities, but differently from previous suggestions in the literature. More broadly, we find strong support for a general effect of increased diversity of prey on the diversity of toxicological effects of snake venom. Hence, we provide evidence that selection pressures on the toxicological activities of snake venom has largely been driven by prey diversity rather than specific types of prey. These results complement and extend previous work to suggest that specific matching of venom characteristics to prey may occur at the molecular level and translate into venom lethality, but the functional link between those two is not constrained to a particular toxicological route.
Collapse
Affiliation(s)
| | - Kevin Arbuckle
- Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK;
| |
Collapse
|
37
|
Mawalagedera SMUP, Callahan DL, Gaskett AC, Rønsted N, Symonds MRE. Combining Evolutionary Inference and Metabolomics to Identify Plants With Medicinal Potential. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
38
|
A theory for investment across defences triggered at different stages of a predator-prey encounter. J Theor Biol 2019; 473:9-19. [DOI: 10.1016/j.jtbi.2019.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/21/2019] [Accepted: 04/15/2019] [Indexed: 11/21/2022]
|
39
|
Ramawat KG, Goyal S. Co-evolution of Secondary Metabolites During Biological Competition for Survival and Advantage: An Overview. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-319-76887-8_45-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
40
|
Henz Ryen A, Backlund A. Charting Angiosperm Chemistry: Evolutionary Perspective on Specialized Metabolites Reflected in Chemical Property Space. JOURNAL OF NATURAL PRODUCTS 2019; 82:798-812. [PMID: 30912945 DOI: 10.1021/acs.jnatprod.8b00767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plants possess an outstanding chemical diversity of specialized metabolites developed to adapt to environmental niches and increase fitness. The observed diversity is hypothesized to result from various evolutionary mechanisms, such as the continuous branching off and extension of existing biosynthetic pathways or enhanced levels of catalytic promiscuity in certain enzymes. In this study, ChemGPS-NP has been employed to chart the distribution and diversity of physicochemical properties for selected types of specialized metabolites from the angiosperms. Utilizing these charts, it is analyzed how different properties of various types of specialized metabolites change in different plant groups, and the chemical diversity from the volume they occupy in chemical property space is evaluated. In this context, possible underlying evolutionary mechanisms are discussed, which could explain the observed distribution and behavior in chemical property space. Based on these studies, it is demonstrated that evolutionary processes in plant specialized metabolism and the resultant metabolic diversification are reflected in chemical property space.
Collapse
Affiliation(s)
- Astrid Henz Ryen
- Research Group for Pharmacognosy, Department of Medicinal Chemistry , Uppsala University , BMC, Box 574, S-75123 Uppsala , Sweden
| | - Anders Backlund
- Research Group for Pharmacognosy, Department of Medicinal Chemistry , Uppsala University , BMC, Box 574, S-75123 Uppsala , Sweden
| |
Collapse
|
41
|
Ode PJ. Plant toxins and parasitoid trophic ecology. CURRENT OPINION IN INSECT SCIENCE 2019; 32:118-123. [PMID: 31113623 DOI: 10.1016/j.cois.2019.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Parasitoids (parasitic wasps) are ubiquitous components of nearly all communities containing plant-insect herbivore associations. Plant toxin defenses against herbivores may also affect higher trophic levels by directly (e.g., plant toxins encountered in host hemolymph) or indirectly (e.g., plant toxins reduce host size/quality or alter the host's immunity against parasitoids). Yet, whether parasitoids structure plant-herbivore interactions remains relatively understudied. Nevertheless, recent meta-analyses and empirical work emphasize the importance of parasitoids in structuring interactions among lower trophic levels. Two promising areas of research are particularly ripe for future exploration: a) the potential for microbes to alter the interactions among plants, insect herbivores, and parasitoids, and b) the effects of climate change on phenological (mis)matches among trophic levels.
Collapse
Affiliation(s)
- Paul J Ode
- Department of Bioagricultural Sciences and Pest Management and the Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523-1177, United States.
| |
Collapse
|
42
|
Wang L, Cornell SJ, Speed MP. The evolution of variance in sequential defences. J Theor Biol 2019; 462:194-209. [PMID: 30300647 DOI: 10.1016/j.jtbi.2018.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 09/06/2018] [Accepted: 10/03/2018] [Indexed: 01/14/2023]
Abstract
The defences used by organisms against predators display a great degree of variability. Defence phenotypes can differ substantially among individuals of the same species, and a single individual can itself deploy a variety of defences. Here, we use a mathematical model that includes mutation and selection to understand the evolutionary origin of this variability in a population of a species that deploys defences sequentially ("first" and "second" defences). Typically, the first defence evolves to have lower variance, i.e. appears more closely accumulated around the ideal phenotype, than the second defence (even when the breaching the first defence incurs more fitness loss than breaching the second defence with the other parameters the same for both defences). However, if the first defence is much less effective in repelling predators, or is much less tolerant of deviation from the ideal phenotype, then the first defence can evolve to have higher variance than the second. Other factors like mutation strength and the losses in the fitness when each defence fails also influence the defence variance. Larger mutation rate incurs larger equilibrium variances, and when the comparative importance in fitness of one defence increases, then the ratio between the variances of this defence and the other defence decreases. Sequentially acting defences are found in many organisms, so we encourage empirical research to test our theoretical predictions.
Collapse
Affiliation(s)
- Lingzi Wang
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Stephen J Cornell
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Michael P Speed
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
43
|
Calf OW, Huber H, Peters JL, Weinhold A, Poeschl Y, van Dam NM. Gastropods and Insects Prefer Different Solanum dulcamara Chemotypes. J Chem Ecol 2019; 45:146-161. [PMID: 29961916 PMCID: PMC6469604 DOI: 10.1007/s10886-018-0979-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 01/22/2023]
Abstract
Solanum dulcamara (Bittersweet nightshade) shows significant intraspecific variation in glycoalkaloid (GA) composition and concentration. We previously showed that constitutive differences in overall GA levels are correlated with feeding preference of the grey field slug (GFS; Deroceras reticulatum). One particularly preferred accession, ZD11, contained low GA levels, but high levels of previously unknown structurally related uronic acid conjugated compounds (UACs). Here we test whether different slug species as well as insect herbivores show similar feeding preferences among six S. dulcamara accessions with different GA chemotypes. In addition, we investigate whether slug feeding can lead to induced changes in the chemical composition and affect later arriving herbivores. A leaf disc assay using greenhouse-grown plants showed that three slug species similarly preferred accessions with low GA levels. Untargeted metabolomic analyses showed that previous slug feeding consistently increased the levels of N-caffeoyl-putrescine and a structurally related metabolite, but not the levels of GAs and UACs. Slug-induced responses only affected slug preference in one accession. A common garden experiment using the same six accessions revealed that ZD11 received the highest natural gastropod feeding damage, but suffered the lowest damage by specialist flea beetles. The latter preferred to feed on accessions with high GA levels. Our study indicates that different selection pressures imposed by generalist gastropods and specialist insects may explain part of the observed chemical diversity in S. dulcamara.
Collapse
Affiliation(s)
- Onno W Calf
- Molecular Interaction Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands.
| | - Heidrun Huber
- Experimental Plant Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Janny L Peters
- Molecular Plant Physiology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Yvonne Poeschl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1, 06120, Halle, Germany
| | - Nicole M van Dam
- Molecular Interaction Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743, Jena, Germany.
| |
Collapse
|
44
|
Li L, Li J, Zhang Y, Wang N. Diffusible signal factor (DSF)-mediated quorum sensing modulates expression of diverse traits in Xanthomonas citri and responses of citrus plants to promote disease. BMC Genomics 2019; 20:55. [PMID: 30654743 PMCID: PMC6337780 DOI: 10.1186/s12864-018-5384-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 12/18/2018] [Indexed: 01/07/2023] Open
Abstract
Background The gram-negative Xanthomonas genus contains a large group of economically important plant pathogens, which cause severe diseases on many crops worldwide. The diffusible signal factor (DSF) - mediated quorum sensing (QS) system coordinates expression of virulence factors in plant pathogenic Xanthomonas spp. However, the regulatory effects of this system during the Xanthomonas- plant interactions remain unclear from both the pathogen and host aspects. Results In this study, we investigated the in planta DSF- mediated QS regulon of X. citri subsp. citri (Xac), the causal agent of citrus canker. We also characterized the transcriptional responses of citrus plants to DSF-mediated Xac infection via comparing the gene expression patterns of citrus trigged by wild type Xac strain 306 with those trigged by its DSF- deficient (∆rpfF) mutant using the dual RNA-seq approach. Comparative global transcript profiles of Xac strain 306 and the ∆rpfF mutant during host infection revealed that DSF- mediated QS specifically modulates bacterial adaptation, nutrition uptake and metabolisms, stress tolerance, virulence, and signal transduction to favor host infection. The transcriptional responses of citrus to DSF-mediated Xac infection are characterized by downregulation of photosynthesis genes and plant defense related genes, suggesting photosynthetically inactive reactions and repression of defense responses. Alterations of phytohormone metabolism and signaling pathways were also triggered by DSF-mediated Xac infection to benefit the pathogen. Conclusions Collectively, our findings provide new insight into the DSF- mediated QS regulation during plant-pathogen interactions and advance the understanding of traits used by Xanthomonas to promote infection on host plants. Electronic supplementary material The online version of this article (10.1186/s12864-018-5384-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei Li
- Chinese Academy of Agricultural Sciences, Institute of Vegetables and Flowers, Beijing, 100081, China.,Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL, 33850, USA
| | - Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL, 33850, USA
| | - Yunzeng Zhang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL, 33850, USA
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL, 33850, USA.
| |
Collapse
|
45
|
Barônio GJ, Oliveira DC. Eavesdropping on gall-plant interactions: the importance of the signaling function of induced volatiles. PLANT SIGNALING & BEHAVIOR 2019; 14:1665454. [PMID: 31538533 PMCID: PMC6804696 DOI: 10.1080/15592324.2019.1665454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The galling insect manipulates the host plant tissue to its own benefit, building the gall structure where it spends during most of its life cycle. These specialist herbivore insects can induce and manipulate plant structure and metabolism throughout gall development and may affect plant volatile emission. Consequently, volatile emission from altered metabolism contribute to eavesdropping cueing. Eavesdropping can be part of adaptive strategies used by evolution for both galling insects and the entire-associated community in order to cue some interaction response. This is in contrast to some herbivores associated with delayed induced responses, altering plant metabolites during the short time while they feed. Due to the different lifestyles of the galling organism, which are associated with different plant tissues and organs (e.g leaves, flowers or fruits), a distinct diversity of organisms may eavesdrop on induced volatiles interacting with the galls. Furthermore, the eavesdropping cues may be defined according to the phenological coupling between galling organism and host plant, which results from the development of a gall structure. For instance, when plants release volatile-induced defenses after galling insects' activity, another interactor may perceive these volatiles and change its behavior and interactions with host plants and galls. Thus, natural enemies could be attracted by different volatiles emitted by the gall tissues. Considering the duration of the life cycle of the galling organism and the gall, the temporal extent of gall-induced volatiles may include more persistent volatile cues and eavesdropping effects than the volatiles induced by non-galling herbivores. Accordingly, from chemical ecology perspective we expect that galling herbivore-induced volatiles may exhibit robust effects on neighboring-plant interactions including those ones during different plant developmental or phenological periods. Information about multitrophic interactions between insects and plants supports the additional understanding of direct and indirect effects, and allows insight into new hypotheses.
Collapse
Affiliation(s)
- Gudryan J. Barônio
- Programa de Pós-Graduação em Ciência Florestal, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
- CONTACT Gudryan J. Barônio Programa de Pós-Graduação em Ciência Florestal, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, Rodovia MGT 367 - Km 583, nº 5.000, Alto da Jacuba, CEP 39100-000, Diamantina, MG, Brasil
| | | |
Collapse
|
46
|
Gluck‐Thaler E, Vijayakumar V, Slot JC. Fungal adaptation to plant defences through convergent assembly of metabolic modules. Mol Ecol 2018; 27:5120-5136. [DOI: 10.1111/mec.14943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Emile Gluck‐Thaler
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Sciences The Ohio State University Columbus Ohio
| | - Vinod Vijayakumar
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Sciences The Ohio State University Columbus Ohio
| | - Jason C. Slot
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Sciences The Ohio State University Columbus Ohio
| |
Collapse
|
47
|
Calf OW, Huber H, Peters JL, Weinhold A, van Dam NM. Glycoalkaloid composition explains variation in slug resistance in Solanum dulcamara. Oecologia 2018; 187:495-506. [PMID: 29383505 PMCID: PMC5997107 DOI: 10.1007/s00442-018-4064-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 01/08/2018] [Indexed: 12/01/2022]
Abstract
In natural environments, plants have to deal with a wide range of different herbivores whose communities vary in time and space. It is believed that the chemical diversity within plant species has mainly arisen from selection pressures exerted by herbivores. So far, the effects of chemical diversity on plant resistance have mostly been assessed for arthropod herbivores. However, also gastropods, such as slugs, can cause extensive damage to plants. Here we investigate to what extent individual Solanum dulcamara plants differ in their resistance to slug herbivory and whether this variation can be explained by differences in secondary metabolites. We performed a series of preference assays using the grey field slug (Deroceras reticulatum) and S. dulcamara accessions from eight geographically distinct populations from the Netherlands. Significant and consistent variation in slug preference was found for individual accessions within and among populations. Metabolomic analyses showed that variation in steroidal glycoalkaloids (GAs) correlated with slug preference; accessions with high GA levels were consistently less damaged by slugs. One, strongly preferred, accession with particularly low GA levels contained high levels of structurally related steroidal compounds. These were conjugated with uronic acid instead of the glycoside moieties common for Solanum GAs. Our results illustrate how intraspecific variation in steroidal glycoside profiles affects resistance to slug feeding. This suggests that also slugs should be considered as important drivers in the co-evolution between plants and herbivores.
Collapse
Affiliation(s)
- Onno W Calf
- Molecular Interaction Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Heidrun Huber
- Experimental Plant Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Janny L Peters
- Molecular Plant Physiology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Nicole M van Dam
- Molecular Interaction Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743, Jena, Germany
| |
Collapse
|
48
|
Origin and maintenance of chemical diversity in a species-rich tropical tree lineage. Nat Ecol Evol 2018; 2:983-990. [PMID: 29760441 DOI: 10.1038/s41559-018-0552-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/03/2018] [Indexed: 02/05/2023]
Abstract
Plant secondary metabolites play important ecological and evolutionary roles, most notably in the deterrence of natural enemies. The classical theory explaining the evolution of plant chemical diversity is that new defences arise through a pairwise co-evolutionary arms race between plants and their specialized natural enemies. However, plant species are bombarded by dozens of different herbivore taxa from disparate phylogenetic lineages that span a wide range of feeding strategies and have distinctive physiological constraints that interact differently with particular plant metabolites. How do plant defence chemicals evolve under such multiple and potentially contrasting selective pressures imposed by diverse herbivore communities? To tackle this question, we exhaustively characterized the chemical diversity and insect herbivore fauna from 31 sympatric species of Amazonian Protieae (Burseraceae) trees. Using a combination of phylogenetic, metabolomic and statistical learning tools, we show that secondary metabolites that were associated with repelling herbivores (1) were more frequent across the Protieae phylogeny and (2) were found in average higher abundance than other compounds. Our findings suggest that generalist herbivores can play an important role in shaping plant chemical diversity and support the hypothesis that chemical diversity can also arise from the cumulative outcome of multiple diffuse interactions.
Collapse
|
49
|
Müller C, Orians CM. From plants to herbivores: novel insights into the ecological and evolutionary consequences of plant variation. Oecologia 2018; 187:357-360. [DOI: 10.1007/s00442-018-4126-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 12/22/2022]
|
50
|
Wuyun TN, Wang L, Liu H, Wang X, Zhang L, Bennetzen JL, Li T, Yang L, Liu P, Du L, Wang L, Huang M, Qing J, Zhu L, Bao W, Li H, Du Q, Zhu J, Yang H, Yang S, Liu H, Yue H, Hu J, Yu G, Tian Y, Liang F, Hu J, Wang D, Gao R, Li D, Du H. The Hardy Rubber Tree Genome Provides Insights into the Evolution of Polyisoprene Biosynthesis. MOLECULAR PLANT 2018; 11:429-442. [PMID: 29229569 DOI: 10.1016/j.molp.2017.11.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/14/2017] [Accepted: 11/28/2017] [Indexed: 05/21/2023]
Abstract
Eucommia ulmoides, also called hardy rubber tree, is an economically important tree; however, the lack of its genome sequence restricts the fundamental biological research and applied studies of this plant species. Here, we present a high-quality assembly of its ∼1.2-Gb genome (scaffold N50 = 1.88 Mb) with at least 26 723 predicted genes for E. ulmoides, the first sequenced genome of the order Garryales, which was obtained using an integrated strategy combining Illumina sequencing, PacBio sequencing, and BioNano mapping. As a sister taxon to lamiids and campanulids, E. ulmoides underwent an ancient genome triplication shared by core eudicots but no further whole-genome duplication in the last ∼125 million years. E. ulmoides exhibits high expression levels and/or gene number expansion for multiple genes involved in stress responses and the biosynthesis of secondary metabolites, which may account for its considerable environmental adaptability. In contrast to the rubber tree (Hevea brasiliensis), which produces cis-polyisoprene, E. ulmoides has evolved to synthesize long-chain trans-polyisoprene via farnesyl diphosphate synthases (FPSs). Moreover, FPS and rubber elongation factor/small rubber particle protein gene families were expanded independently from the H. brasiliensis lineage. These results provide new insights into the biology of E. ulmoides and the origin of polyisoprene biosynthesis.
Collapse
Affiliation(s)
- Ta-Na Wuyun
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China.
| | - Lin Wang
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China
| | - Huimin Liu
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Liangsheng Zhang
- Center for Genomics and Biotechnology; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | - Tiezhu Li
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China
| | - Lirong Yang
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou 450003, China
| | - Panfeng Liu
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China
| | - Lanying Du
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China
| | - Lu Wang
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China
| | - Mengzhen Huang
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China
| | - Jun Qing
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China
| | - Lili Zhu
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China
| | - Wenquan Bao
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China
| | - Hongguo Li
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China
| | - Qingxin Du
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China
| | - Jingle Zhu
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China
| | - Hong Yang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Shuguang Yang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Hui Liu
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Hui Yue
- Shandong BELO EUCOMMIA Biological Engineering Co., Ltd., Qingzhou 262500, China
| | - Jiang Hu
- Nextomics Biosciences Co., Ltd., Wuhan 430073, China
| | - Guoliang Yu
- Nextomics Biosciences Co., Ltd., Wuhan 430073, China
| | - Yu Tian
- Nextomics Biosciences Co., Ltd., Wuhan 430073, China
| | - Fan Liang
- Nextomics Biosciences Co., Ltd., Wuhan 430073, China
| | - Jingjing Hu
- Wuhan Unique Gene Bioinformatics Science and Technology Co., Ltd., Wuhan 430073, China
| | - Depeng Wang
- Nextomics Biosciences Co., Ltd., Wuhan 430073, China
| | - Ruiwen Gao
- Shandong BELO EUCOMMIA Biological Engineering Co., Ltd., Qingzhou 262500, China.
| | - Dejun Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China.
| | - Hongyan Du
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China.
| |
Collapse
|