1
|
McDaniel SF. Divergent outcomes of genetic conflict on the UV sex chromosomes of Marchantia polymorpha and Ceratodon purpureus. Curr Opin Genet Dev 2023; 83:102129. [PMID: 37864936 DOI: 10.1016/j.gde.2023.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/23/2023]
Abstract
In species with separate sexes, the genome must produce two distinct developmental programs. Sexually dimorphic development may be controlled by either sex-limited loci or biased expression of loci transmitted through both sexes. Variation in the gene content of sex-limited chromosomes demonstrates that eukaryotic species differ markedly in the roles of these two mechanisms in governing sexual dimorphism. The bryophyte model systems Marchantia polymorpha and Ceratodon purpureus provide a particularly striking contrast. Although both species possess a haploid UV sex chromosome system, in which females carry a U chromosome and males carry a V, M. polymorpha relies on biased autosomal expression, while in C. purpureus, sex-linked genes drive dimorphism. Framing these genetic architectures as divergent outcomes of genetic conflict highlights comparative genomic analyses to better understand the evolution of sexual dimorphism.
Collapse
Affiliation(s)
- Stuart F McDaniel
- Biology Department, University of Florida, Gainesville, FL 32611-8525, USA.
| |
Collapse
|
2
|
Singh S, Davies KM, Chagné D, Bowman JL. The fate of sex chromosomes during the evolution of monoicy from dioicy in liverworts. Curr Biol 2023; 33:3597-3609.e3. [PMID: 37557172 DOI: 10.1016/j.cub.2023.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/15/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023]
Abstract
Liverworts comprise one of six primary land plant lineages, with the predicted origin of extant liverwort diversity dating to the Silurian. The ancestral liverwort has been inferred to have been dioicous (unisexual) with chromosomal sex determination in which the U chromosome of females and the V chromosome of males were dimorphic with an extensive non-recombining region. In liverworts, sex is determined by a U chromosomal "feminizer" gene that promotes female development, and in its absence, male development ensues. Monoicy (bisexuality) has independently evolved multiple times within liverworts. Here, we explore the evolution of monoicy, focusing on the monoicous species Ricciocarpos natans, and propose that the evolution of monoicy in R. natans involved the appearance of an aneuploid spore that possessed both U and V chromosomes. Chromosomal rearrangements involving the U chromosome resulted in distribution of essential U chromosome genes, including the feminizer, to several autosomal locations. By contrast, we infer that the ancestral V chromosome was inherited largely intact, probably because it carries numerous dispersed "motility" genes distributed across the chromosome. The genetic networks for sex differentiation in R. natans appear largely unchanged except that the feminizer is developmentally regulated, allowing for temporally separated differentiation of female and male reproductive organs on a single plant. A survey of other monoicous liverworts suggests that similar genomic rearrangements may have occurred repeatedly in lineages transitioning to monoicy from dioicy. These data provide a foundation for understanding how genetic networks controlling sex determination can be subtly rewired to produce profound changes in sexual systems.
Collapse
Affiliation(s)
- Shilpi Singh
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Kevin M Davies
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
3
|
Wiens JJ. Trait-based species richness: ecology and macroevolution. Biol Rev Camb Philos Soc 2023; 98:1365-1387. [PMID: 37015839 DOI: 10.1111/brv.12957] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/06/2023]
Abstract
Understanding the origins of species richness patterns is a fundamental goal in ecology and evolutionary biology. Much research has focused on explaining two kinds of species richness patterns: (i) spatial species richness patterns (e.g. the latitudinal diversity gradient), and (ii) clade-based species richness patterns (e.g. the predominance of angiosperm species among plants). Here, I highlight a third kind of richness pattern: trait-based species richness (e.g. the number of species with each state of a character, such as diet or body size). Trait-based richness patterns are relevant to many topics in ecology and evolution, from ecosystem function to adaptive radiation to the paradox of sex. Although many studies have described particular trait-based richness patterns, the origins of these patterns remain far less understood, and trait-based richness has not been emphasised as a general category of richness patterns. Here, I describe a conceptual framework for how trait-based richness patterns arise compared to other richness patterns. A systematic review suggests that trait-based richness patterns are most often explained by when each state originates within a group (i.e. older states generally have higher richness), and not by differences in transition rates among states or faster diversification of species with certain states. This latter result contrasts with the widespread emphasis on diversification rates in species-richness research. I show that many recent studies of spatial richness patterns are actually studies of trait-based richness patterns, potentially confounding the causes of these patterns. Finally, I describe a plethora of unanswered questions related to trait-based richness patterns.
Collapse
Affiliation(s)
- John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, USA
| |
Collapse
|
4
|
Dong S, Yu J, Zhang L, Goffinet B, Liu Y. Phylotranscriptomics of liverworts: revisiting the backbone phylogeny and ancestral gene duplications. ANNALS OF BOTANY 2022; 130:951-964. [PMID: 36075207 PMCID: PMC9851303 DOI: 10.1093/aob/mcac113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/08/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS With some 7300 extant species, liverworts (Marchantiophyta) represent one of the major land plant lineages. The backbone relationships, such as the phylogenetic position of Ptilidiales, and the occurrence and timing of whole-genome duplications, are still contentious. METHODS Based on analyses of the newly generated transcriptome data for 38 liverworts and complemented with those publicly available, we reconstructed the evolutionary history of liverworts and inferred gene duplication events along the 55 taxon liverwort species tree. KEY RESULTS Our phylogenomic study provided an ordinal-level liverwort nuclear phylogeny and identified extensive gene tree conflicts and cyto-nuclear incongruences. Gene duplication analyses based on integrated phylogenomics and Ks distributions indicated no evidence of whole-genome duplication events along the backbone phylogeny of liverworts. CONCLUSIONS With a broadened sampling of liverwort transcriptomes, we re-evaluated the backbone phylogeny of liverworts, and provided evidence for ancient hybridizations followed by incomplete lineage sorting that shaped the deep evolutionary history of liverworts. The lack of whole-genome duplication during the deep evolution of liverworts indicates that liverworts might represent one of the few major embryophyte lineages whose evolution was not driven by whole-genome duplications.
Collapse
Affiliation(s)
- Shanshan Dong
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
| | - Jin Yu
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Li Zhang
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043, USA
| | - Yang Liu
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
| |
Collapse
|
5
|
Iglesias‐Carrasco M, Tobias JA, Duchêne DA. Bird lineages colonizing urban habitats have diversified at high rates across deep time. GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2022; 31:1784-1793. [PMID: 36246452 PMCID: PMC9540638 DOI: 10.1111/geb.13558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 06/16/2023]
Abstract
Aim Urbanization exposes species to novel ecological conditions. Some species thrive in urban areas, whereas many others are excluded from these human-made environments. Previous analyses suggest that the ability to cope with rapid environmental change is associated with long-term patterns of diversification, but whether the suite of traits associated with the ability to colonize urban environments is linked to this process remains poorly understood. Location World. Time period Current. Major taxa studied Passerine birds. Methods We applied macroevolutionary models to a large dataset of passerine birds to compare the evolutionary history of urban-tolerant species with that of urban-avoidant species. Specifically, we examined models of state-dependent speciation and extinction to assess the macroevolution of urban tolerance as a binary trait, in addition to models of quantitative trait-dependent diversification based on relative urban abundance. We also ran simulation-based model assessments to explore potential sources of bias. Results We provide evidence that historically, species with traits promoting urban colonization have undergone faster diversification than urban-avoidant species, indicating that urbanization favours clades with a historical tendency towards rapid speciation or reduced extinction. In addition, we find that past transitions towards states that currently impede urban colonization by passerines have been more frequent than in the opposite direction. Furthermore, we find a portion of urban-avoidant passerines to be recent and to undergo fast diversification. All highly supported models give this result consistently. Main conclusions Urbanization is mainly associated with the loss of lineages that are inherently more vulnerable to extinction over deep time, whereas cities tend to be colonized by less vulnerable lineages, for which urbanization might be neutral or positive in terms of longer-term diversification. Urban avoidance is associated with high rates of recent diversification for some clades occurring in regions with relatively intact natural ecosystems and low current levels of urbanization.
Collapse
Affiliation(s)
| | | | - David A. Duchêne
- Centre for Evolutionary HologenomicsUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
6
|
Meseguer AS, Carrillo R, Graham SW, Sanmartín I. Macroevolutionary dynamics in the transition of angiosperms to aquatic environments. THE NEW PHYTOLOGIST 2022; 235:344-355. [PMID: 35292979 PMCID: PMC9320795 DOI: 10.1111/nph.18100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Angiosperm lineages in aquatic environments are characterized by high structural and functional diversity, and wide distributions. A long-standing evolutionary riddle is what processes have caused the relatively low diversity of aquatic angiosperms compared to their terrestrial relatives. We use diversification and ancestral reconstruction models with a comprehensive > 10 000 genus angiosperm phylogeny to elucidate the macroevolutionary dynamics associated with transitions of terrestrial plants to water. Our study reveals that net diversification rates are significantly lower in aquatic than in terrestrial angiosperms due to lower speciation and higher extinction. Shifts from land to water started early in angiosperm evolution, but most events were concentrated during the last c. 25 million years. Reversals to a terrestrial habitat started only 40 million years ago, but occurred at much higher rates. Within aquatic angiosperms, the estimated pattern is one of gradual accumulation of lineages, and relatively low and constant diversification rates throughout the Cenozoic. Low diversification rates, together with infrequent water transitions, account for the low diversity of aquatic angiosperms today. The stressful conditions and small global surface of the aquatic habitat available for angiosperms are hypothesized to explain this pattern.
Collapse
Affiliation(s)
| | - Rubén Carrillo
- Real Jardín Botánico de Madrid (RJB)CSIC28014MadridSpain
| | - Sean W. Graham
- Biodiversity Research CentreUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| | | |
Collapse
|
7
|
Carter BE. The roles of dispersal limitation, climatic niches and glacial history in endemism of the North American bryophyte flora. AMERICAN JOURNAL OF BOTANY 2021; 108:1555-1567. [PMID: 34448197 DOI: 10.1002/ajb2.1721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/17/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Bryophytes (mosses, liverworts, and hornworts) tend to have very large geographic ranges, which impedes progress toward understanding the drivers of diversification and extinction. This study aimed to investigate whether North American endemics differ geographically from more widespread species and whether differences in climatic niche or traits related to dispersal and establishment differ between endemics and more widespread species. METHODS All available herbarium records of bryophytes from North America north of Mexico (106 collections) were used. Traits related to dispersal were obtained from the literature. Analyses tested whether range sizes and extents differed between endemics and nonendemics, and whether trait differences were associated with endemism. Climate data were used to determine whether differences in niche breadth are present between endemics and nonendemics, and whether suitable climate for endemics occurs outside North America. RESULTS Nonendemics have range sizes twice as large as endemics and they occur farther north and have greater longitudinal extents. However, they do not have the widest niche breadths and do not differ in spore size (with few exceptions) or sexual condition. Asexual propagules are more prevalent among nonendemics. Climatic models indicate that substantial areas of climate suitable for endemics exist outside of North America. CONCLUSIONS Distributions of endemics and nonendemics are consistent with an important role of glaciation in shaping the North American bryophyte flora. Endemics are not limited to the continent based on a lack of suitable climate elsewhere or by spore size or sexual condition.
Collapse
Affiliation(s)
- Benjamin E Carter
- Department of Biological Sciences, San Jose State University, One Washington Square, San Jose, CA, 95192, USA
| |
Collapse
|
8
|
Lee GE, Condamine FL, Bechteler J, Pérez-Escobar OA, Scheben A, Schäfer-Verwimp A, Pócs T, Heinrichs J. An ancient tropical origin, dispersals via land bridges and Miocene diversification explain the subcosmopolitan disjunctions of the liverwort genus Lejeunea. Sci Rep 2020; 10:14123. [PMID: 32839508 PMCID: PMC7445168 DOI: 10.1038/s41598-020-71039-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022] Open
Abstract
Understanding the biogeographical and diversification processes explaining current diversity patterns of subcosmopolitan-distributed groups is challenging. We aimed at disentangling the historical biogeography of the subcosmopolitan liverwort genus Lejeunea with estimation of ancestral areas of origin and testing if sexual system and palaeotemperature variations can be factors of diversification. We assembled a dense taxon sampling for 120 species sampled throughout the geographical distribution of the genus. Lejeunea diverged from its sister group after the Paleocene-Eocene boundary (52.2 Ma, 95% credibility intervals 50.1-54.2 Ma), and the initial diversification of the crown group occurred in the early to middle Eocene (44.5 Ma, 95% credibility intervals 38.5-50.8 Ma). The DEC model indicated that (1) Lejeunea likely originated in an area composed of the Neotropics and the Nearctic, (2) dispersals through terrestrial land bridges in the late Oligocene and Miocene allowed Lejeunea to colonize the Old World, (3) the Boreotropical forest covering the northern regions until the late Eocene did not facilitate Lejeunea dispersals, and (4) a single long-distance dispersal event was inferred between the Neotropics and Africa. Biogeographical and diversification analyses show the Miocene was an important period when Lejeunea diversified globally. We found slight support for higher diversification rates of species with both male and female reproductive organs on the same individual (monoicy), and a moderate positive influence of palaeotemperatures on diversification. Our study shows that an ancient origin associated with a dispersal history facilitated by terrestrial land bridges and not long-distance dispersals are likely to explain the subcosmopolitan distribution of Lejeunea. By enhancing the diversification rates, monoicy likely favoured the colonisations of new areas, especially in the Miocene that was a key epoch shaping the worldwide distribution.
Collapse
Affiliation(s)
- Gaik Ee Lee
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
- Institute of Tropical Biodiversity and Sustainable Development, University Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Fabien L Condamine
- CNRS, UMR 5554 Institut des Sciences de l'Evolution de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France.
| | - Julia Bechteler
- Nees Institute for Biodiversity of Plants, University of Bonn, 53115, Bonn, Germany
| | | | - Armin Scheben
- School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | | | - Tamás Pócs
- Botany Department, Institute of Biology, Eszterházy University, Pf. 43, Eger, 3301, Hungary
| | - Jochen Heinrichs
- Department of Biology I, Systematic Botany and Mycology, Geobio-Center, University of Munich (LMU), Menzinger Str. 67, 80638, Munich, Germany
| |
Collapse
|
9
|
Alonso-García M, Villarreal A. JC, McFarland K, Goffinet B. Population Genomics and Phylogeography of a Clonal Bryophyte With Spatially Separated Sexes and Extreme Sex Ratios. FRONTIERS IN PLANT SCIENCE 2020; 11:495. [PMID: 32457772 PMCID: PMC7226906 DOI: 10.3389/fpls.2020.00495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
The southern Appalachian (SA) is one of the most biodiversity-rich areas in North America and has been considered a refugium for many disjunct plant species, from the last glacial period to the present. Our study focuses on the SA clonal hornwort, Nothoceros aenigmaticus J. C. Villarreal & K. D. McFarland. This hornwort was described from North Carolina and is widespread in the SA, growing on rocks near or submerged in streams in six and one watersheds of the Tennessee (TR) and Alabama (AR) Rivers, respectively. Males and female populations occur in different watersheds, except in the Little Tennessee (TN) River where an isolated male population exists ca. 48 km upstream from the female populations. The sex ratio of 1:0 seems extreme in each population. In this study, we use nuclear and organellar microsatellites from 250 individuals from six watersheds (seven populations) in the SA region and two populations from Mexico (23 individuals). We, then, selected 86 individuals from seven populations and used genotyping by sequencing to sample over 600 bi-allelic markers. Our results suggest that the SA N. aenigmaticus and Mexican plants are a nested within a clade of sexual tropical populations. In the US populations, we confirm an extreme sex ratio and only contiguous US watersheds share genotypes. The phylogenetic analysis of SNP data resolves four clusters: Mexican populations, male plants (Little Pigeon and Pigeon river watersheds) and two clusters of female plants; one from the Little Tennessee and Hiwassee Rivers (TR) and the other from the Ocoee (TR) and Coosa (AR) Rivers. All clusters are highly differentiated (Fst values over 0.9). In addition, our individual assignment analyses and PCAs reflect the phylogenetic results grouping the SA samples in three clades and recovering males and female plants with high genetic differentiation (Fst values between 0.5 and 0.9 using microsatellites and bi-allelic markers). Our results point to Pleistocene events shaping the biogeographical pattern seen in US populations. The extreme sex ratio reflects isolation and highlights the high vulnerability of the populations in the SA.
Collapse
Affiliation(s)
| | - Juan Carlos Villarreal A.
- Département de Biologie, Université Laval, Quebec City, QC, Canada
- Smithsonian Tropical Research Institute, Ancón, Panama
| | - Kenneth McFarland
- Department of Ecology and Evolutionary Biology, The University of Tennessee, Knoxville, TN, United States
| | - Bernard Goffinet
- Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
10
|
Yu Y, Yang J, Ma W, Pressel S, Liu H, Wu Y, Schneider H. Chloroplast phylogenomics of liverworts: a reappraisal of the backbone phylogeny of liverworts with emphasis on Ptilidiales. Cladistics 2019; 36:184-193. [DOI: 10.1111/cla.12396] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2019] [Indexed: 01/20/2023] Open
Affiliation(s)
- Ying Yu
- College of Life and Environmental Sciences Hangzhou Normal University Hangzhou 311121 China
| | - Jun‐Bo Yang
- CAS Plant Germplasm and Genomics Center Germplasm Bank of Wild Species Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Wen‐Zhang Ma
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Silvia Pressel
- Department of Life Sciences Natural History Museum London SW7 5BD UK
| | - Hong‐Mei Liu
- Key Laboratory of Tropical Plant Resources and Sustainable Use Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Menglun Yunnan 666303 China
| | - Yu‐Huan Wu
- College of Life and Environmental Sciences Hangzhou Normal University Hangzhou 311121 China
| | - Harald Schneider
- Center of Integrative Conservation Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Menglun Yunnan 666303 China
| |
Collapse
|
11
|
Otero A, Jiménez-Mejías P, Valcárcel V, Vargas P. Being in the right place at the right time? Parallel diversification bursts favored by the persistence of ancient epizoochorous traits and hidden factors in Cynoglossoideae. AMERICAN JOURNAL OF BOTANY 2019; 106:438-452. [PMID: 30861101 DOI: 10.1002/ajb2.1251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY Long-distance dispersal (LDD) syndromes, especially endozoochory, facilitate plant colonization of new territories that trigger diversification. However, few studies have analyzed how epizoochorous fruits influence both range distribution and diversification rates. We examined the evolutionary history of a hyperdiverse clade of Boraginaceae (subfamily Cynoglossoideae, eight tribes, ~60 genera, ~1100 species) and the evolution of fruit traits. We evaluated the evolutionary history of diaspore syndromes correlated with geographic distribution and diversification rates over time. METHODS Plastid DNA regions and morphological traits associated with dispersal syndromes were analyzed for 71 genera (226 species). We employed trait-dependent diversification analysis (HiSSE) and biogeographic reconstruction (Lagrange) using a time-calibrated phylogeny. KEY RESULTS Our results indicate that (1) the earliest divergence events in Cynoglossoideae occurred in the central-northeastern Palearctic during the Paleogene (early to middle Eocene); (2) an epizoochorous trait (specialized hooks named glochids) is ancestral and has been maintained long term; and (3) glochids are correlated with increased diversification rates in two distantly related clades (Rochelieae and Cynoglossinae). Rapid speciation occurred for these two groups in the same area (central-eastern Palearctic) and same period (Oligocene-Miocene: Rochelieae, 30.82-13.69 mya; Cynoglossinae, 33.10-15.21 mya). Lower diversification rates were inferred for the remaining four glochid-bearing clades. CONCLUSIONS One more example of "biogeographic congruence" in angiosperms is supported by a shared geographic (central-northeastern Palearctic) and temporal (28.60-21.59 mya, late Oligocene) opportunity window for two main clades' diversification. Epizoochorous traits (fruit glochids) had an effect in higher diversification rates only with the joint effect of other unmeasured factors.
Collapse
Affiliation(s)
- Ana Otero
- Departamento de Biodiversidad, Real Jardín Botánico, CSIC. Pza. de Murillo, 2, 28014, Madrid, Spain
- Escuela Internacional de Doctorado, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933, Móstoles, Spain
- Departamento de Biología (Botánica), Facultad de Ciencias Biológicas, Universidad Autónoma de Madrid, C/ Darwin, 2, 28049, Madrid, Spain
| | - Pedro Jiménez-Mejías
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Departamento de Biología (Botánica), Facultad de Ciencias Biológicas, Universidad Autónoma de Madrid, C/ Darwin, 2, 28049, Madrid, Spain
| | - Virginia Valcárcel
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Departamento de Biología (Botánica), Facultad de Ciencias Biológicas, Universidad Autónoma de Madrid, C/ Darwin, 2, 28049, Madrid, Spain
| | - Pablo Vargas
- Departamento de Biodiversidad, Real Jardín Botánico, CSIC. Pza. de Murillo, 2, 28014, Madrid, Spain
| |
Collapse
|
12
|
Bruun-Lund S, Verstraete B, Kjellberg F, Rønsted N. Rush hour at the Museum – Diversification patterns provide new clues for the success of figs (Ficus L., Moraceae). ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2018. [DOI: 10.1016/j.actao.2017.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Landis JB, Soltis DE, Li Z, Marx HE, Barker MS, Tank DC, Soltis PS. Impact of whole-genome duplication events on diversification rates in angiosperms. AMERICAN JOURNAL OF BOTANY 2018; 105:348-363. [PMID: 29719043 DOI: 10.1002/ajb2.1060] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/12/2017] [Indexed: 05/18/2023]
Abstract
PREMISE OF THE STUDY Polyploidy or whole-genome duplication (WGD) pervades the evolutionary history of angiosperms. Despite extensive progress in our understanding of WGD, the role of these events in promoting diversification is still not well understood. We seek to clarify the possible association between WGD and diversification rates in flowering plants. METHODS Using a previously published phylogeny spanning all land plants (31,749 tips) and WGD events inferred from analyses of the 1000 Plants (1KP) transcriptome data, we analyzed the association of WGDs and diversification rates following numerous WGD events across the angiosperms. We used a stepwise AIC approach (MEDUSA), a Bayesian mixture model approach (BAMM), and state-dependent diversification analyses (MuSSE) to investigate patterns of diversification. Sister-clade comparisons were used to investigate species richness after WGDs. KEY RESULTS Based on the density of 1KP taxon sampling, 106 WGDs were unambiguously placed on the angiosperm phylogeny. We identified 334-530 shifts in diversification rates. We found that 61 WGD events were tightly linked to changes in diversification rates, and state-dependent diversification analyses indicated higher speciation rates for subsequent rounds of WGD. Additionally, 70 of 99 WGD events showed an increase in species richness compared to the sister clade. CONCLUSIONS Forty-six of the 106 WGDs analyzed appear to be closely associated with upshifts in the rate of diversification in angiosperms. Shifts in diversification do not appear more likely than random within a four-node lag phase following a WGD; however, younger WGD events are more likely to be followed by an upshift in diversification than older WGD events.
Collapse
Affiliation(s)
- Jacob B Landis
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, California, 92521, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Zheng Li
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721, USA
| | - Hannah E Marx
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721, USA
| | - Michael S Barker
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721, USA
| | - David C Tank
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, 83844, USA
- Stillinger Herbarium, University of Idaho, Moscow, Idaho, 83844, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, 32611, USA
| |
Collapse
|
14
|
Désamoré A, Laenen B, Miller KB, Bergsten J. Early burst in body size evolution is uncoupled from species diversification in diving beetles (Dytiscidae). Mol Ecol 2018; 27:979-993. [DOI: 10.1111/mec.14492] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Aurélie Désamoré
- Zoology Department; Swedish Museum of Natural History; Stockholm Sweden
| | - Benjamin Laenen
- Department of Ecology, Environment and Plant Sciences; Stockholm University; Stockholm Sweden
| | - Kelly B. Miller
- Department of Biology and Museum of Southwestern Biology; University of New Mexico; Albuquerque NM USA
| | - Johannes Bergsten
- Zoology Department; Swedish Museum of Natural History; Stockholm Sweden
| |
Collapse
|