1
|
Varghese S, Aguirre BA, Isbell F, Wright AJ. Simulating atmospheric drought: Silica gel packets dehumidify mesocosm microclimates. Ecol Evol 2024; 14:e70139. [PMID: 39170050 PMCID: PMC11336202 DOI: 10.1002/ece3.70139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
As global temperatures rise, droughts are becoming more frequent and severe. To predict how drought might affect plant communities, ecologists have traditionally designed drought experiments with controlled watering regimes and rainout shelters. Both treatments have proven effective for simulating soil drought. However, neither are designed to directly modify atmospheric drought. Here, we detail the efficacy of a silica gel atmospheric drought treatment in outdoor mesocosms with and without a co-occurring soil drought treatment. At California State University, Los Angeles, we monitored relative humidity, temperature, and vapor pressure deficit every 10 min for 5 months in bare-ground, open-top mesocosms treated with soil drought (reduced watering) and/or atmospheric drought (silica dehumidification packets suspended 12 cm above soil). We found that silica packets dehumidified these mesocosm microclimates most effectively (-5% RH) when combined with reduced soil water, regardless of the ambient humidity levels of the surrounding air. Further, packets increased microclimate vapor pressure deficit most effectively (+0.4 kPa) when combined with reduced soil water and ambient air temperatures above 20°C. Finally, packets simulated atmospheric drought most consistently when replaced within 3 days of deployment. Our results demonstrate the use of silica packets as effective dehumidification agents in outdoor drought experiments. We emphasize that incorporating atmospheric drought in existing soil drought experiments can improve our understandings of the ecological impacts of drought.
Collapse
Affiliation(s)
- S. Varghese
- Department of Biological SciencesCalifornia State University Los AngelesLos AngelesCaliforniaUSA
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - B. A. Aguirre
- Department of Biological SciencesCalifornia State University Los AngelesLos AngelesCaliforniaUSA
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNew YorkUSA
| | - F. Isbell
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - A. J. Wright
- Department of Biological SciencesCalifornia State University Los AngelesLos AngelesCaliforniaUSA
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
2
|
Varghese S, Aguirre B, Isbell F, Wright A. Simulating atmospheric drought: Silica gel packets dehumidify mesocosm microclimates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561294. [PMID: 37873293 PMCID: PMC10592642 DOI: 10.1101/2023.10.06.561294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
1. As global temperatures rise, droughts are becoming more frequent and severe. To predict how drought might affect plant communities, ecologists have traditionally designed experiments with controlled watering regimes and rainout shelters. Both treatments have proven effective for simulating soil drought. However, neither are designed to directly modify atmospheric drought. 2. Here, we detail the efficacy of a silica gel atmospheric drought treatment in outdoor mesocosms with and without a cooccurring soil drought treatment. At California State University, Los Angeles, we monitored relative humidity (RH), temperature, and vapor pressure deficit (VPD) every 10 minutes for five months in a bare-ground experiment featuring mesocosms treated with soil drought (reduced watering) and/or atmospheric drought (silica packets suspended 12 cm above soil). 3. We found that silica packets dehumidified these microclimates most effectively (-5% RH) when combined with reduced soil water, regardless of the ambient humidity levels of the surrounding air. Further, packets increased microclimate VPD most effectively (+0.4 kPa) when combined with reduced soil water and ambient air temperatures above 20°C. Finally, packets simulated atmospheric drought most consistently when replaced within three days of deployment. 4. Our results demonstrate the use of silica packets as effective dehumidification agents in outdoor drought experiments. We emphasize that incorporating atmospheric drought in existing soil drought experiments can improve our understandings of the ecological impacts of drought.
Collapse
Affiliation(s)
- S. Varghese
- California State University Los Angeles, Department of Biological Sciences, Los Angeles, CA
- University of Minnesota, Department of Ecology, Evolution, and Behavior, Minneapolis, MN
| | - B.A. Aguirre
- Cornell University, Department of Ecology and Evolutionary Biology, Ithaca, NY
| | - F. Isbell
- University of Minnesota, Department of Ecology, Evolution, and Behavior, Minneapolis, MN
| | - A.J. Wright
- California State University Los Angeles, Department of Biological Sciences, Los Angeles, CA
| |
Collapse
|
3
|
Zuliani M, Ghazian N, Owen M, Westphal MF, Butterfield HS, Lortie CJ. Shrub density effects on the presence of an endangered lizard of the Carrizo Plain National Monument, California. Ecol Evol 2023; 13:e10128. [PMID: 37214602 PMCID: PMC10199236 DOI: 10.1002/ece3.10128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Positive associations between animals and foundational shrub species are frequent in desert ecosystems for shelter, resources, refuge, and other key ecological processes. Herein, we tested the impact of the density of the shrub species Ephedra californica on the presence and habitat use of the federally endangered lizard species, Gambelia sila. To do this, we used a 3-year radio telemetry dataset and satellite-based counts of shrub density across sites at the Carrizo Plain National Monument in San Luis Obispo County, CA. The effect of shrub density on lizard presence was contrasted with previous shrub cover analyses to determine whether measures of shrub density were superior to shrub cover in predicting lizard presence. Increasing shrub density increased lizard presence. As shrub density increased, lizards were located more frequently "above ground" versus "below ground" in burrows. Male lizards had significantly larger home ranges than females, but both sexes were similarly associated with increasing shrub densities. Shrub density and shrub cover models did not significantly differ in their prediction of lizard presence. These findings suggest that both habitat measures are effective analogs and that ecologically, both cover and the density of foundation shrub species are key factors for some desert lizards.
Collapse
Affiliation(s)
- Mario Zuliani
- Department of Biological ScienceYork UniversityTorontoOntarioCanada
| | - Nargol Ghazian
- Department of Biological ScienceYork UniversityTorontoOntarioCanada
| | - Malory Owen
- Department of Biological ScienceYork UniversityTorontoOntarioCanada
| | | | | | | |
Collapse
|
4
|
Santamarina S, Montesinos D, Alfaro‐Saiz E, Acedo C. Drought affects the performance of native oak seedlings more strongly than competition with invasive crested wattle seedlings. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1297-1305. [PMID: 35344631 PMCID: PMC10078637 DOI: 10.1111/plb.13416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Two of the most important processes threatening vulnerable plant species are competitive displacement by invasive alien species and water stress due to global warming. Quercus lusitanica, an oak shrub species with remarkable conservation interest, could be threatened by the expansion of the invasive alien tree Paraserianthes lophantha. However, it is unclear how competition would interact with predicted reductions in water availability due to global climate change. We set up a full factorial experiment to examine the direct interspecific competition between P. lophantha and Q. lusitanica seedlings under control and water-limited conditions. We measured seed biomass, germination, seedling emergence, leaf relative growth rate, biomass, root/shoot ratio, predawn shoot water potential and mortality to assess the individual and combined effects of water stress and interspecific competition on both species. Our results indicate that, at seedling stage, both species experience competitive effects and responses. However, water stress exhibited a stronger overall effect than competition. Although both species responded strongly to water stress, the invasive P. lophantha exhibited significantly less drought stress than the native Q. lusitanica based on predawn shoot water potential measurements. The findings of this study suggest that the competition with invasive P. lophantha in the short term must not be dismissed, but that the long-term conservation of the native shrub Q. lusitanica could be compromised by increased drought as a result of global change. Our work sheds light on the combined effects of biological invasions and climate change that can negatively affect vulnerable plant species.
Collapse
Affiliation(s)
- S. Santamarina
- Research Team Taxonomy and Biodiversity Conservation TaCoBiDepartment of Biodiversity and Environmental ManagementUniversity of LeónLeónSpain
- Centre for Functional EcologyDepartment of Life SciencesUniversity of CoimbraCoimbraPortugal
- Present address:
Department of Biodiversity and Environmental ManagementFaculty of Biological and Environmental SciencesUniversity of LeónCampus de VegazanaLeón24071Spain
| | - D. Montesinos
- Centre for Functional EcologyDepartment of Life SciencesUniversity of CoimbraCoimbraPortugal
- Australian Tropical HerbariumJames Cook UniversitySmithfieldQueenslandAustralia
| | - E. Alfaro‐Saiz
- Research Team Taxonomy and Biodiversity Conservation TaCoBiDepartment of Biodiversity and Environmental ManagementUniversity of LeónLeónSpain
- Herbarium LEB Jaime Andrés RodríguezCRAI ExperimentalUniversity of LeónLeónSpain
| | - C. Acedo
- Research Team Taxonomy and Biodiversity Conservation TaCoBiDepartment of Biodiversity and Environmental ManagementUniversity of LeónLeónSpain
| |
Collapse
|
5
|
Thakur MP, Risch AC, van der Putten WH. Biotic responses to climate extremes in terrestrial ecosystems. iScience 2022; 25:104559. [PMID: 35784794 PMCID: PMC9240802 DOI: 10.1016/j.isci.2022.104559] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Anthropogenic climate change is increasing the incidence of climate extremes. Consequences of climate extremes on biodiversity can be highly detrimental, yet few studies also suggest beneficial effects of climate extremes on certain organisms. To obtain a general understanding of ecological responses to climate extremes, we present a review of how 16 major taxonomic/functional groups (including microorganisms, plants, invertebrates, and vertebrates) respond during extreme drought, precipitation, and temperature. Most taxonomic/functional groups respond negatively to extreme events, whereas groups such as mosses, legumes, trees, and vertebrate predators respond most negatively to climate extremes. We further highlight that ecological recovery after climate extremes is challenging to predict purely based on ecological responses during or immediately after climate extremes. By accounting for the characteristics of the recovering species, resource availability, and species interactions with neighboring competitors or facilitators, mutualists, and enemies, we outline a conceptual framework to better predict ecological recovery in terrestrial ecosystems.
Collapse
Affiliation(s)
- Madhav P. Thakur
- Institute of Ecology and Evolution and Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO- KNAW), Wageningen, the Netherlands
- Corresponding author
| | - Anita C. Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Switzerland
| | - Wim H. van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO- KNAW), Wageningen, the Netherlands
- Laboratory of Nematology, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
6
|
Gefei Z, Zhao W, Xiaofen W. The importance of facilitation on community assembly disappears under severe drought stress. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhang Gefei
- Linze Inland River Basin Research Station Northwest Institute of Eco‐Environment and Resources Chinese Academy of Sciences CN‐730000 Lanzhou China
| | - Wenzhi Zhao
- Linze Inland River Basin Research Station Northwest Institute of Eco‐Environment and Resources Chinese Academy of Sciences CN‐730000 Lanzhou China
| | - Wang Xiaofen
- Prata cultural College Gansu Agricultural University CN‐730000 Lanzhou China
| |
Collapse
|
7
|
Filazzola A, Matter SF, MacIvor JS. The direct and indirect effects of extreme climate events on insects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145161. [PMID: 33486167 DOI: 10.1016/j.scitotenv.2021.145161] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Extreme climate events are predicted to increase in the future, which will have significant effects on insect biodiversity. Research into this area has been rapidly expanding, but knowledge gaps still exist. We conducted a review of the literature to provide a synthesis of extreme climate events on insects and identify future areas of research. In our review, we asked the following questions: 1) What are the direct and indirect mechanisms that extreme climate events affect individual insects? 2) What are the effects of extreme climate events on insect populations and demography? 3) What are the implications of the extreme climate events effects on insect communities? Drought was among the most frequently described type of extreme climate event affecting insects, as well as the effects of temperature extremes and extreme temperature variation. Our review explores the factors that determine the sensitivity or resilience to climate extremes for individuals, populations, and communities. We also identify areas of future research to better understand the role of extreme climate events on insects including effects on non-trophic interactions, alteration of population dynamics, and mediation of the functional the trait set of communities. Many insect species are under threat from global change and extreme climate events are a contributing factor. Biologists and policy makers should consider the role of extreme events in their work to mitigate the loss of biodiversity and delivery of ecosystem services by insects.
Collapse
Affiliation(s)
- Alessandro Filazzola
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Canada.
| | - Stephen F Matter
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, United States of America
| | - J Scott MacIvor
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Canada
| |
Collapse
|
8
|
Zuliani M, Ghazian N, Lortie CJ. Shrub density effects on the community structure and composition of a desert animal community. WILDLIFE BIOLOGY 2021. [DOI: 10.2981/wlb.00774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
9
|
Castillioni K, Wilcox K, Jiang L, Luo Y, Jung CG, Souza L. Drought mildly reduces plant dominance in a temperate prairie ecosystem across years. Ecol Evol 2020; 10:6702-6713. [PMID: 32724543 PMCID: PMC7381580 DOI: 10.1002/ece3.6400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/16/2020] [Accepted: 05/02/2020] [Indexed: 11/11/2022] Open
Abstract
Shifts in dominance and species reordering can occur in response to global change. However, it is not clear how altered precipitation and disturbance regimes interact to affect species composition and dominance.We explored community-level diversity and compositional similarity responses, both across and within years, to a manipulated precipitation gradient and annual clipping in a mixed-grass prairie in Oklahoma, USA. We imposed seven precipitation treatments (five water exclusion levels [-20%, -40%, -60%, -80%, and -100%], water addition [+50%], and control [0% change in precipitation]) year-round from 2016 to 2018 using fixed interception shelters. These treatments were crossed with annual clipping to mimic hay harvest.We found that community-level responses were influenced by precipitation across time. For instance, plant evenness was enhanced by extreme drought treatments, while plant richness was marginally promoted under increased precipitation.Clipping promoted species gain resulting in greater richness within each experimental year. Across years, clipping effects further reduced the precipitation effects on community-level responses (richness and evenness) at both extreme drought and added precipitation treatments. Synthesis: Our results highlight the importance of studying interactive drivers of change both within versus across time. For instance, clipping attenuated community-level responses to a gradient in precipitation, suggesting that management could buffer community-level responses to drought. However, precipitation effects were mild and likely to accentuate over time to produce further community change.
Collapse
Affiliation(s)
- Karen Castillioni
- Oklahoma Biological SurveyDepartment of Microbiology and Plant BiologyUniversity of OklahomaNormanOKUSA
| | - Kevin Wilcox
- Ecosystem Science and ManagementUniversity of WyomingLaramieWYUSA
| | - Lifen Jiang
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffAZUSA
| | - Yiqi Luo
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffAZUSA
| | - Chang Gyo Jung
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffAZUSA
| | - Lara Souza
- Oklahoma Biological SurveyDepartment of Microbiology and Plant BiologyUniversity of OklahomaNormanOKUSA
| |
Collapse
|
10
|
Lu HZ, Brooker R, Song L, Liu WY, Sack L, Zhang JL, Yu FH. When facilitation meets clonal integration in forest canopies. THE NEW PHYTOLOGIST 2020; 225:135-142. [PMID: 31571219 DOI: 10.1111/nph.16228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Few studies have explored how - within the same system - clonality and positive plant-plant interactions might interact to regulate plant community composition. Canopy-dwelling epiphytes in species-rich forests provide an ideal system for studying this because many epiphytic vascular plants undertake clonal growth and because vascular epiphytes colonize canopy habitats after the formation of nonvascular epiphyte (i.e. bryophyte and lichen) mats. We investigated how clonal integration of seven dominant vascular epiphytes influenced inter-specific interactions between vascular epiphytes and nonvascular epiphytes in a subtropical montane moist forest in southwest China. Both clonal integration and environmental buffering from nonvascular epiphytes increased survival and growth of vascular epiphytes. The benefits of clonal integration for vascular epiphytes were higher when nonvascular epiphytes were removed. Similarly, facilitation from nonvascular epiphytes played a more important role when clonal integration of vascular epiphytes was eliminated. Overall, clonal integration had greater benefits than inter-specific facilitation. This study provides novel evidence for interactive effects of clonality and facilitation between vascular and nonvascular species, and has implications for our understanding of a wide range of ecosystems where both high levels of clonality and facilitation are expected to occur.
Collapse
Affiliation(s)
- Hua-Zheng Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Xishuangbanna, 666303, China
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Rob Brooker
- The James Hutton Institute, Aberdeen, AB15 8QH, UK
| | - Liang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Xishuangbanna, 666303, China
| | - Wen-Yao Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Xishuangbanna, 666303, China
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Xishuangbanna, 666303, China
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| |
Collapse
|
11
|
Al-Namazi A. Effects of plant-plant interactions and herbivory on the plant community structure in an arid environment of Saudi Arabia. Saudi J Biol Sci 2019; 26:1513-1518. [PMID: 31762619 PMCID: PMC6864212 DOI: 10.1016/j.sjbs.2019.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/23/2018] [Accepted: 01/03/2019] [Indexed: 11/16/2022] Open
Abstract
There is currently considerable evidence support that plant community structures are driven by plant-plant interactions (e.g., competition and facilitation). In contrast, there is also evidence demonstrating that plant community structure is affected by the impact of consumer pressure (e.g., grazing). In this study, 15 and 10 Acacia gerrardii nurse plants were selected inside and outside Sudyrah natural reserve (protected) area in western Saudi Arabia, respectively. The understory vegetation abundance (e.g. cover and density) was measured among quadrats around the nurse trees in both protected and unprotected areas to examine the impact of grazing and the positive interaction on the understory species. I found that understory vegetation associated with nurse trees (A. gerrardii) has been driven by both the positive impact of nurse plant and the grazing. Although the understory vegetation was positively affected by the impact of facilitation, the composition of such vegetation has been changed due to the impact of herbivory.
Collapse
Affiliation(s)
- Ali Al-Namazi
- King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| |
Collapse
|
12
|
Quon LH, Bobich EG, Questad EJ. Facilitation and herbivory during restoration of California coastal sage scrub. Restor Ecol 2019. [DOI: 10.1111/rec.12966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lauren H. Quon
- Biological Sciences Department, College of ScienceCalifornia State Polytechnic University Pomona, 3801 W Temple Avenue Pomona CA 91786 U.S.A
| | - Edward G. Bobich
- Biological Sciences Department, College of ScienceCalifornia State Polytechnic University Pomona, 3801 W Temple Avenue Pomona CA 91786 U.S.A
| | - Erin J. Questad
- Biological Sciences Department, College of ScienceCalifornia State Polytechnic University Pomona, 3801 W Temple Avenue Pomona CA 91786 U.S.A
| |
Collapse
|
13
|
Filazzola A, Liczner AR, Westphal M, Lortie CJ. Shrubs indirectly increase desert seedbanks through facilitation of the plant community. PLoS One 2019; 14:e0215988. [PMID: 31017967 PMCID: PMC6481865 DOI: 10.1371/journal.pone.0215988] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/11/2019] [Indexed: 11/18/2022] Open
Abstract
The mechanisms supporting positive ecological interactions are important. Foundation species can structure desert biodiversity by facilitating seedbanks of annual plants, but the direct and indirect mechanisms of shrub effects on seedbank have not been experimentally decoupled. We conducted the first test of shrubs increasing seedbank densities through direct effects on the seedbank (i.e. shrub seed-trapping, animal-mediated dispersal) and indirect effects by facilitating the annual plant community (i.e. seed deposition, annual seed-trapping). Two distinct desert ecosystems were used to contrast transient seedbank densities in shrub and open microsites by manipulating annual plant density and the presence of the persistent seedbank. We measured transient seedbank densities at the end of the growing season by collecting soil samples and extracting seeds from each respective treatment. Transient seedbank densities were greatest in shrub canopies and with relatively higher annual plant densities. The persistent seedbank contributed to transient seedbank densities only in one desert and in the open microsite. Shrubs indirectly increased seedbank densities by facilitation the seed production of the annual plants. Therefore, shrubs are increasing seedbank independently of the annual plant community, likely through trapping effects, and dependently by facilitating seed production of the annuals. These findings provide evidence for a previously undescribed mechanism that supports annual seedbanks and thus desert biodiversity. We also identify shrubs as being significant drivers of desert plant communities and emphasize the need to consider multiple mechanisms to improve our ability to predict the response of ecosystems to change.
Collapse
Affiliation(s)
| | | | - Michael Westphal
- Bureau of Land Management, Central Coast Field Office, Marina, California, United States of America
| | | |
Collapse
|
14
|
Verwijmeren M, Smit C, Bautista S, Wassen MJ, Rietkerk M. Combined Grazing and Drought Stress Alter the Outcome of Nurse: Beneficiary Interactions in a Semi-arid Ecosystem. Ecosystems 2019. [DOI: 10.1007/s10021-019-00336-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|