1
|
Janko K, Eisner J, Cigler P, Tichopád T. Unifying framework explaining how parental regulatory divergence can drive gene expression in hybrids and allopolyploids. Nat Commun 2024; 15:8714. [PMID: 39379366 PMCID: PMC11461870 DOI: 10.1038/s41467-024-52546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
Hybridization and polyploidy are powerful evolutionary forces, inducing a range of phenotypic outcomes, including non-additive expression, subgenome dominance, deviations in genomic dosage, and transcriptome downsizing. The reasons for these patterns and whether they are universal adaptive responses to genome merging and doubling remain debated. To address this, we develop a thermodynamic model of gene expression based on transcription factor (TF)-promoter binding. Applied to hybridization between species with divergent gene expression levels, cell volumes, or euchromatic ratios, this model distinguishes the effects of hybridization from those of polyploidy. Our results align with empirical observations, suggesting that gene regulation patterns in hybrids and polyploids often stem from the constrained interplay between inherited diverged regulatory networks rather than from subsequent adaptive evolution. In addition, occurrence of certain phenotypic traits depend on specific assumptions about promoter-TF coevolution and their distribution within the hybrid's nucleoplasm, offering new research avenues to understand the underlying mechanisms. In summary, our model explains how the legacy of divergent species directly influences the phenotypic traits of hybrids and allopolyploids.
Collapse
Affiliation(s)
- Karel Janko
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics of the Czech Aacademy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic.
| | - Jan Eisner
- Department of Mathematics, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 370 05, České Budějovice, Czech Republic
- Department of Biology and Ecology, Faculty of Natural Sciences, University of Ostrava, Chittussiho 10, Ostrava, Czech Republic
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the CAS, 166 10, Prague, Czech Republic.
| | - Tomáš Tichopád
- Department of Biology and Ecology, Faculty of Natural Sciences, University of Ostrava, Chittussiho 10, Ostrava, Czech Republic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| |
Collapse
|
2
|
Chen X, Hu X, Li G, Grover CE, You J, Wang R, Liu Z, Qi Z, Luo X, Peng Y, Zhu M, Zhang Y, Lu S, Zhang Y, Lin Z, Wendel JF, Zhang X, Wang M. Genetic Regulatory Perturbation of Gene Expression Impacted by Genomic Introgression in Fiber Development of Allotetraploid Cotton. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401549. [PMID: 39196795 PMCID: PMC11515910 DOI: 10.1002/advs.202401549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/23/2024] [Indexed: 08/30/2024]
Abstract
Interspecific genomic introgression is an important evolutionary process with respect to the generation of novel phenotypic diversity and adaptation. A key question is how gene flow perturbs gene expression networks and regulatory interactions. Here, an introgression population of two species of allopolyploid cotton (Gossypium) to delineate the regulatory perturbations of gene expression regarding fiber development accompanying fiber quality change is utilized. De novo assembly of the recipient parent (G. hirsutum Emian22) genome allowed the identification of genomic variation and introgression segments (ISs) in 323 introgression lines (ILs) from the donor parent (G. barbadense 3-79). It documented gene expression dynamics by sequencing 1,284 transcriptomes of developing fibers and characterized genetic regulatory perturbations mediated by genomic introgression using a multi-locus model. Introgression of individual homoeologous genes exhibiting extreme low or high expression bias can lead to a parallel expression bias in their non-introgressed duplicates, implying a shared yet divergent regulatory fate of duplicated genes following allopolyploidy. Additionally, the IL N182 with improved fiber quality is characterized, and the candidate gene GhFLAP1 related to fiber length is validated. This study outlines a framework for understanding introgression-mediated regulatory perturbations in polyploids, and provides insights for targeted breeding of superior upland cotton fiber.
Collapse
Affiliation(s)
- Xinyuan Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Xiubao Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Guo Li
- Crop Information Center, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Corrinne E. Grover
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIA50011USA
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Ruipeng Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Zhengyang Qi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Xuanxuan Luo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Yabin Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Mengmeng Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Yuqi Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Sifan Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Yuan‐ming Zhang
- Crop Information Center, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIA50011USA
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
3
|
Fu G, Luo H, Jia J, Hou M, Hu G. Translational Regulation of Duplicated Gene Expression Evolution in Allopolyploid Cotton. Genes (Basel) 2024; 15:1130. [PMID: 39336721 PMCID: PMC11431062 DOI: 10.3390/genes15091130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Polyploidy, a prevalent event in plant evolution, drives phenotypic diversification and speciation. While transcriptional changes and regulation in polyploids have been extensively studied, the translational level impact remains largely unexplored. To address this gap, we conducted a comparative transcriptomic and translatomic analysis of cotton leaves from allopolyploid species G. hirsutum (AD1) and G. barbadense (AD2) relative to their model A-genome and D-genome diploid progenitors. Our data revealed that while allopolyploidization significantly affects the transcriptional landscape, its impact on translation was relatively modest, evidenced by a narrower expression range and fewer expression changes in ribosome-protected fragments than in mRNA levels. Allopolyploid-specific changes commonly identified in both AD1 and AD2 were observed in 7393 genes at either transcriptional or translational levels. Interestingly, the majority of translational changes exhibited concordant down-regulation in both ribosome-protected fragments and mRNA, particularly associated with terpenoid synthesis and metabolism (352 genes). Regarding translational efficiency (TE), at least one-fifth of cotton genes exhibit translational level regulation, with a general trend of more down-regulation (13.9-15.1%) than up-regulation (7.3-11.2%) of TE. The magnitude of translational regulation was slightly reduced in allopolyploids compared with diploids, and allopolyploidy tends to have a more profound impact on genes and functional associations with ultra-low TE. Moreover, we demonstrated a reduced extent of homeolog expression biases during translation compared with transcription. Our study provides insights into the regulatory consequences of allopolyploidy post-transcription, contributing to a comprehensive understanding of regulatory mechanisms of duplicated gene expression evolution.
Collapse
Affiliation(s)
- Guiling Fu
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Haotian Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Juqing Jia
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Mingming Hou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guanjing Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
4
|
Abdelrahman M, Gorafi YSA, Sulieman S, Jogaiah S, Gupta A, Tsujimoto H, Nguyen HT, Herrera-Estrella L, Tran LSP. Wild grass-derived alleles represent a genetic architecture for the resilience of modern common wheat to stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1685-1702. [PMID: 38935838 DOI: 10.1111/tpj.16887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
This review explores the integration of wild grass-derived alleles into modern bread wheat breeding to tackle the challenges of climate change and increasing food demand. With a focus on synthetic hexaploid wheat, this review highlights the potential of genetic variability in wheat wild relatives, particularly Aegilops tauschii, for improving resilience to multifactorial stresses like drought, heat, and salinity. The evolutionary journey of wheat (Triticum spp.) from diploid to hexaploid species is examined, revealing significant genetic contributions from wild grasses. We also emphasize the importance of understanding incomplete lineage sorting in the genomic evolution of wheat. Grasping this information is crucial as it can guide breeders in selecting the appropriate alleles from the gene pool of wild relatives to incorporate into modern wheat varieties. This approach improves the precision of phylogenetic relationships and increases the overall effectiveness of breeding strategies. This review also addresses the challenges in utilizing the wheat wild genetic resources, such as the linkage drag and cross-compatibility issues. Finally, we culminate the review with future perspectives, advocating for a combined approach of high-throughput phenotyping tools and advanced genomic techniques to comprehensively understand the genetic and regulatory architectures of wheat under stress conditions, paving the way for more precise and efficient breeding strategies.
Collapse
Affiliation(s)
- Mostafa Abdelrahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, 79409, Texas, USA
| | - Yasir Serag Alnor Gorafi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kitashirakawa, 606-8502, Kyoto, Japan
| | - Saad Sulieman
- Department of Agronomy, Faculty of Agriculture, University of Khartoum, Khartoum North, 13314, Sudan
| | - Sudisha Jogaiah
- Department of Environmental Science, Central University of Kerala, Periye, Kasaragod, 671316, Kerala, India
| | - Aarti Gupta
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, 79409, Texas, USA
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan
| | - Henry T Nguyen
- Division of Plant Sciences and Technology, University of Missouri, Columbia, 65211, Missouri, USA
| | - Luis Herrera-Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, 79409, Texas, USA
- Unidad de Genomica Avanzada, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional, Irapuato, 36821, Mexico
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, 79409, Texas, USA
| |
Collapse
|
5
|
Long Y, Wendel JF, Zhang X, Wang M. Evolutionary insights into the organization of chromatin structure and landscape of transcriptional regulation in plants. TRENDS IN PLANT SCIENCE 2024; 29:638-649. [PMID: 38061928 DOI: 10.1016/j.tplants.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 06/09/2024]
Abstract
Development of complex traits necessitates the functioning and coordination of intricate regulatory networks involving multiple genes. Understanding 3D chromatin structure can facilitate insight into the regulation of gene expression by regulatory elements. This potential, of visualizing the role of chromatin organization in the evolution and function of regulatory elements, remains largely unexplored. Here, we describe new perspectives that arise from the dual considerations of sequence variation of regulatory elements and chromatin structure, with a special focus on whole-genome doubling or polyploidy. We underscore the significance of hierarchical chromatin organization in gene regulation during evolution. In addition, we describe strategies for exploring chromatin organization in future investigations of regulatory evolution in plants, enabling insights into the evolutionary influence of regulatory elements on gene expression and, hence, phenotypes.
Collapse
Affiliation(s)
- Yuexuan Long
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
6
|
Gao Y, Wang X, Hou X, Chen J. Evolution and Analysis of Caffeic Acid Transferase (COMT) in Seed Plants. Biochem Genet 2024; 62:1953-1976. [PMID: 37801144 DOI: 10.1007/s10528-023-10525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/07/2023] [Indexed: 10/07/2023]
Abstract
Caffeic acid transferase (COMT) is a key enzyme in the lignin and melatonin synthesis pathways and plays an important role in plant growth and development. All seed plants have two characteristics: they have vascular tissues, phloem, and xylem, and they can produce and reproduce seeds. In order to understand the distribution and evolution of COMTs in seed plants, we performed physicochemical property analysis, subcellular localization, phylogenetic analysis, conserved motif analysis, and protein interaction network analysis of 44 COMT homologs from 26 seed plants through in silico. The results showed that in seed plants, the structure of COMT genes tends to be stable in different plant taxa, while the relationship between the chromosomal positions of different COMT genes in the same plant was more intricate. The conserved distribution of COMT in seed plants reflected its highly specialized function.
Collapse
Affiliation(s)
- Yinghui Gao
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Xuan Wang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Xiaoyan Hou
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China.
| |
Collapse
|
7
|
Hu G, Grover CE, Vera DL, Lung PY, Girimurugan SB, Miller ER, Conover JL, Ou S, Xiong X, Zhu D, Li D, Gallagher JP, Udall JA, Sui X, Zhang J, Bass HW, Wendel JF. Evolutionary Dynamics of Chromatin Structure and Duplicate Gene Expression in Diploid and Allopolyploid Cotton. Mol Biol Evol 2024; 41:msae095. [PMID: 38758089 PMCID: PMC11140268 DOI: 10.1093/molbev/msae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Polyploidy is a prominent mechanism of plant speciation and adaptation, yet the mechanistic understandings of duplicated gene regulation remain elusive. Chromatin structure dynamics are suggested to govern gene regulatory control. Here, we characterized genome-wide nucleosome organization and chromatin accessibility in allotetraploid cotton, Gossypium hirsutum (AADD, 2n = 4X = 52), relative to its two diploid parents (AA or DD genome) and their synthetic diploid hybrid (AD), using DNS-seq. The larger A-genome exhibited wider average nucleosome spacing in diploids, and this intergenomic difference diminished in the allopolyploid but not hybrid. Allopolyploidization also exhibited increased accessibility at promoters genome-wide and synchronized cis-regulatory motifs between subgenomes. A prominent cis-acting control was inferred for chromatin dynamics and demonstrated by transposable element removal from promoters. Linking accessibility to gene expression patterns, we found distinct regulatory effects for hybridization and later allopolyploid stages, including nuanced establishment of homoeolog expression bias and expression level dominance. Histone gene expression and nucleosome organization are coordinated through chromatin accessibility. Our study demonstrates the capability to track high-resolution chromatin structure dynamics and reveals their role in the evolution of cis-regulatory landscapes and duplicate gene expression in polyploids, illuminating regulatory ties to subgenomic asymmetry and dominance.
Collapse
Affiliation(s)
- Guanjing Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated, Chinese Academy of Agricultural Sciences, Institute of Cotton Research, Anyang 455000, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Daniel L Vera
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Pei-Yau Lung
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | | | - Emma R Miller
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Justin L Conover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Shujun Ou
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Xianpeng Xiong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - De Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Dongming Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Joseph P Gallagher
- Forage Seed and Cereal Research Unit, USDA/Agricultural Research Service, Corvallis, OR 97331, USA
| | - Joshua A Udall
- Crop Germplasm Research Unit, USDA/Agricultural Research Service, College Station, TX 77845, USA
| | - Xin Sui
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Hank W Bass
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
8
|
Wang J, Wang X, Wang L, Nazir MF, Fu G, Peng Z, Chen B, Xing A, Zhu M, Ma X, Wang X, Jia Y, Pan Z, Wang L, Xia Y, He S, Du X. Exploring the regulatory role of non-coding RNAs in fiber development and direct regulation of GhKCR2 in the fatty acid metabolic pathway in upland cotton. Int J Biol Macromol 2024; 266:131345. [PMID: 38574935 DOI: 10.1016/j.ijbiomac.2024.131345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Cotton fiber holds immense importance as the primary raw material for the textile industry. Consequently, comprehending the regulatory mechanisms governing fiber development is pivotal for enhancing fiber quality. Our study aimed to construct a regulatory network of competing endogenous RNAs (ceRNAs) and assess the impact of non-coding RNAs on gene expression throughout fiber development. Through whole transcriptome data analysis, we identified differentially expressed genes (DEGs) regulated by non-coding RNA (ncRNA) that were predominantly enriched in phenylpropanoid biosynthesis and the fatty acid elongation pathway. This analysis involved two contrasting phenotypic materials (J02-508 and ZRI015) at five stages of fiber development. Additionally, we conducted a detailed analysis of genes involved in fatty acid elongation, including KCS, KCR, HACD, ECR, and ACOT, to unveil the factors contributing to the variation in fatty acid elongation between J02-508 and ZRI015. Through the integration of histochemical GUS staining, dual luciferase assay experiments, and correlation analysis of expression levels during fiber development stages for lncRNA MSTRG.44818.23 (MST23) and GhKCR2, we elucidated that MST23 positively regulates GhKCR2 expression in the fatty acid elongation pathway. This identification provides valuable insights into the molecular mechanisms underlying fiber development, emphasizing the intricate interplay between non-coding RNAs and protein-coding genes.
Collapse
Affiliation(s)
- Jingjing Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaoyang Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Liyuan Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Mian Faisal Nazir
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Guoyong Fu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhen Peng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China
| | - Baojun Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China
| | - Aishuang Xing
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Mengchen Zhu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xinli Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China
| | - Xiuxiu Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yinhua Jia
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China
| | - Zhaoe Pan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Liru Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yingying Xia
- National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou 455001, China
| | - Shoupu He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China
| | - Xiongming Du
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China.
| |
Collapse
|
9
|
Mabry ME, Abrahams RS, Al-Shehbaz IA, Baker WJ, Barak S, Barker MS, Barrett RL, Beric A, Bhattacharya S, Carey SB, Conant GC, Conran JG, Dassanayake M, Edger PP, Hall JC, Hao Y, Hendriks KP, Hibberd JM, King GJ, Kliebenstein DJ, Koch MA, Leitch IJ, Lens F, Lysak MA, McAlvay AC, McKibben MTW, Mercati F, Moore RC, Mummenhoff K, Murphy DJ, Nikolov LA, Pisias M, Roalson EH, Schranz ME, Thomas SK, Yu Q, Yocca A, Pires JC, Harkess AE. Complementing model species with model clades. THE PLANT CELL 2024; 36:1205-1226. [PMID: 37824826 PMCID: PMC11062466 DOI: 10.1093/plcell/koad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant tree of life continues to improve. The intersection of these 2 research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a "model clade." These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis and the family Brassicaceae. We promote the utility of such a "model clade" and make suggestions for building global networks to support future studies in the model order Brassicales.
Collapse
Affiliation(s)
- Makenzie E Mabry
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - R Shawn Abrahams
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | | | | | - Simon Barak
- Ben-Gurion University of the Negev, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Midreshet Ben-Gurion, 8499000, Israel
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Russell L Barrett
- National Herbarium of New South Wales, Australian Botanic Garden, Locked Bag 6002, Mount Annan, NSW 2567, Australia
| | - Aleksandra Beric
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO 63108, USA
| | - Samik Bhattacharya
- Department of Biology, Botany, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Sarah B Carey
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Gavin C Conant
- Department of Biological Sciences, Bioinformatics Research Center, Program in Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | - John G Conran
- ACEBB and SGC, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48864, USA
| | - Jocelyn C Hall
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Yue Hao
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Kasper P Hendriks
- Department of Biology, Botany, University of Osnabrück, D-49076 Osnabrück, Germany
- Functional Traits, Naturalis Biodiversity Center, PO Box 9517, Leiden 2300 RA, the Netherlands
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | | | - Marcus A Koch
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Frederic Lens
- Functional Traits, Naturalis Biodiversity Center, PO Box 9517, Leiden 2300 RA, the Netherlands
- Institute of Biology Leiden, Plant Sciences, Leiden University, 2333 BE Leiden, the Netherlands
| | - Martin A Lysak
- CEITEC, and NCBR, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Alex C McAlvay
- Institute of Economic Botany, New York Botanical Garden, The Bronx, NY 10458, USA
| | - Michael T W McKibben
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Francesco Mercati
- National Research Council (CNR), Institute of Biosciences and Bioresource (IBBR), Palermo 90129, Italy
| | | | - Klaus Mummenhoff
- Department of Biology, Botany, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Daniel J Murphy
- Royal Botanic Gardens Victoria, Melbourne, VIC 3004, Australia
| | | | - Michael Pisias
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Eric H Roalson
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, the Netherlands
| | - Shawn K Thomas
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Bioinformatics and Analytics Core, University of Missouri, Columbia, MO 65211, USA
| | - Qingyi Yu
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Hilo, HI 96720, USA
| | - Alan Yocca
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - J Chris Pires
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523-1170, USA
| | - Alex E Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
10
|
Katayama N, Yamamoto T, Aiuchi S, Watano Y, Fujiwara T. Subgenome evolutionary dynamics in allotetraploid ferns: insights from the gene expression patterns in the allotetraploid species Phegopteris decursivepinnata (Thelypteridacea, Polypodiales). FRONTIERS IN PLANT SCIENCE 2024; 14:1286320. [PMID: 38264021 PMCID: PMC10803465 DOI: 10.3389/fpls.2023.1286320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Allopolyploidization often leads to disruptive conflicts among more than two sets of subgenomes, leading to genomic modifications and changes in gene expression. Although the evolutionary trajectories of subgenomes in allopolyploids have been studied intensely in angiosperms, the dynamics of subgenome evolution remain poorly understood in ferns, despite the prevalence of allopolyploidization. In this study, we have focused on an allotetraploid fern-Phegopteris decursivepinnata-and its diploid parental species, P. koreana (K) and P. taiwaniana (T). Using RNA-seq analyses, we have compared the gene expression profiles for 9,540 genes among parental species, synthetic F1 hybrids, and natural allotetraploids. The changes in gene expression patterns were traced from the F1 hybrids to the natural allopolyploids. This study has revealed that the expression patterns observed in most genes in the F1 hybrids are largely conserved in the allopolyploids; however, there were substantial differences in certain genes between these groups. In the allopolyploids compared with the F1 hybrids, the number of genes showing a transgressive pattern in total expression levels was increased. There was a slight reduction in T-dominance and a slight increase in K-dominance, in terms of expression level dominance. Interestingly, there is no obvious bias toward the T- or K-subgenomes in the number and expression levels overall, showing the absence of subgenome dominance. These findings demonstrated the impacts of the substantial transcriptome change after hybridization and the moderate modification during allopolyploid establishment on gene expression in ferns and provided important insights into subgenome evolution in polyploid ferns.
Collapse
Affiliation(s)
- Natsu Katayama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Biology, Faculty of Science, Chiba University, Chiba, Japan
| | - Takuya Yamamoto
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | - Sakura Aiuchi
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | - Yasuyuki Watano
- Department of Biology, Faculty of Science, Chiba University, Chiba, Japan
| | - Tao Fujiwara
- Center for Molecular Biodiversity Research, National Museum of Nature and Science, Tsukuba, Ibaraki, Japan
| |
Collapse
|
11
|
Duan T, Sicard A, Glémin S, Lascoux M. Separating phases of allopolyploid evolution with resynthesized and natural Capsella bursa-pastoris. eLife 2024; 12:RP88398. [PMID: 38189348 PMCID: PMC10945474 DOI: 10.7554/elife.88398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Allopolyploidization is a frequent evolutionary transition in plants that combines whole-genome duplication (WGD) and interspecific hybridization. The genome of an allopolyploid species results from initial interactions between parental genomes and long-term evolution. Distinguishing the contributions of these two phases is essential to understanding the evolutionary trajectory of allopolyploid species. Here, we compared phenotypic and transcriptomic changes in natural and resynthesized Capsella allotetraploids with their diploid parental species. We focused on phenotypic traits associated with the selfing syndrome and on transcription-level phenomena such as expression-level dominance (ELD), transgressive expression (TRE), and homoeolog expression bias (HEB). We found that selfing syndrome, high pollen, and seed quality in natural allotetraploids likely resulted from long-term evolution. Similarly, TRE and most down-regulated ELD were only found in natural allopolyploids. Natural allotetraploids also had more ELD toward the self-fertilizing parental species than resynthesized allotetraploids, mirroring the establishment of the selfing syndrome. However, short-term changes mattered, and 40% of the cases of ELD in natural allotetraploids were already observed in resynthesized allotetraploids. Resynthesized allotetraploids showed striking variation of HEB among chromosomes and individuals. Homoeologous synapsis was its primary source and may still be a source of genetic variation in natural allotetraploids. In conclusion, both short- and long-term mechanisms contributed to transcriptomic and phenotypic changes in natural allotetraploids. However, the initial gene expression changes were largely reshaped during long-term evolution leading to further morphological changes.
Collapse
Affiliation(s)
- Tianlin Duan
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Adrien Sicard
- Department of Plant Biology, Swedish University of Agricultural SciencesUppsalaSweden
| | - Sylvain Glémin
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala UniversityUppsalaSweden
- UMR CNRS 6553 ECOBIO, Campus BeaulieuRennesFrance
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| |
Collapse
|
12
|
Zhou W, Zhang L, He J, Chen W, Zhao F, Fu C, Li M. Transcriptome Shock in Developing Embryos of a Brassica napus and Brassica rapa Hybrid. Int J Mol Sci 2023; 24:16238. [PMID: 38003428 PMCID: PMC10671433 DOI: 10.3390/ijms242216238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Interspecific crosses that fuse the genomes of two different species may result in overall gene expression changes in the hybrid progeny, called 'transcriptome shock'. To better understand the expression pattern after genome merging during the early stages of allopolyploid formation, we performed RNA sequencing analysis on developing embryos of Brassica rapa, B. napus, and their synthesized allotriploid hybrids. Here, we show that the transcriptome shock occurs in the developing seeds of the hybrids. Of the homoeologous gene pairs, 17.1% exhibit expression bias, with an overall expression bias toward B. rapa. The expression level dominance also biases toward B. rapa, mainly induced by the expression change in homoeologous genes from B. napus. Functional enrichment analysis revealed significant differences in differentially expressed genes (DEGs) related to photosynthesis, hormone synthesis, and other pathways. Further study showed that significant changes in the expression levels of the key transcription factors (TFs) could regulate the overall interaction network in the developing embryo, which might be an essential cause of phenotype change. In conclusion, the present results have revealed the global changes in gene expression patterns in developing seeds of the hybrid between B. rapa and B. napus, and provided novel insights into the occurrence of transcriptome shock for harnessing heterosis.
Collapse
Affiliation(s)
- Weixian Zhou
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Libin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Wang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Feifan Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Chunhua Fu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| |
Collapse
|
13
|
You J, Liu Z, Qi Z, Ma Y, Sun M, Su L, Niu H, Peng Y, Luo X, Zhu M, Huang Y, Chang X, Hu X, Zhang Y, Pi R, Liu Y, Meng Q, Li J, Zhang Q, Zhu L, Lin Z, Min L, Yuan D, Grover CE, Fang DD, Lindsey K, Wendel JF, Tu L, Zhang X, Wang M. Regulatory controls of duplicated gene expression during fiber development in allotetraploid cotton. Nat Genet 2023; 55:1987-1997. [PMID: 37845354 PMCID: PMC10632151 DOI: 10.1038/s41588-023-01530-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 09/14/2023] [Indexed: 10/18/2023]
Abstract
Polyploidy complicates transcriptional regulation and increases phenotypic diversity in organisms. The dynamics of genetic regulation of gene expression between coresident subgenomes in polyploids remains to be understood. Here we document the genetic regulation of fiber development in allotetraploid cotton Gossypium hirsutum by sequencing 376 genomes and 2,215 time-series transcriptomes. We characterize 1,258 genes comprising 36 genetic modules that control staged fiber development and uncover genetic components governing their partitioned expression relative to subgenomic duplicated genes (homoeologs). Only about 30% of fiber quality-related homoeologs show phenotypically favorable allele aggregation in cultivars, highlighting the potential for subgenome additivity in fiber improvement. We envision a genome-enabled breeding strategy, with particular attention to 48 favorable alleles related to fiber phenotypes that have been subjected to purifying selection during domestication. Our work delineates the dynamics of gene regulation during fiber development and highlights the potential of subgenomic coordination underpinning phenotypes in polyploid plants.
Collapse
Affiliation(s)
- Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhengyang Qi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Mengling Sun
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ling Su
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Hao Niu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yabing Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xuanxuan Luo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Mengmeng Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuefan Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xing Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiubao Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuqi Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ruizhen Pi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuqi Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qingying Meng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - David D Fang
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA, USA
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, UK
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
14
|
Phelps WA, Hurton MD, Ayers TN, Carlson AE, Rosenbaum JC, Lee MT. Hybridization led to a rewired pluripotency network in the allotetraploid Xenopus laevis. eLife 2023; 12:e83952. [PMID: 37787392 PMCID: PMC10569791 DOI: 10.7554/elife.83952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/02/2023] [Indexed: 10/04/2023] Open
Abstract
After fertilization, maternally contributed factors to the egg initiate the transition to pluripotency to give rise to embryonic stem cells, in large part by activating de novo transcription from the embryonic genome. Diverse mechanisms coordinate this transition across animals, suggesting that pervasive regulatory remodeling has shaped the earliest stages of development. Here, we show that maternal homologs of mammalian pluripotency reprogramming factors OCT4 and SOX2 divergently activate the two subgenomes of Xenopus laevis, an allotetraploid that arose from hybridization of two diploid species ~18 million years ago. Although most genes have been retained as two homeologous copies, we find that a majority of them undergo asymmetric activation in the early embryo. Chromatin accessibility profiling and CUT&RUN for modified histones and transcription factor binding reveal extensive differences in predicted enhancer architecture between the subgenomes, which likely arose through genomic disruptions as a consequence of allotetraploidy. However, comparison with diploid X. tropicalis and zebrafish shows broad conservation of embryonic gene expression levels when divergent homeolog contributions are combined, implying strong selection to maintain dosage in the core vertebrate pluripotency transcriptional program, amid genomic instability following hybridization.
Collapse
Affiliation(s)
- Wesley A Phelps
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Matthew D Hurton
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Taylor N Ayers
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Anne E Carlson
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Joel C Rosenbaum
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Miler T Lee
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| |
Collapse
|
15
|
Sha Y, Li Y, Zhang D, Lv R, Wang H, Wang R, Ji H, Li S, Gong L, Li N, Liu B. Genome shock in a synthetic allotetraploid wheat invokes subgenome-partitioned gene regulation, meiotic instability, and karyotype variation. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5547-5563. [PMID: 37379452 DOI: 10.1093/jxb/erad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
It is becoming increasingly evident that interspecific hybridization at the homoploid level or coupled with whole-genome duplication (i.e. allopolyploidization) has played a major role in biological evolution. However, the direct impacts of hybridization and allopolyploidization on genome structure and function, phenotype, and fitness remains to be fully understood. Synthetic hybrids and allopolyploids are trackable experimental systems that can be used to address this issue. In this study, we resynthesized a pair of reciprocal F1 hybrids and corresponding reciprocal allotetraploids using the two diploid progenitor species of bread wheat (Triticum aestivum, BBAADD), namely T. urartu (AA) and Aegilops tauschii (DD). By comparing phenotypes related to growth, development, and fitness, and by analysing genome expression in both hybrids and allotetraploids in relation to the parents, we found that the types and trends of karyotype variation in the immediately formed allotetraploids were correlated with both instability of meiosis and chromosome- and subgenome-biased expression. We determined clear advantages of allotetraploids over diploid F1 hybrids in several morphological traits including fitness that mirrored the tissue- and developmental stage-dependent subgenome-partitioning of the allotetraploids. The allotetraploids were meiotically unstable primarily due to homoeologous pairing that varied dramatically among the chromosomes. Nonetheless, the manifestation of organismal karyotype variation and the occurrence of meiotic irregularity were not concordant, suggesting a role of functional constraints probably imposed by subgenome- and chromosome-biased gene expression. Our results provide new insights into the direct impacts and consequences of hybridization and allopolyploidization that are relevant to evolution and likely to be informative for future crop improvement approaches using synthetic polyploids.
Collapse
Affiliation(s)
- Yan Sha
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yang Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Deshi Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Han Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ruisi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Heyu Ji
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Shuhang Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| |
Collapse
|
16
|
Zhang Z, Lv R, Wang B, Xun H, Liu B, Xu C. Effects of Allopolyploidization and Homoeologous Chromosomal Segment Exchange on Homoeolog Expression in a Synthetic Allotetraploid Wheat under Variable Environmental Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3111. [PMID: 37687357 PMCID: PMC10490264 DOI: 10.3390/plants12173111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
Allopolyploidy through the combination of divergent genomes into a common nucleus at doubled dosage is known as a potent genetic and evolutionary force. As a macromutation, a striking feature of allopolyploidy in comparison with other mutational processes is that 'genome shock' can be evoked, thereby generating rapid and saltational biological consequences. A major manifestation of genome shock is genome-wide gene expression rewiring, which previously remained to be fully elucidated. Here, using a large set of RNAseq-based transcriptomic data of a synthetic allotetraploid wheat (genome AADD) and its parental species, we performed in-depth analyses of changes in the genome-wide gene expression under diverse environmental conditions at the subgenome (homoeolog) level and investigated the additional effects of homoeologous chromosomal segment exchanges (abbreviated HEs). We show that allopolyploidy caused large-scale changes in gene expression that were variable across the conditions and exacerbated by both stresses and HEs. Moreover, although both subgenomes (A and D) showed clear commonality in the changes, they responded differentially under variable conditions. The subgenome- and condition-dependent differentially expressed genes were enriched for different gene ontology terms implicating different biological functions. Our results provide new insights into the direct impacts of allopolyploidy on condition-dependent changes in subgenome expression and the additional effects of HEs in nascent allopolyploidy.
Collapse
Affiliation(s)
- Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences (CAS), Changchun 130102, China
| | - Hongwei Xun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| |
Collapse
|
17
|
Vasudevan A, Lévesque-Lemay M, Edwards T, Cloutier S. Global transcriptome analysis of allopolyploidization reveals large-scale repression of the D-subgenome in synthetic hexaploid wheat. Commun Biol 2023; 6:426. [PMID: 37069312 PMCID: PMC10110605 DOI: 10.1038/s42003-023-04781-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/30/2023] [Indexed: 04/19/2023] Open
Abstract
Synthetic hexaploid wheat (SHW) lines are created as pre-breeding germplasm to diversify the D subgenome of hexaploid wheat and capitalize upon the untapped genetic diversity of the Aegilops tauschii gene pool. However, the phenotypes observed in the Ae. tauschii parents are not always recovered in the SHW lines, possibly due to inter-subgenome interactions. To elucidate this post-polyploidization genome reprogramming phenomenon, we performed RNA-seq of four SHW lines and their corresponding tetraploid and diploid parents, across ten tissues and three biological replicates. Homoeologue expression bias (HEB) analysis using more than 18,000 triads suggests massive suppression of homoeoalleles of the D subgenome in SHWs. Comparative transcriptome analysis of the whole-genome gene set further corroborated this finding. Alternative splicing analysis of the high-confidence genes indicates an additional layer of complexity where all five splice events are identified, and retained intron is predominant. Homoeologue expression upon resynthesis of hexaploid wheat has implications to the usage and handling of this germplasm in breeding as it relates to capturing the effects of epistatic interaction across subgenomes upon polyploidization. Special considerations must be given to this germplasm in pre-breeding activities to consider the extent of the inter-subgenome interactions on gene expression and their impact on traits for crop improvement.
Collapse
Affiliation(s)
- Akshaya Vasudevan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | | | - Tara Edwards
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | - Sylvie Cloutier
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada.
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
18
|
Boatwright JL. A Robust Methodology for Assessing Homoeolog-Specific Expression. Methods Mol Biol 2023; 2545:251-258. [PMID: 36720817 DOI: 10.1007/978-1-0716-2561-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Angiosperm evolution is marked by numerous, recurring polyploidization events. While hybridization and polyploidization have greatly increased the degree of genetic and phenotypic diversity in plants, the mechanisms underlying changes in the genotype-to-phenotype relationships remain unclear. As the field of natural sciences continues to expand during the post-genomic era, large datasets are becoming increasingly common. However, the development of tools and workflows available to robustly assess these changes have lagged behind data production. A robust homoeolog-specific expression analysis strongly depends upon proper homoeolog calling, the ability to account for reference sequence biases, flexible and accurate methods for dealing with residual bias, and a reproducible workflow. To that end, this chapter aims to provide a detailed description of the potential pitfalls encountered while estimating homoeolog-specific expression as well as provide a workflow that allows for robust inferences based on precise estimates of expression changes.
Collapse
Affiliation(s)
- J Lucas Boatwright
- Advanced Plant Technology, Clemson University, Clemson, SC, USA. .,Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
19
|
Duan T, Sicard A, Glémin S, Lascoux M. Expression pattern of resynthesized allotetraploid Capsella is determined by hybridization, not whole-genome duplication. THE NEW PHYTOLOGIST 2023; 237:339-353. [PMID: 36254103 PMCID: PMC10099941 DOI: 10.1111/nph.18542] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Polyploidization, the process leading to the increase in chromosome sets, is a major evolutionary transition in plants. Whole-genome duplication (WGD) within the same species gives rise to autopolyploids, whereas allopolyploids result from a compound process with two distinct components: WGD and interspecific hybridization. To dissect the instant effects of WGD and hybridization on gene expression and phenotype, we created a series of synthetic hybrid and polyploid Capsella plants, including diploid hybrids, autotetraploids of both parental species, and two kinds of resynthesized allotetraploids with different orders of WGD and hybridization. Hybridization played a major role in shaping the relative expression pattern of the neo-allopolyploids, whereas WGD had almost no immediate effect on relative gene expression pattern but, nonetheless, still affected phenotypes. No transposable element-mediated genomic shock scenario was observed in either neo-hybrids or neo-polyploids. Finally, WGD and hybridization interacted and the distorting effects of WGD were less strong in hybrids. Whole-genome duplication may even improve hybrid fertility. In summary, while the initial relative gene expression pattern in neo-allotetraploids was almost entirely determined by hybridization, WGD only had trivial effects on relative expression patterns, both processes interacted and had a strong impact on physical attributes and meiotic behaviors.
Collapse
Affiliation(s)
- Tianlin Duan
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life LaboratoryUppsala University75236UppsalaSweden
| | - Adrien Sicard
- Department of Plant BiologySwedish University of Agricultural Sciences750 07UppsalaSweden
| | - Sylvain Glémin
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life LaboratoryUppsala University75236UppsalaSweden
- UMR CNRS 6553 ECOBIOCampus Beaulieu, bât 14a, p.118, CS 7420535042RennesFrance
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life LaboratoryUppsala University75236UppsalaSweden
| |
Collapse
|
20
|
Jia Z, Gao P, Yin F, Quilichini TD, Sheng H, Song J, Yang H, Gao J, Chen T, Yang B, Kochian LV, Zou J, Patterson N, Yang Q, Gillmor CS, Datla R, Li Q, Xiang D. Asymmetric gene expression in grain development of reciprocal crosses between tetraploid and hexaploid wheats. Commun Biol 2022; 5:1412. [PMID: 36564439 PMCID: PMC9789062 DOI: 10.1038/s42003-022-04374-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Production of viable progeny from interploid crosses requires precise regulation of gene expression from maternal and paternal chromosomes, yet the transcripts contributed to hybrid seeds from polyploid parent species have rarely been explored. To investigate the genome-wide maternal and paternal contributions to polyploid grain development, we analyzed the transcriptomes of developing embryos, from zygote to maturity, alongside endosperm in two stages of development, using reciprocal crosses between tetraploid and hexaploid wheats. Reciprocal crosses between species with varied levels of ploidy displayed broad impacts on gene expression, including shifts in alternative splicing events in select crosses, as illustrated by active splicing events, enhanced protein synthesis and chromatin remodeling. Homoeologous gene expression was repressed on the univalent D genome in pentaploids, but this suppression was attenuated in crosses with a higher ploidy maternal parent. Imprinted genes were identified in endosperm and early embryo tissues, supporting predominant maternal effects on early embryogenesis. By systematically investigating the complex transcriptional networks in reciprocal-cross hybrids, this study presents a framework for understanding the genomic incompatibility and transcriptome shock that results from interspecific hybridization and uncovers the transcriptional impacts on hybrid seeds created from agriculturally-relevant polyploid species.
Collapse
Affiliation(s)
- Zhen Jia
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Peng Gao
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Feifan Yin
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China ,grid.35155.370000 0004 1790 4137Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070 Wuhan, China
| | - Teagen D. Quilichini
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Huajin Sheng
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Jingpu Song
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Hui Yang
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Jie Gao
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ting Chen
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Bo Yang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Leon V. Kochian
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Jitao Zou
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Nii Patterson
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Qingyong Yang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China ,grid.35155.370000 0004 1790 4137Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070 Wuhan, China
| | - C. Stewart Gillmor
- grid.512574.0Langebio, Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV-IPN), Irapuato, Guanajuato, 36821 México
| | - Raju Datla
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Qiang Li
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Daoquan Xiang
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| |
Collapse
|
21
|
Zhang Z, Xun H, Lv R, Gou X, Ma X, Li J, Zhao J, Li N, Gong L, Liu B. Effects of homoeologous exchange on gene expression and alternative splicing in a newly formed allotetraploid wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1267-1282. [PMID: 35763523 DOI: 10.1111/tpj.15886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Homoeologous exchange (HE) is a major mechanism generating post-polyploidization genetic variation with important evolutionary consequences. However, the direct impacts of HE on gene expression and transcript diversity in allopolyploids without the intertwined evolutionary processes remain to be fully understood. Here, we analyzed high-throughput RNA-seq data of young leaves from plant groups of a synthetic allotetraploid wheat (AADD), which contained variable numbers of HEs. We aimed to investigate if and to which extent HE directly impacts gene expression and alternative splicing (AS). We found that HE impacts expression of genes located within HE regions primarily via a cis-acting dosage effect, which led to significant changes in the total expression level of homoeologous gene pairs, especially for homoeologs whose original expression was biased. In parallel, HE also influences expression of a large number of genes residing in non-HE regions by trans-regulation leading to convergent expression of homoeologs. Intriguingly, when taking the original relative homoeolog expression states into account, homoeolog pairs under trans-effect are more prone to manifesting a convergent response to the HEs whereas those under cis-regulation tended to show further exacerbated subgenome-biased expression. Moreover, HE-induced quantitative, largely individual-specific, changes of AS events were detected. Similar to homoeologous expression, homoeo-AS events under trans-effect were more responsive to HE. HE therefore exerts multifaceted immediate effects on gene expression and, to a less extent, on individualized transcript diversity in nascent allopolyploidy.
Collapse
Affiliation(s)
- Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Hongwei Xun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiaowan Gou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xintong Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Juzuo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jing Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
22
|
Dong Y, Hu G, Grover CE, Miller ER, Zhu S, Wendel JF. Parental legacy versus regulatory innovation in salt stress responsiveness of allopolyploid cotton (Gossypium) species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:872-887. [PMID: 35686631 PMCID: PMC9540634 DOI: 10.1111/tpj.15863] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Polyploidy provides an opportunity for evolutionary innovation and species diversification, especially under stressful conditions. In allopolyploids, the conditional dynamics of homoeologous gene expression can be either inherited from ancestral states pre-existing in the parental diploids or novel upon polyploidization, the latter potentially permitting a wider range of phenotypic responses to stresses. To gain insight into regulatory mechanisms underlying the diversity of salt resistance in Gossypium species, we compared global transcriptomic responses to modest salinity stress in two allotetraploid (AD-genome) cotton species, Gossypium hirsutum and G. mustelinum, relative to their model diploid progenitors (A-genome and D-genome). Multivariate and pairwise analyses of salt-responsive changes revealed a profound alteration of gene expression for about one third of the transcriptome. Transcriptional responses and associated functional implications of salt acclimation varied across species, as did species-specific coexpression modules among species and ploidy levels. Salt responsiveness in both allopolyploids was strongly biased toward the D-genome progenitor. A much lower level of transgressive downregulation was observed in the more salt-tolerant G. mustelinum than in the less tolerant G. hirsutum. By disentangling inherited effects from evolved responses, we show that expression biases that are not conditional upon salt stress approximately equally reflect parental legacy and regulatory novelty upon allopolyploidization, whereas stress-responsive biases are predominantly novel, or evolved, in allopolyploids. Overall, our work suggests that allopolyploid cottons acquired a wide range of stress response flexibility relative to their diploid ancestors, most likely mediated by complex suites of duplicated genes and regulatory factors.
Collapse
Affiliation(s)
- Yating Dong
- Department of AgronomyZhejiang UniversityHangzhouZhejiang310 053China
- Department of Ecology, Evolution, and Organismal Biology (EEOB), Bessey HallIowa State UniversityAmesIA50011USA
| | - Guanjing Hu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang455 000China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhen518 120China
| | - Corrinne E. Grover
- Department of Ecology, Evolution, and Organismal Biology (EEOB), Bessey HallIowa State UniversityAmesIA50011USA
| | - Emma R. Miller
- Department of Ecology, Evolution, and Organismal Biology (EEOB), Bessey HallIowa State UniversityAmesIA50011USA
| | - Shuijin Zhu
- Department of AgronomyZhejiang UniversityHangzhouZhejiang310 053China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology (EEOB), Bessey HallIowa State UniversityAmesIA50011USA
| |
Collapse
|
23
|
Shin H, Park JE, Park HR, Choi WL, Yu SH, Koh W, Kim S, Soh HY, Waminal NE, Belandres HR, Lim JY, Yi G, Ahn JH, Kim J, Kim Y, Koo N, Kim K, Perumal S, Kang T, Kim J, Jang H, Kang DH, Kim YS, Jeong H, Yang J, Song S, Park S, Kim JA, Lim YP, Park B, Hsieh T, Yang T, Choi D, Kim HH, Lee S, Huh JH. Admixture of divergent genomes facilitates hybridization across species in the family Brassicaceae. THE NEW PHYTOLOGIST 2022; 235:743-758. [PMID: 35403705 PMCID: PMC9320894 DOI: 10.1111/nph.18155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/28/2022] [Indexed: 05/15/2023]
Abstract
Hybridization and polyploidization are pivotal to plant evolution. Genetic crosses between distantly related species are rare in nature due to reproductive barriers but how such hurdles can be overcome is largely unknown. Here we report the hybrid genome structure of xBrassicoraphanus, a synthetic allotetraploid of Brassica rapa and Raphanus sativus. We performed cytogenetic analysis and de novo genome assembly to examine chromosome behaviors and genome integrity in the hybrid. Transcriptome analysis was conducted to investigate expression of duplicated genes in conjunction with epigenome analysis to address whether genome admixture entails epigenetic reconfiguration. Allotetraploid xBrassicoraphanus retains both parental chromosomes without genome rearrangement. Meiotic synapsis formation and chromosome exchange are avoided between nonhomologous progenitor chromosomes. Reconfiguration of transcription network occurs, and less divergent cis-elements of duplicated genes are associated with convergent expression. Genome-wide DNA methylation asymmetry between progenitors is largely maintained but, notably, B. rapa-originated transposable elements are transcriptionally silenced in xBrassicoraphanus through gain of DNA methylation. Our results demonstrate that hybrid genome stabilization and transcription compatibility necessitate epigenome landscape adjustment and rewiring of cis-trans interactions. Overall, this study suggests that a certain extent of genome divergence facilitates hybridization across species, which may explain the great diversification and expansion of angiosperms during evolution.
Collapse
Affiliation(s)
- Hosub Shin
- Department of Agriculture, Forestry and BioresourcesCollege of Agriculture and Life ScienceSeoul National UniversitySeoul08826South Korea
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoul08826South Korea
| | - Jeong Eun Park
- Department of Agriculture, Forestry and BioresourcesCollege of Agriculture and Life ScienceSeoul National UniversitySeoul08826South Korea
| | - Hye Rang Park
- Department of Agriculture, Forestry and BioresourcesCollege of Agriculture and Life ScienceSeoul National UniversitySeoul08826South Korea
| | - Woo Lee Choi
- Department of Agriculture, Forestry and BioresourcesCollege of Agriculture and Life ScienceSeoul National UniversitySeoul08826South Korea
| | - Seung Hwa Yu
- Interdisciplinary Program in Agricultural GenomicsSeoul National UniversitySeoul08826South Korea
| | - Wonjun Koh
- Department of Agriculture, Forestry and BioresourcesCollege of Agriculture and Life ScienceSeoul National UniversitySeoul08826South Korea
| | - Seungill Kim
- Interdisciplinary Program in Agricultural GenomicsSeoul National UniversitySeoul08826South Korea
- Department of Environmental HorticultureUniversity of SeoulSeoul02504South Korea
| | - Hye Yeon Soh
- Interdisciplinary Program in Agricultural GenomicsSeoul National UniversitySeoul08826South Korea
| | - Nomar Espinosa Waminal
- Department of Agriculture, Forestry and BioresourcesCollege of Agriculture and Life ScienceSeoul National UniversitySeoul08826South Korea
- Department of Life ScienceChromosome Research InstituteSahmyook UniversitySeoul01795South Korea
| | - Hadassah Roa Belandres
- Department of Life ScienceChromosome Research InstituteSahmyook UniversitySeoul01795South Korea
| | - Joo Young Lim
- Department of Agriculture, Forestry and BioresourcesCollege of Agriculture and Life ScienceSeoul National UniversitySeoul08826South Korea
| | - Gibum Yi
- Department of Agriculture, Forestry and BioresourcesCollege of Agriculture and Life ScienceSeoul National UniversitySeoul08826South Korea
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoul08826South Korea
| | - Jong Hwa Ahn
- Department of Agriculture, Forestry and BioresourcesCollege of Agriculture and Life ScienceSeoul National UniversitySeoul08826South Korea
| | - June‐Sik Kim
- Department of Agriculture, Forestry and BioresourcesCollege of Agriculture and Life ScienceSeoul National UniversitySeoul08826South Korea
- Research Institute of Agriculture and Life ScienceSeoul National UniversitySeoul08826South Korea
| | - Yong‐Min Kim
- Korea Bioinformation CenterKorea Research Institute of Bioscience and BiotechnologyDaejeon34141South Korea
| | - Namjin Koo
- Korea Bioinformation CenterKorea Research Institute of Bioscience and BiotechnologyDaejeon34141South Korea
| | - Kyunghee Kim
- Department of Agriculture, Forestry and BioresourcesCollege of Agriculture and Life ScienceSeoul National UniversitySeoul08826South Korea
| | - Sampath Perumal
- Department of Agriculture, Forestry and BioresourcesCollege of Agriculture and Life ScienceSeoul National UniversitySeoul08826South Korea
| | - Taegu Kang
- Department of Agriculture, Forestry and BioresourcesCollege of Agriculture and Life ScienceSeoul National UniversitySeoul08826South Korea
| | - Junghyo Kim
- Interdisciplinary Program in Agricultural GenomicsSeoul National UniversitySeoul08826South Korea
| | - Hosung Jang
- Department of Agriculture, Forestry and BioresourcesCollege of Agriculture and Life ScienceSeoul National UniversitySeoul08826South Korea
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoul08826South Korea
| | - Dong Hyun Kang
- Department of Agriculture, Forestry and BioresourcesCollege of Agriculture and Life ScienceSeoul National UniversitySeoul08826South Korea
| | - Ye Seul Kim
- Department of Agriculture, Forestry and BioresourcesCollege of Agriculture and Life ScienceSeoul National UniversitySeoul08826South Korea
| | - Hyeon‐Min Jeong
- Interdisciplinary Program in Agricultural GenomicsSeoul National UniversitySeoul08826South Korea
| | - Junwoo Yang
- Department of Agriculture, Forestry and BioresourcesCollege of Agriculture and Life ScienceSeoul National UniversitySeoul08826South Korea
| | - Somin Song
- Department of Agriculture, Forestry and BioresourcesCollege of Agriculture and Life ScienceSeoul National UniversitySeoul08826South Korea
| | - Suhyoung Park
- Department of Horticultural Crop ResearchNational Institute of Horticultural and Herbal ScienceRural Development AdministrationWanjuJeollabuk‐do55365South Korea
| | - Jin A. Kim
- Department of Agricultural BiotechnologyNational Academy of Agricultural ScienceRural Development AdministrationJeonjuJeollabuk‐do54874South Korea
| | - Yong Pyo Lim
- Department of HorticultureChungnam National UniversityDaejeon34134South Korea
| | | | - Tzung‐Fu Hsieh
- Plants for Human Health InstituteNorth Carolina State UniversityNorth Carolina Research CampusKannapolisNC27695USA
| | - Tae‐Jin Yang
- Department of Agriculture, Forestry and BioresourcesCollege of Agriculture and Life ScienceSeoul National UniversitySeoul08826South Korea
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoul08826South Korea
- Interdisciplinary Program in Agricultural GenomicsSeoul National UniversitySeoul08826South Korea
- Research Institute of Agriculture and Life ScienceSeoul National UniversitySeoul08826South Korea
| | - Doil Choi
- Department of Agriculture, Forestry and BioresourcesCollege of Agriculture and Life ScienceSeoul National UniversitySeoul08826South Korea
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoul08826South Korea
- Interdisciplinary Program in Agricultural GenomicsSeoul National UniversitySeoul08826South Korea
- Research Institute of Agriculture and Life ScienceSeoul National UniversitySeoul08826South Korea
| | - Hyun Hee Kim
- Department of Life ScienceChromosome Research InstituteSahmyook UniversitySeoul01795South Korea
| | - Soo‐Seong Lee
- BioBreeding InstituteAnseongGyeonggi‐do17544South Korea
| | - Jin Hoe Huh
- Department of Agriculture, Forestry and BioresourcesCollege of Agriculture and Life ScienceSeoul National UniversitySeoul08826South Korea
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoul08826South Korea
- Interdisciplinary Program in Agricultural GenomicsSeoul National UniversitySeoul08826South Korea
- Research Institute of Agriculture and Life ScienceSeoul National UniversitySeoul08826South Korea
| |
Collapse
|
24
|
Quan C, Chen G, Li S, Jia Z, Yu P, Tu J, Shen J, Yi B, Fu T, Dai C, Ma C. Transcriptome shock in interspecific F1 allotriploid hybrids between Brassica species. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2336-2353. [PMID: 35139197 DOI: 10.1093/jxb/erac047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Interspecific hybridization drives the evolution of angiosperms and can be used to introduce novel alleles for important traits or to activate heterosis in crop breeding. Hybridization brings together gene expression networks from two different species, potentially causing global alterations of gene expression in the F1 plants which is called 'transcriptome shock'. Here, we explored such a transcriptome shock in allotriploid Brassica hybrids. We generated interspecific F1 allotriploid hybrids between the allotetraploid species Brassica napus and three accessions of the diploid species Brassica rapa. RNA-seq of the F1 hybrids and the parental plants revealed that 26.34-30.89% of genes were differentially expressed between the parents. We also analyzed expression level dominance and homoeolog expression bias between the parents and the F1 hybrids. The expression-level dominance biases of the Ar, An, and Cn subgenomes was genotype and stage dependent, whereas significant homoeolog expression bias was observed among three subgenomes from different parents. Furthermore, more genes were involved in trans regulation than in cis regulation in allotriploid F1 hybrids. Our findings provide new insights into the transcriptomic responses of cross-species hybrids and hybrids showing heterosis, as well as a new method for promoting the breeding of desirable traits in polyploid Brassica species.
Collapse
Affiliation(s)
- Chengtao Quan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Guoting Chen
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Sijia Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibo Jia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Pugang Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
25
|
Polyploidy as a Fundamental Phenomenon in Evolution, Development, Adaptation and Diseases. Int J Mol Sci 2022; 23:ijms23073542. [PMID: 35408902 PMCID: PMC8998937 DOI: 10.3390/ijms23073542] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/02/2023] Open
Abstract
DNA replication during cell proliferation is 'vertical' copying, which reproduces an initial amount of genetic information. Polyploidy, which results from whole-genome duplication, is a fundamental complement to vertical copying. Both organismal and cell polyploidy can emerge via premature cell cycle exit or via cell-cell fusion, the latter giving rise to polyploid hybrid organisms and epigenetic hybrids of somatic cells. Polyploidy-related increase in biological plasticity, adaptation, and stress resistance manifests in evolution, development, regeneration, aging, oncogenesis, and cardiovascular diseases. Despite the prevalence in nature and importance for medicine, agri- and aquaculture, biological processes and epigenetic mechanisms underlying these fundamental features largely remain unknown. The evolutionarily conserved features of polyploidy include activation of transcription, response to stress, DNA damage and hypoxia, and induction of programs of morphogenesis, unicellularity, and longevity, suggesting that these common features confer adaptive plasticity, viability, and stress resistance to polyploid cells and organisms. By increasing cell viability, polyploidization can provide survival under stressful conditions where diploid cells cannot survive. However, in somatic cells it occurs at the expense of specific function, thus promoting developmental programming of adult cardiovascular diseases and increasing the risk of cancer. Notably, genes arising via evolutionary polyploidization are heavily involved in cancer and other diseases. Ploidy-related changes of gene expression presumably originate from chromatin modifications and the derepression of bivalent genes. The provided evidence elucidates the role of polyploidy in evolution, development, aging, and carcinogenesis, and may contribute to the development of new strategies for promoting regeneration and preventing cardiovascular diseases and cancer.
Collapse
|
26
|
Conover JL, Wendel JF. Deleterious Mutations Accumulate Faster in Allopolyploid than Diploid Cotton (Gossypium) and Unequally between Subgenomes. Mol Biol Evol 2022; 39:6517786. [PMID: 35099532 PMCID: PMC8841602 DOI: 10.1093/molbev/msac024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Whole genome duplication (polyploidization) is among the most dramatic mutational processes in nature, so understanding how natural selection differs in polyploids relative to diploids is an important goal. Population genetics theory predicts that recessive deleterious mutations accumulate faster in allopolyploids than diploids due to the masking effect of redundant gene copies, but this prediction is hitherto unconfirmed. Here, we use the cotton genus (Gossypium), which contains seven allopolyploids derived from a single polyploidization event 1-2 million years ago, to investigate deleterious mutation accumulation. We use two methods of identifying deleterious mutations at the nucleotide and amino acid level, along with whole-genome resequencing of 43 individuals spanning six allopolyploid species and their two diploid progenitors, to demonstrate that deleterious mutations accumulate faster in allopolyploids than in their diploid progenitors. We find that, unlike what would be expected under models of demographic changes alone, strongly deleterious mutations show the biggest difference between ploidy levels, and this effect diminishes for moderately and mildly deleterious mutations. We further show that the proportion of nonsynonymous mutations that are deleterious differs between the two co-resident subgenomes in the allopolyploids, suggesting that homoeologous masking acts unequally between subgenomes. Our results provide a genome-wide perspective on classic notions of the significance of gene duplication that likely are broadly applicable to allopolyploids, with implications for our understanding of the evolutionary fate of deleterious mutations. Finally, we note that some measures of selection (e.g. dN/dS, πN/πS) may be biased when species of different ploidy levels are compared.
Collapse
Affiliation(s)
- Justin L Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
27
|
Blasio F, Prieto P, Pradillo M, Naranjo T. Genomic and Meiotic Changes Accompanying Polyploidization. PLANTS (BASEL, SWITZERLAND) 2022; 11:125. [PMID: 35009128 PMCID: PMC8747196 DOI: 10.3390/plants11010125] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 05/04/2023]
Abstract
Hybridization and polyploidy have been considered as significant evolutionary forces in adaptation and speciation, especially among plants. Interspecific gene flow generates novel genetic variants adaptable to different environments, but it is also a gene introgression mechanism in crops to increase their agronomical yield. An estimate of 9% of interspecific hybridization has been reported although the frequency varies among taxa. Homoploid hybrid speciation is rare compared to allopolyploidy. Chromosome doubling after hybridization is the result of cellular defects produced mainly during meiosis. Unreduced gametes, which are formed at an average frequency of 2.52% across species, are the result of altered spindle organization or orientation, disturbed kinetochore functioning, abnormal cytokinesis, or loss of any meiotic division. Meiotic changes and their genetic basis, leading to the cytological diploidization of allopolyploids, are just beginning to be understood especially in wheat. However, the nature and mode of action of homoeologous recombination suppressor genes are poorly understood in other allopolyploids. The merger of two independent genomes causes a deep modification of their architecture, gene expression, and molecular interactions leading to the phenotype. We provide an overview of genomic changes and transcriptomic modifications that particularly occur at the early stages of allopolyploid formation.
Collapse
Affiliation(s)
- Francesco Blasio
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4048, 14080 Cordova, Spain;
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| | - Tomás Naranjo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| |
Collapse
|
28
|
Ma X, Zhang Z, Li G, Gou X, Bian Y, Zhao Y, Wang B, Lang M, Wang T, Xie K, Liu X, Liu B, Gong L. Spatial and Temporal Transcriptomic Heredity and Asymmetry in an Artificially Constructed Allotetraploid Wheat (AADD). FRONTIERS IN PLANT SCIENCE 2022; 13:887133. [PMID: 35651770 PMCID: PMC9150853 DOI: 10.3389/fpls.2022.887133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/08/2022] [Indexed: 05/15/2023]
Abstract
Polyploidy, or whole-genome duplication (WGD), often induces dramatic changes in gene expression due to "transcriptome shock. " However, questions remain about how allopolyploidy (the merging of multiple nuclear genomes in the same nucleus) affects gene expression within and across multiple tissues and developmental stages during the initial foundation of allopolyploid plants. Here, we systematically investigated the immediate effect of allopolyploidy on gene expression variation in an artificial allopolyploidy system consisting of a constructed allotetraploid wheat (AADD genome, accession AT2) and its diploid progenitors Triticum urartu and Aegilops tauschii. We performed comprehensive RNA sequencing of 81 samples from different genotypes, tissues, and developmental stages. First, we found that intrinsic interspecific differences between the diploid parents played a major role in establishing the expression architecture of the allopolyploid. Nonetheless, allopolyploidy per se also induced dramatic and asymmetric patterns of differential gene expression between the subgenomes, and genes from the D subgenome exhibited a more drastic response. Second, analysis of homoeolog expression bias (HEB) revealed that the D subgenome exhibited significant expression bias and that de novo-generated HEB was attributed mainly to asymmetrical differential gene expression. Homoeolog-specific expression (HSE) analyses showed that the cis-only regulatory pattern was predominant in AT2, reflecting significant divergence between the parents. Co-expression network analysis revealed that homoeolog expression connectivity (HEC) was significantly correlated with sequence divergence in cis elements between subgenomes. Interestingly, allopolyploidy-induced reconstruction of network modules was also associated with different HSE patterns. Finally, a transcriptome atlas of spike development demonstrated that the phenotypic similarity of AT2 to T. urartu may be attributed to the combination of relatively stable expression of A-subgenome genes and drastic downregulation of their D-subgenome homoeologs. These findings provide a broad, multidimensional characterization of allopolyploidy-induced transcriptomic responses and suggest that allopolyploidy can have immediate and complex regulatory effects on the expression of nuclear genes.
Collapse
Affiliation(s)
- Xintong Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Guo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiaowan Gou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yao Bian
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
- School of Life Sciences, Liaoning Normal University, Dalian, China
| | - Yue Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Man Lang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Kun Xie
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiaoming Liu
- Jia Sixie College of Agriculture, Weifang University of Science and Technology, Shouguang, China
- *Correspondence: Xiaoming Liu
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
- Bao Liu
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
- Lei Gong
| |
Collapse
|
29
|
Anatskaya OV, Vinogradov AE. Whole-Genome Duplications in Evolution, Ontogeny, and Pathology: Complexity and Emergency Reserves. Mol Biol 2021. [DOI: 10.1134/s0026893321050022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Seni S, Kaur S, Malik P, Yadav IS, Sirohi P, Chauhan H, Kaur A, Chhuneja P. Transcriptome based identification and validation of heat stress transcription factors in wheat progenitor species Aegilops speltoides. Sci Rep 2021; 11:22049. [PMID: 34764387 PMCID: PMC8586331 DOI: 10.1038/s41598-021-01596-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/01/2021] [Indexed: 11/10/2022] Open
Abstract
Wheat, one of the major cereal crops worldwide, get adversely affected by rising global temperature. We have identified the diploid B genome progenitor of wheat, Aegilops speltoides (SS), as a potential donor for heat stress tolerance. Therefore, the present work was planned to study the total transcriptome profile of heat stress-tolerant Ae. speltoides accession pau3809 (AS3809) and compare with that of tetraploid and hexaploid wheat cultivars PDW274 and PBW725, respectively. The comparative transcriptome was utilized to identify and validate heat stress transcription factors (HSFs), the key genes involved in imparting heat stress tolerance. Transcriptome analysis led to the identification of a total of 74 K, 68 K, and 76 K genes in AS3809, PDW274, and PBW725, respectively. There was a high uniformity of GO profiles under the biological, molecular, and cellular functions across the three wheat transcriptomes, suggesting the conservation of gene function. Twelve HSFs having the highest FPKM value were identified in the AS3809 transcriptome data, while six of these HSFs namely HSFA3, HSFA5, HSFA9, HSFB2a, HSFB2b, and HSFC1b, were validated with qRT PCR. These six HSFs were identified as an important component of thermotolerance in AS3809 as evident from their comparative higher expression under heat stress.
Collapse
Affiliation(s)
- Sushmita Seni
- grid.412577.20000 0001 2176 2352School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Palvi Malik
- grid.412577.20000 0001 2176 2352School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Inderjit Singh Yadav
- grid.412577.20000 0001 2176 2352School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Parul Sirohi
- grid.19003.3b0000 0000 9429 752XDepartment of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Harsh Chauhan
- grid.19003.3b0000 0000 9429 752XDepartment of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Amandeep Kaur
- grid.412577.20000 0001 2176 2352School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Parveen Chhuneja
- grid.412577.20000 0001 2176 2352School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| |
Collapse
|
31
|
Glombik M, Copetti D, Bartos J, Stoces S, Zwierzykowski Z, Ruttink T, Wendel JF, Duchoslav M, Dolezel J, Studer B, Kopecky D. Reciprocal allopolyploid grasses (Festuca × Lolium) display stable patterns of genome dominance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1166-1182. [PMID: 34152039 PMCID: PMC8518873 DOI: 10.1111/tpj.15375] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/21/2021] [Accepted: 06/11/2021] [Indexed: 05/19/2023]
Abstract
Allopolyploidization entailing the merger of two distinct genomes in a single hybrid organism, is an important process in plant evolution and a valuable tool in breeding programs. Newly established hybrids often experience massive genomic perturbations, including karyotype reshuffling and gene expression modifications. These phenomena may be asymmetric with respect to the two progenitors, with one of the parental genomes being "dominant." Such "genome dominance" can manifest in several ways, including biased homoeolog gene expression and expression level dominance. Here we employed a k-mer-based approach to study gene expression in reciprocal Festuca pratensis Huds. × Lolium multiflorum Lam. allopolyploid grasses. Our study revealed significantly more genes where expression mimicked that of the Lolium parent compared with the Festuca parent. This genome dominance was heritable to successive generation and its direction was only slightly modified by environmental conditions and plant age. Our results suggest that Lolium genome dominance was at least partially caused by its more efficient trans-acting gene expression regulatory factors. Unraveling the mechanisms responsible for propagation of parent-specific traits in hybrid crops contributes to our understanding of allopolyploid genome evolution and opens a way to targeted breeding strategies.
Collapse
Affiliation(s)
- Marek Glombik
- Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental Botany of the Czech Academy of SciencesŠlechtitelů 3177900OlomoucCzech Republic
- National Centre for Biomolecular ResearchFaculty of ScienceMasaryk UniversityKotlářská 261137BrnoCzech Republic
| | - Dario Copetti
- Molecular Plant BreedingInstitute of Agricultural SciencesETH ZurichUniversitaetstrasse 28092ZurichSwitzerland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Jan Bartos
- Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental Botany of the Czech Academy of SciencesŠlechtitelů 3177900OlomoucCzech Republic
| | - Stepan Stoces
- Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental Botany of the Czech Academy of SciencesŠlechtitelů 3177900OlomoucCzech Republic
| | - Zbigniew Zwierzykowski
- Department of Environmental Stress BiologyInstitute of Plant GeneticsPolish Academy of SciencesStrzeszyńska 3460‐479PoznańPoland
| | - Tom Ruttink
- Plant Sciences UnitFlanders Research Institute for Agriculture, Fisheries and Food (ILVO)Caritasstraat 399090MelleBelgium
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIA50011USA
| | - Martin Duchoslav
- Department of BotanyFaculty of SciencePalacký University in OlomoucŠlechtitelů 2778371OlomoucCzech Republic
| | - Jaroslav Dolezel
- Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental Botany of the Czech Academy of SciencesŠlechtitelů 3177900OlomoucCzech Republic
| | - Bruno Studer
- Molecular Plant BreedingInstitute of Agricultural SciencesETH ZurichUniversitaetstrasse 28092ZurichSwitzerland
| | - David Kopecky
- Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental Botany of the Czech Academy of SciencesŠlechtitelů 3177900OlomoucCzech Republic
| |
Collapse
|
32
|
Giraud D, Lima O, Rousseau-Gueutin M, Salmon A, Aïnouche M. Gene and Transposable Element Expression Evolution Following Recent and Past Polyploidy Events in Spartina (Poaceae). Front Genet 2021; 12:589160. [PMID: 33841492 PMCID: PMC8027259 DOI: 10.3389/fgene.2021.589160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Gene expression dynamics is a key component of polyploid evolution, varying in nature, intensity, and temporal scales, most particularly in allopolyploids, where two or more sub-genomes from differentiated parental species and different repeat contents are merged. Here, we investigated transcriptome evolution at different evolutionary time scales among tetraploid, hexaploid, and neododecaploid Spartina species (Poaceae, Chloridoideae) that successively diverged in the last 6-10 my, at the origin of differential phenotypic and ecological traits. Of particular interest are the recent (19th century) hybridizations between the two hexaploids Spartina alterniflora (2n = 6x = 62) and S. maritima (2n = 6x = 60) that resulted in two sterile F1 hybrids: Spartina × townsendii (2n = 6x = 62) in England and Spartina × neyrautii (2n = 6x = 62) in France. Whole genome duplication of S. × townsendii gave rise to the invasive neo-allododecaploid species Spartina anglica (2n = 12x = 124). New transcriptome assemblies and annotations for tetraploids and the enrichment of previously published reference transcriptomes for hexaploids and the allododecaploid allowed identifying 42,423 clusters of orthologs and distinguishing 21 transcribed transposable element (TE) lineages across the seven investigated Spartina species. In 4x and 6x mesopolyploids, gene and TE expression changes were consistent with phylogenetic relationships and divergence, revealing weak expression differences in the tetraploid sister species Spartina bakeri and Spartina versicolor (<2 my divergence time) compared to marked transcriptome divergence between the hexaploids S. alterniflora and S. maritima that diverged 2-4 mya. Differentially expressed genes were involved in glycolysis, post-transcriptional protein modifications, epidermis development, biosynthesis of carotenoids. Most detected TE lineages (except SINE elements) were found more expressed in hexaploids than in tetraploids, in line with their abundance in the corresponding genomes. Comparatively, an astonishing (52%) expression repatterning and deviation from parental additivity were observed following recent reticulate evolution (involving the F1 hybrids and the neo-allododecaploid S. anglica), with various patterns of biased homoeologous gene expression, including genes involved in epigenetic regulation. Downregulation of TEs was observed in both hybrids and accentuated in the neo-allopolyploid. Our results reinforce the view that allopolyploidy represents springboards to new regulatory patterns, offering to worldwide invasive species, such as S. anglica, the opportunity to colonize stressful and fluctuating environments on saltmarshes.
Collapse
Affiliation(s)
- Delphine Giraud
- UMR CNRS 6553 Ecosystèmes, Biodiversité, Evolution (ECOBIO), Université de Rennes 1, Rennes, France
| | - Oscar Lima
- UMR CNRS 6553 Ecosystèmes, Biodiversité, Evolution (ECOBIO), Université de Rennes 1, Rennes, France
| | | | - Armel Salmon
- UMR CNRS 6553 Ecosystèmes, Biodiversité, Evolution (ECOBIO), Université de Rennes 1, Rennes, France
| | - Malika Aïnouche
- UMR CNRS 6553 Ecosystèmes, Biodiversité, Evolution (ECOBIO), Université de Rennes 1, Rennes, France
| |
Collapse
|
33
|
Zou X, Du Y, Wang X, Wang Q, Zhang B, Chen J, Chen M, Doyle JJ, Ge S. Genome evolution in Oryza allopolyploids of various ages: Insights into the process of diploidization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:721-735. [PMID: 33145857 DOI: 10.1111/tpj.15066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/18/2020] [Accepted: 10/28/2020] [Indexed: 05/20/2023]
Abstract
The prevalence and recurrence of whole-genome duplication in plants and its major role in evolution have been well recognized. Despite great efforts, many aspects of genome evolution, particularly the temporal progression of genomic responses to allopolyploidy and the underlying mechanisms, remain poorly understood. The rice genus Oryza consists of both recently formed and older allopolyploid species, representing an attractive system for studying the genome evolution after allopolyploidy. In this study, through screening BAC libraries and sequencing and annotating the targeted BAC clones, we generated orthologous genomic sequences surrounding the DEP1 locus, a major grain yield QTL in cultivated rice, from four Oryza polyploids of various ages and their likely diploid genome donors or close relatives. Based on sequenced DEP1 region and published data from three other genomic regions, we investigated the temporal evolutionary dynamics of four polyploid genomes at both genetic and expression levels. In the recently formed BBCC polyploid, Oryza minuta, genome dominance was not observed and its short-term responses to allopolyploidy are mainly manifested as a high proportion of homoeologous gene pairs showing unequal expression. This could partly be explained by parental legacy, rewiring of divergent regulatory networks and epigenetic modulation. Moreover, we detected an ongoing diploidization process in this genus, and suggest that the expression divergence driven by changes of selective constraint probably plays a big role in the long-term diploidization. These findings add novel insights into our understanding of genome evolution after allopolyploidy, and could facilitate crop improvements through hybridization and polyploidization.
Collapse
Affiliation(s)
- Xinhui Zou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yusu Du
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xin Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jinfeng Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mingsheng Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jeff J Doyle
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
34
|
Gan W, Chung-Davidson YW, Chen Z, Song S, Cui W, He W, Zhang Q, Li W, Li M, Ren J. Global tissue transcriptomic analysis to improve genome annotation and unravel skin pigmentation in goldfish. Sci Rep 2021; 11:1815. [PMID: 33469041 PMCID: PMC7815744 DOI: 10.1038/s41598-020-80168-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Goldfish is an ornamental fish with diverse phenotypes. However, the limited genomic resources of goldfish hamper our understanding of the genetic basis for its phenotypic diversity. To provide enriched genomic resources and infer possible mechanisms underlying skin pigmentation, we performed a large-scale transcriptomic sequencing on 13 adult goldfish tissues, larvae at one- and three-days post hatch, and skin tissues with four different color pigmentation. A total of 25.52 Gb and 149.80 Gb clean data were obtained using the PacBio and Illumina platforms, respectively. Onto the goldfish reference genome, we mapped 137,674 non-redundant transcripts, of which 5.54% was known isoforms and 78.53% was novel isoforms of the reference genes, and the remaining 21,926 isoforms are novel isoforms of additional new genes. Both skin-specific and color-specific transcriptomic analyses showed that several significantly enriched genes were known to be involved in melanogenesis, tyrosine metabolism, PPAR signaling pathway, folate biosynthesis metabolism and so on. Thirteen differentially expressed genes across different color skins were associated with melanogenesis and pteridine synthesis including mitf, ednrb, mc1r, tyr, mlph and gch1, and xanthophore differentiation such as pax7, slc2a11 and slc2a15. These transcriptomic data revealed pathways involved in goldfish pigmentation and improved the gene annotation of the reference genome.
Collapse
Affiliation(s)
- Wu Gan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Zelin Chen
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Shiying Song
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenyao Cui
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei He
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Qinghua Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Mingyou Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Jianfeng Ren
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
35
|
Coate JE, Farmer AD, Schiefelbein JW, Doyle JJ. Expression Partitioning of Duplicate Genes at Single Cell Resolution in Arabidopsis Roots. Front Genet 2020; 11:596150. [PMID: 33240334 PMCID: PMC7670048 DOI: 10.3389/fgene.2020.596150] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/12/2020] [Indexed: 01/11/2023] Open
Abstract
Gene duplication is a key evolutionary phenomenon, prevalent in all organisms but particularly so in plants, where whole genome duplication (WGD; polyploidy) is a major force in genome evolution. Much effort has been expended in attempting to understand the evolution of duplicate genes, addressing such questions as why some paralog pairs rapidly return to single copy status whereas, in other pairs, both paralogs are retained and may diverge in expression pattern or function. The effect of a gene - its site of expression and thus the initial locus of its function - occurs at the level of a cell comprising a single cell type at a given state of the cell's development. Using Arabidopsis thaliana single cell transcriptomic data we categorized patterns of expression for 11,470 duplicate gene pairs across 36 cell clusters comprising nine cell types and their developmental states. Among these 11,470 pairs, 10,187 (88.8%) had at least one copy expressed in at least one of the 36 cell clusters. Pairs produced by WGD more often had both paralogs expressed in root cells than did pairs produced by small scale duplications. Three quarters of gene pairs expressed in the 36 cell clusters (7,608/10,187) showed extreme expression bias in at least one cluster, including 352 cases of reciprocal bias, a pattern consistent with expression subfunctionalization. More than twice as many pairs showed reciprocal expression bias between cell states than between cell types or between roots and leaves. A group of 33 gene pairs with reciprocal expression bias showed evidence of concerted divergence of gene networks in stele vs. epidermis. Pairs with both paralogs expressed without bias were less likely to have paralogs with divergent mutant phenotypes; such bias-free pairs showed evidence of preservation by maintenance of dosage balance. Overall, we found considerable evidence of shifts in gene expression following duplication, including in >80% of pairs encoding 7,653 genes expressed ubiquitously in all root cell types and states for which we inferred the polarity of change.
Collapse
Affiliation(s)
- Jeremy E. Coate
- Department of Biology, Reed College, Portland, OR, United States
| | - Andrew D. Farmer
- National Center for Genome Resources, Santa Fe, NM, United States
| | - John W. Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Jeff J. Doyle
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, United States
| |
Collapse
|
36
|
Moeglein MK, Chatelet DS, Donoghue MJ, Edwards EJ. Evolutionary dynamics of genome size in a radiation of woody plants. AMERICAN JOURNAL OF BOTANY 2020; 107:1527-1541. [PMID: 33079383 DOI: 10.1002/ajb2.1544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/06/2020] [Indexed: 05/22/2023]
Abstract
PREMISE Plant genome size ranges widely, providing many opportunities to examine how genome size variation affects plant form and function. We analyzed trends in chromosome number, genome size, and leaf traits for the woody angiosperm clade Viburnum to examine the evolutionary associations, functional implications, and possible drivers of genome size. METHODS Chromosome counts and genome size estimates were mapped onto a Viburnum phylogeny to infer the location and frequency of polyploidization events and trends in genome size evolution. Genome size was analyzed with leaf anatomical and physiological data to evaluate the influence of genome size on plant function. RESULTS We discovered nine independent polyploidization events, two reductions in base chromosome number, and substantial variation in genome size with a slight trend toward genome size reduction in polyploids. We did not find strong relationships between genome size and the functional and morphological traits that have been highlighted at broader phylogenetic scales. CONCLUSIONS Polyploidization events were sometimes associated with rapid radiations, demonstrating that polyploid lineages can be highly successful. Relationships between genome size and plant physiological function observed at broad phylogenetic scales may be largely irrelevant to the evolutionary dynamics of genome size at smaller scales. The view that plants readily tolerate changes in ploidy and genome size, and often do so, appears to apply to Viburnum.
Collapse
Affiliation(s)
- Morgan K Moeglein
- Department of Ecology and Evolutionary Biology, Yale University, PO Box 208106, New Haven, CT, 06520, USA
| | - David S Chatelet
- Biomedical Imaging Unit, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | - Michael J Donoghue
- Department of Ecology and Evolutionary Biology, Yale University, PO Box 208106, New Haven, CT, 06520, USA
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, PO Box 208106, New Haven, CT, 06520, USA
| |
Collapse
|
37
|
Shan S, Boatwright JL, Liu X, Chanderbali AS, Fu C, Soltis PS, Soltis DE. Transcriptome Dynamics of the Inflorescence in Reciprocally Formed Allopolyploid Tragopogon miscellus (Asteraceae). Front Genet 2020; 11:888. [PMID: 32849847 PMCID: PMC7423994 DOI: 10.3389/fgene.2020.00888] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
Polyploidy is an important evolutionary mechanism and is prevalent among land plants. Most polyploid species examined have multiple origins, which provide genetic diversity and may enhance the success of polyploids. In some polyploids, recurrent origins can result from reciprocal crosses between the same diploid progenitors. Although great progress has been made in understanding the genetic consequences of polyploidy, the genetic implications of reciprocal polyploidization remain poorly understood, especially in natural polyploids. Tragopogon (Asteraceae) has become an evolutionary model system for studies of recent and recurrent polyploidy. Allotetraploid T. miscellus has formed reciprocally in nature with resultant distinctive floral and inflorescence morphologies (i.e., short- vs. long-liguled forms). In this study, we performed comparative inflorescence transcriptome analyses of reciprocally formed T. miscellus and its diploid parents, T. dubius and T. pratensis. In both forms of T. miscellus, homeolog expression of ∼70% of the loci showed vertical transmission of the parental expression patterns (i.e., parental legacy), and ∼20% of the loci showed biased homeolog expression, which was unbalanced toward T. pratensis. However, 17.9% of orthologous pairs showed different homeolog expression patterns between the two forms of T. miscellus. No clear effect of cytonuclear interaction on biased expression of the maternal homeolog was found. In terms of the total expression level of the homeologs studied, 22.6% and 16.2% of the loci displayed non-additive expression in short- and long-liguled T. miscellus, respectively. Unbalanced expression level dominance toward T. pratensis was observed in both forms of T. miscellus. Significantly, genes annotated as being involved in pectin catabolic processes were highly expressed in long-liguled T. miscellus relative to the short-liguled form, and the majority of these differentially expressed genes were transgressively down-regulated in short-liguled T. miscellus. Given the known role of these genes in cell expansion, they may play a role in the differing floral and inflorescence morphologies of the two forms. In summary, the overall inflorescence transcriptome profiles are highly similar between reciprocal origins of T. miscellus. However, the dynamic homeolog-specific expression and non-additive expression patterns observed in T. miscellus emphasize the importance of reciprocal origins in promoting the genetic diversity of polyploids.
Collapse
Affiliation(s)
- Shengchen Shan
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States.,Florida Museum of Natural History, University of Florida, Gainesville, FL, United States
| | - J Lucas Boatwright
- Advanced Plant Technology Program, Clemson University, Clemson, SC, United States
| | - Xiaoxian Liu
- Department of Biology, University of Florida, Gainesville, FL, United States.,Environmental Genomics and Systems Biology (EGSB), Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Andre S Chanderbali
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States
| | - Chaonan Fu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Pamela S Soltis
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States.,Florida Museum of Natural History, University of Florida, Gainesville, FL, United States.,Biodiversity Institute, University of Florida, Gainesville, FL, United States.,Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Douglas E Soltis
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States.,Florida Museum of Natural History, University of Florida, Gainesville, FL, United States.,Department of Biology, University of Florida, Gainesville, FL, United States.,Biodiversity Institute, University of Florida, Gainesville, FL, United States.,Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
38
|
Conservation and Divergence in Duplicated Fiber Coexpression Networks Accompanying Domestication of the Polyploid Gossypium hirsutum L. G3-GENES GENOMES GENETICS 2020; 10:2879-2892. [PMID: 32586849 PMCID: PMC7407458 DOI: 10.1534/g3.120.401362] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gossypium hirsutum L. (Upland cotton) has an evolutionary history involving inter-genomic hybridization, polyploidization, and subsequent domestication. We analyzed the developmental dynamics of the cotton fiber transcriptome accompanying domestication using gene coexpression networks for both joint and homoeologous networks. Remarkably, most genes exhibited expression for at least one homoeolog, confirming previous reports of widespread gene usage in cotton fibers. Most coexpression modules comprising the joint network are preserved in each subgenomic network and are enriched for similar biological processes, showing a general preservation of network modular structure for the two co-resident genomes in the polyploid. Interestingly, only one fifth of homoeologs co-occur in the same module when separated, despite similar modular structures between the joint and homoeologous networks. These results suggest that the genome-wide divergence between homoeologous genes is sufficient to separate their co-expression profiles at the intermodular level, despite conservation of intramodular relationships within each subgenome. Most modules exhibit D-homoeolog expression bias, although specific modules do exhibit A-homoeolog bias. Comparisons between wild and domesticated coexpression networks revealed a much tighter and denser network structure in domesticated fiber, as evidenced by its fewer modules, 13-fold increase in the number of development-related module member genes, and the poor preservation of the wild network topology. These results demonstrate the amazing complexity that underlies the domestication of cotton fiber.
Collapse
|
39
|
Nieto Feliner G, Casacuberta J, Wendel JF. Genomics of Evolutionary Novelty in Hybrids and Polyploids. Front Genet 2020; 11:792. [PMID: 32849797 PMCID: PMC7399645 DOI: 10.3389/fgene.2020.00792] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
It has long been recognized that hybridization and polyploidy are prominent processes in plant evolution. Although classically recognized as significant in speciation and adaptation, recognition of the importance of interspecific gene flow has dramatically increased during the genomics era, concomitant with an unending flood of empirical examples, with or without genome doubling. Interspecific gene flow is thus increasingly thought to lead to evolutionary innovation and diversification, via adaptive introgression, homoploid hybrid speciation and allopolyploid speciation. Less well understood, however, are the suite of genetic and genomic mechanisms set in motion by the merger of differentiated genomes, and the temporal scale over which recombinational complexity mediated by gene flow might be expressed and exposed to natural selection. We focus on these issues here, considering the types of molecular genetic and genomic processes that might be set in motion by the saltational event of genome merger between two diverged species, either with or without genome doubling, and how these various processes can contribute to novel phenotypes. Genetic mechanisms include the infusion of new alleles and the genesis of novel structural variation including translocations and inversions, homoeologous exchanges, transposable element mobilization and novel insertional effects, presence-absence variation and copy number variation. Polyploidy generates massive transcriptomic and regulatory alteration, presumably set in motion by disrupted stoichiometries of regulatory factors, small RNAs and other genome interactions that cascade from single-gene expression change up through entire networks of transformed regulatory modules. We highlight both these novel combinatorial possibilities and the range of temporal scales over which such complexity might be generated, and thus exposed to natural selection and drift.
Collapse
Affiliation(s)
- Gonzalo Nieto Feliner
- Department of Biodiversity and Conservation, Real Jardín Botánico, CSIC, Madrid, Spain
| | - Josep Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
40
|
Rodionov AV, Amosova AV, Krainova LM, Machs EM, Mikhailova YV, Gnutikov AA, Muravenko OV, Loskutov IG. Phenomenon of Multiple Mutations in the 35S rRNA Genes of the C Subgenome of Polyploid Avena L. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420060095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Lu FH, McKenzie N, Gardiner LJ, Luo MC, Hall A, Bevan MW. Reduced chromatin accessibility underlies gene expression differences in homologous chromosome arms of diploid Aegilops tauschii and hexaploid wheat. Gigascience 2020; 9:5860314. [PMID: 32562491 PMCID: PMC7305686 DOI: 10.1093/gigascience/giaa070] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/17/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Background Polyploidy is centrally important in the evolution and domestication of plants because it leads to major genomic changes, such as altered patterns of gene expression, which are thought to underlie the emergence of new traits. Despite the common occurrence of these globally altered patterns of gene expression in polyploids, the mechanisms involved are not well understood. Results Using a precisely defined framework of highly conserved syntenic genes on hexaploid wheat chromosome 3DL and its progenitor 3 L chromosome arm of diploid Aegilops tauschii, we show that 70% of these gene pairs exhibited proportionately reduced gene expression, in which expression in the hexaploid context of the 3DL genes was ∼40% of the levels observed in diploid Ae tauschii. Several genes showed elevated expression during the later stages of grain development in wheat compared with Ae tauschii. Gene sequence and methylation differences probably accounted for only a few cases of differences in gene expression. In contrast, chromosome-wide patterns of reduced chromatin accessibility of genes in the hexaploid chromosome arm compared with its diploid progenitor were correlated with both reduced gene expression and the imposition of new patterns of gene expression. Conclusions Our pilot-scale analyses show that chromatin compaction may orchestrate reduced gene expression levels in the hexaploid chromosome arm of wheat compared to its diploid progenitor chromosome arm.
Collapse
Affiliation(s)
- Fu-Hao Lu
- Department Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Neil McKenzie
- Department Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Laura-Jayne Gardiner
- Earlham Institute, Norwich Research Park, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Anthony Hall
- Earlham Institute, Norwich Research Park, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Michael W Bevan
- Correspondence address. Michael W Bevan, Department Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK. E-mail:
| |
Collapse
|
42
|
Parisod C, Badaeva ED. Chromosome restructuring among hybridizing wild wheats. THE NEW PHYTOLOGIST 2020; 226:1263-1273. [PMID: 31913521 DOI: 10.1111/nph.16415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
The wheat group offers an outstanding system to address the interplay between hybridization, chromosomal evolution and biological diversification. Most diploid wild wheats originated following hybridization between the A-genome lineage and the B-genome lineage some 4 Myr ago, resulting in an admixed D-genome lineage that presented dramatic radiation accompanied by considerable changes in genome size and chromosomal rearrangements. Comparative profiling of low-copy genes, repeated sequences and transposable elements among those divergent species characterized by different karyotypes highlights high genome dynamics and sheds new light on the processes underlying chromosomal evolution in wild wheats. One of the hybrid clades presents upsizing of metacentric chromosomes going along with the proliferation of specific repeats (i.e. 'genomic obesity'), whereas other species show stable genome size associated with increasing chromosomal asymmetry. Genetic and ecological variation in those specialized species suggest that genome restructuring was coupled with adaptive processes to support the evolution of a majority of acrocentric chromosomes. This synthesis of current knowledge on genome restructuring across the diversity of wild wheats paves the way towards surveys based on latest sequencing technologies to characterize valuable resources and address the significance of chromosomal evolution in species with complex genomes.
Collapse
Affiliation(s)
- Christian Parisod
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
| | - Ekaterina D Badaeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin St. 3, Moscow, 119991, Russia
| |
Collapse
|
43
|
Kon T, Omori Y, Fukuta K, Wada H, Watanabe M, Chen Z, Iwasaki M, Mishina T, Matsuzaki SIS, Yoshihara D, Arakawa J, Kawakami K, Toyoda A, Burgess SM, Noguchi H, Furukawa T. The Genetic Basis of Morphological Diversity in Domesticated Goldfish. Curr Biol 2020; 30:2260-2274.e6. [PMID: 32392470 DOI: 10.1016/j.cub.2020.04.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/13/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
Although domesticated goldfish strains exhibit highly diversified phenotypes in morphology, the genetic basis underlying these phenotypes is poorly understood. Here, based on analysis of transposable elements in the allotetraploid goldfish genome, we found that its two subgenomes have evolved asymmetrically since a whole-genome duplication event in the ancestor of goldfish and common carp. We conducted whole-genome sequencing of 27 domesticated goldfish strains and wild goldfish. We identified more than 60 million genetic variations and established a population genetic structure of major goldfish strains. Genome-wide association studies and analysis of strain-specific variants revealed genetic loci associated with several goldfish phenotypes, including dorsal fin loss, long-tail, telescope-eye, albinism, and heart-shaped tail. Our results suggest that accumulated mutations in the asymmetrically evolved subgenomes led to generation of diverse phenotypes in the goldfish domestication history. This study is a key resource for understanding the genetic basis of phenotypic diversity among goldfish strains.
Collapse
Affiliation(s)
- Tetsuo Kon
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| | - Kentaro Fukuta
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Hironori Wada
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Masakatsu Watanabe
- Laboratory of Pattern Formation, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka
| | - Zelin Chen
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Miki Iwasaki
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Tappei Mishina
- Laboratory of Animal Ecology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | - Daiki Yoshihara
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Jumpei Arakawa
- Yatomi Station, Aichi Fisheries Research Institute, Yatomi, Aichi, Japan
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Yata 1111, Mishima, Shizuoka 411-8540, Japan; Advanced Genomics Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
44
|
Yang Z, Qanmber G, Wang Z, Yang Z, Li F. Gossypium Genomics: Trends, Scope, and Utilization for Cotton Improvement. TRENDS IN PLANT SCIENCE 2020; 25:488-500. [PMID: 31980282 DOI: 10.1016/j.tplants.2019.12.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/19/2019] [Accepted: 12/09/2019] [Indexed: 05/23/2023]
Abstract
Cotton (Gossypium spp.) is the most important natural fiber crop worldwide. The diversity of Gossypium species also provides an ideal model for investigating evolution and domestication of polyploids. However, the huge and complex cotton genome hinders genomic research. Technical advances in high-throughput sequencing and bioinformatics analysis have now largely overcome these obstacles, bringing about a new era of cotton genomics. Here, we review recent progress in Gossypium genomics based on whole genome sequencing, resequencing, and comparative genomics, which have provided insights about the genomic basis of fiber biogenesis and the landscape of cotton functional genomics. We address current challenges and present multidisciplinary genomics-enabled breeding strategies covering the breadth of high fiber yield, quality, and environmental resilience for future cotton breeding programs.
Collapse
Affiliation(s)
- Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zhaoen Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
45
|
Eriksson MC, Szukala A, Tian B, Paun O. Current research frontiers in plant epigenetics: an introduction to a Virtual Issue. THE NEW PHYTOLOGIST 2020; 226:285-288. [PMID: 32180259 PMCID: PMC7154677 DOI: 10.1111/nph.16493] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
http://www.newphytologist.com/virtualissues
Collapse
Affiliation(s)
- Mimmi C. Eriksson
- Botany and Biodiversity ResearchUniversity of ViennaRennweg 14A‐1030ViennaAustria
- Vienna Graduate School of Population GeneticsVeterinärplatz 1A‐1210ViennaAustria
| | - Aglaia Szukala
- Botany and Biodiversity ResearchUniversity of ViennaRennweg 14A‐1030ViennaAustria
- Vienna Graduate School of Population GeneticsVeterinärplatz 1A‐1210ViennaAustria
| | - Bin Tian
- Botany and Biodiversity ResearchUniversity of ViennaRennweg 14A‐1030ViennaAustria
- Southwest Forestry UniversityKunming650224China
| | - Ovidiu Paun
- Botany and Biodiversity ResearchUniversity of ViennaRennweg 14A‐1030ViennaAustria
| |
Collapse
|
46
|
Hu G, Grover CE, Arick MA, Liu M, Peterson DG, Wendel JF. Homoeologous gene expression and co-expression network analyses and evolutionary inference in allopolyploids. Brief Bioinform 2020; 22:1819-1835. [PMID: 32219306 PMCID: PMC7986634 DOI: 10.1093/bib/bbaa035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/06/2020] [Accepted: 02/24/2020] [Indexed: 12/29/2022] Open
Abstract
Polyploidy is a widespread phenomenon throughout eukaryotes. Due to the coexistence of duplicated genomes, polyploids offer unique challenges for estimating gene expression levels, which is essential for understanding the massive and various forms of transcriptomic responses accompanying polyploidy. Although previous studies have explored the bioinformatics of polyploid transcriptomic profiling, the causes and consequences of inaccurate quantification of transcripts from duplicated gene copies have not been addressed. Using transcriptomic data from the cotton genus (Gossypium) as an example, we present an analytical workflow to evaluate a variety of bioinformatic method choices at different stages of RNA-seq analysis, from homoeolog expression quantification to downstream analysis used to infer key phenomena of polyploid expression evolution. In general, EAGLE-RC and GSNAP-PolyCat outperform other quantification pipelines tested, and their derived expression dataset best represents the expected homoeolog expression and co-expression divergence. The performance of co-expression network analysis was less affected by homoeolog quantification than by network construction methods, where weighted networks outperformed binary networks. By examining the extent and consequences of homoeolog read ambiguity, we illuminate the potential artifacts that may affect our understanding of duplicate gene expression, including an overestimation of homoeolog co-regulation and the incorrect inference of subgenome asymmetry in network topology. Taken together, our work points to a set of reasonable practices that we hope are broadly applicable to the evolutionary exploration of polyploids.
Collapse
Affiliation(s)
- Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Mark A Arick
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Meiling Liu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Daniel G Peterson
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
47
|
Glombik M, Bačovský V, Hobza R, Kopecký D. Competition of Parental Genomes in Plant Hybrids. FRONTIERS IN PLANT SCIENCE 2020; 11:200. [PMID: 32158461 PMCID: PMC7052263 DOI: 10.3389/fpls.2020.00200] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/11/2020] [Indexed: 05/17/2023]
Abstract
Interspecific hybridization represents one of the main mechanisms of plant speciation. Merging of two genomes from different subspecies, species, or even genera is frequently accompanied by whole-genome duplication (WGD). Besides its evolutionary role, interspecific hybridization has also been successfully implemented in multiple breeding programs. Interspecific hybrids combine agronomic traits of two crop species or can be used to introgress specific loci of interests, such as those for resistance against abiotic or biotic stresses. The genomes of newly established interspecific hybrids (both allopolyploids and homoploids) undergo dramatic changes, including chromosome rearrangements, amplifications of tandem repeats, activation of mobile repetitive elements, and gene expression modifications. To ensure genome stability and proper transmission of chromosomes from both parental genomes into subsequent generations, allopolyploids often evolve mechanisms regulating chromosome pairing. Such regulatory systems allow only pairing of homologous chromosomes and hamper pairing of homoeologs. Despite such regulatory systems, several hybrid examples with frequent homoeologous chromosome pairing have been reported. These reports open a way for the replacement of one parental genome by the other. In this review, we provide an overview of the current knowledge of genomic changes in interspecific homoploid and allopolyploid hybrids, with strictly homologous pairing and with relaxed pairing of homoeologs.
Collapse
Affiliation(s)
- Marek Glombik
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Roman Hobza
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - David Kopecký
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| |
Collapse
|
48
|
Bao Y, Hu G, Grover CE, Conover J, Yuan D, Wendel JF. Unraveling cis and trans regulatory evolution during cotton domestication. Nat Commun 2019; 10:5399. [PMID: 31776348 PMCID: PMC6881400 DOI: 10.1038/s41467-019-13386-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Cis and trans regulatory divergence underlies phenotypic and evolutionary diversification. Relatively little is understood about the complexity of regulatory evolution accompanying crop domestication, particularly for polyploid plants. Here, we compare the fiber transcriptomes between wild and domesticated cotton (Gossypium hirsutum) and their reciprocal F1 hybrids, revealing genome-wide (~15%) and often compensatory cis and trans regulatory changes under divergence and domestication. The high level of trans evolution (54%-64%) observed is likely enabled by genomic redundancy following polyploidy. Our results reveal that regulatory variation is significantly associated with sequence evolution, inheritance of parental expression patterns, co-expression gene network properties, and genomic loci responsible for domestication traits. With respect to regulatory evolution, the two subgenomes of allotetraploid cotton are often uncoupled. Overall, our work underscores the complexity of regulatory evolution during fiber domestication and may facilitate new approaches for improving cotton and other polyploid plants.
Collapse
Affiliation(s)
- Ying Bao
- School of Life Sciences, Qufu Normal University, 273165, Qufu, Shandong Province, China.
| | - Guanjing Hu
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Justin Conover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Daojun Yuan
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
49
|
Kryvokhyzha D, Milesi P, Duan T, Orsucci M, Wright SI, Glémin S, Lascoux M. Towards the new normal: Transcriptomic convergence and genomic legacy of the two subgenomes of an allopolyploid weed (Capsella bursa-pastoris). PLoS Genet 2019; 15:e1008131. [PMID: 31083657 PMCID: PMC6532933 DOI: 10.1371/journal.pgen.1008131] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/23/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023] Open
Abstract
Allopolyploidy has played a major role in plant evolution but its impact on genome diversity and expression patterns remains to be understood. Some studies found important genomic and transcriptomic changes in allopolyploids, whereas others detected a strong parental legacy and more subtle changes. The allotetraploid C. bursa-pastoris originated around 100,000 years ago and one could expect the genetic polymorphism of the two subgenomes to follow similar trajectories and their transcriptomes to start functioning together. To test this hypothesis, we sequenced the genomes and the transcriptomes (three tissues) of allotetraploid C. bursa-pastoris and its parental species, the outcrossing C. grandiflora and the self-fertilizing C. orientalis. Comparison of the divergence in expression between subgenomes, on the one hand, and divergence in expression between the parental species, on the other hand, indicated a strong parental legacy with a majority of genes exhibiting a conserved pattern and cis-regulation. However, a large proportion of the genes that were differentially expressed between the two subgenomes, were also under trans-regulation reflecting the establishment of a new regulatory pattern. Parental dominance varied among tissues: expression in flowers was closer to that of C. orientalis and expression in root and leaf to that of C. grandiflora. Since deleterious mutations accumulated preferentially on the C. orientalis subgenome, the bias in expression towards C. orientalis observed in flowers indicates that expression changes could be adaptive and related to the selfing syndrome, while biases in the roots and leaves towards the C. grandiflora subgenome may be reflective of the differential genetic load. Most plant species have a polyploid at some stage of their ancestry. Polyploidy, genome doubling through either multiple copies of a single species or through genomes of different species coming into the same nucleus, is therefore a crucial step in plant evolution. Understanding its impact on basic biological functions is thus a matter of interest. Shepherd’s purse (Capsella bursa-pastoris) is a major weed that appeared about 100,000 years ago through hybridization of two diploid species of the same genus. In the present project, we measured genetic diversity and analyzed gene expression patterns in flowers, roots, and leaves of C. bursa-pastoris individuals as well as in its two parental species, the outcrossing C. grandiflora and the self-fertilizing C. orientalis. Our data shows that, after 100,000 generations of evolution, the origin of the two subgenomes can still be seen: the genome inherited from C. grandiflora still differs from the one inherited from self-fertilizing C. orientalis. However, there are also signs that the two genomes have started to work together and are jointly regulated, and the way expression pattern varied across the three tissues indicates that the evolution of gene expression was adaptive.
Collapse
Affiliation(s)
- Dmytro Kryvokhyzha
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Pascal Milesi
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tianlin Duan
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Marion Orsucci
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stephen I. Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Sylvain Glémin
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- CNRS, Univ. Rennes, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, Rennes, France
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|