1
|
Freed C, Craige B, Donahue J, Cridland C, Williams SP, Pereira C, Kim J, Blice H, Owen J, Gillaspy G. Using native and synthetic genes to disrupt inositol pyrophosphates and phosphate accumulation in plants. PLANT PHYSIOLOGY 2024; 197:kiae582. [PMID: 39474910 DOI: 10.1093/plphys/kiae582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/28/2024] [Indexed: 12/24/2024]
Abstract
Inositol pyrophosphates are eukaryotic signaling molecules that have been recently identified as key regulators of plant phosphate sensing and homeostasis. Given the importance of phosphate to current and future agronomic practices, we sought to design plants, which could be used to sequester phosphate, as a step in a phytoremediation strategy. To achieve this, we expressed diadenosine and diphosphoinositol polyphosphate phosphohydrolase (DDP1), a yeast (Saccharomyces cerevisiae) enzyme demonstrated to hydrolyze inositol pyrophosphates, in Arabidopsis thaliana and pennycress (Thlaspi arvense), a spring annual cover crop with emerging importance as a biofuel crop. DDP1 expression in Arabidopsis decreased inositol pyrophosphates, activated phosphate starvation response marker genes, and increased phosphate accumulation. These changes corresponded with alterations in plant growth and sensitivity to exogenously applied phosphate. Pennycress plants expressing DDP1 displayed increases in phosphate accumulation, suggesting that these plants could potentially serve to reclaim phosphate from phosphate-polluted soils. We also identified a native Arabidopsis gene, Nucleoside diphosphate-linked moiety X 13 (NUDIX13), which we show encodes an enzyme homologous to DDP1 with similar substrate specificity. Arabidopsis transgenics overexpressing NUDIX13 had lower inositol pyrophosphate levels and displayed phenotypes similar to DDP1-overexpressing transgenics, while nudix13-1 mutants had increased levels of inositol pyrophosphates. Taken together, our data demonstrate that DDP1 and NUDIX13 can be used in strategies to regulate plant inositol pyrophosphates and could serve as potential targets for engineering plants to reclaim phosphate from polluted environments.
Collapse
Affiliation(s)
- Catherine Freed
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Branch Craige
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Janet Donahue
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Caitlin Cridland
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Chris Pereira
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jiwoo Kim
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Hannah Blice
- Application Technology Research Unit, US Department of Agriculture, Agricultural Research Service, Wooster, OH 44691, USA
| | - James Owen
- Application Technology Research Unit, US Department of Agriculture, Agricultural Research Service, Wooster, OH 44691, USA
| | - Glenda Gillaspy
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
2
|
Abel S, Naumann C. Evolution of phosphate scouting in the terrestrial biosphere. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230355. [PMID: 39343020 PMCID: PMC11528361 DOI: 10.1098/rstb.2023.0355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 10/01/2024] Open
Abstract
Chemistry assigns phosphorus and its most oxidized form, inorganic phosphate, unique roles for propelling bioenergetics and metabolism in all domains of life, possibly since its very origin on prebiotic Earth. For plants, access to the vital mineral nutrient profoundly affects growth, development and vigour, thus constraining net primary productivity in natural ecosystems and crop production in modern agriculture. Unlike other major biogenic elements, the low abundance and uneven distribution of phosphate in Earth's crust result from the peculiarities of phosphorus cosmochemistry and geochemistry. Here, we trace the chemical evolution of the element, the geochemical phosphorus cycle and its acceleration during Earth's history until the present (Anthropocene) as well as during the evolution and rise of terrestrial plants. We highlight the chemical and biological processes of phosphate mobilization and acquisition, first evolved in bacteria, refined in fungi and algae and expanded into powerful phosphate-prospecting strategies during land plant colonization. Furthermore, we review the evolution of the genetic and molecular networks from bacteria to terrestrial plants, which monitor intracellular and extracellular phosphate availabilities and coordinate the appropriate responses and adjustments to fluctuating phosphate supply. Lastly, we discuss the modern global phosphorus cycle deranged by human activity and the challenges imposed ahead. This article is part of the theme issue 'Evolution and diversity of plant metabolism'.
Collapse
Affiliation(s)
- Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle06120, Germany
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle06120, Germany
- Department of Plant Sciences, University of California-Davis, Davis, CA95616, USA
| | - Christin Naumann
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle06120, Germany
| |
Collapse
|
3
|
Wang X, Lu L, Peng H, Li T, Long Q, Guan L, Xia X, Li X, Wang M. A rapid and validated GC-MS/MS method for simultaneous quantification of serum Myo- and D-chiro-inositol isomers. J Chromatogr A 2024; 1732:465246. [PMID: 39128239 DOI: 10.1016/j.chroma.2024.465246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Myo-inositol (MI) and D-chiro-inositol (DCI) are two paramount isomers of inositol, both vital in glucose and steroid metabolism. Deficits in MI, DCI or MI/DCI ratio are expressly concerned with several pathological process, whereas MI and DCI lack practical measurement for human specimen. METHODS To quantify MI and DCI in serum samples simultaneously, a gas chromatography tandem mass spectrometry (GC-MS/MS) method was established. The process flow was optimized in ion source, derivative agent volume and reaction time. The performance characteristics were verified by commercial standards and clinical serums. RESULTS This method was confirmed to be sensitive (LOD ≤ 30 ng/mL of MI, ≤3 ng/mL of DCI) and reproducible (RSD < 6 % for repeated analyses). Quantitative determinations performed good linearity within the measurement range of 0.500-10.00 and 0.005-0.500 μg/mL for MI and DCI respectively (R2 > 0.999). The recoveries of MI and DCI were 97.11-99.35 % and 107.82-113.09 %, respectively. This method was successfully applied to 114 clinical specimens. No significant matrix effect was observed in serum samples under current conditions.
Collapse
Affiliation(s)
- Xiaofan Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, 318000, China
| | - Lan Lu
- Physical and chemical laboratory of Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan 410005, China
| | - Huanqie Peng
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Tanyao Li
- Physical and chemical laboratory of Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan 410005, China
| | - Qichen Long
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Lihua Guan
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiaomeng Xia
- Department of Obstetrics and Gynecology, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xianping Li
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Min Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
4
|
Abdullah SNA, Ariffin N, Hatta MAM, Kemat N. Opportunity for genome engineering to enhance phosphate homeostasis in crops. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1055-1070. [PMID: 39100872 PMCID: PMC11291846 DOI: 10.1007/s12298-024-01479-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 08/06/2024]
Abstract
Plants maintain cellular homeostasis of phosphate (Pi) through an integrated response pathway regulated by different families of transcription factors including MYB, WRKY, BHLH, and ZFP. The systemic response to Pi limitation showed the critical role played by inositol pyrophosphate (PP-InsPs) as signaling molecule and SPX (SYG1/PHO81/XPR1) domain proteins as sensor of cellular Pi status. Binding of SPX to PP-InsPs regulates the transcriptional activity of the MYB-CC proteins, phosphate starvation response factors (PHR/PHL) as the central regulator of Pi-deficiency response in plants. Vacuolar phosphate transporter, VPT may sense the cellular Pi status by its SPX domain, and vacuolar sequestration is activated under Pi replete condition and the stored Pi is an important resource to be mobilized under Pi deficiency. Proteomic approaches led to new discoveries of proteins associated with Pi-deficient response pathways and post-translational events that may influence plants in achieving Pi homeostasis. This review provides current understanding on the molecular mechanisms at the transcriptional and translational levels for achieving Pi homeostasis in plants. The potential strategies for employing the CRISPR technology to modify the gene sequences of key regulatory and response proteins for attaining plant Pi homeostasis are discussed.
Collapse
Affiliation(s)
- Siti Nor Akmar Abdullah
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
- Institute of Plantation Studies (IKP), Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Norazrin Ariffin
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Muhammad Asyraf Md Hatta
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Nurashikin Kemat
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
| |
Collapse
|
5
|
Khan A, Mallick M, Ladke JS, Bhandari R. The ring rules the chain - inositol pyrophosphates and the regulation of inorganic polyphosphate. Biochem Soc Trans 2024; 52:567-580. [PMID: 38629621 DOI: 10.1042/bst20230256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
The maintenance of phosphate homeostasis serves as a foundation for energy metabolism and signal transduction processes in all living organisms. Inositol pyrophosphates (PP-InsPs), composed of an inositol ring decorated with monophosphate and diphosphate moieties, and inorganic polyphosphate (polyP), chains of orthophosphate residues linked by phosphoanhydride bonds, are energy-rich biomolecules that play critical roles in phosphate homeostasis. There is a complex interplay between these two phosphate-rich molecules, and they share an interdependent relationship with cellular adenosine triphosphate (ATP) and inorganic phosphate (Pi). In eukaryotes, the enzymes involved in PP-InsP synthesis show some degree of conservation across species, whereas distinct enzymology exists for polyP synthesis among different organisms. In fact, the mechanism of polyP synthesis in metazoans, including mammals, is still unclear. Early studies on PP-InsP and polyP synthesis were conducted in the slime mould Dictyostelium discoideum, but it is in the budding yeast Saccharomyces cerevisiae that a clear understanding of the interplay between polyP, PP-InsPs, and Pi homeostasis has now been established. Recent research has shed more light on the influence of PP-InsPs on polyP in mammals, and the regulation of both these molecules by cellular ATP and Pi levels. In this review we will discuss the cross-talk between PP-InsPs, polyP, ATP, and Pi in the context of budding yeast, slime mould, and mammals. We will also highlight the similarities and differences in the relationship between these phosphate-rich biomolecules among this group of organisms.
Collapse
Affiliation(s)
- Azmi Khan
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Manisha Mallick
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Jayashree S Ladke
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| |
Collapse
|
6
|
Mihiret YE, Schaaf G, Kamleitner M. Protein pyrophosphorylation by inositol phosphates: a novel post-translational modification in plants? FRONTIERS IN PLANT SCIENCE 2024; 15:1347922. [PMID: 38455731 PMCID: PMC10917965 DOI: 10.3389/fpls.2024.1347922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024]
Abstract
Inositol pyrophosphates (PP-InsPs) are energy-rich molecules harboring one or more diphosphate moieties. PP-InsPs are found in all eukaryotes evaluated and their functional versatility is reflected in the various cellular events in which they take part. These include, among others, insulin signaling and intracellular trafficking in mammals, as well as innate immunity and hormone and phosphate signaling in plants. The molecular mechanisms by which PP-InsPs exert such functions are proposed to rely on the allosteric regulation via direct binding to proteins, by competing with other ligands, or by protein pyrophosphorylation. The latter is the focus of this review, where we outline a historical perspective surrounding the first findings, almost 20 years ago, that certain proteins can be phosphorylated by PP-InsPs in vitro. Strikingly, in vitro phosphorylation occurs by an apparent enzyme-independent but Mg2+-dependent transfer of the β-phosphoryl group of an inositol pyrophosphate to an already phosphorylated serine residue at Glu/Asp-rich protein regions. Ribosome biogenesis, vesicle trafficking and transcription are among the cellular events suggested to be modulated by protein pyrophosphorylation in yeast and mammals. Here we discuss the latest efforts in identifying targets of protein pyrophosphorylation, pointing out the methodological challenges that have hindered the full understanding of this unique post-translational modification, and focusing on the latest advances in mass spectrometry that finally provided convincing evidence that PP-InsP-mediated pyrophosphorylation also occurs in vivo. We also speculate about the relevance of this post-translational modification in plants in a discussion centered around the protein kinase CK2, whose activity is critical for pyrophosphorylation of animal and yeast proteins. This enzyme is widely present in plant species and several of its functions overlap with those of PP-InsPs. Until now, there is virtually no data on pyrophosphorylation of plant proteins, which is an exciting field that remains to be explored.
Collapse
Affiliation(s)
| | | | - Marília Kamleitner
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
7
|
Gu C, Li X, Zong G, Wang H, Shears SB. IP8: A quantitatively minor inositol pyrophosphate signaling molecule that punches above its weight. Adv Biol Regul 2024; 91:101002. [PMID: 38064879 DOI: 10.1016/j.jbior.2023.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 02/25/2024]
Abstract
The inositol pyrophosphates (PP-IPs) are specialized members of the wider inositol phosphate signaling family that possess functionally significant diphosphate groups. The PP-IPs exhibit remarkable functionally versatility throughout the eukaryotic kingdoms. However, a quantitatively minor PP-IP - 1,5 bisdiphosphoinositol tetrakisphosphate (1,5-IP8) - has received considerably less attention from the cell signalling community. The main purpose of this review is to summarize recently-published data which have now brought 1,5-IP8 into the spotlight, by expanding insight into the molecular mechanisms by which this polyphosphate regulates many fundamental biological processes.
Collapse
Affiliation(s)
- Chunfang Gu
- Inositol signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709 USA
| | - Xingyao Li
- Inositol signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709 USA
| | - Guangning Zong
- Inositol signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709 USA
| | - Huanchen Wang
- Inositol signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709 USA.
| | - Stephen B Shears
- Inositol signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709 USA.
| |
Collapse
|
8
|
Slocombe SP, Zúñiga-Burgos T, Chu L, Mehrshahi P, Davey MP, Smith AG, Camargo-Valero MA, Baker A. Overexpression of PSR1 in Chlamydomonas reinhardtii induces luxury phosphorus uptake. FRONTIERS IN PLANT SCIENCE 2023; 14:1208168. [PMID: 37575910 PMCID: PMC10413257 DOI: 10.3389/fpls.2023.1208168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 08/15/2023]
Abstract
Remediation using micro-algae offers an attractive solution to environmental phosphate (PO4 3-) pollution. However, for maximum efficiency, pre-conditioning of algae to induce 'luxury phosphorus (P) uptake' is needed. To replicate this process, we targeted the global regulator PSR1 (Myb transcription factor: Phosphate Starvation Response 1) for over-expression in algae. Manipulating a single gene (PSR1) drove uptake of both PO4 3- and a Mg2+ counter-ion leading to increased PolyP granule size, raising P levels 4-fold to 8% dry cell weight, and accelerated removal of PO4 3- from the medium. Examination of the gene expression profile showed that the P-starvation response was mimicked under P-replete conditions, switching on luxury uptake. Hyper-accumulation of P depended on a feed-forward mechanism, where a small set of 'Class I' P-transporter genes were activated despite abundant external PO4 3- levels. The transporters drove a reduction in external PO4 3- levels, permitting more genes to be expressed (Class II), leading to more P-uptake. Our data pointed toward a PSR1-independent mechanism for detection of external PO4 3- which suppressed Class II genes. This model provided a plausible mechanism for P-overplus where prior P-starvation elevates PSR1 and on P-resupply causes luxury P-uptake. This is because the Class I genes, which include P-transporter genes, are not suppressed by the excess PO4 3-. Taken together, these discoveries facilitate a bio-circular approach of recycling nutrients from wastewater back to agriculture.
Collapse
Affiliation(s)
- Stephen P. Slocombe
- School of Molecular and Cellular Biology, Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Tatiana Zúñiga-Burgos
- School of Molecular and Cellular Biology, Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, United Kingdom
| | - Lili Chu
- School of Molecular and Cellular Biology, Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Payam Mehrshahi
- Department of Plant Sciences, Cambridge University, Cambridge, United Kingdom
| | - Matthew P. Davey
- Department of Plant Sciences, Cambridge University, Cambridge, United Kingdom
| | - Alison G. Smith
- Department of Plant Sciences, Cambridge University, Cambridge, United Kingdom
| | - Miller Alonso Camargo-Valero
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, United Kingdom
- Departamento de Ingeniería Química, Universidad Nacional de Colombia, Manizales, Colombia
| | - Alison Baker
- School of Molecular and Cellular Biology, Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
9
|
Rui W, Ma J, Wei N, Zhu X, Li Z. Genome-Wide Analysis of the PHT Gene Family and Its Response to Mycorrhizal Symbiosis in Tomatoes under Phosphate Starvation Conditions. Int J Mol Sci 2023; 24:10246. [PMID: 37373390 DOI: 10.3390/ijms241210246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/09/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Phosphate is one of the essential mineral nutrients. Phosphate transporter genes (PHTs) play an important role in Pi acquisition and homeostasis in tomato plants. However, basic biological information on PHT genes and their responses of symbiosis with arbuscular mycorrhizal in the genome remains largely unknown. We analyzed the physiological changes and PHT gene expression in tomatoes (Micro-Tom) inoculated with arbuscular mycorrhizal (AM) fungi (Funneliformis mosseae) under different phosphate conditions (P1: 0 µM, P2: 25 µM, and P3: 200 µM Pi). Twenty-three PHT genes were identified in the tomato genomics database. Protein sequence alignment further divided the 23 PHT genes into three groups, with similar classifications of exons and introns. Good colonization of plants was observed under low phosphate conditions (25 µM Pi), and Pi stress and AM fungi significantly affected P and N accumulation and root morphological plasticity. Moreover, gene expression data showed that genes in the SlPHT1 (SlPT3, SlPT4, and SlPT5) gene family were upregulated by Funneliformis mosseae under all conditions, which indicated that these gene levels were significantly increased with AM fungi inoculation. None of the analyzed SlPHT genes in the SlPH2, SlPHT3, SlPHT4, and SlPHO gene families were changed at any Pi concentration. Our results indicate that inoculation with AM fungi mainly altered the expression of the PHT1 gene family. These results will lay a foundation for better understanding the molecular mechanisms of inorganic phosphate transport under AM fungi inoculation.
Collapse
Affiliation(s)
- Wenjing Rui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Yuanmingyuan Xilu 2, Haidian District, Beijing 100193, China
| | - Jing Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Yuanmingyuan Xilu 2, Haidian District, Beijing 100193, China
| | - Ning Wei
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Yuanmingyuan Xilu 2, Haidian District, Beijing 100193, China
| | - Xiaoya Zhu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Yuanmingyuan Xilu 2, Haidian District, Beijing 100193, China
| | - Zhifang Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Yuanmingyuan Xilu 2, Haidian District, Beijing 100193, China
| |
Collapse
|
10
|
Architecture of chloroplast TOC-TIC translocon supercomplex. Nature 2023; 615:349-357. [PMID: 36702157 DOI: 10.1038/s41586-023-05744-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
Chloroplasts rely on the translocon complexes in the outer and inner envelope membranes (the TOC and TIC complexes, respectively) to import thousands of different nuclear-encoded proteins from the cytosol1-4. Although previous studies indicated that the TOC and TIC complexes may assemble into larger supercomplexes5-7, the overall architectures of the TOC-TIC supercomplexes and the mechanism of preprotein translocation are unclear. Here we report the cryo-electron microscopy structure of the TOC-TIC supercomplex from Chlamydomonas reinhardtii. The major subunits of the TOC complex (Toc75, Toc90 and Toc34) and TIC complex (Tic214, Tic20, Tic100 and Tic56), three chloroplast translocon-associated proteins (Ctap3, Ctap4 and Ctap5) and three newly identified small inner-membrane proteins (Simp1-3) have been located in the supercomplex. As the largest protein, Tic214 traverses the inner membrane, the intermembrane space and the outer membrane, connecting the TOC complex with the TIC proteins. An inositol hexaphosphate molecule is located at the Tic214-Toc90 interface and stabilizes their assembly. Four lipid molecules are located within or above an inner-membrane funnel formed by Tic214, Tic20, Simp1 and Ctap5. Multiple potential pathways found in the TOC-TIC supercomplex may support translocation of different substrate preproteins into chloroplasts.
Collapse
|
11
|
Helliwell KE. Emerging trends in nitrogen and phosphorus signalling in photosynthetic eukaryotes. TRENDS IN PLANT SCIENCE 2023; 28:344-358. [PMID: 36372648 DOI: 10.1016/j.tplants.2022.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Phosphorus (P) and nitrogen (N) are the major nutrients that constrain plant and algal growth in nature. Recent advances in understanding nutrient signalling mechanisms of these organisms have revealed molecular attributes to optimise N and P acquisition. This has illuminated the importance of interplay between N and P regulatory networks, highlighting a need to study synergistic interactions rather than single-nutrient effects. Emerging insights of nutrient signalling in polyphyletic model plants and algae hint that, although core P-starvation signalling components are conserved, distinct mechanisms for P (and N) sensing have arisen. Here, the N and P signalling mechanisms of diverse photosynthetic eukaryotes are examined, drawing parallels and differences between taxa. Future directions to understand their molecular basis, evolution, and ecology are proposed.
Collapse
Affiliation(s)
- Katherine E Helliwell
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK; Marine Biological Association, Citadel Hill, Plymouth PL1 2PB, UK.
| |
Collapse
|
12
|
The proteome of Chlamydomonas reinhardtii during phosphorus depletion and repletion. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
13
|
Chen Z, Wang L, Cardoso JA, Zhu S, Liu G, Rao IM, Lin Y. Improving phosphorus acquisition efficiency through modification of root growth responses to phosphate starvation in legumes. FRONTIERS IN PLANT SCIENCE 2023; 14:1094157. [PMID: 36844096 PMCID: PMC9950756 DOI: 10.3389/fpls.2023.1094157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Phosphorus (P) is one of the essential macronutrients for plant growth and development, and it is an integral part of the major organic components, including nucleic acids, proteins and phospholipids. Although total P is abundant in most soils, a large amount of P is not easily absorbed by plants. Inorganic phosphate (Pi) is the plant-available P, which is generally immobile and of low availability in soils. Hence, Pi starvation is a major constraint limiting plant growth and productivity. Enhancing plant P efficiency can be achieved by improving P acquisition efficiency (PAE) through modification of morpho-physiological and biochemical alteration in root traits that enable greater acquisition of external Pi from soils. Major advances have been made to dissect the mechanisms underlying plant adaptation to P deficiency, especially for legumes, which are considered important dietary sources for humans and livestock. This review aims to describe how legume root growth responds to Pi starvation, such as changes in the growth of primary root, lateral roots, root hairs and cluster roots. In particular, it summarizes the various strategies of legumes to confront P deficiency by regulating root traits that contribute towards improving PAE. Within these complex responses, a large number of Pi starvation-induced (PSI) genes and regulators involved in the developmental and biochemical alteration of root traits are highlighted. The involvement of key functional genes and regulators in remodeling root traits provides new opportunities for developing legume varieties with maximum PAE needed for regenerative agriculture.
Collapse
Affiliation(s)
- Zhijian Chen
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Linjie Wang
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | | | - Shengnan Zhu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Guodao Liu
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Idupulapati M. Rao
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Yan Lin
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
14
|
Guan Z, Chen J, Liu R, Chen Y, Xing Q, Du Z, Cheng M, Hu J, Zhang W, Mei W, Wan B, Wang Q, Zhang J, Cheng P, Cai H, Cao J, Zhang D, Yan J, Yin P, Hothorn M, Liu Z. The cytoplasmic synthesis and coupled membrane translocation of eukaryotic polyphosphate by signal-activated VTC complex. Nat Commun 2023; 14:718. [PMID: 36759618 PMCID: PMC9911596 DOI: 10.1038/s41467-023-36466-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Inorganic polyphosphate (polyP) is an ancient energy metabolite and phosphate store that occurs ubiquitously in all organisms. The vacuolar transporter chaperone (VTC) complex integrates cytosolic polyP synthesis from ATP and polyP membrane translocation into the vacuolar lumen. In yeast and in other eukaryotes, polyP synthesis is regulated by inositol pyrophosphate (PP-InsP) nutrient messengers, directly sensed by the VTC complex. Here, we report the cryo-electron microscopy structure of signal-activated VTC complex at 3.0 Å resolution. Baker's yeast VTC subunits Vtc1, Vtc3, and Vtc4 assemble into a 3:1:1 complex. Fifteen trans-membrane helices form a novel membrane channel enabling the transport of newly synthesized polyP into the vacuolar lumen. PP-InsP binding orients the catalytic polymerase domain at the entrance of the trans-membrane channel, both activating the enzyme and coupling polyP synthesis and membrane translocation. Together with biochemical and cellular studies, our work provides mechanistic insights into the biogenesis of an ancient energy metabolite.
Collapse
Affiliation(s)
- Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juan Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruiwen Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanke Chen
- Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qiong Xing
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zhangmeng Du
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng Cheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianjian Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenhui Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wencong Mei
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Beijing Wan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiang Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Cheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanyu Cai
- College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianbo Cao
- Public Laboratory of Electron Microscopy, Huazhong Agricultural University, Wuhan, 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junjie Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Plant Scienes, University of Geneva, Geneva, 1211, Switzerland
| | - Zhu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
15
|
Sahu S, Gordon J, Gu C, Sobhany M, Fiedler D, Stanley RE, Shears SB. Nucleolar Architecture Is Modulated by a Small Molecule, the Inositol Pyrophosphate 5-InsP 7. Biomolecules 2023; 13:biom13010153. [PMID: 36671538 PMCID: PMC9855682 DOI: 10.3390/biom13010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Inositol pyrophosphates (PP-InsPs); are a functionally diverse family of eukaryotic molecules that deploy a highly-specialized array of phosphate groups as a combinatorial cell-signaling code. One reductive strategy to derive a molecular-level understanding of the many actions of PP-InsPs is to individually characterize the proteins that bind them. Here, we describe an alternate approach that seeks a single, collective rationalization for PP-InsP binding to an entire group of proteins, i.e., the multiple nucleolar proteins previously reported to bind 5-InsP7 (5-diphospho-inositol-1,2,3,4,6-pentakisphosphate). Quantitative confocal imaging of the outer nucleolar granular region revealed its expansion when cellular 5-InsP7 levels were elevated by either (a) reducing the 5-InsP7 metabolism by a CRISPR-based knockout (KO) of either NUDT3 or PPIP5Ks; or (b), the heterologous expression of wild-type inositol hexakisphosphate kinase, i.e., IP6K2; separate expression of a kinase-dead IP6K2 mutant did not affect granular volume. Conversely, the nucleolar granular region in PPIP5K KO cells shrank back to the wild-type volume upon attenuating 5-InsP7 synthesis using either a pan-IP6K inhibitor or the siRNA-induced knockdown of IP6K1+IP6K2. Significantly, the inner fibrillar volume of the nucleolus was unaffected by 5-InsP7. We posit that 5-InsP7 acts as an 'electrostatic glue' that binds together positively charged surfaces on separate proteins, overcoming mutual protein-protein electrostatic repulsion the latter phenomenon is a known requirement for the assembly of a non-membranous biomolecular condensate.
Collapse
Affiliation(s)
- Soumyadip Sahu
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Jacob Gordon
- Nucleolar Integrity Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge CB2 0XY, UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Chunfang Gu
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Mack Sobhany
- Nucleolar Integrity Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Robin E. Stanley
- Nucleolar Integrity Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Stephen B. Shears
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- Correspondence: ; Tel.: +1-984-287-3483
| |
Collapse
|
16
|
Verslues PE, Bailey-Serres J, Brodersen C, Buckley TN, Conti L, Christmann A, Dinneny JR, Grill E, Hayes S, Heckman RW, Hsu PK, Juenger TE, Mas P, Munnik T, Nelissen H, Sack L, Schroeder JI, Testerink C, Tyerman SD, Umezawa T, Wigge PA. Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. THE PLANT CELL 2023; 35:67-108. [PMID: 36018271 PMCID: PMC9806664 DOI: 10.1093/plcell/koac263] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/21/2022] [Indexed: 05/08/2023]
Abstract
We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.
Collapse
Affiliation(s)
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, Connecticut 06511, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Lucio Conti
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Alexander Christmann
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Erwin Grill
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - Scott Hayes
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Robert W Heckman
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Po-Kai Hsu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Paloma Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Teun Munnik
- Department of Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam NL-1098XH, The Netherlands
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095, USA
| | - Julian I Schroeder
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Stephen D Tyerman
- ARC Center Excellence, Plant Energy Biology, School of Agriculture Food and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
| | - Taishi Umezawa
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 6708 PB, Japan
| | - Philip A Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren 14979, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
17
|
Chen N, Tong S, Yang J, Qin J, Wang W, Chen K, Shi W, Li J, Liu J, Jiang Y. PtoWRKY40 interacts with PtoPHR1-LIKE3 while regulating the phosphate starvation response in poplar. PLANT PHYSIOLOGY 2022; 190:2688-2705. [PMID: 36040189 PMCID: PMC9706449 DOI: 10.1093/plphys/kiac404] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/03/2022] [Indexed: 05/27/2023]
Abstract
Plants usually suffer from phosphorus starvation because of the low inorganic phosphate (Pi) status of most soils. To cope with this, plants have evolved an adaptive phosphate starvation response (PSR) which involves both developmental and metabolic changes regulated mainly by PHOSPHATE STARVATION RESPONSE1 (PHR1) and its homologs. Here, we elucidated how perennial woody plants, such as poplars (Populus spp.), respond to low-Pi stress. We first performed RNA-seq analysis of low-Pi-treated poplars and identified PtoWRKY40 is rapidly downregulated and protein degraded after stress. Overexpressing and knocking-down PtoWRKY40 downregulated and upregulated the expression of Pi starvation signaling genes, respectively, such as PHOSPHATE TRANSPORTER1 (PHT1)-type genes and PURPLE ACID PHOSPHATASE genes. PtoWRKY40 bound to the W box in the promoter of several PtoPHT1s and repressed their expression. Moreover, PtoWRKY40 interacted with PtoPHR1-LIKE3 (PtoPHL3), a PHR1 homolog in poplar, to inhibit the latter binding to the P1BS element and thus reduced PtoPHT1s' transcription under Pi-sufficient conditions. However, Pi deficiency decreased PtoWRKY40 abundance and therefore released its inhibition on PHT1s. In conclusion, we have uncovered a PSR mechanism mediated by PtoWRKY40 and PtoPHL3 which regulates Pi content in poplars, deepening our understanding of how poplars adapt to diverse Pi conditions and regulate appropriate responses to maintain Pi homeostasis.
Collapse
Affiliation(s)
- Ningning Chen
- College of Life Science, Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Shaofei Tong
- College of Life Science, Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Jian Yang
- College of Life Sciences, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiajia Qin
- College of Life Science, Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Weiwei Wang
- College of Life Science, Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Kai Chen
- College of Life Science, Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Wensen Shi
- College of Life Science, Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Jiacong Li
- College of Life Science, Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Jianquan Liu
- College of Life Science, Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, Sichuan University, Chengdu, 610065, China
- College of Ecology, State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, Lanzhou, 730000, China
| | - Yuanzhong Jiang
- College of Life Science, Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
18
|
Pesquera M, Martinez J, Maillot B, Wang K, Hofmann M, Raia P, Loubéry S, Steensma P, Hothorn M, Fitzpatrick TB. Structural and functional studies of Arabidopsis thaliana triphosphate tunnel metalloenzymes reveal roles for additional domains. J Biol Chem 2022; 298:102438. [PMID: 36049521 PMCID: PMC9582702 DOI: 10.1016/j.jbc.2022.102438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/04/2022] Open
Abstract
Triphosphate tunnel metalloenzymes (TTMs) are found in all biological kingdoms and have been characterized in microorganisms and animals. Members of the TTM family have divergent biological functions and act on a range of triphosphorylated substrates (RNA, thiamine triphosphate, and inorganic polyphosphate). TTMs in plants have received considerably less attention and are unique in that some homologs harbor additional domains including a P-loop kinase and transmembrane domain. Here, we report on structural and functional aspects of the multimodular TTM1 and TTM2 of Arabidopsis thaliana. Our tissue and cellular microscopy studies show that both AtTTM1 and AtTTM2 are expressed in actively dividing (meristem) tissue and are tail-anchored proteins at the outer mitochondrial membrane, mediated by the single C-terminal transmembrane domain, supporting earlier studies. In addition, we reveal from crystal structures of AtTTM1 in the presence and absence of a nonhydrolyzable ATP analog a catalytically incompetent TTM tunnel domain tightly interacting with the P-loop kinase domain that is locked in an inactive conformation. Our structural comparison indicates that a helical hairpin may facilitate movement of the TTM domain, thereby activating the kinase. Furthermore, we conducted genetic studies to show that AtTTM2 is important for the developmental transition from the vegetative to the reproductive phase in Arabidopsis, whereas its closest paralog AtTTM1 is not. We demonstrate through rational design of mutations based on the 3D structure that both the P-loop kinase and TTM tunnel modules of AtTTM2 are required for the developmental switch. Together, our results provide insight into the structure and function of plant TTM domains.
Collapse
Affiliation(s)
- Marta Pesquera
- Vitamins & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Jacobo Martinez
- Structural Plant Biology, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Benoît Maillot
- Vitamins & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Kai Wang
- Vitamins & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Manuel Hofmann
- Vitamins & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Pierre Raia
- Structural Plant Biology, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Sylvain Loubéry
- Plant Imaging Unit, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Priscille Steensma
- Vitamins & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Michael Hothorn
- Structural Plant Biology, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland.
| | - Teresa B Fitzpatrick
- Vitamins & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
19
|
Plouviez M, Oliveira da Rocha C, Guieysse B. Intracellular polyphosphate is a P reserve in Chlamydomonas reinhardtii. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
20
|
Nguyen Trung M, Furkert D, Fiedler D. Versatile signaling mechanisms of inositol pyrophosphates. Curr Opin Chem Biol 2022; 70:102177. [PMID: 35780751 DOI: 10.1016/j.cbpa.2022.102177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 01/03/2023]
Abstract
Inositol pyrophosphates (PP-InsPs) constitute a group of highly charged messengers, which regulate central biological processes in health and disease, such as cellular phosphate and general energy homeostasis. Deciphering the molecular mechanisms underlying PP-InsP-mediated signaling remains a challenge due to the unique properties of these molecules, the different modes of action they can access, and a somewhat limited chemical and analytical toolset. Herein, we summarize the most recent mechanistic insights into PP-InsP signaling, which illustrate our progress in connecting mechanism and function of PP-InsPs.
Collapse
Affiliation(s)
- Minh Nguyen Trung
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| |
Collapse
|
21
|
Wang H, Perera L, Jork N, Zong G, Riley AM, Potter BVL, Jessen HJ, Shears SB. A structural exposé of noncanonical molecular reactivity within the protein tyrosine phosphatase WPD loop. Nat Commun 2022; 13:2231. [PMID: 35468885 PMCID: PMC9038691 DOI: 10.1038/s41467-022-29673-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/25/2022] [Indexed: 01/06/2023] Open
Abstract
Structural snapshots of protein/ligand complexes are a prerequisite for gaining atomic level insight into enzymatic reaction mechanisms. An important group of enzymes has been deprived of this analytical privilege: members of the protein tyrosine phosphatase (PTP) superfamily with catalytic WPD-loops lacking the indispensable general-acid/base within a tryptophan-proline-aspartate/glutamate context. Here, we provide the ligand/enzyme crystal complexes for one such PTP outlier: Arabidopsis thaliana Plant and Fungi Atypical Dual Specificity Phosphatase 1 (AtPFA-DSP1), herein unveiled as a regioselective and efficient phosphatase towards inositol pyrophosphate (PP-InsP) signaling molecules. Although the WPD loop is missing its canonical tripeptide motif, this structural element contributes to catalysis by assisting PP-InsP delivery into the catalytic pocket, for a choreographed exchange with phosphate reaction product. Subsequently, an intramolecular proton donation by PP-InsP substrate is posited to substitute functionally for the absent aspartate/glutamate general-acid. Overall, we expand mechanistic insight into adaptability of the conserved PTP structural elements.
Collapse
Affiliation(s)
- Huanchen Wang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Nikolaus Jork
- Institute of Organic Chemistry, and CIBSS - the Center for Integrative Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Guangning Zong
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Andrew M Riley
- Drug Discovery and Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Barry V L Potter
- Drug Discovery and Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Henning J Jessen
- Institute of Organic Chemistry, and CIBSS - the Center for Integrative Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Stephen B Shears
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
22
|
Wu T, Liao X, Zou Y, Liu Y, Yang K, White JC, Lin D. Fe-based nanomaterial transformation to amorphous Fe: Enhanced alfalfa rhizoremediation of PCBs-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127973. [PMID: 34894512 DOI: 10.1016/j.jhazmat.2021.127973] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Nano-enabled phytoremediation is an emerging remediation strategy for soils that are moderately contaminated with persistent organic contaminants, and there is a significant need for increased mechanistic understanding and for case studies. Herein, we evaluated the remediation of PCB28-contaminated soil using combined alfalfa and Fe-based materials, including zero-valent iron at 20 nm, 100 nm, and 5 µm, and also iron oxide nanomaterials including α-Fe2O3, γ-Fe2O3, and Fe3O4 around 20-30 nm. Compared with alfalfa remediation alone (63.2%), Fe-based nanomaterials increased PCB28 removal values to 72.4-93.5% in planted soil, with α-Fe2O3 treatment promoting the most effective pollutant removal. Mechanistically, the crystalline Fe-based nanoparticles were transformed into amorphous forms in the plant rhizosphere, resulting in greater availability and enhanced iron nutrition. This nutritional shift induced root metabolic reprogramming of amino acid and carbohydrate cycling, and related functional bacterial enrichment of Ramlibacter, Dyella, Bacillus, and Paraburkholderia in rhizosphere. A significant positive correlation between amorphous iron and root metabolites-associated microbes with PCB28 removal was evident, implying that iron supplementation selected for rhizospheric microorganisms favored PCBs degradation. Overall, this rhizoremediation promotion strategy of Fe species-metabolites-microbes highlights the potential for the hybrid application of nano-enabled phytotechnology in the remediation of soils contaminated with persistent organic xenobiotics.
Collapse
Affiliation(s)
- Ting Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Liao
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yiting Zou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yangzhi Liu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Kun Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Ecological Civilization Academy, Anji 313300, China.
| |
Collapse
|
23
|
Satheesh V, Tahir A, Li J, Lei M. Plant phosphate nutrition: sensing the stress. STRESS BIOLOGY 2022; 2:16. [PMID: 37676547 PMCID: PMC10441931 DOI: 10.1007/s44154-022-00039-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/31/2022] [Indexed: 09/08/2023]
Abstract
Phosphorus (P) is obtained by plants as phosphate (Pi) from the soil and low Pi levels affects plant growth and development. Adaptation to low Pi condition entails sensing internal and external Pi levels and translating those signals to molecular and morphophysiological changes in the plant. In this review, we present findings related to local and systemin Pi sensing with focus the molecular mechanisms behind root system architectural changes and the impact of hormones and epigenetic mechanisms affecting those changes. We also present some of the recent advances in the Pi sensing and signaling mechanisms focusing on inositol pyrophosphate InsP8 and its interaction with SPX domain proteins to regulate the activity of the central regulator of the Pi starvation response, PHR.
Collapse
Affiliation(s)
- Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| | - Ayesha Tahir
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | - Jinkai Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| |
Collapse
|
24
|
Siracusa L, Napoli E, Ruberto G. Novel Chemical and Biological Insights of Inositol Derivatives in Mediterranean Plants. Molecules 2022; 27:1525. [PMID: 35268625 PMCID: PMC8912080 DOI: 10.3390/molecules27051525] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Inositols (Ins) are natural compounds largely widespread in plants and animals. Bio-sinthetically they derive from sugars, possessing a molecular structure very similar to the simple sugars, and this aspect concurs to define them as primary metabolites, even though it is much more correct to place them at the boundary between primary and secondary metabolites. This dichotomy is well represented by the fact that as primary metabolites they are essential cellular components in the form of phospholipid derivatives, while as secondary metabolites they are involved in a plethora of signaling pathways playing an important role in the surviving of living organisms. myo-Inositol is the most important and widespread compound of this family, it derives directly from d-glucose, and all known inositols, including stereoisomers and derivatives, are the results of metabolic processes on this unique molecule. In this review, we report the new insights of these compounds and their derivatives concerning their occurrence in Nature with a particular emphasis on the plant of the Mediterranean area, as well as the new developments about their biological effectiveness.
Collapse
Affiliation(s)
| | | | - Giuseppe Ruberto
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126 Catania, Italy; (L.S.); (E.N.)
| |
Collapse
|
25
|
Wieczorek D, Żyszka-Haberecht B, Kafka A, Lipok J. Determination of phosphorus compounds in plant tissues: from colourimetry to advanced instrumental analytical chemistry. PLANT METHODS 2022; 18:22. [PMID: 35184722 PMCID: PMC8859883 DOI: 10.1186/s13007-022-00854-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/08/2022] [Indexed: 05/16/2023]
Abstract
Although the spectrum of effective methods and techniques that allow determination of inorganic or total phosphorus is impressive, more precise analysis of these substances in plant tissues is not a routine or trivial task. The complexity of chemical composition of plant tissues treated as the analytical matrices is thought to be the main cause why there is no one answer, how appropriate phosphorus compounds may be determined qualitatively and quantitatively. Even if more advanced spectrophotometric measurements and classical variants of absorption (FAAS) or emission (ICP-AES/ ICP-OES) spectrometry techniques are used, it is necessary at first to isolate various forms of phosphorus from the matrix, and then to mineralize them prior the determination. Significant progress in such a kind of analytical efforts was brought by implementation of combined methods e.g. ETV-ICP-AES or HR-ETAAS, does allow the isolation of the phosphorus analyte and its detection during a kind of "one step" analytical procedure, directly in plant tissues. Similar benefits, regarding sensitivity of determinations, are obtained when XRF, SIMS or nanoSIMS-more expensive techniques of imaging the presence of phosphorus in biological matrices have been used. Nowadays, obviously being aware of higher limit of detection, nuclear magnetic resonance spectroscopy, especially the 31P NMR technique, is thought to be the most universal analytical tool allowing to determine various chemical forms of plant phosphorus qualitatively and quantitatively, at the same time. Although 31P NMR provides valuable information about the phosphorus profile of plants, it should be emphasized that each analytical issue related to the determination of phosphorus compounds in plant tissues and organs, requires an individual approach to defined problem.
Collapse
Affiliation(s)
- Dorota Wieczorek
- Department of Pharmacy and Ecological Chemistry, Institute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Beata Żyszka-Haberecht
- Department of Pharmacy and Ecological Chemistry, Institute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Anna Kafka
- Department of Pharmacy and Ecological Chemistry, Institute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Jacek Lipok
- Department of Pharmacy and Ecological Chemistry, Institute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
| |
Collapse
|
26
|
The Genetic Basis of Phosphorus Utilization Efficiency in Plants Provide New Insight into Woody Perennial Plants Improvement. Int J Mol Sci 2022; 23:ijms23042353. [PMID: 35216469 PMCID: PMC8877309 DOI: 10.3390/ijms23042353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 01/01/2023] Open
Abstract
Soil nutrient restrictions are the main environmental conditions limiting plant growth, development, yield, and quality. Phosphorus (P), an essential macronutrient, is one of the most significant factors that vastly restrains the growth and development of plants. Although the total P is rich in soil, its bio-available concentration is still unable to meet the requirements of plants. To maintain P homeostasis, plants have developed lots of intricate responsive and acclimatory mechanisms at different levels, which contribute to administering the acquisition of inorganic phosphate (Pi), translocation, remobilization, and recycling of Pi. In recent years, significant advances have been made in the exploration of the utilization of P in annual plants, while the research progress in woody perennial plants is still vague. In the meanwhile, compared to annual plants, relevant reviews about P utilization in woody perennial plants are scarce. Therefore, based on the importance of P in the growth and development of plants, we briefly reviewed the latest advances on the genetic and molecular mechanisms of plants to uphold P homeostasis, P sensing, and signaling, ion transporting and metabolic regulation, and proposed the possible sustainable management strategies to fasten the P cycle in modern agriculture and new directions for future studies.
Collapse
|
27
|
Sander CL, Luu J, Kim K, Furkert D, Jang K, Reichenwallner J, Kang M, Lee HJ, Eger BT, Choe HW, Fiedler D, Ernst OP, Kim YJ, Palczewski K, Kiser PD. Structural evidence for visual arrestin priming via complexation of phosphoinositols. Structure 2022; 30:263-277.e5. [PMID: 34678158 PMCID: PMC8818024 DOI: 10.1016/j.str.2021.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/06/2021] [Accepted: 09/29/2021] [Indexed: 02/05/2023]
Abstract
Visual arrestin (Arr1) terminates rhodopsin signaling by blocking its interaction with transducin. To do this, Arr1 translocates from the inner to the outer segment of photoreceptors upon light stimulation. Mounting evidence indicates that inositol phosphates (InsPs) affect Arr1 activity, but the Arr1-InsP molecular interaction remains poorly defined. We report the structure of bovine Arr1 in a ligand-free state featuring a near-complete model of the previously unresolved C-tail, which plays a crucial role in regulating Arr1 activity. InsPs bind to the N-domain basic patch thus displacing the C-tail, suggesting that they prime Arr1 for interaction with rhodopsin and help direct Arr1 translocation. These structures exhibit intact polar cores, suggesting that C-tail removal by InsP binding is insufficient to activate Arr1. These results show how Arr1 activity can be controlled by endogenous InsPs in molecular detail.
Collapse
Affiliation(s)
- Christopher L Sander
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA
| | - Jennings Luu
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA
| | - Kyumhyuk Kim
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Kiyoung Jang
- Department of Lifestyle Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | | | - MinSoung Kang
- Department of Lifestyle Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Daejeon 34114, Republic of Korea
| | - Ho-Jun Lee
- Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA 90822, USA
| | - Bryan T Eger
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hui-Woog Choe
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yong Ju Kim
- Department of Lifestyle Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; Department of Oriental Medicine Resources, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Krzysztof Palczewski
- Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA; Department of Chemistry and Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California, Irvine, CA 92697, USA
| | - Philip D Kiser
- Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California, Irvine, CA 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA 90822, USA.
| |
Collapse
|
28
|
Wang Z, Kuo HF, Chiou TJ. Intracellular phosphate sensing and regulation of phosphate transport systems in plants. PLANT PHYSIOLOGY 2021; 187:2043-2055. [PMID: 35235674 PMCID: PMC8644344 DOI: 10.1093/plphys/kiab343] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/29/2021] [Indexed: 05/04/2023]
Abstract
Recent research on the regulation of cellular phosphate (Pi) homeostasis in eukaryotes has collectively made substantial advances in elucidating inositol pyrophosphates (PP-InsP) as Pi signaling molecules that are perceived by the SPX (Syg1, Pho81, and Xpr1) domains residing in multiple proteins involved in Pi transport and signaling. The PP-InsP-SPX signaling module is evolutionarily conserved across eukaryotes and has been elaborately adopted in plant Pi transport and signaling systems. In this review, we have integrated these advances with prior established knowledge of Pi and PP-InsP metabolism, intracellular Pi sensing, and transcriptional responses according to the dynamics of cellular Pi status in plants. Anticipated challenges and pending questions as well as prospects are also discussed.
Collapse
Affiliation(s)
- Zhengrui Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hui-Fen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
29
|
Phytate as a phosphorus nutrient with impacts on iron stress-related gene expression for phytoplankton: insights from diatom Phaeodactylum tricornutum. Appl Environ Microbiol 2021; 88:e0209721. [PMID: 34757820 DOI: 10.1128/aem.02097-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phytoplankton have evolved a capability to acquire phosphorus (P) from dissolved organic phosphorus (DOP) since the preferred form, dissolved inorganic phosphate (DIP, or Pi), is often limited in parts of the ocean. Phytic acid (PA) is abundantly synthesized in plants and rich in excreta of animals, potentially enriching the DOP pool in coastal oceans. However, whether and how PA may be used by phytoplankton are poorly understood. Here, we investigated PA utilization and underlying metabolic pathways in the diatom model Phaeodactylum tricornutum. The physiological results showed that P. tricornutum could utilize PA as a sole source of P nutrient to support growth. Meanwhile, the replacement of PA for DIP also caused changes in multiple cellular processes such as inositol phosphate metabolism, photosynthesis, and signal transduction. These results suggest that PA is bioavailable to P. tricornutum and can directly participate the metabolic pathways of PA-grown cells. However, our data showed that the utilization of PA was markedly less efficient than that of DIP, and PA-grown cells exhibited P and iron (Fe) nutrient stress signals. Implicated in these findings is the potential of complicated responses of phytoplankton to an ambient DOP species, which calls for more systematic investigation. IMPORTANCE PA is abundant in plants, and cannot be digested by non-ruminant animals. Hence, it is potentially a significant component of the DOP pool in the coastal waters. Despite the potential importance, there is little information about its bioavailability to phytoplankton as a source of P nutrient and if so what molecular mechanisms are involved. In this study, we found that part of PA could be utilized by the diatom P. tricornutum to support growth, and another portion of PA can act as a substrate directly participating in various metabolism pathways and cellular processes. However, our physiological and transcriptomic data show that PA-grown cells still exhibited signs of P stress and potential Fe stress. These results have significant implications in phytoplankton P nutrient ecology and provide a novel insight into multi-faceted impacts of DOP utilization on phytoplankton nutrition and metabolism.
Collapse
|
30
|
Jia X, Wang L, Zeng H, Yi K. Insights of intracellular/intercellular phosphate transport and signaling in unicellular green algae and multicellular land plants. THE NEW PHYTOLOGIST 2021; 232:1566-1571. [PMID: 34482553 DOI: 10.1111/nph.17716] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/20/2021] [Indexed: 05/18/2023]
Abstract
Phosphorus (P) is an essential element for plant growth and development. Vacuoles play a fundamental role in the storage and remobilization of P in plants, while our understanding of the evolutionary mechanisms of creating and reusing P stores are limited. Besides, we also know very little about the coordination of intercellular P translocation, neither the inorganic phosphate (Pi) signaling nor the Pi transport patterns. Here we summarize recent advances in understanding the core elements involved in cellular and/or subcellular P homeostasis and signaling in unicellular green algae and multicellular land plants. We also propose further work that might help to uncover the high-resolution intracellular and intercellular landscape of Pi distribution and signaling in plants.
Collapse
Affiliation(s)
- Xianqing Jia
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Long Wang
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
31
|
Morales-de la Cruz X, Mandujano-Chávez A, Browne DR, Devarenne TP, Sánchez-Segura L, López MG, Lozoya-Gloria E. In Silico and Cellular Differences Related to the Cell Division Process between the A and B Races of the Colonial Microalga Botryococcus braunii. Biomolecules 2021; 11:biom11101463. [PMID: 34680096 PMCID: PMC8533097 DOI: 10.3390/biom11101463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/23/2022] Open
Abstract
Botryococcus braunii produce liquid hydrocarbons able to be processed into combustion engine fuels. Depending on the growing conditions, the cell doubling time can be up to 6 days or more, which is a slow growth rate in comparison with other microalgae. Few studies have analyzed the cell cycle of B. braunii. We did a bioinformatic comparison between the protein sequences for retinoblastoma and cyclin-dependent kinases from the A (Yamanaka) and B (Showa) races, with those sequences from other algae and Arabidopsis thaliana. Differences in the number of cyclin-dependent kinases and potential retinoblastoma phosphorylation sites between the A and B races were found. Some cyclin-dependent kinases from both races seemed to be phylogenetically more similar to A. thaliana than to other microalgae. Microscopic observations were done using several staining procedures. Race A colonies, but not race B, showed some multinucleated cells without chlorophyll. An active mitochondrial net was detected in those multinucleated cells, as well as being defined in polyphosphate bodies. These observations suggest differences in the cell division processes between the A and B races of B. braunii.
Collapse
Affiliation(s)
- Xochitl Morales-de la Cruz
- Genetic Engineering Department, CINVESTAV-IPN Irapuato Unit, Irapuato 36824, Mexico; (X.M.-d.l.C.); (L.S.-S.)
| | | | - Daniel R. Browne
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; (D.R.B.); (T.P.D.)
- Pacific Biosciences, Chicago, IL 60606, USA
| | - Timothy P. Devarenne
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; (D.R.B.); (T.P.D.)
| | - Lino Sánchez-Segura
- Genetic Engineering Department, CINVESTAV-IPN Irapuato Unit, Irapuato 36824, Mexico; (X.M.-d.l.C.); (L.S.-S.)
| | - Mercedes G. López
- Biochemistry and Biotechnology Department, CINVESTAV-IPN Irapuato Unit, Irapuato 36824, Mexico;
| | - Edmundo Lozoya-Gloria
- Genetic Engineering Department, CINVESTAV-IPN Irapuato Unit, Irapuato 36824, Mexico; (X.M.-d.l.C.); (L.S.-S.)
- Correspondence: ; Tel.: +52-462-6239659
| |
Collapse
|
32
|
Couto D, Richter A, Walter H, Furkert D, Hothorn M, Fiedler D. Using Biotinylated myo-Inositol Hexakisphosphate to Investigate Inositol Pyrophosphate-Protein Interactions with Surface-Based Biosensors. Biochemistry 2021; 60:2739-2748. [PMID: 34499474 DOI: 10.1021/acs.biochem.1c00497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Inositol pyrophosphates (PP-InsPs) are highly phosphorylated molecules that have emerged as central nutrient messengers in eukaryotic organisms. They can bind to structurally diverse target proteins to regulate biological functions, such as protein-protein interactions. PP-InsPs are strongly negatively charged and interact with highly basic surface patches in proteins, making their quantitative biochemical analysis challenging. Here, we present the synthesis of biotinylated myo-inositol hexakisphosphates and their application in surface plasmon resonance and grating-coupled interferometry assays, to enable the rapid identification, validation, and kinetic characterization of InsP- and PP-InsP-protein interactions.
Collapse
Affiliation(s)
- Daniel Couto
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Annika Richter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Henriette Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| |
Collapse
|
33
|
Sardans J, Gargallo‐Garriga A, Urban O, Klem K, Holub P, Janssens IA, Walker TWN, Pesqueda A, Peñuelas J. Ecometabolomics of plant–herbivore and plant–fungi interactions: a synthesis study. Ecosphere 2021. [DOI: 10.1002/ecs2.3736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Jordi Sardans
- CSIC Global Ecology Unit CREAF‐CSIC‐UAB Bellaterra Catalonia 08193 Spain
- CREAF Cerdanyola del Valles Catalonia 08193 Spain
- Global Change Research Institute Czech Academy of Sciences Bělidla 986/4a Brno CZ‐60300 Czech Republic
| | - Albert Gargallo‐Garriga
- CSIC Global Ecology Unit CREAF‐CSIC‐UAB Bellaterra Catalonia 08193 Spain
- CREAF Cerdanyola del Valles Catalonia 08193 Spain
- Global Change Research Institute Czech Academy of Sciences Bělidla 986/4a Brno CZ‐60300 Czech Republic
| | - Otmar Urban
- Global Change Research Institute Czech Academy of Sciences Bělidla 986/4a Brno CZ‐60300 Czech Republic
| | - Karel Klem
- Global Change Research Institute Czech Academy of Sciences Bělidla 986/4a Brno CZ‐60300 Czech Republic
| | - Petr Holub
- Global Change Research Institute Czech Academy of Sciences Bělidla 986/4a Brno CZ‐60300 Czech Republic
| | - Ivan A. Janssens
- Department of Biology University of Antwerp Wilrijk 2610 Belgium
| | - Tom W. N. Walker
- Department of Environmental Systems Science Institute of Integrative Biology ETH Zürich Zurich 8092 Switzerland
| | - Argus Pesqueda
- CSIC Global Ecology Unit CREAF‐CSIC‐UAB Bellaterra Catalonia 08193 Spain
- CREAF Cerdanyola del Valles Catalonia 08193 Spain
| | - Josep Peñuelas
- CSIC Global Ecology Unit CREAF‐CSIC‐UAB Bellaterra Catalonia 08193 Spain
- CREAF Cerdanyola del Valles Catalonia 08193 Spain
- Global Change Research Institute Czech Academy of Sciences Bělidla 986/4a Brno CZ‐60300 Czech Republic
| |
Collapse
|
34
|
Hostachy S, Utesch T, Franke K, Dornan GL, Furkert D, Türkaydin B, Haucke V, Sun H, Fiedler D. Dissecting the activation of insulin degrading enzyme by inositol pyrophosphates and their bisphosphonate analogs. Chem Sci 2021; 12:10696-10702. [PMID: 34476054 PMCID: PMC8372538 DOI: 10.1039/d1sc02975d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/06/2021] [Indexed: 11/21/2022] Open
Abstract
Inositol poly- and pyrophosphates (InsPs and PP-InsPs) are densely phosphorylated eukaryotic messengers, which are involved in numerous cellular processes. To elucidate their signaling functions at the molecular level, non-hydrolyzable bisphosphonate analogs of inositol pyrophosphates, PCP-InsPs, have been instrumental. Here, an efficient synthetic strategy to obtain these analogs in unprecedented quantities is described - relying on the use of combined phosphate ester-phosphoramidite reagents. The PCP-analogs, alongside their natural counterparts, were applied to investigate their regulatory effect on insulin-degrading enzyme (IDE), using a range of biochemical, biophysical and computational methods. A unique interplay between IDE, its substrates and the PP-InsPs was uncovered, in which the PP-InsPs differentially modulated the activity of the enzyme towards short peptide substrates. Aided by molecular docking and molecular dynamics simulations, a flexible binding mode for the InsPs/PP-InsPs was identified at the anion binding site of IDE. Targeting IDE for therapeutic purposes should thus take regulation by endogenous PP-InsP metabolites into account.
Collapse
Affiliation(s)
- Sarah Hostachy
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle Str. 10 13125 Berlin Germany
| | - Tillmann Utesch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle Str. 10 13125 Berlin Germany
| | - Katy Franke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle Str. 10 13125 Berlin Germany
| | - Gillian Leigh Dornan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle Str. 10 13125 Berlin Germany
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle Str. 10 13125 Berlin Germany
- Institut für Chemie, Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Berke Türkaydin
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle Str. 10 13125 Berlin Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle Str. 10 13125 Berlin Germany
| | - Han Sun
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle Str. 10 13125 Berlin Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle Str. 10 13125 Berlin Germany
- Institut für Chemie, Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| |
Collapse
|
35
|
Zhao X, Yang J, Li G, Sun Z, Chen Y, Guo W, Li Y, Chen Y, Hou H. Identification, structure analysis, and transcript profiling of phosphate transporters under Pi deficiency in duckweeds. Int J Biol Macromol 2021; 188:595-608. [PMID: 34389388 DOI: 10.1016/j.ijbiomac.2021.08.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022]
Abstract
Phosphate transporters (PHTs) mediate the uptake and translocation of phosphate in plants. A comprehensive analysis of the PHT family in aquatic plant is still lacking. In this study, we identified 73 PHT members of six major PHT families from four duckweed species. The phylogenetic analysis, gene structure and protein characteristics analysis revealed that PHT genes are highly conserved among duckweeds. Interaction network and miRNA target prediction showed that SpPHTs could interact with the important components of the nitrate/phosphate signaling pathway, and spo-miR399 might be a central regulator that mediates phosphate signal network in giant duckweed (Spirodela polyrhiza). The modeled 3D structure of SpPHT proteins shared a high level of homology with template structures, which provide information to understand their functions at proteomic level. The expression profiles derived from transcriptome data and quantitative real-time PCR revealed that SpPHT genes are respond to exogenous stimuli and remarkably induced by phosphate starvation, phosphate is absorbed from aquatic environment by the whole duckweed plant. This study lays the foundation for further functional studies on PHT genes for genetic improvement and the promotion of phosphate uptake efficiency in duckweeds.
Collapse
Affiliation(s)
- Xuyao Zhao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Environment and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, Henan, China
| | - Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuoliang Sun
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Chen
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Guo
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixian Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yimeng Chen
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
36
|
Grinko A, Alqoubaili R, Lapina T, Ermilova E. Truncated hemoglobin 2 modulates phosphorus deficiency response by controlling of gene expression in nitric oxide-dependent pathway in Chlamydomonas reinhardtii. PLANTA 2021; 254:39. [PMID: 34319485 DOI: 10.1007/s00425-021-03691-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Truncated hemoglobin 2 is involved in fine-tuning of PSR1-regulated gene expression during phosphorus deprivation. Truncated hemoglobins form a large family found in all domains of life. However, a majority of physiological functions of these proteins remain to be elucidated. In the model alga Chlamydomonas reinhardtii, macro-nutritional deprivation is known to elevate truncated hemoglobin 2 (THB2). This study investigated the role of THB2 in the regulation of a subset of phosphorus (P) limitation-responsive genes in cells suffering from P-deficiency. Underexpression of THB2 in amiTHB2 strains resulted in downregulation of a suite of P deprivation-induced genes encoding proteins with different subcellular location and functions (e.g., PHOX, LHCSR3.1, LHCSR3.2, PTB2, and PTB5). Moreover, our results provided primary evidence that the soluble guanylate cyclase 12 gene (CYG12) is a component of the P deprivation regulation. Furthermore, the transcription of PSR1 gene for the most critical regulator in the acclimation process under P restriction was repressed by nitric oxide (NO). Collectively, the results indicated a tight regulatory link between the THB2-controlled NO levels and PSR1-dependent induction of several P deprivation responsive genes with various roles in cells during P-limitation.
Collapse
Affiliation(s)
- Alexandra Grinko
- Biological Faculty, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Reem Alqoubaili
- Biological Faculty, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Tatiana Lapina
- Biological Faculty, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Elena Ermilova
- Biological Faculty, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia.
| |
Collapse
|
37
|
Srivastava R, Sirohi P, Chauhan H, Kumar R. The enhanced phosphorus use efficiency in phosphate-deficient and mycorrhiza-inoculated barley seedlings involves activation of different sets of PHT1 transporters in roots. PLANTA 2021; 254:38. [PMID: 34312721 DOI: 10.1007/s00425-021-03687-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Transcriptional activation of subfamily II PHT1 members in roots is associated with the enhanced phosphorus use efficiency and growth promotion of barley seedlings inoculated with Glomus species. The arbuscular mycorrhizal (AM) fungi symbiotic associations in cereal crops are known to regulate growth in cultivar-specific manner and induce phosphate (Pi) transporters (PHT1) in roots. In the present study, we observed that both AM colonization of roots by Glomus species and phosphate starvation enhanced phosphorus use efficiency (PUE) in barley seedlings. Our search for the full complement of PHT1 members in the recently sequenced barley genome identified six additional genes, totaling their number to 17. Both AM colonization and Pi starvation triggered activation of common as well as different PHT1s. Pi starvation led to the robust upregulation of HvPHT1;6.2/6.3 at 7d and weak activation of HvPHT1;1 in shoots at 3d time-point. In roots, only HvPHT1;1, HvPHT1;6.2/6.3, HvPHT1;7, HvPHT1;8, HvPHT1;11.2 and HvPHT12 were induced at least one of the time-points. AM colonization specifically upregulated HvPHT1;11, HvPHT1;11.2, HvPHT1;12 and HvPHT1;13.1/13.2, members belonging to subfamily II, in roots. Sucrose availability seems to be obligatory for the robust activation of HvPHT1;1 as unavailability of this metabolite generally weakened its upregulation under Pi starvation. Intriguingly, lack of sucrose supply also led to induction of HvPHT1;5, HvPHT1;8, and HvPHT1;11.2 in either roots or shoot or both. The mRNA levels of HvPHT1;5 and HvPHT1;11.2 were not severely affected under combined deficiency of Pi and sucrose. Taken together, this study not only identify additional PHT1 members in barley, but also ascertain their AM, Pi and sucrose-specific transcript accumulation. The beneficial role of AM fungi in the promotion of PUE and barley seedlings' growth is also demonstrated.
Collapse
Affiliation(s)
- Rajat Srivastava
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, 500046, India
| | - Parul Sirohi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Harsh Chauhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India.
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
38
|
Fluorometric Quantification of Human Platelet Polyphosphate Using 4',6-Diamidine-2-phenylindole Dihydrochloride: Applications in the Japanese Population. Int J Mol Sci 2021; 22:ijms22147257. [PMID: 34298874 PMCID: PMC8307652 DOI: 10.3390/ijms22147257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Polyphosphate (polyP), a biopolymer of inorganic phosphate, is widely distributed in living organisms. In platelets, polyP is released upon activation and plays important roles in coagulation and tissue regeneration. However, the lack of a specific quantification method has delayed the in-depth study of polyP. The fluorescent dye 4′,6-diamidine-2-phenylindole dihydrochloride (DAPI) has recently received attention as a promising probe for the visualization and quantification of cellular polyP levels. In this study, we further optimized quantification conditions and applied this protocol in quantification of platelet polyP levels in a Japanese population. Blood samples were collected from non-smoking, healthy Japanese subjects (23 males, 23 females). Washed platelets were fixed and probed with DAPI for fluorometric determination. PolyP levels per platelet count were significantly higher in women than that in men. A moderate negative correlation between age and polyP levels was found in women. Responsiveness to CaCl2 stimulation was also significantly higher in women than that in men. Overall, our optimized protocol requires neither purification nor degradation steps, reducing both the time and bias for reproducible quantification. Thus, we suggest that despite its low specificity, this DAPI-based protocol would be useful in routine laboratory testing to quantify platelet polyP levels efficiently and economically.
Collapse
|
39
|
Gullian-Klanian M, Gold-Bouchot G, Delgadillo-Díaz M, Aranda J, Sánchez-Solís MJ. Effect of the use of Bacillus spp. on the characteristics of dissolved fluorescent organic matter and the phytochemical quality of Stevia rebaudiana grown in a recirculating aquaponic system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36326-36343. [PMID: 33694112 DOI: 10.1007/s11356-021-13148-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The effect of the incorporation of mineralizing Bacillus spp. on the characteristics of fluorescent organic matter (FDOM) in a recirculating aquaculture system (Nile tilapia-Stevia rebaudiana) was evaluated. EEM-PARAFAC analysis was used to determine the composition of the dissolved organic matter and to study its relationship with nitrogen transformation. The composition and antioxidant activity of Stevia leaves were used as indicators of the benefits of bacterial supplementation on nutrient absorption. Two systems were used, each consisting of a circular fish tank (1.7 m3) and six units of the nutrient film (0.18 m3). One system was supplemented with bacteria (BS), while the other was used as control (NBS). The inclusion of Bacillus spp. facilitated mineralization and the availability of total phosphorus (TP), K+, and nitrogen, and also controlled the total ammonia nitrogen (TAN) for 56 days without water exchange. FDOM was modeled by four components (3-humic-like, 1-protein-like), which were good indicators of the process of mineralization. The fluorescence intensity in the biofilter was significantly correlated with TP, K+, temperature, and the absorption coefficient a254. The fluorescence index (FI) was a good indicator of the process of nitrification. Plants from BS required 46.4% less NO3- and 47.8% less K+ compared to the control, and absorbed 45.1% more TP. BS-Stevia leaves produced 38.6% more reducing sugars, 28.6% more flavonoids, and 35.9% more glycosylated flavonoids than the control. The fish in the BS system reached a higher final weight than NBS, resulting in a 1 kg/m3 higher gross yield. Even so, it will be necessary to reduce the pH of the water to increase the antioxidant scavenging capacity of the plants.
Collapse
Affiliation(s)
- Mariel Gullian-Klanian
- University Marist of Mérida, Periférico Nte Tablaje Catastral 13941, CP, 97300, Mérida, Yucatan, México.
| | - Gerardo Gold-Bouchot
- Oceanography Department and Geochemical and Environmental Research Group (GERG), Texas A&M University, 3146 TAMU, College Station, TX, 77843-3146, USA
| | - Mariana Delgadillo-Díaz
- University Marist of Mérida, Periférico Nte Tablaje Catastral 13941, CP, 97300, Mérida, Yucatan, México
| | - Javier Aranda
- University Marist of Mérida, Periférico Nte Tablaje Catastral 13941, CP, 97300, Mérida, Yucatan, México
| | - María José Sánchez-Solís
- University Marist of Mérida, Periférico Nte Tablaje Catastral 13941, CP, 97300, Mérida, Yucatan, México
| |
Collapse
|
40
|
Pandey BK, Verma L, Prusty A, Singh AP, Bennett MJ, Tyagi AK, Giri J, Mehra P. OsJAZ11 regulates phosphate starvation responses in rice. PLANTA 2021; 254:8. [PMID: 34143292 PMCID: PMC8213676 DOI: 10.1007/s00425-021-03657-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/06/2021] [Indexed: 06/01/2023]
Abstract
OsJAZ11 regulates phosphate homeostasis by suppressing jasmonic acid signaling and biosynthesis in rice roots. Jasmonic Acid (JA) is a key plant signaling molecule which negatively regulates growth processes including root elongation. JAZ (JASMONATE ZIM-DOMAIN) proteins function as transcriptional repressors of JA signaling. Therefore, targeting JA signaling by deploying JAZ repressors may enhance root length in crops. In this study, we overexpressed JAZ repressor OsJAZ11 in rice to alleviate the root growth inhibitory action of JA. OsJAZ11 is a low phosphate (Pi) responsive gene which is transcriptionally regulated by OsPHR2. We report that OsJAZ11 overexpression promoted primary and seminal root elongation which enhanced Pi foraging. Expression studies revealed that overexpression of OsJAZ11 also reduced Pi starvation response (PSR) under Pi limiting conditions. Moreover, OsJAZ11 overexpression also suppressed JA signaling and biosynthesis as compared to wild type (WT). We further demonstrated that the C-terminal region of OsJAZ11 was crucial for stimulating root elongation in overexpression lines. Rice transgenics overexpressing truncated OsJAZ11ΔC transgene (i.e., missing C-terminal region) exhibited reduced root length and Pi uptake. Interestingly, OsJAZ11 also regulates Pi homeostasis via physical interaction with a key Pi sensing protein, OsSPX1. Our study highlights the functional connections between JA and Pi signaling and reveals JAZ repressors as a promising candidate for improving low Pi tolerance of elite rice genotypes.
Collapse
Affiliation(s)
- Bipin K Pandey
- National Institute of Plant Genome Research, New Delhi, 110067, India
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Lokesh Verma
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Ankita Prusty
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Ajit Pal Singh
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Malcolm J Bennett
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Akhilesh K Tyagi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Jitender Giri
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| | - Poonam Mehra
- National Institute of Plant Genome Research, New Delhi, 110067, India.
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK.
| |
Collapse
|
41
|
Wang L, Jia X, Zhang Y, Xu L, Menand B, Zhao H, Zeng H, Dolan L, Zhu Y, Yi K. Loss of two families of SPX domain-containing proteins required for vacuolar polyphosphate accumulation coincides with the transition to phosphate storage in green plants. MOLECULAR PLANT 2021; 14:838-846. [PMID: 33515767 DOI: 10.1016/j.molp.2021.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus is an essential nutrient for plants. It is stored as inorganic phosphate (Pi) in the vacuoles of land plants but as inorganic polyphosphate (polyP) in chlorophyte algae. Although it is recognized that the SPX-Major Facilitator Superfamily (MFS) and VPE proteins are responsible for Pi influx and efflux, respectively, across the tonoplast in land plants, the mechanisms that underlie polyP homeostasis and the transition of phosphorus storage forms during the evolution of green plants remain unclear. In this study, we showed that CrPTC1, encoding a protein with both SPX and SLC (permease solute carrier 13) domains for Pi transport, and CrVTC4, encoding a protein with both SPX and vacuolar transporter chaperone (VTC) domains for polyP synthesis, are required for vacuolar polyP accumulation in the chlorophyte Chlamydomonas reinhardtii. Phylogenetic analysis showed that the SPX-SLC, SPX-VTC, and SPX-MFS proteins were present in the common ancestor of green plants (Viridiplantae). The SPX-SLC and SPX-VTC proteins are conserved among species that store phosphorus as vacuolar polyP and absent from genomes of plants that store phosphorus as vacuolar Pi. By contrast, SPX-MFS genes are present in the genomes of streptophytes that store phosphorus as Pi in the vacuoles. These results suggest that loss of SPX-SLC and SPX-VTC genes and functional conservation of SPX-MFS proteins during the evolution of streptophytes accompanied the change from ancestral polyP storage to Pi storage.
Collapse
Affiliation(s)
- Long Wang
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianqing Jia
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuxin Zhang
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Xu
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Benoit Menand
- Aix Marseille Univ, CEA, CNRS, BIAM, Luminy Plant Genetics and Biophysics Team, Marseille 13009, France
| | - Hongyu Zhao
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Liam Dolan
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Yiyong Zhu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
42
|
Doumane M, Lebecq A, Colin L, Fangain A, Stevens FD, Bareille J, Hamant O, Belkhadir Y, Munnik T, Jaillais Y, Caillaud MC. Inducible depletion of PI(4,5)P 2 by the synthetic iDePP system in Arabidopsis. NATURE PLANTS 2021; 7:587-597. [PMID: 34007035 PMCID: PMC7610831 DOI: 10.1038/s41477-021-00907-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 03/25/2021] [Indexed: 05/04/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a low-abundance membrane lipid essential for plasma membrane function1,2. In plants, mutations in phosphatidylinositol 4-phosphate (PI4P) 5-kinases (PIP5K) suggest that PI(4,5)P2 production is involved in development, immunity and reproduction3-5. However, phospholipid synthesis is highly intricate6. It is thus likely that steady-state depletion of PI(4,5)P2 triggers confounding indirect effects. Furthermore, inducible tools available in plants allow PI(4,5)P2 to increase7-9 but not decrease, and no PIP5K inhibitors are available. Here, we introduce iDePP (inducible depletion of PI(4,5)P2 in plants), a system for the inducible and tunable depletion of PI(4,5)P2 in plants in less than three hours. Using this strategy, we confirm that PI(4,5)P2 is critical for various aspects of plant development, including root growth, root-hair elongation and organ initiation. We show that PI(4,5)P2 is required to recruit various endocytic proteins, including AP2-µ, to the plasma membrane, and thus to regulate clathrin-mediated endocytosis. Finally, we find that inducible PI(4,5)P2 perturbation impacts the dynamics of the actin cytoskeleton as well as microtubule anisotropy. Together, we propose that iDePP is a simple and efficient genetic tool to test the importance of PI(4,5)P2 in given cellular or developmental responses, and also to evaluate the importance of this lipid in protein localization.
Collapse
Affiliation(s)
- Mehdi Doumane
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Alexis Lebecq
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Léia Colin
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Aurélie Fangain
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Floris D Stevens
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Joseph Bareille
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Teun Munnik
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France.
| | - Marie-Cécile Caillaud
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France.
| |
Collapse
|
43
|
Rees TAV, Raven JA. The maximum growth rate hypothesis is correct for eukaryotic photosynthetic organisms, but not cyanobacteria. THE NEW PHYTOLOGIST 2021; 230:601-611. [PMID: 33449358 PMCID: PMC8048539 DOI: 10.1111/nph.17190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/23/2020] [Indexed: 05/12/2023]
Abstract
The (maximum) growth rate (µmax ) hypothesis predicts that cellular and tissue phosphorus (P) concentrations should increase with increasing growth rate, and RNA should also increase as most of the P is required to make ribosomes. Using published data, we show that though there is a strong positive relationship between the µmax of all photosynthetic organisms and their P content (% dry weight), leading to a relatively constant P productivity, the relationship with RNA content is more complex. In eukaryotes there is a strong positive relationship between µmax and RNA content expressed as % dry weight, and RNA constitutes a relatively constant 25% of total P. In prokaryotes the rRNA operon copy number is the important determinant of the amount of RNA present in the cell. The amount of phospholipid expressed as % dry weight increases with increasing µmax in microalgae. The relative proportions of each of the five major P-containing constituents is remarkably constant, except that the proportion of RNA is greater and phospholipids smaller in prokaryotic than eukaryotic photosynthetic organisms. The effect of temperature differences between studies was minor. The evidence for and against P-containing constituents other than RNA being involved with ribosome synthesis and functioning is discussed.
Collapse
Affiliation(s)
- T. A. V. Rees
- Leigh Marine LaboratoryInstitute of Marine ScienceUniversity of AucklandAuckland1142New Zealand
| | - John A. Raven
- Division of Plant ScienceUniversity of Dundee at the James Hutton InstituteInvergowrie, Dundee,DD2 5DAUK
- Climate Change ClusterFaculty of ScienceUniversity of TechnologySydney, UltimoNSW2007Australia
- School of Biological SciencesUniversity of Western AustraliaCrawleyWA6009Australia
| |
Collapse
|
44
|
Denoncourt A, Downey M. Model systems for studying polyphosphate biology: a focus on microorganisms. Curr Genet 2021; 67:331-346. [PMID: 33420907 DOI: 10.1007/s00294-020-01148-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
Polyphosphates (polyP) are polymers of inorganic phosphates joined by high-energy bonds to form long chains. These chains are present in all forms of life but were once disregarded as 'molecular fossils'. PolyP has gained attention in recent years following new links to diverse biological roles ranging from energy storage to cell signaling. PolyP research in humans and other higher eukaryotes is limited by a lack of suitable tools and awaits the identification of enzymatic players that would enable more comprehensive studies. Therefore, many of the most important insights have come from single-cell model systems. Here, we review determinants of polyP metabolism, regulation, and function in major microbial systems, including bacteria, fungi, protozoa, and algae. We highlight key similarities and differences that may aid in our understanding of how polyP impacts cell physiology at a molecular level.
Collapse
Affiliation(s)
- Alix Denoncourt
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, K1H 8M5, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada. .,Ottawa Institute of Systems Biology, Ottawa, K1H 8M5, Canada.
| |
Collapse
|
45
|
Wang L, Xiao L, Yang H, Chen G, Zeng H, Zhao H, Zhu Y. Genome-Wide Identification, Expression Profiling, and Evolution of Phosphate Transporter Gene Family in Green Algae. Front Genet 2020; 11:590947. [PMID: 33133172 PMCID: PMC7578391 DOI: 10.3389/fgene.2020.590947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/07/2020] [Indexed: 11/26/2022] Open
Abstract
Phosphorus (P) is an essential nutrient for plant growth and development. Phosphate transporters (PHTs) are trans-membrane proteins that mediate the uptake and translocation of phosphate (Pi) in green plants. The PHT family including PHT1, PHT2, PHT3 and PHT4 subfamilies are well-studied in land plants; however, PHT genes in green algae are poorly documented and not comprehensively identified. Here, we analyzed the PHTs in a model green alga Chlamydomonas reinhardtii and found 25 putative PHT genes, which can be divided into four subfamilies. The subfamilies of CrPTA, CrPTB, CrPHT3, and CrPHT4 contain four, eleven, one, and nine genes, respectively. The structure, chromosomal distribution, subcellular localization, duplication, phylogenies, and motifs of these genes were systematically analyzed in silico. Expression profile analysis showed that CrPHT genes displayed differential expression patterns under P starvation condition. The expression levels of CrPTA1 and CrPTA3 were down-regulated, while the expression of most CrPTB genes was up-regulated under P starvation, which may be controlled by CrPSR1. The transcript abundance of most CrPHT3 and CrPHT4 genes was not significantly affected by P starvation except CrPHT4-3, CrPHT4-4, and CrPHT4-6. Our results provided basic information for understanding the evolution and features of the PHT family in green algae.
Collapse
Affiliation(s)
- Long Wang
- Agricultural Resource and Environment Experiment Teaching Center, College of Resource and Environment Science, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Xiao
- Agricultural Resource and Environment Experiment Teaching Center, College of Resource and Environment Science, Nanjing Agricultural University, Nanjing, China
| | - Haiyan Yang
- Agricultural Resource and Environment Experiment Teaching Center, College of Resource and Environment Science, Nanjing Agricultural University, Nanjing, China
| | - Guanglei Chen
- Agricultural Resource and Environment Experiment Teaching Center, College of Resource and Environment Science, Nanjing Agricultural University, Nanjing, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hongyu Zhao
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiyong Zhu
- Agricultural Resource and Environment Experiment Teaching Center, College of Resource and Environment Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
46
|
Scholz P, Anstatt J, Krawczyk HE, Ischebeck T. Signalling Pinpointed to the Tip: The Complex Regulatory Network That Allows Pollen Tube Growth. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1098. [PMID: 32859043 PMCID: PMC7569787 DOI: 10.3390/plants9091098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Plants display a complex life cycle, alternating between haploid and diploid generations. During fertilisation, the haploid sperm cells are delivered to the female gametophyte by pollen tubes, specialised structures elongating by tip growth, which is based on an equilibrium between cell wall-reinforcing processes and turgor-driven expansion. One important factor of this equilibrium is the rate of pectin secretion mediated and regulated by factors including the exocyst complex and small G proteins. Critically important are also non-proteinaceous molecules comprising protons, calcium ions, reactive oxygen species (ROS), and signalling lipids. Among the latter, phosphatidylinositol 4,5-bisphosphate and the kinases involved in its formation have been assigned important functions. The negatively charged headgroup of this lipid serves as an interaction point at the apical plasma membrane for partners such as the exocyst complex, thereby polarising the cell and its secretion processes. Another important signalling lipid is phosphatidic acid (PA), that can either be formed by the combination of phospholipases C and diacylglycerol kinases or by phospholipases D. It further fine-tunes pollen tube growth, for example by regulating ROS formation. How the individual signalling cues are intertwined or how external guidance cues are integrated to facilitate directional growth remain open questions.
Collapse
Affiliation(s)
- Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| | | | | | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| |
Collapse
|
47
|
Furkert D, Hostachy S, Nadler-Holly M, Fiedler D. Triplexed Affinity Reagents to Sample the Mammalian Inositol Pyrophosphate Interactome. Cell Chem Biol 2020; 27:1097-1108.e4. [PMID: 32783964 DOI: 10.1016/j.chembiol.2020.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/19/2020] [Accepted: 07/22/2020] [Indexed: 11/15/2022]
Abstract
The inositol pyrophosphates (PP-InsPs) are a ubiquitous group of highly phosphorylated eukaryotic messengers. They have been linked to a panoply of central cellular processes, but a detailed understanding of the discrete signaling events is lacking in most cases. To create a more mechanistic picture of PP-InsP signaling, we sought to annotate the mammalian interactome of the most abundant inositol pyrophosphate 5PP-InsP5. To do so, triplexed affinity reagents were developed, in which a metabolically stable PP-InsP analog was immobilized in three different ways. Application of these triplexed reagents to mammalian lysates identified between 300 and 400 putative interacting proteins. These interactomes revealed connections between 5PP-InsP5 and central cellular regulators, such as lipid phosphatases, protein kinases, and GTPases, and identified protein domains commonly targeted by 5PP-InsP5. Both the triplexed affinity reagents, and the proteomic datasets, constitute powerful resources for the community, to launch future investigations into the multiple signaling modalities of inositol pyrophosphates.
Collapse
Affiliation(s)
- David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Sarah Hostachy
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Michal Nadler-Holly
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| |
Collapse
|
48
|
Sanz-Luque E, Bhaya D, Grossman AR. Polyphosphate: A Multifunctional Metabolite in Cyanobacteria and Algae. FRONTIERS IN PLANT SCIENCE 2020; 11:938. [PMID: 32670331 PMCID: PMC7332688 DOI: 10.3389/fpls.2020.00938] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/09/2020] [Indexed: 05/19/2023]
Abstract
Polyphosphate (polyP), a polymer of orthophosphate (PO4 3-) of varying lengths, has been identified in all kingdoms of life. It can serve as a source of chemical bond energy (phosphoanhydride bond) that may have been used by biological systems prior to the evolution of ATP. Intracellular polyP is mainly stored as granules in specific vacuoles called acidocalcisomes, and its synthesis and accumulation appear to impact a myriad of cellular functions. It serves as a reservoir for inorganic PO4 3- and an energy source for fueling cellular metabolism, participates in maintaining adenylate and metal cation homeostasis, functions as a scaffold for sequestering cations, exhibits chaperone function, covalently binds to proteins to modify their activity, and enables normal acclimation of cells to stress conditions. PolyP also appears to have a role in symbiotic and parasitic associations, and in higher eukaryotes, low polyP levels seem to impact cancerous proliferation, apoptosis, procoagulant and proinflammatory responses and cause defects in TOR signaling. In this review, we discuss the metabolism, storage, and function of polyP in photosynthetic microbes, which mostly includes research on green algae and cyanobacteria. We focus on factors that impact polyP synthesis, specific enzymes required for its synthesis and degradation, sequestration of polyP in acidocalcisomes, its role in cellular energetics, acclimation processes, and metal homeostasis, and then transition to its potential applications for bioremediation and medical purposes.
Collapse
Affiliation(s)
- Emanuel Sanz-Luque
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, United States
- Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, Spain
| | - Devaki Bhaya
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, United States
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, United States
| |
Collapse
|