1
|
Wang J, Singer SD, Chen G. Biotechnological advances in the production of unusual fatty acids in transgenic plants and recombinant microorganisms. Biotechnol Adv 2024; 76:108435. [PMID: 39214484 DOI: 10.1016/j.biotechadv.2024.108435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/28/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Certain plants and microorganisms can produce high amounts of unusual fatty acids (UFAs) such as hydroxy, conjugated, cyclic, and very long-chain polyunsaturated fatty acids, which have distinct physicochemical properties and significant applications in the food, feed, and oleochemical industries. Since many natural sources of UFAs are not ideal for large-scale agricultural production or fermentation, it is attractive to produce them through synthetic biology. Although several UFAs have been commercially or pre-commercially produced in transgenic plants and microorganisms, their contents in transgenic hosts are generally much lower than in natural sources. Moreover, reproducing this success for a wider spectrum of UFAs has remained challenging. This review discusses recent advancements in our understanding of the biosynthesis, accumulation, and heterologous production of UFAs, and addresses the challenges and potential strategies for achieving high UFA content in engineered plants and microorganisms.
Collapse
Affiliation(s)
- Juli Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 St and 85 Ave, Edmonton, Alberta T6G 2P5, Canada
| | - Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 St and 85 Ave, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
2
|
Ngo AH, Angkawijaya AE, Nakamura Y, Kanehara K. Non-specific phospholipase C3 is involved in endoplasmic reticulum stress tolerance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6489-6499. [PMID: 39169567 DOI: 10.1093/jxb/erae303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Non-specific phospholipase C (NPC) is an emerging family of lipolytic enzymes unique to plants and bacteria that play crucial roles in growth and stress responses. Among six copies of NPC isoforms found in Arabidopsis, the role of NPC3 remains elusive to date. Here, we show that NPC3 is a functional non-specific phospholipase C involved in tolerance to tunicamycin (TM)-induced endoplasmic reticulum (ER) stress through the synthesis of phosphocholine (PCho), a reaction product of NPC3. The npc3 mutant exhibited reduced sensitivity to TM treatment. Recombinant NPC3 possessed pronounced phospholipase C activity that hydrolyses phosphatidylcholine (PC). The hyposensitivity of npc3 to TM treatment was complemented by exogenous PCho, suggesting that NPC3-catalysed PCho production is involved in TM-induced ER stress tolerance. NPC3 was localized at the ER and was predominantly expressed in the roots, and it was further induced by TM-induced ER stress. Intriguingly, npc3 mutants showed a markedly reduced PCho content in shoots under ER stress. Our results indicate that ER stress induces NPC3 to produce PCho, which is involved in TM-induced ER stress tolerance.
Collapse
Affiliation(s)
- Anh H Ngo
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Japan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | - Yuki Nakamura
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Japan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kazue Kanehara
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
3
|
Coulon D, Nacir H, Bahammou D, Jouhet J, Bessoule JJ, Fouillen L, Bréhélin C. Roles of plastoglobules and lipid droplets in leaf neutral lipid accumulation during senescence and nitrogen deprivation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6542-6562. [PMID: 38995052 DOI: 10.1093/jxb/erae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/11/2024] [Indexed: 07/13/2024]
Abstract
Upon abiotic stress or senescence, the size and/or abundance of plastid-localized plastoglobules and cytosolic lipid droplets, both compartments devoted to neutral lipid storage, increase in leaves. Meanwhile, plant lipid metabolism is also perturbed, notably with the degradation of thylakoidal monogalactosyldiacylglycerol (MGDG) and the accumulation of neutral lipids. Although these mechanisms are probably linked, they have never been jointly studied, and the respective roles of plastoglobules and lipid droplets in the plant response to stress are totally unknown. To address this question, we determined and compared the glycerolipid composition of both lipid droplets and plastoglobules, followed their formation in response to nitrogen starvation, and studied the kinetics of lipid metabolism in Arabidopsis leaves. Our results demonstrated that plastoglobules preferentially store phytyl-esters, while triacylglycerols (TAGs) and steryl-esters accumulated within lipid droplets. Thanks to a pulse-chase labeling approach and lipid analyses of the fatty acid desaturase 2 (fad2) mutant, we showed that MGDG-derived C18:3 fatty acids were exported to lipid droplets, while MGDG-derived C16:3 fatty acids were stored within plastoglobules. The export of lipids from plastids to lipid droplets was probably facilitated by the physical contact occurring between both organelles, as demonstrated by our electron tomography study. The accumulation of lipid droplets and neutral lipids was transient, suggesting that stress-induced TAGs were remobilized during the plant recovery phase by a mechanism that remains to be explored.
Collapse
Affiliation(s)
- Denis Coulon
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Houda Nacir
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Delphine Bahammou
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Juliette Jouhet
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Laboratoire de Physiologie Cellulaire et Végétale, F-38000 Grenoble, France
| | - Jean-Jacques Bessoule
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Laëtitia Fouillen
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Claire Bréhélin
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| |
Collapse
|
4
|
Song J, Mavraganis I, Shen W, Yang H, Patterson N, Wang L, Xiang D, Cui Y, Zou J. Pistil-derived lipids influence pollen tube growth and male fertility in Arabidopsis thaliana. PLANT PHYSIOLOGY 2024; 196:763-772. [PMID: 38917229 DOI: 10.1093/plphys/kiae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 06/27/2024]
Abstract
Pollen germination and pollen tube elongation require rapid phospholipid production and remodeling in membrane systems that involve both de novo synthesis and turnover. Phosphatidic acid phosphohydrolase (PAH) and lysophosphatidylcholine acyltransferase (LPCAT) are 2 key enzymes in membrane lipid maintenance. PAH generates diacylglycerol (DAG), a necessary precursor for the de novo synthesis of phosphatidylcholine (PC), while LPCAT reacylates lysophosphatidylcholine to PC and plays an essential role in the remodeling of membrane lipids. In this study, we investigated the synthetic defects of pah and lpcat mutations in sexual reproduction of Arabidopsis (Arabidopsis thaliana) and explored the prospect of pistil lipid provision to pollen tube growth. The combined deficiencies of lpcat and pah led to decreased pollen tube growth in the pistil and reduced male transmission. Interestingly, pistils of the lipid mutant dgat1 ameliorated the male transmission deficiencies of pah lpcat pollen. In contrast, pollination with a nonspecific phospholipase C (NPC) mutant exacerbated the fertilization impairment of the pah lpcat pollen. Given the importance of DAG in lipid metabolism and its contrasting changes in the dgat1 and npc mutants, we further investigated whether DAG supplement in synthetic media could influence pollen performance. DAG was incorporated into phospholipids of germinating pollen and stimulated pollen tube growth. Our study provides evidence that pistil-derived lipids contribute to membrane lipid synthesis in pollen tube growth, a hitherto unknown role in synergistic pollen-pistil interactions.
Collapse
Affiliation(s)
- Jingpu Song
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Ioannis Mavraganis
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Wenyun Shen
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Hui Yang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Nii Patterson
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Liping Wang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Daoquan Xiang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Yuhai Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada N5V 4T3
- Department of Biology, Western University, London, ON, Canada N6A 5B7
| | - Jitao Zou
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| |
Collapse
|
5
|
Li J, Yao S, Jonas M, Kim SC, Wang X. Non-specific Phospholipase C4 Improves Phosphorus Remobilization From Old to Young Leaves in Camelina. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39253961 DOI: 10.1111/pce.15122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024]
Abstract
Camelina sativa is regarded as a low-input oilseed crop for versatile food, biofuels and industrial applications with potential production on marginal lands, whereas phosphate (Pi) deficiency greatly reduces camelina seed production. To improve camelina resilience to low P conditions, here we overexpressed the Pi deficiency-induced non-specific phospholipase C4 (NPC4) to test its effect on camelina seed production under different levels of Pi availability. NPC4-overexpressing (OE) plants displayed increased seed yield and oil production, with a greater magnitude of increases under Pi-deficient than Pi-sufficient conditions. NPC4-OE camelina had a higher level of total P and free Pi in young leaves but a lower level in old leaves than in wild-type plants. More Pi was moved from old leaves to young leaves in NPC4-OE than in wild-type plants. NPC4-OE increased the expression of Pi transporter genes, and the increase was greater in old leaves and under Pi-deficient conditions. These data indicate that NPC4 improves camelina growth by promoting Pi remobilization from old to young tissues, revealing a mechanism by which NPC4 mediates plant response to Pi deficiency.
Collapse
Affiliation(s)
- Jianwu Li
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Shuaibing Yao
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Marissa Jonas
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Sang Chul Kim
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Alam B, Liu R, Gong J, Li J, Yan H, Ge Q, Xiao X, Pan J, Shang H, Shi Y, Yuan Y, Gong W. Hub Genes in Stable QTLs Orchestrate the Accumulation of Cottonseed Oil in Upland Cotton via Catalyzing Key Steps of Lipid-Related Pathways. Int J Mol Sci 2023; 24:16595. [PMID: 38068920 PMCID: PMC10706765 DOI: 10.3390/ijms242316595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Upland cotton is the fifth-largest oil crop in the world, with an average supply of nearly 20% of vegetable oil production. Cottonseed oil is also an ideal alternative raw material to be efficiently converted into biodiesel. However, the improvement in kernel oil content (KOC) of cottonseed has not received sufficient attention from researchers for a long time, due to the fact that the main product of cotton planting is fiber. Previous studies have tagged QTLs and identified individual candidate genes that regulate KOC of cottonseed. The regulatory mechanism of oil metabolism and accumulation of cottonseed are still elusive. In the current study, two high-density genetic maps (HDGMs), which were constructed based on a recombinant inbred line (RIL) population consisting of 231 individuals, were used to identify KOC QTLs. A total of forty-three stable QTLs were detected via these two HDGM strategies. Bioinformatic analysis of all the genes harbored in the marker intervals of the stable QTLs revealed that a total of fifty-one genes were involved in the pathways related to lipid biosynthesis. Functional analysis via coexpression network and RNA-seq revealed that the hub genes in the co-expression network that also catalyze the key steps of fatty acid synthesis, lipid metabolism and oil body formation pathways (ACX4, LACS4, KCR1, and SQD1) could jointly orchestrate oil accumulation in cottonseed. This study will strengthen our understanding of oil metabolism and accumulation in cottonseed and contribute to KOC improvement in cottonseed in the future, enhancing the security and stability of worldwide food supply.
Collapse
Affiliation(s)
- Beena Alam
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
| | - Ruixian Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
| | - Juwu Gong
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Junwen Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Haoliang Yan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Qun Ge
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Xianghui Xiao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
| | - Jingtao Pan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
| | - Haihong Shang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Yuzhen Shi
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
| | - Youlu Yuan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Wankui Gong
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
| |
Collapse
|
7
|
Pan P, Xing Y, Zhang D, Wang J, Liu C, Wu D, Wang X. A review on the identification of transgenic oilseeds and oils. J Food Sci 2023; 88:3189-3203. [PMID: 37458291 DOI: 10.1111/1750-3841.16705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023]
Abstract
Transgenic technology can increase the quantity and quality of vegetable oils worldwide. However, people are skeptical about the safety of transgenic oil-bearing crops and the oils they produce. In order to protect consumers' rights and avoid transgenic oils being adulterated or labeled as nontransgenic oils, the transgenic detection technology of oilseeds and oils needs careful consideration. This paper first summarized the current research status of transgenic technologies implemented at oil-bearing crops. Then, an inspection process was proposed to detect a large number of samples to be the subject rapidly, and various inspection strategies for transgenic oilseeds and oils were summarized according to the process sequence. The detection indicators included oil content, fatty acid, triglyceride, tocopherol, and nucleic acid. The detection technologies involved chromatography, spectroscopy, nuclear magnetic resonance, and polymerase chain reaction. It is hoped that this article can provide crucial technical reference and support for staff engaging in the supervision of transgenic food and for researchers developing fast and efficient monitoring methods in the future.
Collapse
Affiliation(s)
- Pengyuan Pan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| | - Yihang Xing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| | - Dingwen Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| |
Collapse
|
8
|
Ghidoli M, Ponzoni E, Araniti F, Miglio D, Pilu R. Genetic Improvement of Camelina sativa (L.) Crantz: Opportunities and Challenges. PLANTS (BASEL, SWITZERLAND) 2023; 12:570. [PMID: 36771654 PMCID: PMC9920110 DOI: 10.3390/plants12030570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
In recent years, a renewed interest in novel crops has been developing due to the environmental issues associated with the sustainability of agricultural practices. In particular, a cover crop, Camelina sativa (L.) Crantz, belonging to the Brassicaceae family, is attracting the scientific community's interest for several desirable features. It is related to the model species Arabidopsis thaliana, and its oil extracted from the seeds can be used either for food and feed, or for industrial uses such as biofuel production. From an agronomic point of view, it can grow in marginal lands with little or no inputs, and is practically resistant to the most important pathogens of Brassicaceae. Although cultivated in the past, particularly in northern Europe and Italy, in the last century, it was abandoned. For this reason, little breeding work has been conducted to improve this plant, also because of the low genetic variability present in this hexaploid species. In this review, we summarize the main works on this crop, focused on genetic improvement with three main objectives: yield, seed oil content and quality, and reduction in glucosinolates content in the seed, which are the main anti-nutritional substances present in camelina. We also report the latest advances in utilising classical plant breeding, transgenic approaches, and CRISPR-Cas9 genome-editing.
Collapse
Affiliation(s)
- Martina Ghidoli
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Elena Ponzoni
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche, Via E. Bassini 15, 20133 Milan, Italy
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Daniela Miglio
- Laboratory for Mother and Child Health, Department of Public Health, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20133 Milan, Italy
| | - Roberto Pilu
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| |
Collapse
|
9
|
Sagun JV, Yadav UP, Alonso AP. Progress in understanding and improving oil content and quality in seeds. FRONTIERS IN PLANT SCIENCE 2023; 14:1116894. [PMID: 36778708 PMCID: PMC9909563 DOI: 10.3389/fpls.2023.1116894] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
The world's population is projected to increase by two billion by 2050, resulting in food and energy insecurity. Oilseed crops have been identified as key to address these challenges: they produce and store lipids in the seeds as triacylglycerols that can serve as a source of food/feed, renewable fuels, and other industrially-relevant chemicals. Therefore, improving seed oil content and composition has generated immense interest. Research efforts aiming to unravel the regulatory pathways involved in fatty acid synthesis and to identify targets for metabolic engineering have made tremendous progress. This review provides a summary of the current knowledge of oil metabolism and discusses how photochemical activity and unconventional pathways can contribute to high carbon conversion efficiency in seeds. It also highlights the importance of 13C-metabolic flux analysis as a tool to gain insights on the pathways that regulate oil biosynthesis in seeds. Finally, a list of key genes and regulators that have been recently targeted to enhance seed oil production are reviewed and additional possible targets in the metabolic pathways are proposed to achieve desirable oil content and quality.
Collapse
Affiliation(s)
| | | | - Ana Paula Alonso
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| |
Collapse
|
10
|
Fan R, Zhao F, Gong Z, Chen Y, Yang B, Zhou C, Zhang J, Du Z, Wang X, Yin P, Guo L, Liu Z. Insights into the mechanism of phospholipid hydrolysis by plant non-specific phospholipase C. Nat Commun 2023; 14:194. [PMID: 36635324 PMCID: PMC9837106 DOI: 10.1038/s41467-023-35915-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Non-specific phospholipase C (NPC) hydrolyzes major membrane phospholipids to release diacylglycerol (DAG), a potent lipid-derived messenger regulating cell functions. Despite extensive studies on NPCs reveal their fundamental roles in plant growth and development, the mechanistic understanding of phospholipid-hydrolyzing by NPCs, remains largely unknown. Here we report the crystal structure of Arabidopsis NPC4 at a resolution of 2.1 Å. NPC4 is divided into a phosphoesterase domain (PD) and a C-terminal domain (CTD), and is structurally distinct from other characterized phospholipases. The previously uncharacterized CTD is indispensable for the full activity of NPC4. Mechanistically, CTD contributes NPC4 activity mainly via CTDα1-PD interaction, which ultimately stabilizes the catalytic pocket in PD. Together with a series of structure-guided biochemical studies, our work elucidates the structural basis and provides molecular mechanism of phospholipid hydrolysis by NPC4, and adds new insights into the members of phospholipase family.
Collapse
Affiliation(s)
- Ruyi Fan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Fen Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhou Gong
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yanke Chen
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chen Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhangmeng Du
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, MO, 63121, USA.,Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China. .,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China.
| |
Collapse
|
11
|
Zhang C, Gong R, Zhong H, Dai C, Zhang R, Dong J, Li Y, Liu S, Hu J. Integrated multi-locus genome-wide association studies and transcriptome analysis for seed yield and yield-related traits in Brassica napus. FRONTIERS IN PLANT SCIENCE 2023; 14:1153000. [PMID: 37123841 PMCID: PMC10140536 DOI: 10.3389/fpls.2023.1153000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Rapeseed (Brassica napus L.), the third largest oil crop, is an important source of vegetable oil and biofuel for the world. Although the breeding and yield has been improved, rapeseed still has the lowest yield compared with other major crops. Thus, increasing rapeseed yield is essential for the high demand of vegetable oil and high-quality protein for live stocks. Silique number per plant (SN), seed per pod (SP), and 1000-seed weight (SW) are the three important factors for seed yield in rapeseed. Some yield-related traits, including plant height (PH), flowering time (FT), primary branch number (BN) and silique number per inflorescence (SI) also affect the yield per plant (YP). Using six multi-locus genome-wide association study (ML-GWAS) approaches, a total of 908 yield-related quantitative trait nucleotides (QTNs) were identified in a panel consisting of 403 rapeseed core accessions based on whole-genome sequencing. Integration of ML-GWAS with transcriptome analysis, 79 candidate genes, including BnaA09g39790D (RNA helicase), BnaA09g39950D (Lipase) and BnaC09g25980D (SWEET7), were further identified and twelve genes were validated by qRT-PCRs to affect the SW or SP in rapeseed. The distribution of superior alleles from nineteen stable QTNs in 20 elite rapeseed accessions suggested that the high-yielding accessions contained more superior alleles. These results would contribute to a further understanding of the genetic basis of yield-related traits and could be used for crop improvement in B. napus.
Collapse
Affiliation(s)
- Cuiping Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Ruolin Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Hua Zhong
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Chunyan Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Ru Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Jungang Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shuai Liu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii at Manoa, Honolulu, HI, United States
- *Correspondence: Jihong Hu, ; Shuai Liu,
| | - Jihong Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- *Correspondence: Jihong Hu, ; Shuai Liu,
| |
Collapse
|
12
|
Han X, Zhang YW, Liu JY, Zuo JF, Zhang ZC, Guo L, Zhang YM. 4D genetic networks reveal the genetic basis of metabolites and seed oil-related traits in 398 soybean RILs. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:92. [PMID: 36076247 PMCID: PMC9461130 DOI: 10.1186/s13068-022-02191-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022]
Abstract
Background The yield and quality of soybean oil are determined by seed oil-related traits, and metabolites/lipids act as bridges between genes and traits. Although there are many studies on the mode of inheritance of metabolites or traits, studies on multi-dimensional genetic network (MDGN) are limited. Results In this study, six seed oil-related traits, 59 metabolites, and 107 lipids in 398 recombinant inbred lines, along with their candidate genes and miRNAs, were used to construct an MDGN in soybean. Around 175 quantitative trait loci (QTLs), 36 QTL-by-environment interactions, and 302 metabolic QTL clusters, 70 and 181 candidate genes, including 46 and 70 known homologs, were previously reported to be associated with the traits and metabolites, respectively. Gene regulatory networks were constructed using co-expression, protein–protein interaction, and transcription factor binding site and miRNA target predictions between candidate genes and 26 key miRNAs. Using modern statistical methods, 463 metabolite–lipid, 62 trait–metabolite, and 89 trait–lipid associations were found to be significant. Integrating these associations into the above networks, an MDGN was constructed, and 128 sub-networks were extracted. Among these sub-networks, the gene–trait or gene–metabolite relationships in 38 sub-networks were in agreement with previous studies, e.g., oleic acid (trait)–GmSEI–GmDGAT1a–triacylglycerol (16:0/18:2/18:3), gene and metabolite in each of 64 sub-networks were predicted to be in the same pathway, e.g., oleic acid (trait)–GmPHS–d-glucose, and others were new, e.g., triacylglycerol (16:0/18:1/18:2)–GmbZIP123–GmHD-ZIPIII-10–miR166s–oil content. Conclusions This study showed the advantages of MGDN in dissecting the genetic relationships between complex traits and metabolites. Using sub-networks in MGDN, 3D genetic sub-networks including pyruvate/threonine/citric acid revealed genetic relationships between carbohydrates, oil, and protein content, and 4D genetic sub-networks including PLDs revealed the relationships between oil-related traits and phospholipid metabolism likely influenced by the environment. This study will be helpful in soybean quality improvement and molecular biological research. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02191-1.
Collapse
|
13
|
Tan YR, Nakamura Y. The importance of Arabidopsis PHOSPHOLIPID N-METHYLTRANSFERASE in glycerolipid metabolism and plant growth. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2971-2984. [PMID: 35560202 DOI: 10.1093/jxb/erac049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/01/2022] [Indexed: 06/15/2023]
Abstract
Phosphatidylcholine (PC) is a major class of phospholipids that are essential for post-embryonic growth in plants. In Arabidopsis, three copies of the phospho-base N-methyltransferase, PMT1, PMT2, and PMT3, are known to account for PC biosynthesis because the triple-knockout mutant is devoid of biosynthesis and shows lethality in post-embryonic but not embryonic growth. Arabidopsis also contains a distinct phospholipid N-methyltransferase (PLMT) that is homologous with yeast and animal PLMT that methylates phospholipids to produce PC. However, the knockout mutant of PLMT does not show morphological phenotypes or decreased PC content, so the role of PLMT remains unclear. Here, we show that PLMT is ubiquitously expressed in different organs and localized at the endoplasmic reticulum, where PC is produced. Overexpression of PLMT in planta increased the content of phospholipids including PC and affected vegetative but not reproductive growth. Although silique lengths were shorter, pollen remained viable and mature seeds were produced. Intriguingly, seed triacylglycerol content was increased with altered fatty acid composition. We conclude that PLMT might be a functional enzyme in PC biosynthesis and play an organ-specific role in developing seeds, where rapid accumulation of triacylglycerol dominates the entire glycerolipid metabolic flux.
Collapse
Affiliation(s)
- Yue-Rong Tan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Japan
| |
Collapse
|
14
|
Ali U, Lu S, Fadlalla T, Iqbal S, Yue H, Yang B, Hong Y, Wang X, Guo L. The functions of phospholipases and their hydrolysis products in plant growth, development and stress responses. Prog Lipid Res 2022; 86:101158. [PMID: 35134459 DOI: 10.1016/j.plipres.2022.101158] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022]
Abstract
Cell membranes are the initial site of stimulus perception from environment and phospholipids are the basic and important components of cell membranes. Phospholipases hydrolyze membrane lipids to generate various cellular mediators. These phospholipase-derived products, such as diacylglycerol, phosphatidic acid, inositol phosphates, lysophopsholipids, and free fatty acids, act as second messengers, playing vital roles in signal transduction during plant growth, development, and stress responses. This review focuses on the structure, substrate specificities, reaction requirements, and acting mechanism of several phospholipase families. It will discuss their functional significance in plant growth, development, and stress responses. In addition, it will highlight some critical knowledge gaps in the action mechanism, metabolic and signaling roles of these phospholipases and their products in the context of plant growth, development and stress responses.
Collapse
Affiliation(s)
- Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Tarig Fadlalla
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Sidra Iqbal
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Hong Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Bao Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
15
|
Li L, Li N, Qi X, Bai Y, Chen Q, Fang H, Yu X, Liu D, Liang C, Zhou Y. Characterization of the Glehnia littoralis Non-specific Phospholipase C Gene GlNPC3 and Its Involvement in the Salt Stress Response. FRONTIERS IN PLANT SCIENCE 2021; 12:769599. [PMID: 34956268 PMCID: PMC8695444 DOI: 10.3389/fpls.2021.769599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Glehnia littoralis is a medicinal halophyte that inhabits sandy beaches and has high ecological and commercial value. However, the molecular mechanism of salt adaptation in G. littoralis remains largely unknown. Here, we cloned and identified a non-specific phospholipase C gene (GlNPC3) from G. littoralis, which conferred lipid-mediated signaling during the salt stress response. The expression of GlNPC3 was induced continuously by salt treatment. Overexpression of GlNPC3 in Arabidopsis thaliana increased salt tolerance compared to wild-type (WT) plants. GlNPC3-overexpressing plants had longer roots and higher fresh and dry masses under the salt treatment. The GlNPC3 expression pattern revealed that the gene was expressed in most G. littoralis tissues, particularly in roots. The subcellular localization of GlNPC3 was mainly at the plasma membrane, and partially at the tonoplast. GlNPC3 hydrolyzed common membrane phospholipids, such as phosphotidylserine (PS), phosphoethanolamine (PE), and phosphocholine (PC). In vitro enzymatic assay showed salt-induced total non-specific phospholipase C (NPC) activation in A. thaliana GlNPC3-overexpressing plants. Plant lipid profiling showed a significant change in the membrane-lipid composition of A. thaliana GlNPC3-overexpressing plants compared to WT after the salt treatment. Furthermore, downregulation of GlNPC3 expression by virus-induced gene silencing in G. littoralis reduced the expression levels of some stress-related genes, such as SnRK2, P5SC5, TPC1, and SOS1. Together, these results indicated that GlNPC3 and GlNPC3-mediated membrane lipid change played a positive role in the response of G. littoralis to a saline environment.
Collapse
Affiliation(s)
- Li Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Naiwei Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Xiwu Qi
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Yang Bai
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Qiutong Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Hailing Fang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Xu Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Dongmei Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Chengyuan Liang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yifeng Zhou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| |
Collapse
|
16
|
Yang D, Liu X, Yin X, Dong T, Yu M, Wu Y. Rice Non-Specific Phospholipase C6 Is Involved in Mesocotyl Elongation. PLANT & CELL PHYSIOLOGY 2021; 62:985-1000. [PMID: 34021760 DOI: 10.1093/pcp/pcab069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/11/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Mesocotyl elongation of rice is crucial for seedlings pushing out of deep soil. The underlying mechanisms of phospholipid signaling in mesocotyl growth of rice are elusive. Here we report that the rice non-specific phospholipase C6 (OsNPC6) is involved in mesocotyl elongation. Our results indicated that all five OsNPCs (OsNPC1, OsNPC2, OsNPC3, OsNPC4 and OsNPC6) hydrolyzed the substrate phosphatidylcholine to phosphocholine (PCho), and all of them showed plasma membrane localization. Overexpression (OE) of OsNPC6 produced plants with shorter mesocotyls compared to those of Nipponbare and npc6 mutants. Although the mesocotyl growth of npc6 mutants was not much affected without gibberellic acid (GA)3, it was obviously elongated by treatment with GA. Upon GA3 treatment, SLENDER RICE1 (SLR1), the DELLA protein of GA signaling, was drastically increased in OE plants; by contrast, the level of SLR1 was found decreased in npc6 mutants. The GA-enhanced mesocotyl elongation and the GA-impaired SLR1 level in npc6 mutants were attenuated by the supplementation of PCho. Further analysis indicated that the GA-induced expression of phospho-base N-methyltransferase 1 in npc6 mutants was significantly weakened by the addition of PCho. In summary, our results suggest that OsNPC6 is involved in mesocotyl development via modulation of PCho in rice.
Collapse
Affiliation(s)
- Di Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoming Yin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tian Dong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Min Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
17
|
Yang B, Zhang K, Jin X, Yan J, Lu S, Shen Q, Guo L, Hong Y, Wang X, Guo L. Acylation of non-specific phospholipase C4 determines its function in plant response to phosphate deficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1647-1659. [PMID: 33792991 DOI: 10.1111/tpj.15260] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Non-specific phospholipase C (NPC) is involved in plant growth, development and stress responses. To elucidate the mechanism by which NPCs mediate cellular functions, here we show that NPC4 is S-acylated at the C terminus and that acylation determines its plasma membrane (PM) association and function. The acylation of NPC4 was detected using NPC4 isolated from Arabidopsis and reconstituted in vitro. The C-terminal Cys-533 was identified as the S-acylation residue, and the mutation of Cys-533 to Ala-533 in NPC4 (NPC4C533A ) led to the loss of S-acylation and membrane association of NPC4. The knockout of NPC4 impeded the phosphate deficiency-induced decrease of the phosphosphingolipid glycosyl inositol phosphoryl ceramide (GIPC), but introducing NPC4C533A to npc4-1 failed to complement this defect, thereby supporting the hypothesis that the non-acylated NPC4C533A fails to hydrolyze GIPC during phosphate deprivation. Moreover, NPC4C533A failed to complement the primary root growth in npc4-1 under stress. In addition, NPC4 in Brassica napus was S-acylated and mutation of the S-acylating cysteine residue of BnaC01.NPC4 led to the loss of S-acylation and its membrane association. Together, our results reveal that S-acylation of NPC4 in the C terminus is conserved and required for its membrane association, phosphosphingolipid hydrolysis and function in plant stress responses.
Collapse
Affiliation(s)
- Bao Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ke Zhang
- Department of Biology, University of Missouri, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Xiong Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiayu Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingwen Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
18
|
Yang B, Li M, Phillips A, Li L, Ali U, Li Q, Lu S, Hong Y, Wang X, Guo L. Nonspecific phospholipase C4 hydrolyzes phosphosphingolipids and sustains plant root growth during phosphate deficiency. THE PLANT CELL 2021; 33:766-780. [PMID: 33955494 PMCID: PMC8136900 DOI: 10.1093/plcell/koaa054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/23/2020] [Indexed: 05/07/2023]
Abstract
Phosphate is a vital macronutrient for plant growth, and its availability in soil is critical for agricultural sustainability and productivity. A substantial amount of cellular phosphate is used to synthesize phospholipids for cell membranes. Here, we identify a key enzyme, nonspecific phospholipase C4 (NPC4) that is involved in phosphosphingolipid hydrolysis and remodeling in Arabidopsis during phosphate starvation. The level of glycosylinositolphosphorylceramide (GIPC), the most abundant sphingolipid in Arabidopsis thaliana, decreased upon phosphate starvation. NPC4 was highly induced by phosphate deficiency, and NPC4 knockouts in Arabidopsis decreased the loss of GIPC and impeded root growth during phosphate starvation. Enzymatic analysis showed that NPC4 hydrolyzed GIPC and displayed a higher activity toward GIPC as a substrate than toward the common glycerophospholipid phosphatidylcholine. NPC4 was associated with the plasma membrane lipid rafts in which GIPC is highly enriched. These results indicate that NPC4 uses GIPC as a substrate in planta and the NPC4-mediated sphingolipid remodeling plays a positive role in root growth in Arabidopsis response to phosphate deficiency.
Collapse
Affiliation(s)
- Bao Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Maoyin Li
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Anne Phillips
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Long Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
- Author for correspondence: (L.G) and (X.W.)
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- Author for correspondence: (L.G) and (X.W.)
| |
Collapse
|
19
|
Bose D, Ngo AH, Nguyen VC, Nakamura Y. Non-specific phospholipases C2 and C6 redundantly function in pollen tube growth via triacylglycerol production in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:409-418. [PMID: 33506578 DOI: 10.1111/tpj.15172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/09/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Non-specific phospholipase Cs (NPCs) are responsible for membrane lipid remodeling that involves hydrolysis of the polar head group of membrane phospholipids. Arabidopsis NPC2 and NPC6 are essential in gametogenesis, but their underlying role in the lipid remodeling remains elusive. Here, we show that these NPCs are required for triacylglycerol (TAG) production in pollen tube growth. NPC2 and NPC6 are highly expressed in developing pollen tubes and are localized at the endoplasmic reticulum. Mutants of NPC2 and NPC6 showed reduced rate of pollen germination, length of pollen tube and amount of lipid droplets (LDs). Overexpression of NPC2 or NPC6 induced LD accumulation, which suggests that these NPCs are involved in LD production. Furthermore, mutants defective in the biosynthesis of TAG, a major component of LDs, showed defective pollen tube growth. These results suggest that NPC2 and NPC6 are essential in gametogenesis for a role in hydrolyzing phospholipids and producing TAG required for pollen tube growth. Thus, lipid remodeling from phospholipids to TAG during pollen tube growth represents an emerging role for the NPC family in plant developmental control.
Collapse
Affiliation(s)
- Debayan Bose
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Anh H Ngo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Van C Nguyen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| |
Collapse
|
20
|
Cai G, Wang G, Kim SC, Li J, Zhou Y, Wang X. Increased expression of fatty acid and ABC transporters enhances seed oil production in camelina. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:49. [PMID: 33640013 PMCID: PMC7913393 DOI: 10.1186/s13068-021-01899-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/09/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Lipid transporters play an essential role in lipid delivery and distribution, but their influence on seed oil production in oilseed crops is not well studied. RESULTS Here, we examined the effect of two lipid transporters, FAX1 (fatty acid export1) and ABCA9 (ATP-binding cassette transporter subfamily A9) on oil production and lipid metabolism in the oilseed plant Camelina sativa. Overexpression (OE) of FAX1 and ABCA9 increased seed weight and size, with FAX1-OEs and ABCA9-OEs increasing seed length and width, respectively, whereas FAX1/ABCA9-OEs increasing both. FAX1-OE and ABCA9-OE displayed additive effects on seed oil content and seed yield. Also, OE of FAX1 and ABCA9 affected membrane lipid composition in developing pods, especially on phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol. The expression of some genes involved in seed oil synthesis, such as DGAT2, PDAT1, and LEC1, was increased in developing seeds of FAX1- and/or ABCA9-OEs. CONCLUSION These results indicate that increased expression of FAX1 and ABCA9 can potentially be applied to improving camelina oil production.
Collapse
Affiliation(s)
- Guangqin Cai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062 Hubei China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei China
- Department of Biology, University of Missouri, St. Louis, MO 63121 USA
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Geliang Wang
- Department of Biology, University of Missouri, St. Louis, MO 63121 USA
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Sang-Chul Kim
- Department of Biology, University of Missouri, St. Louis, MO 63121 USA
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Jianwu Li
- Department of Biology, University of Missouri, St. Louis, MO 63121 USA
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, MO 63121 USA
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| |
Collapse
|
21
|
Favela-González KM, Hernández-Almanza AY, De la Fuente-Salcido NM. The value of bioactive compounds of cruciferous vegetables (Brassica) as antimicrobials and antioxidants: A review. J Food Biochem 2020; 44:e13414. [PMID: 32743821 DOI: 10.1111/jfbc.13414] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
Nowadays, consumers are demanding nutrient-rich products for health optimal benefits. In this regard, Brassicaceae family plants, previously named cruciferous, group a large number of widely consumed species around the world. The popularity of Brassica is increasing due to their nutritional value and pharmacological effects. The group includes a large number of vegetable foods such as cabbages, broccoli, cauliflower, mustards as well as, oilseed rapeseed, canola, among others. In recent years, the phytochemical composition of Brassicaceae has been studied deeply because they contain many valuable metabolites, which are directly linked to different recognized biological activities. The scientific evidence confirms diverse medical properties for the treatment of chronic diseases such as obesity, type-2 diabetes, cardiovascular diseases (hypertension, stroke), cancer, and osteoporosis. The unique features of Brassicaceae family plants conferred by their phytochemicals, have extended future prospects about their use for beneficial effects on human nutrition and health worldwide. PRACTICAL APPLICATIONS: For years, the Brassicaceae plants have been a fascinating research topic, due to their chemical composition characterized by rich in bioactive compounds. The implementation of extracts of these vegetables, causes various beneficial effects of high biological value in the treatment of diseases, owing to their bioactive properties (anti-obesity, anticancer, antimicrobial, antioxidant, hepatoprotective, cardioprotective, gastroprotective, anti-inflammatory, antianemic, and immunomodulator). Therefore, this review summarizes the chemical composition, describes the bioactive compounds isolated in the plant extracts, and highlights diverse biological activities, mainly the antimicrobial and antioxidant capacity. Brassica plants, as source of natural bioactive agents, have a great potential application to improve the human nutrition and health.
Collapse
Affiliation(s)
- Kenia Mirozlava Favela-González
- Graduate Program in Biochemical Engineering, Biological Sciences Faculty, Autonomous University of Coahuila, Torreón, México
| | - Ayerim Yedid Hernández-Almanza
- Graduate Program in Biochemical Engineering, Biological Sciences Faculty, Autonomous University of Coahuila, Torreón, México
| | - Norma Margarita De la Fuente-Salcido
- Graduate Program in Biochemical Engineering, Biological Sciences Faculty, Autonomous University of Coahuila, Torreón, México
- Bioprospecting and Bioprocesses Department, Biological Sciences Faculty, Autonomous University of Coahuila, Torreón, México
| |
Collapse
|
22
|
Cai G, Kim SC, Li J, Zhou Y, Wang X. Transcriptional Regulation of Lipid Catabolism during Seedling Establishment. MOLECULAR PLANT 2020; 13:984-1000. [PMID: 32334070 DOI: 10.1016/j.molp.2020.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 05/20/2023]
Abstract
Lipid catabolism in germinating seeds provides energy and substrates for initial seedling growth, but how this process is regulated is not well understood. Here, we show that an AT-hook motif-containing nuclear localized (AHL) protein regulates lipid mobilization and fatty acid β-oxidation during seed germination and seedling establishment. AHL4 was identified to directly interact with the lipid mediator phosphatidic acid (PA). Knockout (KO) of AHL4 enhanced, but overexpression (OE) of AHL4 attenuated, triacylglycerol (TAG) degradation and seedling growth. Normal seedling growth of the OE lines was restored by sucrose supplementation to the growth medium. AHL4-OE seedlings displayed decreased expression of genes involved in TAG hydrolysis and fatty acid oxidation, whereas the opposite was observed in AHL4-KOs. These genes contained AHL4-binding cis elements, and AHL4 was shown to bind to the promoter regions of genes encoding the TAG lipases SDP1 and DALL5 and acyl-thioesterase KAT5. These AHL4-DNA interactions were suppressed by PA species that bound to AHL4. These results indicate that AHL4 suppresses lipid catabolism by repressing the expression of specific genes involved in TAG hydrolysis and fatty acid oxidation, and that PA relieves AHL4-mediated suppression and promotes TAG degradation. Thus, AHL4 and PA together regulate lipid degradation during seed germination and seedling establishment.
Collapse
Affiliation(s)
- Guangqin Cai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Department of Biology, University of Missouri, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Sang-Chul Kim
- Department of Biology, University of Missouri, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Jianwu Li
- Department of Biology, University of Missouri, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| |
Collapse
|
23
|
Nakamura Y, Ngo AH. Non-specific phospholipase C (NPC): an emerging class of phospholipase C in plant growth and development. JOURNAL OF PLANT RESEARCH 2020; 133:489-497. [PMID: 32372398 PMCID: PMC7862535 DOI: 10.1007/s10265-020-01199-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/19/2020] [Indexed: 05/10/2023]
Abstract
Non-specific phospholipase C (NPC) is a novel class of phospholipase C found only in bacteria and higher plants. NPC hydrolyzes major phospholipid classes such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE) to produce diacylglycerol (DAG) and a corresponding phosphate-containing polar head group. Originally known as a toxin in certain bacteria to invade the host cell, this class of phospholipase has been well-investigated in bacteriology. Since the first discovery of eukaryotic NPC in Arabidopsis in 2005, this emerging class of phospholipase has received greater attention in plant biology in elucidating the biochemical characteristics and physiological function in the context of plant growth regulation and stress response. Particularly in the last few years, there has been significant progress made in understanding the fundamental character of 6 NPC isoforms in Arabidopsis, as well as novel function in other plant models. Now that research with plant NPC is entering into a new phase, this review aims to summarize recent progress in plant NPC along with some future perspectives.
Collapse
Affiliation(s)
- Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, 128 sec. 2 Academia Rd., Nankang, Taipei, 11529, Taiwan.
| | - Anh H Ngo
- Institute of Plant and Microbial Biology, Academia Sinica, 128 sec. 2 Academia Rd., Nankang, Taipei, 11529, Taiwan
| |
Collapse
|